1
|
De Bartolo A, Angelone T, Rocca C. Elucidating emerging signaling pathways driving endothelial dysfunction in cardiovascular aging. Vascul Pharmacol 2025; 158:107462. [PMID: 39805379 DOI: 10.1016/j.vph.2025.107462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
The risk for developing cardiovascular diseases dramatically increases in older individuals, and aging vasculature plays a crucial role in determining their morbidity and mortality. Aging disrupts endothelial balance between vasodilators and vasoconstrictors, impairing function and promoting pathological vascular remodeling. In this Review, we discuss the impact of key and emerging molecular pathways that transduce aberrant inflammatory signals (i.e., chronic low-grade inflammation-inflammaging), oxidative stress, and mitochondrial dysfunction in aging vascular compartment. We focus on the interplay between these events, which contribute to generating a vicious cycle driving the progressive alterations in vascular structure and function during cardiovascular aging. We also discuss the primary role of senescent endothelial cells and vascular smooth muscle cells, and the potential link between vascular and myeloid cells, in impairing plaque stability and promoting the progression of atherosclerosis. The aim of this summary is to provide potential novel insights into targeting these processes for therapeutic benefit.
Collapse
Affiliation(s)
- Anna De Bartolo
- Cellular and Molecular Cardiovascular Physiology and Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Tommaso Angelone
- Cellular and Molecular Cardiovascular Physiology and Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, Cosenza, Italy; National Institute of Cardiovascular Research (INRC), Bologna, Italy.
| | - Carmine Rocca
- Cellular and Molecular Cardiovascular Physiology and Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, Cosenza, Italy; National Institute of Cardiovascular Research (INRC), Bologna, Italy.
| |
Collapse
|
2
|
Luo J, Li X, Zhang L, Deng M, Zhao J, Zhang J, Tang W, Guo Q, Wang L. 5-deoxy-rutaecarpine protects against LPS-induced acute lung injury via inhibiting NLRP3 inflammasome-related inflammation. Front Pharmacol 2025; 16:1522146. [PMID: 39981175 PMCID: PMC11841402 DOI: 10.3389/fphar.2025.1522146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/10/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction Acute lung injury (ALI) induced by lipopolysaccharide (LPS) is a significant medical condition characterized by severe pulmonary inflammation and tissue damage. NLRP3 inflammasome-driven inflammation is essential in ALI pathogenesis, inspiring novel therapeutic strategies that focus on NLRP3 and inflammation. In this study, we investigated the therapeutic potential of 5-deoxy-rutaecarpine (5-DR), a rutaecarpine derivative, in attenuating LPS-induced ALI. Methods In this study, we evaluated the effects of 5-DR treatment in mice exposed to LPS, lung tissues, bronchoalveolar lavage fluid, and serum were collected for analysis. LPS-stimulated J774A.1 mouse macrophages were used to further investigate the anti-inflammatory effects of 5-DR in vitro. Various techniques including histopathology, Western blotting, and luciferase reporter assay were employed. Results 5-DR treatment significantly reduced lung edema, inflammatory cell infiltration in mice with LPS burden, and reduced the levels of inflammatory mediators like interleukin-1β in the mice and in LPS-stimulated J774A.1 mouse macrophages. Further western blotting analysis showed 5-DR decreased the levels of NLRP3, cleaved caspase-1, and mature IL-1β in mice and J774A.1 cells exposed to LPS. Additionally, NF-κB pathway activation significantly diminished the inhibition of the NLRP3 inflammasome by 5-DR. Discussion Our findings highlight the therapeutic potential of 5-DR as a promising candidate for treating LPS-induced ALI, offering insights into its underlying mechanism that targets NLRP3 inflammasome-mediated inflammation.
Collapse
Affiliation(s)
- Jinque Luo
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, “The 14th Five-Year Plan” Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, Changsha, Hunan, China
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, College of Pharmacy, Changsha Medical University, Changsha, Hunan, China
| | - Xin Li
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, “The 14th Five-Year Plan” Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, Changsha, Hunan, China
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, College of Pharmacy, Changsha Medical University, Changsha, Hunan, China
| | - Li Zhang
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, “The 14th Five-Year Plan” Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, Changsha, Hunan, China
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, College of Pharmacy, Changsha Medical University, Changsha, Hunan, China
| | - Meijing Deng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Jieyang Zhao
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, “The 14th Five-Year Plan” Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, Changsha, Hunan, China
| | - Jinghuan Zhang
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, “The 14th Five-Year Plan” Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, Changsha, Hunan, China
| | - Wenyu Tang
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, “The 14th Five-Year Plan” Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, Changsha, Hunan, China
| | - Qinghua Guo
- Department of Emergency, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Ling Wang
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, “The 14th Five-Year Plan” Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, Changsha, Hunan, China
| |
Collapse
|
3
|
Ye B, Cai X, Liang X, Chen Y, Dai S, Huang Z, Huang W, Zhang L, Wang Z, Xing J, Lai X, Huang Z, Jia Z. Emodin Suppresses NLRP3/GSDMD-induced Inflammation via the TLR4/MyD88/NF-κB Signaling Pathway in Atherosclerosis. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07659-w. [PMID: 39715879 DOI: 10.1007/s10557-024-07659-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/28/2024] [Indexed: 12/25/2024]
Abstract
PURPOSE Inflammatory responses induced by NLRP3 inflammasome contribute to the progression of atherosclerosis. This study seeks to investigate the effect of emodin on the NLRP3 inflammasome in atherogenesis and to probe the underlying mechanism. METHODS ApoE-knockout (ApoE-/-) mice were treated with a high-fat diet (HFD) for 12 weeks and intragastrically with emodin for 6 weeks. Human mononuclear cell line THP-1 was pretreated with emodin or signaling pathway inhibitors and induced into macrophages using phorbol 12-myristate 13-acetate (PMA) for 48 h. The NLRP3-mediated inflammatory response was studied both in vivo and in vitro. The level of the inflammation was detected by western blot, real-time PCR analysis, and ELISA. RESULTS Emodin attenuated atherosclerotic lesions in HFD-treated ApoE-/- mice. Emodin dramatically decreased the expression of NLRP3, GSDMD, IL-1β, and IL-18 in HFD-treated ApoE-/- mice and PMA-induced macrophages. Moreover, emodin significantly hindered the activation of nuclear factor kappa-B (NF-κB) by inhibiting the formation of the TLR4/MyD88 complex in PMA-induced macrophages. CONCLUSION Our data demonstrate that emodin can inhibit the development of atherosclerotic plaques by alleviating NLRP3/GSDMD-induced inflammation through repressing the TLR4/MyD88/NF-κB signaling pathway in macrophages. This finding suggests that emodin can be a potential candidate for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Bozhi Ye
- Department of Cardiology, Panvascular Disease Management Center (PDMC), Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, WenZhou, ZheJiang, China
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China
| | - Xueli Cai
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China
| | - Xiaohe Liang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China
| | - Yunxuan Chen
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China
| | - Shanshan Dai
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, WenZhou, Zhejiang, China
| | - Zhuqi Huang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China
| | - Weijian Huang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China
| | - Lei Zhang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China
| | - Zixuan Wang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China
| | - Jincheng Xing
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China
| | - Xianhui Lai
- Department of Cardiology, Yuhuan County People's Hospital of Zhejiang Province, Taizhou, China.
