1
|
Xue X, Wang M, Cui J, Yang M, Ma L, Kang R, Tang D, Wang J. Glutathione metabolism in ferroptosis and cancer therapy. Cancer Lett 2025; 621:217697. [PMID: 40189013 DOI: 10.1016/j.canlet.2025.217697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/16/2025]
Abstract
Glutathione (GSH), a non-enzymatic antioxidant in mammalian cells, plays an essential role in maintaining redox balance, mitigating oxidative stress, and preserving cellular homeostasis. Beyond its well-established function in detoxifying reactive oxygen species (ROS), GSH serves as a critical regulator of ferroptosis-an iron-dependent form of cell death marked by excessive lipid peroxidation. Serving as a cofactor for glutathione peroxidase 4 (GPX4), GSH catalyzes the conversion of lipid peroxides into non-toxic lipid alcohols, thereby preventing the accumulation of deleterious lipid oxidation products and halting the spread of oxidative damage. In cancer cells, upregulated GSH synthesis and GPX4 activity contribute to an enhanced antioxidant defense, countering oxidative stress provoked by increased metabolic demands and exposure to therapeutic agents such as chemotherapy, radiotherapy, and immunotherapy. This ability of cancer cells to modulate their ferroptosis susceptibility through GSH metabolism underscores its potential as a therapeutic target. Additionally, GSH influences several key oncogenic and tumor-suppressive signaling pathways, including NFE2L2/NRF2, TP53/p53, NF-κB, Hippo, and mTOR, which collectively regulate responses to oxidative stress, affect metabolic processes, and modulate sensitivity to ferroptosis in cancer cells. This review explores recent advancements in understanding GSH's multifaceted role in ferroptosis, emphasizing its implications for cancer biology and therapeutic interventions.
Collapse
Affiliation(s)
- Xiangfei Xue
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China
| | - Manyuan Wang
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, 200025, China
| | - Jiangtao Cui
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China
| | - Minying Yang
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, 200025, China
| | - Lifang Ma
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, 75390, USA.
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 200030, China; Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
2
|
Wang T, Liu H, Liu H, Xia Y, Xun L. Oxidants induce Escherichia coli MarR glutathionylation in the presence of glutathione. Redox Biol 2025; 83:103629. [PMID: 40228336 PMCID: PMC12017873 DOI: 10.1016/j.redox.2025.103629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Accepted: 04/06/2025] [Indexed: 04/16/2025] Open
Abstract
The results of protein thiols reacting with oxidants may be different in the presence or absence of glutathione (GSH). Upon exposure to oxidants, such as Cu2+ and polysulfide, the multiple drug resistant regulator MarR dimer in Escherichia coli is believed to form tetramers linked by disulfide bonds between its Cys80 thiols. We confirmed this observation in the absence of GSH; however, the MarR-Cys80 thiol was primarily glutathionylated in the presence of GSH after MarR was treated with various oxidants, including octasulfur (S8), Cu2+, H2O2, ClO-, and a NO donor. When using S8 as the oxidizing agent, we identified four pathways to induce MarR-Cys80 glutathionylation. Since E. coli contains high concentrations of GSH, MarR is likely glutathionylated instead of forming tetramers inside the cells. When E. coli was exposed to S8, cellular levels of protein glutathionylation were increased and most MarR was glutathionylated, as shown by Western blot and LC-MS analyses. The glutathionylated MarR displayed reduced affinity to its cognate operator, resulting in the expression of its repressed genes. The results highlight the need to consider the wide presence of GSH when investigating protein thiol modification.
Collapse
Affiliation(s)
- Tianqi Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Honglei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China; School of Molecular Biosciences, Washington State University, Pullman, WA, 99164-7520, USA.
| |
Collapse
|
3
|
Lin H, Wang L, Chen H, Shen Y, Wang C, Xue Y, Zheng Z, Zhang Y, Xia D, Wu Y, Wang F, Li X, Cheng X, Wang H, Xu J, Lu W. Mitochondrial fatty acid oxidation as the target for blocking therapy-resistance and inhibiting tumor recurrence: The proof-of-principle model demonstrated for ovarian cancer cells. J Adv Res 2025:S2090-1232(25)00186-9. [PMID: 40107354 DOI: 10.1016/j.jare.2025.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025] Open
Abstract
INTRODUCTION Cancer patients treated with current chemotherapeutic and targeted therapies frequently achieve partial remission, which ultimately relapse with more aggressive, drug-resistant tumor phenotypes. To a certain extent, drug-tolerant persister (DTP) cells are responsible for residual tumors after systemic anticancer therapy and the onset of acquired drug resistance. Therefore, novel therapies targeting DTP cells to prevent drug resistance and tumor recurrence are urgently needed. OBJECTIVES We aimed to investigate the traits and key vulnerabilities of drug-tolerant ovarian cancer persister cells and to seek out potential therapeutic strategies. METHODS We constructed paclitaxel-tolerant ovarian cancer persister cells by exposing ovarian cancer parental cells to a lethal dose of paclitaxel. Proteomics analysis, in vitro and in vivo assays were performed to identify biological processes that could serve as potential vulnerabilities in persister cells. RESULTS Paclitaxel-tolerant ovarian cancer persister cells were found to undergo a metabolic reprogramming through the upregulation of fatty acid oxidation (FAO). Treatment with the FAO inhibitor ST1326 suppressed FAO and increased sensitivity to paclitaxel in persister cells. Moreover, combination therapy with paclitaxel and ST1326 prevented ovarian tumor recurrence with satisfactory biosafety in a mouse model of ovarian cancer relapse, indicating that FAO disruption can improve the efficacy of paclitaxel-based therapy in ovarian cancer. Mechanistically, we found that paclitaxel treatment upregulated CEBPB, a transcription factor that induced the expression of the FAO-related enzyme HADHA and contributed to FAO elevation in persister cells. CONCLUSIONS This study revealed an upregulation of FAO in paclitaxel-tolerant ovarian cancer persister cells and provided a prospective paclitaxel-ST1326 combination therapy targeting persister cells that may prevent the development of acquired drug resistance and achieve superior long-term ovarian cancer control in the future. Our research established a conceptual framework for advancing personalized treatment approaches and enhancing patient outcomes in ovarian cancer therapy.
