1
|
Li N, Wang X, Lin R, Yang F, Chang HC, Gu X, Shu J, Liu G, Yu Y, Wei W, Bao Z. ANGPTL4-mediated microglial lipid droplet accumulation: Bridging Alzheimer's disease and obesity. Neurobiol Dis 2024; 203:106741. [PMID: 39577812 DOI: 10.1016/j.nbd.2024.106741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/08/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024] Open
Abstract
Increasing evidence suggests that metabolic disorders such as obesity are implicated in the development of Alzheimer's disease (AD). The pathological buildup of lipids in microglia is regarded as a key indicator in brain aging and the progression of AD, yet the mechanisms behind this process remain uncertain. The adipokine ANGPTL4 is strongly associated with obesity and is thought to play a role in the advancement of neurodegenerative diseases. This study utilized RNA sequencing to identify differential expression in lipid-accumulating BV2 microglia and investigated the potential mechanism through ANGPTL4 overexpression in BV2. Subsequently, animal models and clinical data were employed to further explore alterations in circulating ANGPTL4 levels in AD. RNA sequencing results indicated a correlation between ANGPTL4 and microglial lipid accumulation. The overexpression of ANGPTL4 in microglia resulted in increased secretion of inflammatory factors, elevated oxidative stress levels, and diminished antiviral capacity. Furthermore, when simulating the coexistence of AD and obesity through combined treatment with Amyloid-Beta 1-42 peptide (Aβ) and Free Fatty Acids (FFA) in vitro, we observed a notable upregulation of ANGPTL4 expression, highlighting its potential role in the interplay between AD and obesity. In vivo experiments, we also observed a significant increase in ANGPTL4 expression in the hippocampus and plasma of APP/PS1 mice compared to wild-type controls. This was accompanied by heightened microglial activation and reduced expression of longevity-related genes in the hippocampus. Clinical data from the UK Biobank indicated that plasma ANGPTL4 levels are elevated in patients with AD when compared to healthy controls. Moreover, significantly higher ANGPTL4 levels were observed in obese AD patients relative to their non-obese counterparts. Our findings suggest that ANGPTL4-mediated microglial aging may serve as a crucial link between AD and obesity, proposing ANGPTL4 as a potential biomarker for AD.
Collapse
Affiliation(s)
- Nan Li
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Neurology, Huashan Hospital Affiliated to Fudan University, Shanghai 200032, China
| | - Xiaojun Wang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Shanghai institute of geriatric medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Ruilang Lin
- Department of Biostatistics, Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory for Health Technology Assessment, National Commission of Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Fuxia Yang
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Hung-Chen Chang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Shanghai institute of geriatric medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Xuchao Gu
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Jun Shu
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Guidong Liu
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China.
| | - Yongfu Yu
- Department of Biostatistics, Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory for Health Technology Assessment, National Commission of Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Wenshi Wei
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China.
| | - Zhijun Bao
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Shanghai institute of geriatric medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China.
| |
Collapse
|
2
|
Bashir MA, Abdalla M, Shao CS, Wang H, Bondzie-Quaye P, Almahi WA, Swallah MS, Huang Q. Dual inhibitory potential of ganoderic acid A on GLUT1/3: computational and in vitro insights into targeting glucose metabolism in human lung cancer. RSC Adv 2024; 14:28569-28584. [PMID: 39247503 PMCID: PMC11378701 DOI: 10.1039/d4ra04454a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Human glucose transporters (GLUTs) facilitate the uptake of hexoses into cells. In cancer, the increased proliferation necessitates higher expression of GLUTs, with particular emphasis on GLUT1 and GLUT3. Thus, inhibiting GLUTs holds promise as an anticancer therapy by starving these cells of fuel. Ganoderic acid A (GAA), a triterpene found in Ganoderma lucidum, has anticancer and antidiabetic properties. Recent studies show that GAA reduces glucose uptake in cancer cells, which indicates that GAA may affect GLUT1/GLUT3 by inhibiting glucose uptake. Therefore, this study aimed to inspect whether GAA could target GLUT1/GLUT3 and play an inhibitory role in changing their endofacial and exofacial conformations. To this end, AlphaFold2 was employed to model the endofacial and exofacial conformations of GLUT3 and GLUT1, respectively. Molecular docking, molecular dynamics simulation, cell viability, cellular thermal shift assays (CETSA), glucose uptake, qPCR, and western blotting were harnessed. In comparison to the endofacial (cytochalasin B) and exofacial (phloretin) GLUT1/3 inhibitors, the computational findings unveiled GAA's capacity to bind and stabilize GLUT1/3 in their two conformational states, with a preference for binding the endofacial conformation. A low, non-cytotoxic dose of GAA thermally stabilized both transporters and inhibited glucose uptake in human lung cancer cells, similar to cytochalasin B and phloretin. In conclusion, this study has unearthed novel functionalities of GAA, suggesting its potential utility in cancer therapy by targeting glucose metabolism.