| | - Zhouqing Huang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China.
| | - Zhuyin Jia
- Department of Cardiology, Panvascular Disease Management Center (PDMC), Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, WenZhou, ZheJiang, China.
| |
Collapse
|
4
|
Hu H, Wang S, Chen C. Pathophysiological role and potential drug target of NLRP3 inflammasome in the metabolic disorders. Cell Signal 2024; 122:111320. [PMID: 39067838 DOI: 10.1016/j.cellsig.2024.111320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
NLRP3 plays a role in the development of autoinflammatory diseases. NLRP3, ASC, and Caspases 1 or 8 make up the NLRP3 inflammasome, which is an important part of innate immune system. The NLRP3 inflammasome-mediated inflammatory cytokines may also participate in metabolic disorders, such as diabetes, hyperlipidemia, atherosclerosis, non-alcoholic fatty liver disease, and gout. Hence, an overview of the NLRP3 regulation in these metabolic diseases and the potential drugs targeting NLRP3 is the focus of this review.
Collapse
Affiliation(s)
- Huiming Hu
- School of pharmacy, Nanchang Medical College, Nanchang, Jiangxi, China; School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia; Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, Jiangxi, China
| | - Shuwen Wang
- Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia.
| |
Collapse
|
5
|
Wu J, Wang L, Xi S, Ma C, Zou F, Fang G, Liu F, Wang X, Qu L. Biological significance of METTL5 in atherosclerosis: comprehensive analysis of single-cell and bulk RNA sequencing data. Aging (Albany NY) 2024; 16:7267-7276. [PMID: 38663914 PMCID: PMC11087127 DOI: 10.18632/aging.205755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/27/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND N6-methyladenosine (m6A) methylation is involved in the pathogenesis of atherosclerosis (AS). Limited studies have examined the role of the m6A methyltransferase METTL5 in AS pathogenesis. METHODS This study subjected the AS dataset to differential analysis and weighted gene co-expression network analysis to identify m6A methylation-associated differentially expressed genes (DEGs). Next, the m6A methylation-related DEGs were subjected to consensus clustering to categorize AS samples into distinct m6A subtypes. Single-cell RNA sequencing (scRNA-seq) analysis was performed to investigate the proportions of each cell type in AS and adjacent healthy tissues and the expression levels of key m6A regulators. The mRNA expression levels of METTL5 in AS and healthy tissues were determined using quantitative real-time polymerase chain reaction (qRT-PCR) analysis. RESULTS AS samples were classified into two subtypes based on a five-m6A regulator-based model. scRNA-seq analysis revealed that the proportions of T cells, monocytes, and macrophages in AS tissues were significantly higher than those in healthy tissues. Additionally, the levels of m6A methylation were significantly different between AS and healthy tissues. METTL5 expression was upregulated in macrophages, smooth muscle cells (SMCs), and endothelial cells (ECs). qRT-PCR analysis demonstrated that the METTL5 mRNA level in AS tissues was downregulated when compared with that in healthy tissues. CONCLUSIONS METTL5 is a potential diagnostic marker for AS subtypes. Macrophages, SMCs, and ECs, which exhibit METTL5 upregulation, may modulate AS progression by regulating m6A methylation levels.
Collapse
Affiliation(s)
- Jianjin Wu
- Department of Vascular and Endovascular Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Lei Wang
- Department of Vascular Surgery, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Shuaishuai Xi
- Department of Vascular Surgery, Weifang Yidu Central Hospital, Weifang, Shandong, China
| | - Chao Ma
- Department of Vascular Surgery, Weifang Yidu Central Hospital, Weifang, Shandong, China
| | - Fukang Zou
- Department of Vascular and Endovascular Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Guanyu Fang
- Department of Vascular and Endovascular Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Fangbing Liu
- Department of Vascular and Endovascular Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xiaokai Wang
- Department of Interventional and Vascular Surgery, The First People’s Hospital of Xuzhou, Xuzhou, Jiangsu, China
| | - Lefeng Qu
- Department of Vascular and Endovascular Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
6
|
Wang Z, Liu J, Mou Y, Liao W, Li Y, Liu J, Tang J. Anti-inflammatory and uric acid lowering effects of Euodiae fructus on hyperuricemia and gout mice. Front Pharmacol 2024; 15:1296075. [PMID: 38708084 PMCID: PMC11066271 DOI: 10.3389/fphar.2024.1296075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/01/2024] [Indexed: 05/07/2024] Open
Abstract
The metabolic disease hyperuricemia (HUA) is caused by presence of excessive serum uric acid (UA), which leads to an increased risk of chronic kidney disease and gout. As a widely used traditional Chinese medicine, Euodiae fructus (ER) has strong anti-inflammatory and analgesic effects, however, its therapeutic effects on HUA and gout have not been investigated. To investigate the potential effects and underlying mechanisms, the effect of ER on proinflammatory cytokines and NLRP3 inflammasome activation was studied in mouse bone marrow macrophages. Moreover, a mouse model of HUA and gouty arthritis was established by coadministration of potassium oxonate (PO) and monosodium urate crystals to mice fed a high-fat diet (HFD) for 37 consecutive days. Oral administration of ER aqueous extract was given 1 hour later after the injection of PO for 10 days. Our study showed that ER is a powerful NLRP3 inhibitor in mouse macrophages. Most importantly, ER (0.75 g/kg) treatment substantially decreased the ankle joint thickness ratio, serum UA, creatinine and blood urea nitrogen levels (p < 0.05). Additionally, ER (0.75 g/kg) dramatically reversed the increases in renal urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9) as well as the decreases in organic anion transporter 1 (OAT1) and ATP binding cassette subfamily G member 2 (ABCG2) levels (p < 0.05). Moreover, ER (0.75 g/kg) markedly ameliorated the production of the serum inflammatory cytokines IL-1β and TNF-α (p < 0.01), and improved the activation of NLRP3 inflammasome signaling in the kidneys. Taken together, these data indicate that ER, a powerful and specific NLRP3 inhibitor, has multiple anti-HUA, anti-gout and anti-inflammatory effects. Our investigation is designed to experimentally support the conventional use of ER-containing classical herbal formulas in the treatment of HUA-related disorders and may add a new dimension to the clinical application of ER.