Collapse
Affiliation(s)
- Hui Lin
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006 Zhejiang, China; Zhejiang Key Laboratory of Maternal and Infant Health, Hangzhou 310006 Zhejiang, China
| | - Lingfang Wang
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006 Zhejiang, China
| | - Hanwen Chen
- Department of Gastroenterology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009 Zhejiang, China
| | - Yuqing Shen
- Department of Endocrinology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003 Zhejiang, China
| | - Conghui Wang
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006 Zhejiang, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou 310006 Zhejiang, China
| | - Yite Xue
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou 310022 Zhejiang, China
| | - Zhi Zheng
- Department of Obstetrics and Gynecology, Wenzhou People's Hospital, Wenzhou 325000 Zhejiang, China
| | - Yanan Zhang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China
| | - Dajing Xia
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006 Zhejiang, China; Department of Toxicology, Zhejiang University School of Public Health, Hangzhou 310058 Zhejiang, China
| | - Yihua Wu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006 Zhejiang, China; Department of Toxicology, Zhejiang University School of Public Health, Hangzhou 310058 Zhejiang, China
| | - Fenfen Wang
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006 Zhejiang, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou 310006 Zhejiang, China
| | - Xiao Li
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006 Zhejiang, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou 310006 Zhejiang, China
| | - Xiaodong Cheng
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006 Zhejiang, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou 310006 Zhejiang, China
| | - Hui Wang
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006 Zhejiang, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou 310006 Zhejiang, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Hangzhou 310006 Zhejiang, China
| | - Junfen Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006 Zhejiang, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou 310006 Zhejiang, China.
| | - Weiguo Lu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006 Zhejiang, China; Zhejiang Key Laboratory of Maternal and Infant Health, Hangzhou 310006 Zhejiang, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou 310006 Zhejiang, China.
| |
Collapse
|
4
|
Wang H, Zhang S, Wang M, Wang C, Xu J, Jiang M, Han X, Yang X, Zhang L, Chen B, Liu A. Joint Analysis of CCAAT/Enhancer-Binding Protein Beta and Interleukin 1 Beta in the Treatment and Prognosis of Diffuse Large B-Cell Lymphoma. FRONT BIOSCI-LANDMRK 2024; 29:372. [PMID: 39614427 DOI: 10.31083/j.fbl2911372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 12/01/2024]
Abstract
OBJECTIVE The purpose of this study is to investigate the correlation between elevated levels of CCAAT/enhancer-binding protein beta (CEBPB) gene expression and unfavorable outcomes in diffuse large B-cell lymphoma (DLBCL). The goal is to elucidate potential therapeutic targets associated with this relationship. METHODS Differential expression and survival analyses were conducted using data from the Gene Expression Omnibus (GEO) database. The functions of CEBPB in DLBCL cells were investigated through cell culture, RNA extraction, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot. In addition, a weighted gene co-expression network analysis (WGCNA) was performed to pinpoint gene modules associated with CEBPB. Furthermore, experimental validation was carried out to explore the interaction between CEBPB and interleukin 1 beta (IL1B). RESULTS High levels of CEBPB expression are prominently observed in DLBCL, with its overabundance significantly linked to the diagnosis of DLBCL. Survival analysis reveals that patients exhibiting elevated CEBPB expression tend to experience a poorer prognosis. Further validation confirmed CEBPB's role in promoting DLBCL cell proliferation and cell cycle progression. WGCNA identified CEBPB-related gene modules, with IL1B identified as a potential regulatory gene of CEBPB. The presence of high levels of IL1B has been correlated with an unfavorable prognosis in individuals diagnosed with DLBCL. Experiments demonstrate that IL1B promotes DLBCL cell proliferation through CEBPB. CONCLUSIONS This study reveals the significant roles of CEBPB and IL1B in DLBCL, providing new theoretical foundations and potential molecular targets for the treatment and prognosis of DLBCL.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- CCAAT-Enhancer-Binding Protein-beta/metabolism
- CCAAT-Enhancer-Binding Protein-beta/genetics
- Interleukin-1beta/genetics
- Interleukin-1beta/metabolism
- Prognosis
- Gene Expression Regulation, Neoplastic
- Cell Line, Tumor
- Cell Proliferation/genetics
- Survival Analysis
- Gene Expression Profiling/methods
- Gene Regulatory Networks
Collapse
Affiliation(s)
- Hongmin Wang
- Department of Haemolymph, Harbin Medical University Cancer Hospital, 150001 Harbin, Heilongjiang, China
- Department of Hematology, The First Hospital of Qiqihar, 161005 Qiqihar, Heilongjiang, China
| | - Shuo Zhang
- Shenshan Medical Center, SunYat-sen Memorial Hospital, Sun Yat-sen University, 516621 Shanwei, Guangdong, China
| | - Mengmeng Wang
- Department of Integrated TCM and Western Medicine, The First Hospital of Qiqihar, 161005 Qiqihar, Heilongjiang, China
| | - Chaozhong Wang
- Qiqihar Center for Drug Control, 161006 Qiqihar, Heilongjiang, China
| | - Jihong Xu
- Department of Hematology, The First Hospital of Qiqihar, 161005 Qiqihar, Heilongjiang, China
| | - Ming Jiang
- Department of Hematology, The First Hospital of Qiqihar, 161005 Qiqihar, Heilongjiang, China
| | - Xue Han
- Department of Hematology, The First Hospital of Qiqihar, 161005 Qiqihar, Heilongjiang, China
| | - Xiaotong Yang
- Department of Hematology, The First Hospital of Qiqihar, 161005 Qiqihar, Heilongjiang, China
| | - Liping Zhang
- Department of Hematology, The First Hospital of Qiqihar, 161005 Qiqihar, Heilongjiang, China
| | - Baotong Chen
- Department of Hematology, The First Hospital of Qiqihar, 161005 Qiqihar, Heilongjiang, China
| | - Aichun Liu
- Department of Haemolymph, Harbin Medical University Cancer Hospital, 150001 Harbin, Heilongjiang, China
| |
Collapse
|
5
|
Asantewaa G, Tuttle ET, Ward NP, Kang YP, Kim Y, Kavanagh ME, Girnius N, Chen Y, Rodriguez K, Hecht F, Zocchi M, Smorodintsev-Schiller L, Scales TQ, Taylor K, Alimohammadi F, Duncan RP, Sechrist ZR, Agostini-Vulaj D, Schafer XL, Chang H, Smith ZR, O'Connor TN, Whelan S, Selfors LM, Crowdis J, Gray GK, Bronson RT, Brenner D, Rufini A, Dirksen RT, Hezel AF, Huber AR, Munger J, Cravatt BF, Vasiliou V, Cole CL, DeNicola GM, Harris IS. Glutathione synthesis in the mouse liver supports lipid abundance through NRF2 repression. Nat Commun 2024; 15:6152. [PMID: 39034312 PMCID: PMC11271484 DOI: 10.1038/s41467-024-50454-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
Cells rely on antioxidants to survive. The most abundant antioxidant is glutathione (GSH). The synthesis of GSH is non-redundantly controlled by the glutamate-cysteine ligase catalytic subunit (GCLC). GSH imbalance is implicated in many diseases, but the requirement for GSH in adult tissues is unclear. To interrogate this, we have developed a series of in vivo models to induce Gclc deletion in adult animals. We find that GSH is essential to lipid abundance in vivo. GSH levels are highest in liver tissue, which is also a hub for lipid production. While the loss of GSH does not cause liver failure, it decreases lipogenic enzyme expression, circulating triglyceride levels, and fat stores. Mechanistically, we find that GSH promotes lipid abundance by repressing NRF2, a transcription factor induced by oxidative stress. These studies identify GSH as a fulcrum in the liver's balance of redox buffering and triglyceride production.