Collapse
Affiliation(s)
- Mona Alrasheed Bashir
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 China
- Science Island Branch of Graduate School, University of Science and Technology of China Hefei 230026 China
- Department of Biotechnology, Faculty of Science and Technology, Omdurman Islamic University P.O. Box 382 Omdurman Sudan
| | - Mohnad Abdalla
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University Jinan Shandong 250022 China
- Shandong Provincial Clinical Research Center for Children's Health and Disease Jinan Shandong 250022 China
| | - Chang-Sheng Shao
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 China
- Science Island Branch of Graduate School, University of Science and Technology of China Hefei 230026 China
| | - Han Wang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 China
- Science Island Branch of Graduate School, University of Science and Technology of China Hefei 230026 China
| | - Precious Bondzie-Quaye
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 China
- Science Island Branch of Graduate School, University of Science and Technology of China Hefei 230026 China
| | - Waleed Abdelbagi Almahi
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 China
| | - Mohammed Sharif Swallah
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 China
- Science Island Branch of Graduate School, University of Science and Technology of China Hefei 230026 China
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 China
- Science Island Branch of Graduate School, University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
3
|
Ab-Hamid N, Omar N, Ismail CAN, Long I. Diabetes and cognitive decline: Challenges and future direction. World J Diabetes 2023; 14:795-807. [PMID: 37383592 PMCID: PMC10294066 DOI: 10.4239/wjd.v14.i6.795] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/07/2023] [Accepted: 05/06/2023] [Indexed: 06/14/2023] Open
Abstract
There is growing evidence that diabetes can induce cognitive decline and dementia. It is a slow, progressive cognitive decline that can occur in any age group, but is seen more frequently in older individuals. Symptoms related to cognitive decline are worsened by chronic metabolic syndrome. Animal models are frequently utilized to elucidate the mechanisms of cognitive decline in diabetes and to assess potential drugs for therapy and prevention. This review addresses the common factors and pathophysiology involved in diabetes-related cognitive decline and outlines the various animal models used to study this condition.
Collapse
Affiliation(s)
- Norhamidar Ab-Hamid
- Biomedicine program, School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Kelantan, Malaysia
| | - Norsuhana Omar
- Department of Physiology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Kelantan, Malaysia
| | - Che Aishah Nazariah Ismail
- Department of Physiology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Kelantan, Malaysia
| | - Idris Long
- Biomedicine program, School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Kelantan, Malaysia
| |
Collapse
|
4
|
Vargas-Soria M, García-Alloza M, Corraliza-Gómez M. Effects of diabetes on microglial physiology: a systematic review of in vitro, preclinical and clinical studies. J Neuroinflammation 2023; 20:57. [PMID: 36869375 PMCID: PMC9983227 DOI: 10.1186/s12974-023-02740-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/16/2023] [Indexed: 03/05/2023] Open
Abstract
Diabetes mellitus is a heterogeneous chronic metabolic disorder characterized by the presence of hyperglycemia, commonly preceded by a prediabetic state. The excess of blood glucose can damage multiple organs, including the brain. In fact, cognitive decline and dementia are increasingly being recognized as important comorbidities of diabetes. Despite the largely consistent link between diabetes and dementia, the underlying causes of neurodegeneration in diabetic patients remain to be elucidated. A common factor for almost all neurological disorders is neuroinflammation, a complex inflammatory process in the central nervous system for the most part orchestrated by microglial cells, the main representatives of the immune system in the brain. In this context, our research question aimed to understand how diabetes affects brain and/or retinal microglia physiology. We conducted a systematic search in PubMed and Web of Science to identify research items addressing the effects of diabetes on microglial phenotypic modulation, including critical neuroinflammatory mediators and their pathways. The literature search yielded 1327 records, including 18 patents. Based on the title and abstracts, 830 papers were screened from which 250 primary research papers met the eligibility criteria (original research articles with patients or with a strict diabetes model without comorbidities, that included direct data about microglia in the brain or retina), and 17 additional research papers were included through forward and backward citations, resulting in a total of 267 primary research articles included in the scoping systematic review. We reviewed all primary publications investigating the effects of diabetes and/or its main pathophysiological traits on microglia, including in vitro studies, preclinical models of diabetes and clinical studies on diabetic patients. Although a strict classification of microglia remains elusive given their capacity to adapt to the environment and their morphological, ultrastructural and molecular dynamism, diabetes modulates microglial phenotypic states, triggering specific responses that include upregulation of activity markers (such as Iba1, CD11b, CD68, MHC-II and F4/80), morphological shift to amoeboid shape, secretion of a wide variety of cytokines and chemokines, metabolic reprogramming and generalized increase of oxidative stress. Pathways commonly activated by diabetes-related conditions include NF-κB, NLRP3 inflammasome, fractalkine/CX3CR1, MAPKs, AGEs/RAGE and Akt/mTOR. Altogether, the detailed portrait of complex interactions between diabetes and microglia physiology presented here can be regarded as an important starting point for future research focused on the microglia-metabolism interface.