Collapse
Affiliation(s)
- Zhilei Wang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingwen Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Mou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuchen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Hu X, Wang J, Jiang L, Liu X, Ge Q, Wang Q, Qi X, Wu Y. Rutaecarpine protects podocytes in diabetic kidney disease by targeting VEGFR2/NLRP3-mediated pyroptosis. Int Immunopharmacol 2024; 130:111790. [PMID: 38447417 DOI: 10.1016/j.intimp.2024.111790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVE Diabetic kidney disease (DKD) is the most common cause of the end-stage renal disease, which has limited treatment options. Rutaecarpine has anti-inflammatory effects, however, it has not been studied in DKD. Pyroptosis is a newly discovered mode of podocyte death related to inflammation. This study aimed to explore whether Rutaecarpine can ameliorate DKD and to clarify its possible mechanism. METHODS In this study, we investigated the effects of Rutaecarpine on DKD using diabetic mice model (db/db mice) and high glucose (HG)-stimulated mouse podocyte clone 5 (MPC5) cells. Quantitative reverse transcription polymerase chain reaction and western blot were performed to detect the related gene and protein levels. We applied pharmacological prediction, co-immunoprecipitation assay, cellular thermal shift assay, surface plasmon resonance to find the target and pathway of the substances. Gene knockdown experiments confirmed this view in HG-stimulated MPC5 cells. RESULTS Rutaecarpine significantly reduced proteinuria, histopathological damage, and pyroptosis of podocytes in a dose-dependent manner in db/db mice. Rutaecarpine also protected high glucose induced MPC5 injury in vitro experiments. Mechanistically, Rutaecarpine can inhibit pyroptosis in HG-stimulated MPC5 by reducing the expression of VEGFR2. VEGFR2 is a target of Rutaecarpine in MPC5 cells and directly binds to the pyroptosis initiation signal, NLRP3. VEGFR2-knockdown disrupted the beneficial effects of Rutaecarpine in HG-stimulated MPC5 cells. CONCLUSION Rutaecarpine inhibits renal inflammation and pyroptosis through VEGFR2/NLRP3 pathway, thereby alleviating glomerular podocyte injury. These findings highlight the potential of Rutaecarpine as a novel drug for DKD treatment.
Collapse
Affiliation(s)
- Xueru Hu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Jingjing Wang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Ling Jiang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xueqi Liu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Qingmiao Ge
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Qianhui Wang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xiangming Qi
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China.
| | - Yonggui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China.
| |
Collapse
|
8
|
Li D, Huang Z, Xu X, Li Y. Promising derivatives of rutaecarpine with diverse pharmacological activities. Front Chem 2023; 11:1199799. [PMID: 38025082 PMCID: PMC10646507 DOI: 10.3389/fchem.2023.1199799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Rutaecarpine (RUT) is a natural pentacyclic indolopyridoquinazolinone alkaloid first isolated from one of the most famous traditional Chinese herbs, Evodia rutaecarpa, which is used for treating a variety of ailments, including headaches, gastrointestinal disorders, postpartum hemorrhage, amenorrhea, difficult menstruation, and other diseases. Accumulating pharmacological studies showed that RUT possesses a wide range of pharmacological effects through different mechanisms. However, its poor physicochemical properties and moderate biological activities have hampered its clinical application. In this regard, the modification of RUT aimed at seeking its derivatives with better physicochemical properties and more potency has been extensively studied. These derivatives exhibit diverse pharmacological activities, including anti-inflammatory, anti-atherogenic, anti-Alzheimer's disease, antitumor, and antifungal activities via a variety of mechanisms, such as inhibiting cyclooxygenase-2 (COX-2), acetylcholine (AChE), phosphodiesterase 4B (PDE4B), phosphodiesterase 5 (PDE5), or topoisomerases (Topos). From this perspective, this paper provides a comprehensive description of RUT derivatives by focusing on their diverse biological activities. This review aims to give an insight into the biological activities of RUT derivatives and encourage further exploration of RUT.
Collapse
Affiliation(s)
- Deping Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Ziqian Huang
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaojun Xu
- Department of Party and Government Office, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yan Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
9
|
Zhang X, Wang Z, Li X, Chen J, Yu Z, Li X, Sun C, Hu L, Wu M, Liu L. Polydatin protects against atherosclerosis by activating autophagy and inhibiting pyroptosis mediated by the NLRP3 inflammasome. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116304. [PMID: 36870461 DOI: 10.1016/j.jep.2023.116304] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/04/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polydatin is a bioactive ingredient extracted from the roots of the Reynoutria japonica Houtt, and it is a natural precursor of resveratrol. Polydatin is a useful inhibitor of inflammation and acts as a regulator of lipid metabolism. However, the specific mechanisms of action of polydatin in atherosclerosis (AS) remains poorly explained. AIM OF THE STUDY The aim of this study was to assess the efficacy of polydatin on inflammation induced by the inflammatory cell death and autophagy in AS. MATERIALS AND METHODS Apolipoprotein E knockout (ApoE-/-) mice were fed with a high-fat diet (HFD) for 12 weeks to induce the formation of atherosclerotic lesions. The ApoE-/- mice were then randomly divided into the following six groups: (1) model group, (2) simvastatin group, (3) MCC950 group, (4) low dose polydatin group (Polydatin-L), (5) medium dose polydatin group (Polydatin-M), (6) and high dose polydatin group (Polydatin-H). The C57BL/6J mice were treated as controls and administered a standard chow diet. All mice were gavaged once daily for 8 weeks. The distribution of aortic plaques was observed by En Oil-red-O staining and hematoxylin and eosin staining (H&E). Oil-red-O staining was used to observe lipid content in the aortic sinus plaque; Masson trichrome staining was used to gauge collagen content in the plaque; and immunohistochemistry was used to evaluate smooth muscle actin (α-SMA) and CD68 macrophages marker expression levels in the plaque, which were used to assess the vulnerability index of the plaque. The lipid levels were measured using an enzymatic assay with an automatic biochemical analyzer. The level of inflammation was detected by enzyme-linked-immunosorbent assay (ELISA). Autophagosomes were detected by transmission electron microscopy (TEM). Pyroptosis was detected by terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL)/caspase-1 and other proteins related to the expression levels of autophagy and pyroptosis were detected by Western blot analysis. RESULTS Nucleotide oligomerization (NOD)-like receptor (NLR) family pyrin domain-containing protein 3 (NLRP3) inflammasome activation leads to pyroptosis, including the cleavage of caspase-1, interleukin (IL)-1β and IL-18 production, and the co-expression of TUNEL/caspase-1-all of these are inhibited by polydatin, whose inhibitory effect is similar to that of MCC950, a specific inhibitor of NLRP3. Further, polydatin decreased the protein expression of NLRP3 and the phosphorylated mammalian target of rapamycin (p-mTOR), and increased the number of autophagosomes as well as the increased the cytoplasmic microtubule-associated protein light chain 3 (LC3)/autophagosome membrane-type LC3 ratio. Moreover, the protein expression levels of p62 decreased, suggesting that polydatin can increase autophagy. CONCLUSIONS Polydatin can inhibit the activation of the NLRP3 inflammasome and cleavage of caspase-1, thereby inhibiting pyroptosis and secretion of inflammatory cytokines, and promoting autophagy through NLRP3/mTOR pathway in AS.