Collapse
Affiliation(s)
- Gloria Asantewaa
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Emily T Tuttle
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Nathan P Ward
- Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Yun Pyo Kang
- Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Yumi Kim
- Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Madeline E Kavanagh
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Nomeda Girnius
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Katherine Rodriguez
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Fabio Hecht
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Marco Zocchi
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Leonid Smorodintsev-Schiller
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - TashJaé Q Scales
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Kira Taylor
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Fatemeh Alimohammadi
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Renae P Duncan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Zachary R Sechrist
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Diana Agostini-Vulaj
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Xenia L Schafer
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
| | - Hayley Chang
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Zachary R Smith
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Thomas N O'Connor
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Sarah Whelan
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Laura M Selfors
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Jett Crowdis
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - G Kenneth Gray
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Dirk Brenner
- Experimental and Molecular Immunology, Dept. of Infection and Immunity (DII), Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology & Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Alessandro Rufini
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Aram F Hezel
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Aaron R Huber
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Joshua Munger
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Benjamin F Cravatt
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Calvin L Cole
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Gina M DeNicola
- Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Isaac S Harris
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
6
|
Kim K, Choi J, Iram S, Kim J. Regulation of Glutathione S-Transferase Omega 1 Mediated by Cysteine Residues Sensing the Redox Environment. Int J Mol Sci 2024; 25:5279. [PMID: 38791319 PMCID: PMC11121155 DOI: 10.3390/ijms25105279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Glutathione S-transferase omega 1 (GstO1) catalyzes deglutathionylation and plays an important role in the protein glutathionylation cycle in cells. GstO1 contains four conserved cysteine residues (C32, C90, C191, C236) found to be mutated in patients with associated diseases. In this study, we investigated the effects of cysteine mutations on the structure and function of GstO1 under different redox conditions. Wild-type GstO1 (WT) was highly sensitive to hydrogen peroxide (H2O2), which caused precipitation and denaturation at a physiological temperature. However, glutathione efficiently inhibited the H2O2-induced denaturation of GstO1. Cysteine mutants C32A and C236A exhibited redox-dependent stabilities and enzyme activities significantly different from those of WT. These results indicate that C32 and C236 play critical roles in GstO1 regulation by sensing redox environments and explain the pathological effect of cysteine mutations found in patients with associated diseases.
Collapse
Affiliation(s)
| | | | - Sana Iram
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (K.K.); (J.C.)
| | - Jihoe Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (K.K.); (J.C.)
| |
Collapse
|
7
|
Wang Y, Chen J, Ni Y, Liu Y, Gao X, Tse MA, Panagiotou G, Xu A. Exercise-changed gut mycobiome as a potential contributor to metabolic benefits in diabetes prevention: an integrative multi-omics study. Gut Microbes 2024; 16:2416928. [PMID: 39473051 PMCID: PMC11533799 DOI: 10.1080/19490976.2024.2416928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND The importance of gut microbes in mediating the benefits of lifestyle intervention is increasingly recognized. However, compared to the bacterial microbiome, the role of intestinal fungi in exercise remains elusive. With our established randomized controlled trial of exercise intervention in Chinese males with prediabetes (n = 39, ClinicalTrials.gov:NCT03240978), we investigated the dynamics of human gut mycobiome and further interrogated their associations with exercise-elicited outcomes using multi-omics approaches. METHODS Clinical variations and biological samples were collected before and after training. Fecal fungal composition was analyzed using the internal transcribed spacer 2 (ITS2) sequencing and integrated with paired shotgun metagenomics, untargeted metabolomics, and Olink proteomics. RESULTS Twelve weeks of exercise training profoundly promoted fungal ecological diversity and intrakingdom connection. We further identified exercise-responsive genera with potential metabolic benefits, including Verticillium, Sarocladium, and Ceratocystis. Using multi-omics approaches, we elucidated comprehensive associations between changes in gut mycobiome and exercise-shaped metabolic phenotypes, bacterial microbiome, and circulating metabolomics and proteomics profiles. Furthermore, a machine-learning algorithm built using baseline microbial signatures and clinical characteristics predicted exercise responsiveness in improvements of insulin sensitivity, with an area under the receiver operating characteristic (AUROC) of 0.91 (95% CI: 0.85-0.97) in the discovery cohort and of 0.79 (95% CI: 0.74-0.86) in the independent validation cohort (n = 30). CONCLUSIONS Our findings suggest that intense exercise training significantly remodels the human fungal microbiome composition. Changes in gut fungal composition are associated with the metabolic benefits of exercise, indicating gut mycobiome is a possible molecular transducer of exercise. Moreover, baseline gut fungal signatures predict exercise responsiveness for diabetes prevention, highlighting that targeting the gut mycobiome emerges as a prospective strategy in tailoring personalized training for diabetes prevention.