Collapse
Affiliation(s)
- María Vargas-Soria
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain.,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - Mónica García-Alloza
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain.,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - Miriam Corraliza-Gómez
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain. .,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain.
| |
Collapse
|
5
|
Müller-Eigner A, Sanz-Moreno A, de-Diego I, Venkatasubramani AV, Langhammer M, Gerlini R, Rathkolb B, Aguilar-Pimentel A, Klein-Rodewald T, Calzada-Wack J, Becker L, Palma-Vera S, Gille B, Forne I, Imhof A, Meng C, Ludwig C, Koch F, Heiker JT, Kuhla A, Caton V, Brenmoehl J, Reyer H, Schoen J, Fuchs H, Gailus-Durner V, Hoeflich A, de Angelis MH, Peleg S. Dietary intervention improves health metrics and life expectancy of the genetically obese Titan mouse. Commun Biol 2022; 5:408. [PMID: 35505192 PMCID: PMC9065075 DOI: 10.1038/s42003-022-03339-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 04/04/2022] [Indexed: 01/02/2023] Open
Abstract
Suitable animal models are essential for translational research, especially in the case of complex, multifactorial conditions, such as obesity. The non-inbred mouse (Mus musculus) line Titan, also known as DU6, is one of the world’s longest selection experiments for high body mass and was previously described as a model for metabolic healthy (benign) obesity. The present study further characterizes the geno- and phenotypes of this non-inbred mouse line and tests its suitability as an interventional obesity model. In contrast to previous findings, our data suggest that Titan mice are metabolically unhealthy obese and short-lived. Line-specific patterns of genetic invariability are in accordance with observed phenotypic traits. Titan mice also show modifications in the liver transcriptome, proteome, and epigenome linked to metabolic (dys)regulations. Importantly, dietary intervention partially reversed the metabolic phenotype in Titan mice and significantly extended their life expectancy. Therefore, the Titan mouse line is a valuable resource for translational and interventional obesity research. This study further characterizes the non-inbred Titan (also known as DU6) mouse line, which could be a useful model for obesity research.
Collapse
Affiliation(s)
- Annika Müller-Eigner
- Research Group Epigenetics, Metabolism and Longevity, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Adrián Sanz-Moreno
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), 85764, Neuherberg, Germany
| | - Irene de-Diego
- Research Group Epigenetics, Metabolism and Longevity, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | | | - Martina Langhammer
- Institute Genetics and Biometry, Lab Animal Facility, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Raffaele Gerlini
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Birgit Rathkolb
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.,Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University Munich, 81377, Munich, Germany
| | - Antonio Aguilar-Pimentel
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), 85764, Neuherberg, Germany
| | - Tanja Klein-Rodewald
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), 85764, Neuherberg, Germany
| | - Julia Calzada-Wack
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), 85764, Neuherberg, Germany
| | - Lore Becker
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), 85764, Neuherberg, Germany
| | - Sergio Palma-Vera
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Benedikt Gille
- Research Group Epigenetics, Metabolism and Longevity, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Ignasi Forne
- Department of Molecular Biology, Biomedical Center Munich, Ludwig-Maximilians University, 82152, Planegg-Martinsried, Germany
| | - Axel Imhof
- Department of Molecular Biology, Biomedical Center Munich, Ludwig-Maximilians University, 82152, Planegg-Martinsried, Germany
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, 85354, Freising, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, 85354, Freising, Germany
| | - Franziska Koch
- Institute of Nutritional Physiology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - John T Heiker
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Angela Kuhla
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Vanessa Caton
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Julia Brenmoehl
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Henry Reyer
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Jennifer Schoen
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany.,Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), 85764, Neuherberg, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), 85764, Neuherberg, Germany
| | - Andreas Hoeflich
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environment and Health (GmbH), 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.,Chair of Experimental Genetics, TUM School of Life Sciences (SoLS), Technische Universität München, 85354, Freising, Germany
| | - Shahaf Peleg
- Research Group Epigenetics, Metabolism and Longevity, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany. .,Institute of Neuroregeneration and Neurorehabilitation of Qingdao University, Qingdao, China.