Collapse
Affiliation(s)
- Xiaonan Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zeping Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoya Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiye Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zongliang Yu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - Changxin Sun
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - Lanqing Hu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wu
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Longtao Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
10
|
Xuan X, Zhang J, Fan J, Zhang S. Research progress of Traditional Chinese Medicine (TCM) in targeting inflammation and lipid metabolism disorder for arteriosclerosis intervention: A review. Medicine (Baltimore) 2023; 102:e33748. [PMID: 37144986 PMCID: PMC10158879 DOI: 10.1097/md.0000000000033748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
Atherosclerosis (AS) is a chronic disease caused by inflammation and lipid deposition. Immune cells are extensively activated in the lesions, producing excessive pro-inflammatory cytokines, which accompany the entire pathological process of AS. In addition, the accumulation of lipid-mediated lipoproteins under the arterial intima is a crucial event in the development of AS, leading to vascular inflammation. Improving lipid metabolism disorders and inhibiting inflammatory reactions are the primary treatment methods currently used in medical practice to delay AS progression. With the development of traditional Chinese medicine (TCM), more mechanisms of action of the monomer of TCM, Chinese patent medicine, and compound prescription have been studied and explored. Research has shown that some Chinese medicines can participate in treating AS by targeting and improving lipid metabolism disorders and inhibiting inflammatory reactions. This review explores the research on Chinese herbal monomers, compound Chinese medicines, and formulae that improve lipid metabolism disorders and inhibit inflammatory reactions to provide new supplements for treating AS.
Collapse
Affiliation(s)
- Xiaoyu Xuan
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jingyi Zhang
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jilin Fan
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shiliang Zhang
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
11
|
Liu S, Bi H, Jiang M, Chen Y, Jiang M. An update on the role of TRIM/NLRP3 signaling pathway in atherosclerosis. Biomed Pharmacother 2023; 160:114321. [PMID: 36736278 DOI: 10.1016/j.biopha.2023.114321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/14/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease of large and medium arteries that includes lipid metabolism disorder and recruitment of immune cells to the artery wall. An increasing number of studies have confirmed that inflammasome over-activation is associated with the onset and progression of atherosclerosis. The NLRP3 inflammasome, in particular, has been proven to increase the incidence rate of cardiovascular diseases (CVD) by promoting pro-inflammatory cytokine release and reducing plaque stability. The strict control of inflammasome and prevention of excessive inflammatory reactions have been the research focus of inflammatory diseases. Tripartite motif (TRIM) is a protein family with a conservative structure and rapid evolution. Several studies have demonstrated the TRIM family's regulatory role in mediating inflammation. This review aims to clarify the relationship between TRIMs and NLRP3 inflammasome and provide insights for future research and treatment discovery.
Collapse
Affiliation(s)
- Sibo Liu
- The QUEEN MARY school, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Hongfeng Bi
- Medical Equipment Department, Dongying Shengli Oilfield Central Hospital, Dongying, Shandong 257034, China
| | - Meiling Jiang
- Department of obstetrics, Dongying Shengli Oilfield Central Hospital, Dongying, Shandong 257034, China
| | - Yuanli Chen
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Meixiu Jiang
- The Institute of Translational Medicine, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
12
|
NLRP3 Inflammasome in Atherosclerosis: Putting Out the Fire of Inflammation. Inflammation 2023; 46:35-46. [PMID: 35953687 DOI: 10.1007/s10753-022-01725-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/05/2022]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease with thickening or hardening of the arteries, which led to the built-up of plaques in the inner lining of an artery. Among all the clarified pathogenesis, the over-activation of inflammatory reaction is one of the most acknowledged one. The nucleotide-binding domain leucine-rich repeat (NLR) and pyrin domain containing receptor 3 (NLRP3) inflammasome, as a vital and special form of inflammation and innate immunity, has been widely revealed to participate in the onset and development of AS. This review will introduce the process of the pathogenesis and progression of AS, and will describe the biological features of the NLRP3 inflammasome. Furthermore, the role of the NLRP3 inflammasome in AS and the possible mechanisms will be discussed. In addition, several kinds of agents with the effect of anti-atherosclerotic taking advantage of the NLRP3 inflammasome intervention will be described and discussed in detail, including natural compounds (baicalin, dihydromyricetin, luteolin, 5-deoxy-rutaecarpine (R3) and Salvianolic acid A, etc.), microRNAs (microRNA-30c-5p, microRNA-9, microRNA-146a-5p, microRNA-16-5p and microRNA-181a, etc.), and autophagy regulators (melatonin, dietary PUFA and arglabin, etc.). We aim to provide novel insights in the exploration of the specific mechanisms of AS and the development of new treatments of AS.