Collapse
Affiliation(s)
- Yao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiarui Chen
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yueqiong Ni
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoll Institute, Jena, Germany
| | - Yan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiang Gao
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Michael Andrew Tse
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Centre for Sports and Exercise, The University of Hong Kong, Hong Kong, China
| | - Gianni Panagiotou
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoll Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
- Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
Nakano T, Sasaki Y, Norikura T, Hosokawa Y, Kasano M, Matsui‐Yuasa I, Huang X, Kobayashi Y, Kojima‐Yuasa A. The suppression of the differentiation of adipocytes with Mallotus furetianus is regulated through the posttranslational modifications of C/EBPβ. Food Sci Nutr 2023; 11:6151-6163. [PMID: 37831750 PMCID: PMC10563708 DOI: 10.1002/fsn3.3551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 10/15/2023] Open
Abstract
Obesity is a major risk factor for various chronic diseases, especially lifestyle-related diseases. Therefore, finding a protective substance against obesity and elucidating its molecular mechanism is one of the most important problems for improving human health. In this study, we investigated the antiobesity effect of Mallotus furetianus extract (MFE). The aim of the study was to examine the in vivo and in vitro effects of MFE on lipid synthesis. We examined the effect using an in vivo experimental system with obesity model mice and an in vitro experimental system with 3T3-L1 preadipocytes. We found that the treatment of MFE significantly suppressed the increase in body weight and adipose tissue weight and morphological changes in the liver and adipose tissue of the obesity model mice. In the in vitro experimental system, we revealed that MFE treatment suppressed the expression of transcription factors such as C/EBPα, C/EBPβ, and PPARγ, which are involved in the early differentiation of 3T3-L1 preadipocytes. As a result, the ability to synthesize triacylglycerol was suppressed. An interesting finding in this study was the clarification that MFE decreases the expression of C/EBPβ through post-translation modifications (PTMs), followed by the transcriptional suppression of PPAR𝛾 and C/EBP𝛼.
Collapse
Affiliation(s)
- Touko Nakano
- Department of Food and Human Health SciencesGraduate School of Human Life ScienceOsaka City UniversityOsakaJapan
| | - Yutaro Sasaki
- Department of Food and Human Health SciencesGraduate School of Human Life ScienceOsaka City UniversityOsakaJapan
| | - Toshio Norikura
- Department of NutritionAomori University of Health and WelfareAomoriJapan
| | - Yusuke Hosokawa
- Department of Food and Human Health SciencesGraduate School of Human Life ScienceOsaka City UniversityOsakaJapan
| | - Mayu Kasano
- Department of Food and Human Health SciencesGraduate School of Human Life ScienceOsaka City UniversityOsakaJapan
| | - Isao Matsui‐Yuasa
- Department of Food and Human Health SciencesGraduate School of Human Life ScienceOsaka City UniversityOsakaJapan
- Department of NutritionGraduate School of Human Life and EcologyOsaka Metropolitan UniversityOsakaJapan
| | - Xuedan Huang
- Department of PharmacognosySchool of PharmacyKitasato UniversityTokyoJapan
| | | | - Akiko Kojima‐Yuasa
- Department of Food and Human Health SciencesGraduate School of Human Life ScienceOsaka City UniversityOsakaJapan
- Department of NutritionGraduate School of Human Life and EcologyOsaka Metropolitan UniversityOsakaJapan
| |
Collapse
|
9
|
Hossain MS, Yao A, Qiao X, Shi W, Xie T, Chen C, Zhang YQ. Gbb glutathionylation promotes its proteasome-mediated degradation to inhibit synapse growth. J Cell Biol 2023; 222:e202202068. [PMID: 37389657 PMCID: PMC10316630 DOI: 10.1083/jcb.202202068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/20/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
Glutathionylation is a posttranslational modification involved in various molecular and cellular processes. However, it remains unknown whether and how glutathionylation regulates nervous system development. To identify critical regulators of synapse growth and development, we performed an RNAi screen and found that postsynaptic knockdown of glutathione transferase omega 1 (GstO1) caused significantly more synaptic boutons at the Drosophila neuromuscular junctions. Genetic and biochemical analysis revealed an increased level of glass boat bottom (Gbb), the Drosophila homolog of mammalian bone morphogenetic protein (BMP), in GstO1 mutants. Further experiments showed that GstO1 is a critical regulator of Gbb glutathionylation at cysteines 354 and 420, which promoted its degradation via the proteasome pathway. Moreover, the E3 ligase Ctrip negatively regulated the Gbb protein level by preferentially binding to glutathionylated Gbb. These results unveil a novel regulatory mechanism in which glutathionylation of Gbb facilitates its ubiquitin-mediated degradation. Taken together, our findings shed new light on the crosstalk between glutathionylation and ubiquitination of Gbb in synapse development.
Collapse
Affiliation(s)
- Md Shafayat Hossain
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Aiyu Yao
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xinhua Qiao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wenwen Shi
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ting Xie
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chang Chen
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Q. Zhang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Iram S, Mashaal A, Go S, Kim J. Inhibition of glutathione S-transferase omega 1-catalyzed protein deglutathionylation suppresses adipocyte differentiation. BMB Rep 2023; 56:457-462. [PMID: 37156632 PMCID: PMC10471458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/03/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023] Open
Abstract
Glutathione S-transferase omega 1 (GstO1) is closely associated with various human diseases, including obesity and diabetes, but its functional mechanism is not fully understood. In the present study, we found that the GstO1-specific inhibitor C1-27 effectively suppressed the adipocyte differentiation of 3T3-L1 preadipocytes. GstO1 expression was immediately upregulated upon the induction of adipocyte differentiation, and barely altered by C1-27. However, C1-27 significantly decreased the stability of GstO1. Moreover, GstO1 catalyzed the deglutathionylation of cellular proteins during the early phase of adipocyte differentiation, and C1-27 inhibited this activity. These results demonstrate that GstO1 is involved in adipocyte differentiation by catalyzing the deglutathionylation of proteins critical for the early phase of adipocyte differentiation. [BMB Reports 2023; 56(8): 457-462].
Collapse
Affiliation(s)
- Sana Iram
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
| | - Areeba Mashaal
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
| | - Seulgi Go
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
| | - Jihoe Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
11
|
Iram S, Mashaal A, Go S, Kim J. Inhibition of glutathione S-transferase omega 1-catalyzed protein deglutathionylation suppresses adipocyte differentiation. BMB Rep 2023; 56:457-462. [PMID: 37156632 PMCID: PMC10471458 DOI: 10.5483/bmbrep.2023-0038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/03/2023] [Accepted: 04/25/2023] [Indexed: 03/30/2025] Open
Abstract
Glutathione S-transferase omega 1 (GstO1) is closely associated with various human diseases, including obesity and diabetes, but its functional mechanism is not fully understood. In the present study, we found that the GstO1-specific inhibitor C1-27 effectively suppressed the adipocyte differentiation of 3T3-L1 preadipocytes. GstO1 expression was immediately upregulated upon the induction of adipocyte differentiation, and barely altered by C1-27. However, C1-27 significantly decreased the stability of GstO1. Moreover, GstO1 catalyzed the deglutathionylation of cellular proteins during the early phase of adipocyte differentiation, and C1-27 inhibited this activity. These results demonstrate that GstO1 is involved in adipocyte differentiation by catalyzing the deglutathionylation of proteins critical for the early phase of adipocyte differentiation. [BMB Reports 2023; 56(8): 457-462].