| |
Collapse
|
6
|
MAEKAWA T, SUGIMOTO M, KUME S, OHTA T. Pathophysiological features in the brains of female Spontaneously Diabetic Torii (SDT) fatty rats. J Vet Med Sci 2022; 84:330-337. [PMID: 35082197 PMCID: PMC8983279 DOI: 10.1292/jvms.21-0654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Diabetes mellitus (DM) and obesity are associated with neurodegenerative diseases such as Alzheimer's disease and psychiatric disorders such as major depression. In this study, we investigated pathophysiological changes in the brains of female Spontaneously Diabetic Torii (SDT) fatty rats with diabetes and obesity. Brains of Sprague-Dawley (SD), SDT and SDT fatty rats were collected at 58 weeks of age. The parietal cortical thickness was measured and the number of pyramidal cells in the hippocampal cornu ammonis 1 and 3 (CA1 and CA3) and the number of granule cells in the dentate gyrus (DG) regions were counted. The area of glial fibrillary acidic protein (GFAP) positivity in CA1, CA3 and DG regions were measured. The parietal cortical thickness and the number of cells in CA3 and DG regions of SDT and SDT fatty rats did not show obvious changes. On the other hand, in the CA1 region, the number of cells in SDT rats and SDT fatty rats was significantly lower than that in SD rats, and that in SDT fatty rats was significantly lower than that in SDT rats. The GFAP-positive area in SDT fatty rats was significantly reduced compared to that in SD rats only in the DG region. Preliminarily result showed that the expression of S100a9, an inflammation-related gene, was increased in the brains of SDT fatty rats. These results suggest that female SDT fatty rat may exhibit central nervous system diseases due to obesity and DM.
Collapse
Affiliation(s)
- Tatsuya MAEKAWA
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Miki SUGIMOTO
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shinichi KUME
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takeshi OHTA
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
He L, Sun Y. The potential role of Keap1-Nrf2 pathway in the pathogenesis of Alzheimer's disease, type 2 diabetes, and type 2 diabetes-related Alzheimer's disease. Metab Brain Dis 2021; 36:1469-1479. [PMID: 34129198 DOI: 10.1007/s11011-021-00762-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/06/2021] [Indexed: 12/30/2022]
Abstract
Kelch-like ECH associated-protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway is thought to be the key regulatory process defensing oxidative stress in multiple organs. Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) are both serious global health problems with high prevalence. A growing number of literatures have suggested a possible link between Keap1-Nrf2 signaling pathway and the pathological changes of T2DM, AD as well as T2DM-related AD. The current review mainly discusses how the damaged Keap1-Nrf2 signaling pathway leads to dysregulated redox molecular signaling, which may contribute to the pathogenesis of AD and T2DM-related cognitive dysfunction, as well as some compounds targeting this pathway. The further exploration of the mechanisms of this pathway could provide novel therapeutic strategies to improve cognitive function, through restoration of expression or translocation of Nrf2 and scavenging excessive free radicals.
Collapse
Affiliation(s)
- Ling He
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Yi Sun
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China.