Collapse
|
13
|
Xu L, Cheng J, Lu J, Lin G, Yu Q, Li Y, Chen J, Xie J, Su Z, Zhou Q. Integrating network pharmacology and experimental validation to clarify the anti-hyperuricemia mechanism of cortex phellodendri in mice. Front Pharmacol 2022; 13:964593. [PMID: 36438835 PMCID: PMC9692208 DOI: 10.3389/fphar.2022.964593] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/24/2022] [Indexed: 08/12/2023] Open
Abstract
Hyperuricemia (HUA), a common metabolic disease, is treated as the second-largest metabolic disease after diabetes in China. Cortex Phellodendri (CP) is one of the most frequently used herbal medicines for treating gout or HUA. However, the mechanism underlying the anti-HUA effect of CP is still unrevealed. Hence, this study aimed to explore the pharmacological mechanism of CP against HUA using network pharmacology coupled with in vivo experimental validation. Active compounds and potential targets of CP, as well as the potential targets related to HUA, were retrieved from multiple open-source databases. The drug-disease overlapping targets were obtained by Venn diagram analysis and used to construct the herb-component-target (HCT), protein-protein-interaction (PPI), and component-target-pathway (CTP) networks. The functional enrichment analysis was also performed for further study. Furthermore, a HUA mouse model was induced by a combination of intraperitoneal injection of potassium oxonate (PO, 300 mg/kg) and intragastric administration of hypoxanthine (HX, 300 mg/kg) daily for 10 days. Different dosages of CP (200, 400, and 800 mg/kg) were orally given to mice 1 h after modeling. The results showed that 12 bioactive compounds and 122 drug-disease overlapping targets were obtained by matching 415 CP-related targets and 679 HUA-related targets, and berberine was one of the most important compounds with the highest degree value. The core targets of CP for treating HUA were TP53, MAPK8, MAPK3, IL-6, c-Jun, AKT1, xanthine oxidase (XOD), and ATP-binding cassette subfamily G member 2 (ABCG2). The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment results showed that the anti-HUA effect of CP mainly involved the pathways of inflammation and apoptosis, such as PI3K/Akt, TNF, MAPK, TLR, AMPK, NF-κB, and NLRP3 signaling pathways. In vivo animal experiment further confirmed the hypouricemic effect of CP in a HUA mouse model, as evidenced by significantly restored kidney histological deteriorations, and considerably decreased levels of serum uric acid (sUA), creatinine (Cre), blood urea nitrogen (BUN), and hepatic UA. Furthermore, the hypouricemic action of CP in vivo might be attributed to its suppression of XOD activity in the liver, rather than ABCG2 in the kidney. Real-time qPCR (RT-qPCR) and Western blot analysis also confirmed the key roles of the hub genes in CP against HUA. In conclusion, CP exhibited therapeutic effect against HUA via multi-compounds, multi-targets, and multi-pathways. It possessed anti-HUA and nephroprotective effects via suppressing XOD activity, and reversed the progression of renal injury by exerting anti-inflammatory and anti-apoptotic effects.
Collapse
Affiliation(s)
- Lieqiang Xu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Juanjuan Cheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jieyi Lu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guoshu Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiuxia Yu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yucui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianhui Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd., Shenzhen, China
| |
Collapse
|
14
|
Yu XH, Tang CK. ABCA1, ABCG1, and Cholesterol Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1377:95-107. [PMID: 35575923 DOI: 10.1007/978-981-19-1592-5_7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cholesterol is a major component of mammalian cell membranes and plays important structural and functional roles. However, excessive cholesterol accumulation is toxic to cells and constitutes the molecular basis for many diseases, especially atherosclerotic cardiovascular disease. Thus, cellular cholesterol is tightly regulated to maintain a homeostasis. Reverse cholesterol transport (RCT) is thought to be one primary pathway to eliminate excessive cholesterol from the body. The first and rate-limiting step of RCT is ATP-binding cassette (ABC) transports A1 (ABCA1)- and ABCG1-dependent cholesterol efflux. In the process, ABCA1 mediates initial transport of cellular cholesterol to apolipoprotein A-I (apoA-I) for forming nascent high-density lipoprotein (HDL) particles, and ABCG1 facilitates subsequent continued cholesterol efflux to HDL for further maturation. In this chapter, we summarize the roles of ABCA1 and ABCG1 in maintaining cellular cholesterol homoeostasis and discuss the underlying mechanisms by which they mediate cholesterol export.
Collapse
Affiliation(s)
- Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
15
|
5,2′-Dibromo-2,4′,5′-trihydroxydiphenylmethanone Inhibits LPS-Induced Vascular Inflammation by Targeting the Cav1 Protein. Molecules 2022; 27:molecules27092884. [PMID: 35566232 PMCID: PMC9101869 DOI: 10.3390/molecules27092884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Vascular inflammation is directly responsible for atherosclerosis. 5,2′-Dibromo-2,4′,5′-trihydroxydiphenylmethanone (TDD), a synthetic bromophenol derivative, exhibits anti-atherosclerosis and anti-inflammatory effects. However, the underlying pathways are not yet clear. In this study, we first examined the effects of TDD on toll-like receptor-4 (TLR4) activity, the signaling receptor for lipopolysaccharide (LPS), and found that TDD does not inhibit LPS-induced TLR4 expression in EA.hy926 cells and the vascular wall in vivo. Next, we investigated the global protein alterations and the mechanisms underlying the action of TDD in LPS-treated EA.hy926 cells using an isobaric tag for the relative and absolute quantification technique. Western blot analysis revealed that TDD inhibited NF-κB activation by regulating the phosphorylation and subsequent degradation IκBα. Among the differentially expressed proteins, TDD concentration-dependently inhibited Caveolin 1(Cav1) expression. The interaction between Cav1 and TDD was determined by using biolayer interference assay, UV-vis absorption spectra, fluorescence spectrum, and molecular docking. We found that TDD can directly bind to Cav1 through hydrogen bonds and van der Waals forces. In conclusion, our results showed that TDD inhibited LPS-induced vascular inflammation and the NF-κB signaling pathway by specifically targeting the Cav1 protein. TDD may be a novel anti-inflammatory compound, especially for the treatment of atherosclerosis.
Collapse
|
16
|
Song D, Li M, Yu X, Wang Y, Fan J, Yang W, Yang L, Li H. The Molecular Pathways of Pyroptosis in Atherosclerosis. Front Cell Dev Biol 2022; 10:824165. [PMID: 35237603 PMCID: PMC8884404 DOI: 10.3389/fcell.2022.824165] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/28/2022] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease seriously endangering human health, whose occurrence and development is related to many factors. Pyroptosis is a recently identified novel programmed cell death associated with an inflammatory response and involved in the formation and progression of AS by activating different signaling pathways. Protein modifications of the sirtuin family and microRNAs (miRNAs) can directly or indirectly affect pyroptosis-related molecules. It is important to link atherosclerosis, thermogenesis and molecular modifications. This article will systematically review the molecular pathways of pyroptosis in AS, which can provide a new perspective for AS prevention and treatment.