Collapse
Affiliation(s)
- Sana Iram
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
| | - Areeba Mashaal
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
| | - Seulgi Go
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
| | - Jihoe Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
12
|
Ran H, Li C, Zhang M, Zhong J, Wang H. Neglected PTM in Animal Adipogenesis: E3-mediated Ubiquitination. Gene 2023:147574. [PMID: 37336271 DOI: 10.1016/j.gene.2023.147574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Ubiquitination is a widespread post-transcriptional modification (PTM) that occurs during protein degradation in eukaryotes and participates in almost all physiological and pathological processes, including animal adipogenesis. Ubiquitination is a cascade reaction regulated by the activating enzyme E1, conjugating enzyme E2, and ligase E3. Several recent studies have reported that E3 ligases play important regulatory roles in adipogenesis. However, as a key influencing factor for the recognition and connection between the substrate and ubiquitin during ubiquitination, its regulatory role in adipogenesis has not received adequate attention. In this review, we summarize the E3s' regulation and modification targets in animal adipogenesis, explain the regulatory mechanisms in lipogenic-related pathways, and further analyze the existing positive results to provide research directions of guiding significance for further studies on the regulatory mechanisms of E3s in animal adipogenesis.
Collapse
Affiliation(s)
- Hongbiao Ran
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, People's Republic of China
| | - Chunyan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, People's Republic of China
| | - Ming Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, People's Republic of China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, People's Republic of China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan 610041, People's Republic of China.
| |
Collapse
|
13
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
14
|
Wu X, Xu M, Geng M, Chen S, Little PJ, Xu S, Weng J. Targeting protein modifications in metabolic diseases: molecular mechanisms and targeted therapies. Signal Transduct Target Ther 2023; 8:220. [PMID: 37244925 PMCID: PMC10224996 DOI: 10.1038/s41392-023-01439-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 05/29/2023] Open
Abstract
The ever-increasing prevalence of noncommunicable diseases (NCDs) represents a major public health burden worldwide. The most common form of NCD is metabolic diseases, which affect people of all ages and usually manifest their pathobiology through life-threatening cardiovascular complications. A comprehensive understanding of the pathobiology of metabolic diseases will generate novel targets for improved therapies across the common metabolic spectrum. Protein posttranslational modification (PTM) is an important term that refers to biochemical modification of specific amino acid residues in target proteins, which immensely increases the functional diversity of the proteome. The range of PTMs includes phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, glycosylation, palmitoylation, myristoylation, prenylation, cholesterylation, glutathionylation, S-nitrosylation, sulfhydration, citrullination, ADP ribosylation, and several novel PTMs. Here, we offer a comprehensive review of PTMs and their roles in common metabolic diseases and pathological consequences, including diabetes, obesity, fatty liver diseases, hyperlipidemia, and atherosclerosis. Building upon this framework, we afford a through description of proteins and pathways involved in metabolic diseases by focusing on PTM-based protein modifications, showcase the pharmaceutical intervention of PTMs in preclinical studies and clinical trials, and offer future perspectives. Fundamental research defining the mechanisms whereby PTMs of proteins regulate metabolic diseases will open new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xiumei Wu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China
| | - Mengyun Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Mengya Geng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shuo Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, 4102, Australia
- Sunshine Coast Health Institute and School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya, QLD, 4575, Australia
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China.
- Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
15
|
Asantewaa G, Tuttle ET, Ward NP, Kang YP, Kim Y, Kavanagh ME, Girnius N, Chen Y, Duncan R, Rodriguez K, Hecht F, Zocchi M, Smorodintsev-Schiller L, Scales TQ, Taylor K, Alimohammadi F, Sechrist ZR, Agostini-Vulaj D, Schafer XL, Chang H, Smith Z, O'Connor TN, Whelan S, Selfors LM, Crowdis J, Gray GK, Bronson RT, Brenner D, Rufini A, Dirksen RT, Hezel AF, Huber AR, Munger J, Cravatt BF, Vasiliou V, Cole CL, DeNicola GM, Harris IS. Glutathione supports lipid abundance in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.524960. [PMID: 36798186 PMCID: PMC9934595 DOI: 10.1101/2023.02.10.524960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Cells rely on antioxidants to survive. The most abundant antioxidant is glutathione (GSH). The synthesis of GSH is non-redundantly controlled by the glutamate-cysteine ligase catalytic subunit (GCLC). GSH imbalance is implicated in many diseases, but the requirement for GSH in adult tissues is unclear. To interrogate this, we developed a series of in vivo models to induce Gclc deletion in adult animals. We find that GSH is essential to lipid abundance in vivo. GSH levels are reported to be highest in liver tissue, which is also a hub for lipid production. While the loss of GSH did not cause liver failure, it decreased lipogenic enzyme expression, circulating triglyceride levels, and fat stores. Mechanistically, we found that GSH promotes lipid abundance by repressing NRF2, a transcription factor induced by oxidative stress. These studies identify GSH as a fulcrum in the liver's balance of redox buffering and triglyceride production.