| |
Collapse
|
8
|
Shinohara M, Hirokawa J, Shimodaira A, Tashiro Y, Suzuki K, Gheni G, Fukumori A, Matsubara T, Morishima M, Saito Y, Murayama S, Sato N. ELISA Evaluation of Tau Accumulation in the Brains of Patients with Alzheimer Disease. J Neuropathol Exp Neurol 2021; 80:652-662. [PMID: 34283221 DOI: 10.1093/jnen/nlab047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite the routine use of sandwich enzyme-linked immunosorbent assays (ELISAs) for quantifying tau levels in CSF and plasma, tau accumulations in the brains of patients with Alzheimer disease (AD) have rarely been evaluated by this method. Thus, by introducing several tau ELISAs that target different epitopes, we evaluated accumulated tau levels in postmortem brains depending on disease stage, brain areas, and other AD-related changes. Notably, tau levels in insoluble fraction determined by each ELISAs differ depending on the epitopes of antibodies: non-AD control samples yield relatively high signals when an antibody against the N-terminal region of tau is used. On the other hand, ELISAs combining antibodies against the later-middle to C-terminal regions of tau produced substantially increased signals from AD samples, compared to those from non-AD controls. Such ELISAs better distinguish AD and non-AD controls, and the results are more closely associated with Braak neurofibrillary tangles stage, Aβ accumulation, and glial markers. Moreover, these ELISAs can reflect the pattern of tau spread across brain regions. In conclusion, Tau ELISAs that combine antibodies against the later-middle to C-terminal regions of tau can better reflect neuropathological tau accumulation, which would enable to evaluate tau accumulation in the brain at a biochemical level.
Collapse
Affiliation(s)
- Mitsuru Shinohara
- From the Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan (MS, JH, AS, YT, KS, GG, AF, NS).,Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan (MS, AF, NS).,Department of Pharmacotherapeutics II, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan (AF).,Department of Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi, Tokyo, Japan (TM, MM, YS, SM).,Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan (SM)
| | - Junko Hirokawa
- From the Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan (MS, JH, AS, YT, KS, GG, AF, NS).,Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan (MS, AF, NS).,Department of Pharmacotherapeutics II, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan (AF).,Department of Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi, Tokyo, Japan (TM, MM, YS, SM).,Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan (SM)
| | - Akemi Shimodaira
- From the Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan (MS, JH, AS, YT, KS, GG, AF, NS).,Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan (MS, AF, NS).,Department of Pharmacotherapeutics II, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan (AF).,Department of Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi, Tokyo, Japan (TM, MM, YS, SM).,Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan (SM)
| | - Yoshitaka Tashiro
- From the Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan (MS, JH, AS, YT, KS, GG, AF, NS).,Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan (MS, AF, NS).,Department of Pharmacotherapeutics II, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan (AF).,Department of Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi, Tokyo, Japan (TM, MM, YS, SM).,Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan (SM)
| | - Kaoru Suzuki
- From the Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan (MS, JH, AS, YT, KS, GG, AF, NS).,Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan (MS, AF, NS).,Department of Pharmacotherapeutics II, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan (AF).,Department of Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi, Tokyo, Japan (TM, MM, YS, SM).,Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan (SM)
| | - Ghupurjan Gheni
- From the Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan (MS, JH, AS, YT, KS, GG, AF, NS).,Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan (MS, AF, NS).,Department of Pharmacotherapeutics II, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan (AF).,Department of Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi, Tokyo, Japan (TM, MM, YS, SM).,Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan (SM)
| | - Akio Fukumori
- From the Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan (MS, JH, AS, YT, KS, GG, AF, NS).,Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan (MS, AF, NS).,Department of Pharmacotherapeutics II, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan (AF).,Department of Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi, Tokyo, Japan (TM, MM, YS, SM).,Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan (SM)
| | - Tomoyasu Matsubara
- From the Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan (MS, JH, AS, YT, KS, GG, AF, NS).,Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan (MS, AF, NS).,Department of Pharmacotherapeutics II, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan (AF).,Department of Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi, Tokyo, Japan (TM, MM, YS, SM).,Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan (SM)
| | - Maho Morishima
- From the Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan (MS, JH, AS, YT, KS, GG, AF, NS).,Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan (MS, AF, NS).,Department of Pharmacotherapeutics II, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan (AF).,Department of Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi, Tokyo, Japan (TM, MM, YS, SM).,Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan (SM)
| | - Yuko Saito
- From the Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan (MS, JH, AS, YT, KS, GG, AF, NS).,Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan (MS, AF, NS).,Department of Pharmacotherapeutics II, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan (AF).,Department of Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi, Tokyo, Japan (TM, MM, YS, SM).,Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan (SM)
| | - Shigeo Murayama
- From the Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan (MS, JH, AS, YT, KS, GG, AF, NS).,Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan (MS, AF, NS).,Department of Pharmacotherapeutics II, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan (AF).,Department of Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi, Tokyo, Japan (TM, MM, YS, SM).,Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan (SM)
| | - Naoyuki Sato
- From the Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan (MS, JH, AS, YT, KS, GG, AF, NS).,Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan (MS, AF, NS).,Department of Pharmacotherapeutics II, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan (AF).,Department of Neuropathology (The Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi, Tokyo, Japan (TM, MM, YS, SM).,Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan (SM)
| |
Collapse
|
9
|
Alexaki VI. The Impact of Obesity on Microglial Function: Immune, Metabolic and Endocrine Perspectives. Cells 2021; 10:cells10071584. [PMID: 34201844 PMCID: PMC8307603 DOI: 10.3390/cells10071584] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Increased life expectancy in combination with modern life style and high prevalence of obesity are important risk factors for development of neurodegenerative diseases. Neuroinflammation is a feature of neurodegenerative diseases, and microglia, the innate immune cells of the brain, are central players in it. The present review discusses the effects of obesity, chronic peripheral inflammation and obesity-associated metabolic and endocrine perturbations, including insulin resistance, dyslipidemia and increased glucocorticoid levels, on microglial function.