Collapse
Affiliation(s)
- Dan Song
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Manman Li
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xue Yu
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yuqin Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Jiaying Fan
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Wei Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Liming Yang
- Department of Pathophysiology, Harbin Medical University-Daqing, Daqing, China
- *Correspondence: Hong Li, ; Liming Yang,
| | - Hong Li
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
- *Correspondence: Hong Li, ; Liming Yang,
| |
Collapse
|
17
|
Huang H, Wang M, Guo Z, Wu D, Wang H, Jia Y, Liu H, Ding J, Peng J. Rutaecarpine alleviates acute pancreatitis in mice and AR42J cells by suppressing the MAPK and NF-κB signaling pathways via calcitonin gene-related peptide. Phytother Res 2021; 35:6472-6485. [PMID: 34661951 DOI: 10.1002/ptr.7301] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/02/2021] [Accepted: 09/11/2021] [Indexed: 11/09/2022]
Abstract
Acute pancreatitis (AP) is an acute inflammatory condition of the pancreas. Previous studies have shown that rutaecarpine (RUT), an important alkaloid component of Evodia rutaecarpa, exhibits certain protective effects against AP in rats by upregulating calcitonin gene-related peptide (CGRP). However, the molecular mechanism of RUT in AP remains unknown. This study aimed to investigate the effects of RUT on cerulein-induced AP in vivo and in vitro, and to explore the underlying molecular mechanisms. In cerulein/LPS-treated wild-type mice, but not CGRP gene knock-out mice, RUT significantly ameliorated pancreatic inflammation by alleviating histopathological changes, reducing IL-6 and TNF-α levels, and increasing in IL-10 levels. Moreover, RUT improved AP by suppressing the MAPK and NF-κB signaling pathways. These effects were mostly mediated through CGRP. Cell-based studies revealed that RUT significantly improved cell viability while suppressing the apoptosis of AR42J cells with cerulein-induced AP, downregulating IL-6 and TNF-α, stimulating IL-10 release, and inhibiting MAPK, NF-κB, and STAT3 signaling activation, all in a CGRP-dependent manner. RUT ameliorated cerulein/LPS-induced AP inflammatory responses in mice and AR42J cells in a CGRP-dependent manner and thus may represent a potential therapeutic option for AP patients. Our study provides valuable insights for AP drug development.
Collapse
Affiliation(s)
- Haosu Huang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Meng Wang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Zimeng Guo
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Di Wu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Hanyue Wang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Jia
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Honghui Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Junjie Ding
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Peng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Cai Y, Zeng Q, Liu Y, Zhu R, Yu K, Xu W, Wang Y, Ding Y, Yu J, Pan C, Peng Y, Mao Y, Cheng P, Huang L, Mao X, Zhong Y. GARP and GARP-Treated tDC Prevented the Formation of Atherosclerotic Plaques in ApoE -/- Mice. J Inflamm Res 2021; 14:3465-3479. [PMID: 34326655 PMCID: PMC8314935 DOI: 10.2147/jir.s308963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/01/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose This study aims to clarify the specific mechanism by which GARP affects the atherosclerotic plaques in ApoE−/- mice and the effect of GARP-tDC on atherosclerosis. Methods The mice were randomly divided into three groups: the control group, the GARP-overexpressed group and the GARP-inhibited group. After 12 weeks, all the mice were euthanized, and the specimens were collected. In vitro, experiments were conducted to observe the effect of GARP on DC phenotype and the changes of the proportion of CD4+CD25+Foxp3+ Treg cells when GARP-tDCs were co-cultured with CD4+ T cells. Furthermore, adoptive transmission of GARP-tDCs was used to observe the effect on atherosclerotic plaque in mice. Results The GARP-overexpressed group enhanced the biological activity of Foxp3+ CD4+CD25+ Tregs and resulted in increased expression of LAP in T cells. In addition, the GARP-overexpressed group significantly suppressed the function of Th1 and Th17, and decreased the secretion of INF-γ and IL-17A. Thus, GARP had a protective effect on atherosclerosis. In vitro, we found that GARP-tDC had a tolerance-inducing phenotype, and GARP-tDC also had the ability to induce tolerance when co-cultured with CD4+ T cells. More importantly, adoptive transmission of GARP-tDCs reduced the size of atherosclerotic plaques. Conclusion GARP and the GARP-tDC play protective roles in atherosclerosis. The protective effect of GARP on atherosclerosis is achieved by increasing CD4+CD25+Foxp3+ Treg cells and inhibiting the production of IFN-γ and IL-17A.
Collapse
Affiliation(s)
- Yifan Cai
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Qiutang Zeng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Yuzhou Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China
| | - Ruirui Zhu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Kunwu Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Wenbin Xu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Yue Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Yan Ding
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Jian Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Chengliang Pan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Yudong Peng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Yi Mao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Peng Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Lun Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Xiaobo Mao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Yucheng Zhong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| |
Collapse
|
19
|
Song XM, Li BJ, Zhang YY, Ge WJ, Zhang SF, Cui WF, Li GS, Liang RF. Rutaecarpine enhances the anti-diabetic activity and hepatic distribution of metformin via up-regulation of Oct1 in diabetic rats. Xenobiotica 2021; 51:818-830. [PMID: 33952086 DOI: 10.1080/00498254.2021.1926573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Diabetes mellitus is a chronic metabolic disorder with multiple complications, patients who receive metformin may have a simultaneous intake of herbal medicine containing rutaecarpine due to cardiovascular protection and hypolipidemic effects of rutaecarpine. There might be drug interactions between metformin and rutaecarpine. This study aimed to investigate the effects of rutaecarpine on the pharmacodynamics and pharmacokinetics of metformin in diabetic rats.The diabetic rat model was induced with high-fat diet and low dose streptozotocin. Metformin with or without rutaecarpine was administered by oral gavage for 42 days. Pharmacodynamics and pharmacokinetics parameters were evaluated.The pharmacodynamics results revealed that co-administration of rutaecarpine with metformin resulted in a remarkable reduction of serum glucose and lipid profiles in diabetic rats compared to metformin treated alone. The pharmacokinetics results showed that co-treatments of rutaecarpine with metformin did not affect the systemic exposure and renal distribution of metformin, but increased metformin concentration in liver. Furthermore, rutaecarpine increased Oct1-mediated metformin uptake into hepatocytes by upregulation of Oct1 expression in the liver.The above data indicate that rutaecarpine enhanced the anti-diabetic effect of metformin, which may be associated with the increased hepatic distribution of metformin through up-regulation of Oct1 in response to rutaecarpine.