Collapse
Affiliation(s)
- Gloria Asantewaa
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Emily T Tuttle
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Nathan P Ward
- Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA, 33612
| | - Yun Pyo Kang
- Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA, 33612
| | - Yumi Kim
- Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA, 33612
| | - Madeline E Kavanagh
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA, 92037
| | - Nomeda Girnius
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA, 02115
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA, 06520
| | - Renae Duncan
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Katherine Rodriguez
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Fabio Hecht
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Marco Zocchi
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Leonid Smorodintsev-Schiller
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - TashJaé Q Scales
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Kira Taylor
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Fatemeh Alimohammadi
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA, 14642
| | - Zachary R Sechrist
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Department of Surgery and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Diana Agostini-Vulaj
- Department of Surgery and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Xenia L Schafer
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Hayley Chang
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Zachary Smith
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Thomas N O'Connor
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Department of Surgery and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Sarah Whelan
- Leicester Cancer Research Centre, University of Leicester, Leicester, LE2 7LX, UK
| | - Laura M Selfors
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA, 02115
| | - Jett Crowdis
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA, 02115
| | - G Kenneth Gray
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA, 02115
| | - Roderick T Bronson
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA, 02115
| | - Dirk Brenner
- Experimental & Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Alessandro Rufini
- Leicester Cancer Research Centre, University of Leicester, Leicester, LE2 7LX, UK
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA, 14642
| | - Aram F Hezel
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Aaron R Huber
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Josh Munger
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Benjamin F Cravatt
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA, 92037
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA, 06520
| | - Calvin L Cole
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Department of Surgery and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Gina M DeNicola
- Department of Metabolism and Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA, 33612
| | - Isaac S Harris
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| |
Collapse
|
16
|
Li X, Zhang T, Day NJ, Feng S, Gaffrey MJ, Qian WJ. Defining the S-Glutathionylation Proteome by Biochemical and Mass Spectrometric Approaches. Antioxidants (Basel) 2022; 11:2272. [PMID: 36421458 PMCID: PMC9687251 DOI: 10.3390/antiox11112272] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/14/2022] [Indexed: 08/27/2023] Open
Abstract
Protein S-glutathionylation (SSG) is a reversible post-translational modification (PTM) featuring the conjugation of glutathione to a protein cysteine thiol. SSG can alter protein structure, activity, subcellular localization, and interaction with small molecules and other proteins. Thus, it plays a critical role in redox signaling and regulation in various physiological activities and pathological events. In this review, we summarize current biochemical and analytical approaches for characterizing SSG at both the proteome level and at individual protein levels. To illustrate the mechanism underlying SSG-mediated redox regulation, we highlight recent examples of functional and structural consequences of SSG modifications. Finally, we discuss the analytical challenges in characterizing SSG and the thiol PTM landscape, future directions for understanding of the role of SSG in redox signaling and regulation and its interplay with other PTMs, and the potential role of computational approaches to accelerate functional discovery.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| |
Collapse
|
17
|
Shih YY, Lin HY, Jan HM, Chen YJ, Ong LL, Yu ALT, Lin CH. S-glutathionylation of Hsp90 enhances its degradation and correlates with favorable prognosis of breast cancer. Redox Biol 2022; 57:102501. [PMID: 36279628 PMCID: PMC9594641 DOI: 10.1016/j.redox.2022.102501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is a ubiquitous chaperone to interact with numerous proteins to regulate multiple cellular processes, especially during cell proliferation and cell cycle progression. Hsp90 exists in a high level in tumor cells and tissues, and thus serves as a prognostic biomarker or therapeutic target in cancers. We herein report that Hsp90 is subjected to S-glutathionylation, a redox-dependent modification to form a disulfide bond between the tripeptide glutathione and cysteine residues of proteins, primarily at C366 and C412 in the presence of reactive oxygen species. The modification led to the loss of the ATPase activity. The level of Hsp90 was obviously reduced by S-glutathionylation, owing to C-terminus of Hsc70-interacting protein (CHIP)-mediated ubiquitin proteasome system. S-glutathionylation of Hsp90 was found to crosstalk with its C-terminal phosphorylation of Hsp90 that impedes the binding of Hsp90 with CHIP, demonstrating the importance of chaperone code in modulating Hsp90 function. Further biophysical analyses indicated that S-glutathionylation caused structural change of Hsp90, underlying the aforementioned functional regulation. Moreover, in accordance with the analysis of 64 samples collected from patients of breast cancer, the expression level of Hsp90 inversely correlated with the glutathionylated status of Hsp90. The ratio of total expression to glutathionylated status of Hsp90 was coherent to expression of biomarkers in breast cancer sample, potentiating the prognostic value in the cancer treatment.
Collapse
Affiliation(s)
- Yu-Yin Shih
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung, 404332, Taiwan; Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsien-Ya Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Hau-Ming Jan
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Lih-Lih Ong
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan; Institute of Chemistry, Academia Sinica, Taipei, 11529, Taiwan; Department of Applied Chemistry at National Yang Ming Chiao Tung University, Hsin-Chu, 30009, Taiwan; Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan
| | - Alice Lin-Tsing Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan; Department of Chemistry and Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
18
|
Maurya M, Jaiswal A, Gupta S, Ali W, Gaikwad AN, Dikshit M, Barthwal MK. Galectin-3 S-glutathionylation regulates its effect on adipocyte insulin signaling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119234. [PMID: 35143900 DOI: 10.1016/j.bbamcr.2022.119234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Protein-S-glutathionylation promotes redox signaling in physiological and oxidative distress conditions. Galectin-3 (Gal-3) promotes insulin resistance by down-regulating adipocyte insulin signaling, however, its S-glutathionylation and significance is not known. In this context, we report reversible S-glutathionylation of Gal-3. Site-directed mutagenesis established Gal-3 Cys187 as the putative S-glutathionylation site. Glutathionylated Gal-3 prevents Gal-3(WT)-Insulin Receptor interaction and facilitates insulin-induced murine adipocyte p-IRS1(tyr895) and p-AKT(ser473) signaling and glucose uptake in a Gal-3 Cys187 glutathionylation dependent manner in murine adipocytes, as assessed by Western blotting and 2-NBDG uptake assay respectively. Pre-glutathionylated Gal-3 at Cys187 resisted irreversible oxidation by H2O2. M2 macrophages showed enhanced Gal-3 S-glutathionylation when compared to M1 phenotype. Serum and stromal vascular fraction (SVF) isolated from control mice showed increased Gal-3 S-glutathionylation as compared to db/db mice. A significant increase in Gal-3 S-glutathionylation was observed in metformin-treated db/db mice when compared to db/db mice alone. Similar to murine, enhanced Gal-3 S-glutathionylation is observed in primary human monocyte derived M2 macrophages when compared to the M1 macrophage phenotype and Gal-3 regulates primary human adipocyte insulin signaling in a glutathionylation dependent manner. Collectively, we identified Gal-3 S-glutathionylation as a protective phenomenon, which relieves its inhibitory effect on adipocyte insulin signaling.
Collapse
Affiliation(s)
- Mohita Maurya
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anant Jaiswal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sanchita Gupta
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Wahid Ali
- King George's Medical University, Lucknow 226003, India
| | | | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Manoj Kumar Barthwal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India.
| |
Collapse
|
19
|
Tsukahara Y, Ferran B, Minetti ET, Chong BSH, Gower AC, Bachschmid MM, Matsui R. Administration of Glutaredoxin-1 Attenuates Liver Fibrosis Caused by Aging and Non-Alcoholic Steatohepatitis. Antioxidants (Basel) 2022; 11:867. [PMID: 35624731 PMCID: PMC9138033 DOI: 10.3390/antiox11050867] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/17/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
Liver fibrosis is a sign of non-alcoholic fatty liver disease progression towards steatohepatitis (NASH) and cirrhosis and is accelerated by aging. Glutaredoxin-1 (Glrx) controls redox signaling by reversing protein S-glutathionylation, induced by oxidative stress, and its deletion causes fatty liver in mice. Although Glrx regulates various pathways, including metabolism and apoptosis, the impact of Glrx on liver fibrosis has not been studied. Therefore, we evaluated the role of Glrx in liver fibrosis induced by aging or by a high-fat, high-fructose diet. We found that: (1) upregulation of Glrx expression level inhibits age-induced hepatic apoptosis and liver fibrosis. In vitro studies indicate that Glrx regulates Fas-induced apoptosis in hepatocytes; (2) diet-induced NASH leads to reduced expression of Glrx and higher levels of S-glutathionylated proteins in the liver. In the NASH model, hepatocyte-specific adeno-associated virus-mediated Glrx overexpression (AAV-Hep-Glrx) suppresses fibrosis and apoptosis and improves liver function; (3) AAV-Hep-Glrx significantly inhibits transcription of Zbtb16 and negatively regulates immune pathways in the NASH liver. In conclusion, the upregulation of Glrx is a potential therapeutic for the reversal of NASH progression by attenuating inflammatory and fibrotic processes.