Collapse
Affiliation(s)
- Vasileia Ismini Alexaki
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
10
|
Ghanemi A, Yoshioka M, St-Amand J. Obese Animals as Models for Numerous Diseases: Advantages and Applications. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:399. [PMID: 33919006 PMCID: PMC8142996 DOI: 10.3390/medicina57050399] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023]
Abstract
With the advances in obesity research, a variety of animal models have been developed to investigate obesity pathogenesis, development, therapies and complications. Such obese animals would not only allow us to explore obesity but would also represent models to study diseases and conditions that develop with obesity or where obesity represents a risk factor. Indeed, obese subjects, as well as animal models of obesity, develop pathologies such as cardiovascular diseases, diabetes, inflammation and metabolic disorders. Therefore, obese animals would represent models for numerous diseases. Although those diseases can be induced in animals by chemicals or drugs without obesity development, having them developed as consequences of obesity has numerous advantages. These advantages include mimicking natural pathogenesis processes, using diversity in obesity models (diet, animal species) to study the related variabilities and exploring disease intensity and reversibility depending on obesity development and treatments. Importantly, therapeutic implications and pharmacological tests represent key advantages too. On the other hand, obesity prevalence is continuously increasing, and, therefore, the likelihood of having a patient suffering simultaneously from obesity and a particular disease is increasing. Thus, studying diverse diseases in obese animals (either induced naturally or developed) would allow researchers to build a library of data related to the patterns or specificities of obese patients within the context of pathologies. This may lead to a new branch of medicine specifically dedicated to the diseases and care of obese patients, similar to geriatric medicine, which focuses on the elderly population.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada;
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec, QC G1V 4G2, Canada;
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec, QC G1V 4G2, Canada;
| | - Jonny St-Amand
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada;
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec, QC G1V 4G2, Canada;
| |
Collapse
|
11
|
Suzuki K, Shinohara M, Uno Y, Tashiro Y, Gheni G, Yamamoto M, Fukumori A, Shindo A, Mashimo T, Tomimoto H, Sato N. Deletion of B-cell translocation gene 2 (BTG2) alters the responses of glial cells in white matter to chronic cerebral hypoperfusion. J Neuroinflammation 2021; 18:86. [PMID: 33812385 PMCID: PMC8019185 DOI: 10.1186/s12974-021-02135-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/19/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Subcortical ischemic vascular dementia, one of the major subtypes of vascular dementia, is characterized by lacunar infarcts and white matter lesions caused by chronic cerebral hypoperfusion. In this study, we used a mouse model of bilateral common carotid artery stenosis (BCAS) to investigate the role of B-cell translocation gene 2 (BTG2), an antiproliferation gene, in the white matter glial response to chronic cerebral hypoperfusion. METHODS Btg2-/- mice and littermate wild-type control mice underwent BCAS or sham operation. Behavior phenotypes were assessed by open-field test and Morris water maze test. Brain tissues were analyzed for the degree of white matter lesions and glial changes. To further confirm the effects of Btg2 deletion on proliferation of glial cells in vitro, BrdU incorporation was investigated in mixed glial cells derived from wild-type and Btg2-/- mice. RESULTS Relative to wild-type mice with or without BCAS, BCAS-treated Btg2-/- mice exhibited elevated spontaneous locomotor activity and poorer spatial learning ability. Although the severities of white matter lesions did not significantly differ between wild-type and Btg2-/- mice after BCAS, the immunoreactivities of GFAP, a marker of astrocytes, and Mac2, a marker of activated microglia and macrophages, in the white matter of the optic tract were higher in BCAS-treated Btg2-/- mice than in BCAS-treated wild-type mice. The expression level of Gfap was also significantly elevated in BCAS-treated Btg2-/- mice. In vitro analysis showed that BrdU incorporation in mixed glial cells in response to inflammatory stimulation associated with cerebral hypoperfusion was higher in Btg2-/- mice than in wild-type mice. CONCLUSION BTG2 negatively regulates glial cell proliferation in response to cerebral hypoperfusion, resulting in behavioral changes.