Collapse
Affiliation(s)
- Xian-Mei Song
- Department of Pharmacology, Henan Medical College, Zhengzhou, China
| | - Bing-Jie Li
- Institute of Chinese Materia Medica, Henan Provincial Academy of Traditional Chinese Medicine, Zhengzhou, China.,School of Pharmacology, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yan-Yan Zhang
- Department of Pharmacology, Henan Medical College, Zhengzhou, China
| | - Wen-Jing Ge
- Institute of Chinese Materia Medica, Henan Provincial Academy of Traditional Chinese Medicine, Zhengzhou, China.,School of Pharmacology, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - She-Feng Zhang
- Institute of Chinese Materia Medica, Henan Provincial Academy of Traditional Chinese Medicine, Zhengzhou, China
| | - Wei-Feng Cui
- Institute of Chinese Materia Medica, Henan Provincial Academy of Traditional Chinese Medicine, Zhengzhou, China
| | - Geng-Sheng Li
- Institute of Chinese Materia Medica, Henan Provincial Academy of Traditional Chinese Medicine, Zhengzhou, China
| | - Rui-Feng Liang
- Institute of Chinese Materia Medica, Henan Provincial Academy of Traditional Chinese Medicine, Zhengzhou, China.,School of Pharmacology, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
20
|
Integrated Molecular Docking with Network Pharmacology to Reveal the Molecular Mechanism of Simiao Powder in the Treatment of Acute Gouty Arthritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5570968. [PMID: 34007291 PMCID: PMC8100412 DOI: 10.1155/2021/5570968] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/12/2021] [Accepted: 04/16/2021] [Indexed: 12/26/2022]
Abstract
Background The incidence of gout has been rapidly increasing in recent years with the changing of diet. At present, modern medications used in the clinical treatment of gout showed several side effects, such as gastrointestinal damage and the increased risk of cardiovascular disease. The traditional Chinese prescription Simiao Powder (SMP) has a long history in the treatment of acute gouty arthritis (AGA) and has a good curative effect. However, the mechanism and target of its therapeutic effects are still not completely understood. Methods Potential active compounds (PACs) and targets of SMP were found in the TCMSP database, and the disease target genes related to AGA were obtained by searching CTD, DisGeNET, DrugBank, GeneCards, TTD, OMIM, and PharmGKB disease databases with “acute gouty arthritis” and “Arthritis, Gouty” as keywords, respectively. The network of “Traditional Chinese medicine (TCM)-PACs-potential targets of acute gouty arthritis” was constructed with the Cytoscape 3.7.2 software, and the target genes of acute gouty arthritis were intersected with genes regulated by active compounds of SMP. The resultant common gene targets were input into Cytoscape 3.7.2 software, and the BisoGenet plug-in was used to construct a PPI network. The GO functional enrichment analysis and KEGG pathway enrichment analysis of the intersecting target proteins were performed using R software and corresponding program packages. The molecular docking verification was carried out between the potentially active compounds of SMP and the core target at the same time. Results 40 active components and 203 targets were identified, of which 95 targets were common targets for the drugs and diseases. GO function enrichment analysis revealed that SMP regulated several biological processes, such as response to lipopolysaccharide and oxidative stress, RNA polymerase II transcription regulator complex, protein kinase complex, and other cellular and molecular processes, including DNA-binding transcription factor binding. Results of KEGG pathway analysis showed that SMP was associated with AGA-related pathways such as interleukin-17 (IL-17), tumor necrosis factor (TNF), p53, and hypoxia-inducible factor 1 (HIF-1) signaling pathways. The results of molecular docking showed that active compounds in SMP exhibited strong binding to five core protein receptors (TP53, FN1, ESR1, CDK2, and HSPA5). Conclusions Active components of SMP, such as quercetin, kaempferol, wogonin, baicalein, beta-sitosterol, and rutaecarpine, showed therapeutic effects on AGA. These compounds were strongly associated with core target proteins (such as TP53, FN1, ESR1, CDK2, and HSPA5). This study reveals that IL-17, TNF, p53, and HIF-1 signaling pathways mediate the therapeutic effects of SMP on AGA. These findings expand our understanding of the mechanism of SMP in the treatment of AGA.
Collapse
|
21
|
Sun W, Dong S, Lu H, Wang N, Zhao Y, An J, Sun L, Lu D. Beclin-1 overexpression regulates NLRP3 activation by promoting TNFAIP3 in microvascular injury following myocardial reperfusion. Cell Signal 2021; 84:110008. [PMID: 33848581 DOI: 10.1016/j.cellsig.2021.110008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 11/26/2022]
Abstract
Innate immune response contributes significantly to ischemia reperfusion (I/R) injury. Targeting innate immunity seems to be a promising method for protecting the microvascular injury in ST-elevation myocardial infarction (STEMI) patients following myocardial I/R injury (MI/R). NLRP3 inflammasome is a central part of the innate immune system involved in the pathophysiological process of MI/R. However, the mechanisms regulating NLRP3 activation are yet to be clarified. Recently, autophagy has been related to the regulation of NLRP3 activation. Thus, how Beclin-1/Becn1 overexpression influences NLRP3 activation in microvascular endothelial cells (CMECs) after MI/R is yet to be investigated. The present study showed that Becn1 overexpression exhibits a significant increase in NLRP3 and IL-1β in CMEC responses to MI/R. Interestingly, Becn1 overexpression promoted TNFAIP3 expression, which restricted NLRP3 activation in vitro and in vivo. The current study also showed that inflammatory cells (CD68) and B (CDB220) lymphocytes were decreased in transgenic mice with overexpression of Beclin-1 (BECN1-Tg) in the spleen and heart. These findings highlighted Becn1 as a prospective target for treating NLRP3 mediated microvascular injury following MI/R.
Collapse
Affiliation(s)
- Wenjing Sun
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou 450000, China
| | - Shujuan Dong
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou 450000, China
| | - Hongquan Lu
- Department of Nuclear Medicine, Third People's Hospital of Honghe State, Honghe 661000, China
| | - Nan Wang
- Department of Technology Transfer Center, Kunming Medical University, Kunming 650500, China
| | - Yu Zhao
- Department of Technology Transfer Center, Kunming Medical University, Kunming 650500, China
| | - Jingshuo An
- Department of Technology Transfer Center, Kunming Medical University, Kunming 650500, China
| | - Lin Sun
- Department of Cardiology, the Second Affiliated Hospital of Kunming Medical University, Kunming 650501, China.
| | - Di Lu
- Department of Technology Transfer Center, Kunming Medical University, Kunming 650500, China.