Collapse
Affiliation(s)
- Yuko Tsukahara
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA; (Y.T.); (B.F.); (E.T.M.); (B.S.H.C.); (M.M.B.)
| | - Beatriz Ferran
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA; (Y.T.); (B.F.); (E.T.M.); (B.S.H.C.); (M.M.B.)
| | - Erika T. Minetti
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA; (Y.T.); (B.F.); (E.T.M.); (B.S.H.C.); (M.M.B.)
| | - Brian S. H. Chong
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA; (Y.T.); (B.F.); (E.T.M.); (B.S.H.C.); (M.M.B.)
| | - Adam C. Gower
- Clinical and Translational Science Institute, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Markus M. Bachschmid
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA; (Y.T.); (B.F.); (E.T.M.); (B.S.H.C.); (M.M.B.)
| | - Reiko Matsui
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA; (Y.T.); (B.F.); (E.T.M.); (B.S.H.C.); (M.M.B.)
| |
Collapse
|
20
|
Hwang S, Iram S, Jin J, Choi I, Kim J. Analysis of S-glutathionylated proteins during adipocyte differentiation using eosin-glutathione and glutaredoxin 1. BMB Rep 2022. [PMID: 34743784 PMCID: PMC8972134 DOI: 10.5483/bmbrep.2022.55.3.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Protein S-glutathionylation is a reversible post-translational modification on cysteine residues forming a mixed disulfide with glutathione. S-glutathionylation, not only protects proteins from oxidation but also regulates the functions of proteins involved in various cellular signaling pathways. In this study, we developed a method for the detection of S-glutathionylated proteins (ProSSG) using eosin-glutathione (E-GSH) and mouse glutaredoxin 1 (mGrx1). ProSSG was efficiently and specifically labeled with E-GSH to form ProSSG-E via thiol-disulfide exchange. ProSSG-E was readily luminescent allowing the detection of ProSSG with semi-quantitative determination. In addition, a deglutathionylation enzyme mGrx1 specifically released E-GSH from ProSSG-E, which increased fluorescence allowing a sensitive determination of ProSSG levels. Application of the method to the adipocyte differentiation of 3T3-L1 cells showed specific detection of ProSSG and its increase upon differentiation induction, which was consistent with the result obtained by conventional immunoblot analysis, but with greater specificity and sensitivity.
Collapse
Affiliation(s)
- Sungwon Hwang
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Sana Iram
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Juno Jin
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Inho Choi
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Jihoe Kim
- Department of Medical Biotechnology and Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
21
|
Nachiyappan A, Soon JLJ, Lim HJ, Lee VK, Taneja R. EHMT1 promotes tumor progression and maintains stemness by regulating ALDH1A1 expression in alveolar rhabdomyosarcoma. J Pathol 2022; 256:349-362. [PMID: 34897678 DOI: 10.1002/path.5848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/16/2021] [Accepted: 12/09/2021] [Indexed: 11/06/2022]
Abstract
Alveolar rhabdomyosarcoma (ARMS) is an aggressive pediatric cancer with poor prognosis. Cancer stem cells (CSCs) are seeds for tumor relapse and metastasis. However, pathways that maintain stemness genes are not fully understood. Here, we report that the enzyme euchromatic histone lysine methyltransferase 1 (EHMT1) is expressed in primary and relapse ARMS tumors. EHMT1 suppression impaired motility and induced differentiation in ARMS cell lines and reduced tumor progression in a mouse xenograft model in vivo. RNA sequencing of EHMT1-depleted cells revealed downregulation of ALDH1A1 that is associated with CSCs. Consistent with this, inhibition of ALDH1A1 expression and activity mimicked EHMT1 depletion phenotypes and reduced tumorsphere formation. Mechanistically, we demonstrate that EHMT1 does not bind to the ALDH1A1 promoter but activates it by stabilizing C/EBPβ, a known regulator of ALDH1A1 expression. Our findings identify a role for EHMT1 in maintenance of stemness by regulating ALDH1A1 expression and suggest that targeting ALDH+ cells is a promising strategy in ARMS. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Alamelu Nachiyappan
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Joshua Ling Jun Soon
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Huey Jin Lim
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Victor Km Lee
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Reshma Taneja
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
22
|
Watanabe Y, Nakamura T, Uematsu M, Fujioka D, Inomata D, Saito Y, Horikoshi T, Yoshizaki T, Kobayashi T, Nakamura K, Kugiyama K. Glutaredoxin-1 levels in plasma can predict future events in patients with cardiovascular diseases. Free Radic Biol Med 2021; 176:241-245. [PMID: 34587543 DOI: 10.1016/j.freeradbiomed.2021.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species that increase during cardiovascular disease (CVD) react with protein cysteine residues to form a glutathione adduct by S-glutathionylation, which is selectively removed by glutaredoxin-1 (Glrx). We previously showed that S-glutathionylation and Glrx play important roles in mouse models of CVD, such as heart failure and peripheral artery disease models. However, there are few clinical studies on Glrx in CVD. Although Glrx is a cytosolic protein expressed in various organs, it is detectable in human plasma. Studies have reported that Glrx in plasma is a potential disease maker, such as CVD and chronic kidney disease and diabetes, however, it remains unclear whether Glrx is related to the prognosis of patients with CVD. The purpose of this study was to elucidate whether Glrx levels in plasma are associated with future events in patients with CVD. Plasma levels of Glrx were measured in 555 patients with CVD who underwent cardiac catheterization using enzyme-linked immunosorbent assay. All patients were followed prospectively for ≤36 months or until occurrence of adverse events, including all-cause death, non-fatal myocardial infarction, and worsening heart failure. During a mean follow-up period of 33 months, 54 adverse events occurred. Kaplan-Meier analysis showed that higher levels of Glrx (>0.622 ng/mL, determined by receiver-operating characteristic curve) resulted in a higher probability for adverse events compared with lower levels of Glrx (≤0.622 ng/mL) (P < 0.01, log-rank test). Multivariate Cox proportional hazards analysis showed that Glrx was a significant predictor of adverse events after adjustment for known risk factors. In conclusion, levels of plasma Glrx >0.662 ng/mL can predict future events in patients with CVD.