Collapse
Affiliation(s)
- Kaoru Suzuki
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan
| | - Mitsuru Shinohara
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan
- Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Uno
- Institute of Experimental Animal Sciences, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshitaka Tashiro
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan
| | - Ghupurjan Gheni
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan
| | - Miho Yamamoto
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan
| | - Akio Fukumori
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan
- Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Akihiko Shindo
- Department of Neurology, Graduate School of Medicine, Mie University, 174, Edobashi 2-chome, Tsu, Mie, 514-8507, Japan
| | - Tomoji Mashimo
- Institute of Experimental Animal Sciences, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Graduate School of Medicine, Mie University, 174, Edobashi 2-chome, Tsu, Mie, 514-8507, Japan
| | - Naoyuki Sato
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan.
- Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
12
|
Shinohara M, Kikuchi M, Onishi-Takeya M, Tashiro Y, Suzuki K, Noda Y, Takeda S, Mukouzono M, Nagano S, Fukumori A, Morishita R, Nakaya A, Sato N. Upregulated expression of a subset of genes in APP; ob/ ob mice: Evidence of an interaction between diabetes-linked obesity and Alzheimer's disease. FASEB Bioadv 2021; 3:323-333. [PMID: 33977233 PMCID: PMC8103720 DOI: 10.1096/fba.2020-00151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/17/2021] [Accepted: 01/29/2021] [Indexed: 12/26/2022] Open
Abstract
Clinical studies have indicated that obesity and diabetes are associated with Alzheimer's disease (AD) and neurodegeneration. However, the mechanism by which obesity/diabetes and AD interact with each other and contribute to dementia remains elusive. To obtain insights into their interaction at molecular levels, we performed gene expression analysis of APP;ob/ob mice, which were generated by crossing transgenic AD model mice (APP23 mice) with ob/ob mice, which are obese and mildly diabetic. The Aβ level in these mice was reduced compared with that in pure APP mice. However, we identified a cluster of genes (cluster 10) upregulated in APP;ob/ob mice but not in either APP or ob/ob mice. Interestingly, genes upregulated in the human AD brain were enriched in cluster 10. Moreover, genes in cluster 10 formed a network and shared upregulated genes with a cell model of neurodegeneration and other models of neurological disorders such as ischemia and epilepsy. In silico analyses showed that serum response factor (SRF), recently identified in a single-cell analysis of human brains as a transcription factor that can control the conversion from healthy cells to AD cells, might be a common transcriptional regulator for a subset of cluster 10 genes. These data suggest that upregulation of genes uniquely associated with APP;ob/ob mice is an evidence of the interaction between obesity/diabetes and AD.