| |
Collapse
|
22
|
Ren S, Wei Y, Wang R, Wei S, Wen J, Yang T, Chen X, Wu S, Jing M, Li H, Wang M, Zhao Y. Rutaecarpine Ameliorates Ethanol-Induced Gastric Mucosal Injury in Mice by Modulating Genes Related to Inflammation, Oxidative Stress and Apoptosis. Front Pharmacol 2020; 11:600295. [PMID: 33324227 PMCID: PMC7726440 DOI: 10.3389/fphar.2020.600295] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Rutaecarpine (RUT), a major quinazolino carboline alkaloid compound from the dry unripe fruit Tetradium ruticarpum (A. Juss.) T. G. Hartley, has various pharmacological effects. The aim of this present study was to investigate the potential gastroprotective effect of rutaecarpine on ethanol-induced acute gastric mucosal injury in mice and associated molecular mechanisms, such as activating Nrf2 and Bcl-2 via PI3K/AKT signaling pathway and inhibiting NF-κB. Methods: Gastric ulcer index and histopathology was carried out to determine the efficacy of RUT in gastric ulceration, and the content of SOD, GSH in serum and CAT, MDA, MPO, TNF-α, IL-6, IL-1β in tissue were measured by kits. Besides, in order to illustrate the potential inflammatory, oxidative, and apoptotic perturbations, the mRNA levels of NF-κB p65, PI3K, AKT, Nrf2, Nqo1, HO-1, Bcl-2 and Bax were analyzed. In addition, the protein expression of NF-κB p65 and Nrf2 in cytoplasm and nucleus, AKT, p-AKT, Bcl-2 Bax and Caspase 3 were analyzed for further verification. Finally, immunofluorescence analysis was performed to further verify nuclear translocation of NF-κB p65. Results: Current data strongly demonstrated that RUT alleviated the gross gastric damage, ulcer index and the histopathology damage caused by ethanol. RUT inhibited the expression and nuclear translocation of NF-κB p65 and the expression of its downstream signals, such as TNF-α, IL-6, IL-1β and MPO. Immunofluorescence analysis also verifies the result. In the context of oxidative stress, RUT improved the antioxidant milieu by remarkably upregulating the expression Nqo1 and HO-1 with activating Nrf2, and could remarkably upregulate antioxidant SOD, GSH, CAT and downregulate levels of MDA. Additionally, RUT activate the expression of Bcl-2 and inhibited the expression of downstream signals Bax and Caspase 3 to promote gastric cellular survival. These were confirmed by RUT activation of the PI3K/AKT pathway manifested by enhanced expression of PI3K and promotion of AKT phosphorylation. Conclusion: Taken together, these results strongly demonstrated that RUT exerted a gastroprotective effect against gastric mucosal injury induced by ethanol. The underlying mechanism might be associated with the improvement of anti-inflammatory, anti-oxidation and anti-apoptosis system.
Collapse
Affiliation(s)
- Sichen Ren
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ying Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ruilin Wang
- Integrative Medical Center, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shizhang Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jianxia Wen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tao Yang
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xing Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shihua Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Manyi Jing
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Haotian Li
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Min Wang
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
23
|
Cao X, Cao L, Zhang W, Lu R, Bian JS, Nie X. Therapeutic potential of sulfur-containing natural products in inflammatory diseases. Pharmacol Ther 2020; 216:107687. [PMID: 32966837 DOI: 10.1016/j.pharmthera.2020.107687] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023]
Abstract
Owing to the prevalence of chronic inflammation and its related disorders, there is a demand for novel therapeutic agents capable of preventing or suppressing inflammation. Natural products (NPs) are well established as an important resource for drug development and provide an almost infinite array of molecular entities. Sulfur-containing NPs (i.e., NPs containing one or more sulfur atoms) are abundant throughout nature, from bacteria to animals. The aim of this review was to survey the emerging evidence on role of sulfur-containing NPs, such as glutathione, garlic-derived sulfur compounds, Epipolythiodioxopiperazines (EPTs), Isothiocyanates (ITCs), and Ergothioneine (EGT), in the control of inflammation and to determine the possible underlying mechanisms. A discussion of how hydrogen sulfide (H2S), an endogenous gaseous signaling molecule, links sulfur-containing NPs and their anti-inflammatory action is also performed. This review may help to further the development of sulfur-based compounds by providing a guide for structure-activity relationship-based modification for use in modern medicinal chemistry. However, as this field is still in its infancy, the review is concluded by an overview of the progression of these promising entities as therapeutic agents.
Collapse
Affiliation(s)
- Xu Cao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Republic of Singapore
| | - Lei Cao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Republic of Singapore
| | - Wencan Zhang
- Food Science and Technology Program, Department of Chemistry, National University of Singapore, Singapore 117600, Republic of Singapore
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Jin-Song Bian
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, PR China; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Republic of Singapore.
| | - Xiaowei Nie
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Republic of Singapore; Institute of Hepatology, The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518055, PR China.
| |
Collapse
|
24
|
Zito G, Buscetta M, Cimino M, Dino P, Bucchieri F, Cipollina C. Cellular Models and Assays to Study NLRP3 Inflammasome Biology. Int J Mol Sci 2020; 21:ijms21124294. [PMID: 32560261 PMCID: PMC7352206 DOI: 10.3390/ijms21124294] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/06/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022] Open
Abstract
The NLRP3 inflammasome is a multi-protein complex that initiates innate immunity responses when exposed to a wide range of stimuli, including pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs). Inflammasome activation leads to the release of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 and to pyroptotic cell death. Over-activation of NLRP3 inflammasome has been associated with several chronic inflammatory diseases. A deep knowledge of NLRP3 inflammasome biology is required to better exploit its potential as therapeutic target and for the development of new selective drugs. To this purpose, in the past few years, several tools have been developed for the biological characterization of the multimeric inflammasome complex, the identification of the upstream signaling cascade leading to inflammasome activation, and the downstream effects triggered by NLRP3 activation. In this review, we will report cellular models and cellular, biochemical, and biophysical assays that are currently available for studying inflammasome biology. A special focus will be on those models/assays that have been used to identify NLRP3 inhibitors and their mechanism of action.
Collapse
Affiliation(s)
- Giovanni Zito
- Fondazione Ri.MED, via Bandiera 11, 90133 Palermo, Italy; (G.Z.); (M.B.); (M.C.)
| | - Marco Buscetta
- Fondazione Ri.MED, via Bandiera 11, 90133 Palermo, Italy; (G.Z.); (M.B.); (M.C.)
| | - Maura Cimino
- Fondazione Ri.MED, via Bandiera 11, 90133 Palermo, Italy; (G.Z.); (M.B.); (M.C.)
| | - Paola Dino
- Dipartimento di Biomedicina Sperimentale, Neuroscenze e Diagnostica Avanzata (Bi.N.D.), University of Palermo, via del Vespro 129, 90127 Palermo, Italy; (P.D.); (F.B.)
| | - Fabio Bucchieri
- Dipartimento di Biomedicina Sperimentale, Neuroscenze e Diagnostica Avanzata (Bi.N.D.), University of Palermo, via del Vespro 129, 90127 Palermo, Italy; (P.D.); (F.B.)
- Istituto per la Ricerca e l’Innovazione Biomedica-Consiglio Nazionale delle Ricerche, via Ugo la Malfa 153, 90146 Palermo, Italy
| | - Chiara Cipollina
- Fondazione Ri.MED, via Bandiera 11, 90133 Palermo, Italy; (G.Z.); (M.B.); (M.C.)
- Istituto per la Ricerca e l’Innovazione Biomedica-Consiglio Nazionale delle Ricerche, via Ugo la Malfa 153, 90146 Palermo, Italy
- Correspondence: ; Tel.: +39-091-6809191; Fax: +39-091-6809122
| |
Collapse
|