Collapse
Affiliation(s)
- Yosuke Watanabe
- Department of Cardiovascular Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Takamitsu Nakamura
- Department of Cardiovascular Medicine, University of Yamanashi, Yamanashi, Japan
| | - Manabu Uematsu
- Department of Cardiovascular Medicine, University of Yamanashi, Yamanashi, Japan
| | - Daisuke Fujioka
- Department of Cardiovascular Medicine, University of Yamanashi, Yamanashi, Japan
| | - Daichi Inomata
- Department of Cardiovascular Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yukio Saito
- Department of Cardiovascular Medicine, University of Yamanashi, Yamanashi, Japan
| | - Takeo Horikoshi
- Department of Cardiovascular Medicine, University of Yamanashi, Yamanashi, Japan
| | - Toru Yoshizaki
- Department of Cardiovascular Medicine, University of Yamanashi, Yamanashi, Japan
| | - Tsuyoshi Kobayashi
- Department of Cardiovascular Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kazuto Nakamura
- Department of Cardiovascular Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kiyotaka Kugiyama
- Department of Cardiovascular Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
23
|
Fujita K, Norikura T, Matsui-Yuasa I, Kumazawa S, Honda S, Sonoda T, Kojima-Yuasa A. Carob pod polyphenols suppress the differentiation of adipocytes through posttranscriptional regulation of C/EBPβ. PLoS One 2021; 16:e0248073. [PMID: 33684156 PMCID: PMC7939365 DOI: 10.1371/journal.pone.0248073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/18/2021] [Indexed: 11/18/2022] Open
Abstract
Obesity is a major risk factor for various chronic diseases such as diabetes, cardiovascular disease, and cancer; hence, there is an urgent need for an effective strategy to prevent this disorder. Currently, the anti-obesity effects of food ingredients are drawing attention. Therefore, we focused on carob, which has high antioxidant capacity and various physiological effects, and examined its anti-obesity effect. Carob is cultivated in the Mediterranean region, and its roasted powder is used as a substitute for cocoa powder. We investigated the effect of carob pod polyphenols (CPPs) on suppressing increases in adipose tissue weight and adipocyte hypertrophy in high fat diet-induced obesity model mice, and the mechanism by which CPPs inhibit the differentiation of 3T3-L1 preadipocytes into adipocytes in vitro. In an in vivo experimental system, we revealed that CPPs significantly suppressed the increase in adipose tissue weight and adipocyte hypertrophy. Moreover, in an in vitro experimental system, CPPs acted at the early stage of differentiation of 3T3-L1 preadipocytes and suppressed cell proliferation because of differentiation induction. They also suppressed the expression of transcription factors involved in adipocyte differentiation, thereby reducing triacylglycerol synthesis ability and triglycerol (TG) accumulation. Notably, CPPs regulated CCAAT/enhancer binding protein (C/EBP)β, which is expressed at the early stage of differentiation, at the posttranscriptional level. These results demonstrate that CPPs suppress the differentiation of adipocytes through the posttranscriptional regulation of C/EBPβ and may serve as an effective anti-obesity compound.
Collapse
Affiliation(s)
- Kasumi Fujita
- Department of Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, Osaka, Japan
| | - Toshio Norikura
- Department of Nutrition, Aomori University of Health and Welfare, Aomori, Japan
| | - Isao Matsui-Yuasa
- Department of Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, Osaka, Japan
| | - Shigenori Kumazawa
- Department of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Sari Honda
- Department of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | | | - Akiko Kojima-Yuasa
- Department of Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, Osaka, Japan
- * E-mail:
| |
Collapse
|
24
|
Burns M, Rizvi SHM, Tsukahara Y, Pimentel DR, Luptak I, Hamburg NM, Matsui R, Bachschmid MM. Role of Glutaredoxin-1 and Glutathionylation in Cardiovascular Diseases. Int J Mol Sci 2020; 21:E6803. [PMID: 32948023 PMCID: PMC7555996 DOI: 10.3390/ijms21186803] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide, and as rates continue to increase, discovering mechanisms and therapeutic targets become increasingly important. An underlying cause of most cardiovascular diseases is believed to be excess reactive oxygen or nitrogen species. Glutathione, the most abundant cellular antioxidant, plays an important role in the body's reaction to oxidative stress by forming reversible disulfide bridges with a variety of proteins, termed glutathionylation (GSylation). GSylation can alter the activity, function, and structure of proteins, making it a major regulator of cellular processes. Glutathione-protein mixed disulfide bonds are regulated by glutaredoxins (Glrxs), thioltransferase members of the thioredoxin family. Glrxs reduce GSylated proteins and make them available for another redox signaling cycle. Glrxs and GSylation play an important role in cardiovascular diseases, such as myocardial ischemia and reperfusion, cardiac hypertrophy, peripheral arterial disease, and atherosclerosis. This review primarily concerns the role of GSylation and Glrxs, particularly glutaredoxin-1 (Glrx), in cardiovascular diseases and the potential of Glrx as therapeutic agents.
Collapse
Affiliation(s)
- Mannix Burns
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (M.B.); (S.H.M.R.); (Y.T.); (N.M.H.); (M.M.B.)
| | - Syed Husain Mustafa Rizvi
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (M.B.); (S.H.M.R.); (Y.T.); (N.M.H.); (M.M.B.)
- Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (D.R.P.); (I.L.)
| | - Yuko Tsukahara
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (M.B.); (S.H.M.R.); (Y.T.); (N.M.H.); (M.M.B.)
| | - David R. Pimentel
- Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (D.R.P.); (I.L.)
| | - Ivan Luptak
- Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (D.R.P.); (I.L.)
| | - Naomi M. Hamburg
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (M.B.); (S.H.M.R.); (Y.T.); (N.M.H.); (M.M.B.)
- Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (D.R.P.); (I.L.)
| | - Reiko Matsui
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (M.B.); (S.H.M.R.); (Y.T.); (N.M.H.); (M.M.B.)
| | - Markus M. Bachschmid
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany St., Boston, MA 02118, USA; (M.B.); (S.H.M.R.); (Y.T.); (N.M.H.); (M.M.B.)
| |
Collapse
|