Collapse
Affiliation(s)
- Mitsuru Shinohara
- Department of Aging Neurobiology Center for Development of Advanced Medicine for Dementia National Center for Geriatrics and Gerontology Obu Aichi Japan.,Department of Aging Neurobiology Graduate School of Medicine Osaka University Osaka Japan
| | - Masataka Kikuchi
- Department of Genome Informatics Graduate School of Medicine Osaka University Osaka Japan
| | - Miyuki Onishi-Takeya
- Department of Geriatric Medicine Graduate School of Medicine Osaka University Osaka Japan
| | - Yoshitaka Tashiro
- Department of Aging Neurobiology Center for Development of Advanced Medicine for Dementia National Center for Geriatrics and Gerontology Obu Aichi Japan
| | - Kaoru Suzuki
- Department of Aging Neurobiology Center for Development of Advanced Medicine for Dementia National Center for Geriatrics and Gerontology Obu Aichi Japan
| | - Yasuhiro Noda
- Department of Aging Neurobiology Center for Development of Advanced Medicine for Dementia National Center for Geriatrics and Gerontology Obu Aichi Japan
| | - Shuko Takeda
- Department of Clinical Gene Therapy Graduate School of Medicine Osaka University Osaka Japan
| | - Masahiro Mukouzono
- Department of Clinical Gene Therapy Graduate School of Medicine Osaka University Osaka Japan
| | - Seiichi Nagano
- Department of Neurology Graduate School of Medicine Osaka University Osaka Japan
| | - Akio Fukumori
- Department of Aging Neurobiology Center for Development of Advanced Medicine for Dementia National Center for Geriatrics and Gerontology Obu Aichi Japan.,Department of Aging Neurobiology Graduate School of Medicine Osaka University Osaka Japan
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy Graduate School of Medicine Osaka University Osaka Japan
| | - Akihiro Nakaya
- Department of Genome Informatics Graduate School of Medicine Osaka University Osaka Japan
| | - Naoyuki Sato
- Department of Aging Neurobiology Center for Development of Advanced Medicine for Dementia National Center for Geriatrics and Gerontology Obu Aichi Japan.,Department of Aging Neurobiology Graduate School of Medicine Osaka University Osaka Japan
| |
Collapse
|
13
|
Tyagi A, Pugazhenthi S. Targeting Insulin Resistance to Treat Cognitive Dysfunction. Mol Neurobiol 2021; 58:2672-2691. [PMID: 33483903 DOI: 10.1007/s12035-021-02283-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023]
Abstract
Dementia is a devastating disease associated with aging. Alzheimer's disease is the most common form of dementia, followed by vascular dementia. In addition to clinically diagnosed dementia, cognitive dysfunction has been reported in diabetic patients. Recent studies are now beginning to recognize type 2 diabetes mellitus, characterized by chronic hyperglycemia and insulin resistance, as a risk factor for Alzheimer's disease and other cognitive disorders. While studies on insulin action have remained traditionally in the domain of peripheral tissues, the detrimental effects of insulin resistance in the central nervous system on cognitive dysfunction are increasingly being reported by recent clinical and preclinical studies. The findings from these studies suggest that antidiabetic drugs have the potential to be used to treat dementia. In this review, we discuss the physiological functions of insulin in the brain, studies on the evaluation of cognitive function under conditions of insulin resistance, and reports on the beneficial actions of antidiabetic drugs in the brain. This review covers clinical studies as well as investigations in animal models and will further highlight the emerging link between insulin resistance and neurodegenerative disorders.
Collapse
Affiliation(s)
- Anit Tyagi
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA.,Department of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA.,University of Denver, Denver, CO, USA
| | - Subbiah Pugazhenthi
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA. .,Department of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
14
|
Shinohara M, Suzuki K, Bu G, Sato N. Interaction Between APOE Genotype and Diabetes in Longevity. J Alzheimers Dis 2021; 82:719-726. [PMID: 34092638 DOI: 10.3233/jad-210125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND While both apolipoprotein E (APOE) genotype and diabetes affect longevity as well as Alzheimer's disease, their relationship remains to be elucidated. OBJECTIVE The current study investigated the potential interaction between diabetes and APOE for lifespan and their relationship with cognitive status. METHODS We reviewed the National Alzheimer's Coordinating Center (NACC) dataset, which documents longitudinally clinical records of 24,967 individuals with APOE genotype and diabetic status. RESULTS Diabetes was associated with shorter lifespan in APOE3 carriers (n = 12,415, HR = 1.29, 95%CI = 1.17-1.42, p < 0.001) and APOE2 carriers (n = 2,390, HR = 1.37, 95%CI = 1.10-1.69, p = 0.016), while such associations were weaker and not significant in APOE4 carriers (n = 9,490, HR = 1.11, 95%CI = 0.99-1.24, p = 0.162). As there is a significant interactive effect of cognitive status and diabetes on lifespan (p < 0.001), we stratified subjects by cognitive status and observed persistent APOE-dependent harmful effects of diabetes in nondemented individuals but not demented individuals. Notably, questionnaire-based activity status, with which we previously observed an association between APOE genotype and longevity, was also significantly affected by diabetes only in non-APOE4 carriers. CONCLUSION The effects of diabetes on longevity vary among APOE genotype. These effects are observed in nondemented individuals and are potentially associated with activity status during their lifespan.
Collapse
Affiliation(s)
- Mitsuru Shinohara
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Kaoru Suzuki
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Naoyuki Sato
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
15
|
[The future of dementia prevention and treatment strategies]. Nihon Ronen Igakkai Zasshi 2020; 57:374-396. [PMID: 33268621 DOI: 10.3143/geriatrics.57.374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|