1
|
Illanes-González J, Flores-Muñoz C, Vitureira N, Ardiles ÁO. Pannexin 1 channels: A bridge between synaptic plasticity and learning and memory processes. Neurosci Biobehav Rev 2025; 174:106173. [PMID: 40274202 DOI: 10.1016/j.neubiorev.2025.106173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/13/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
The Pannexin 1 channel is a membrane protein widely expressed in various vertebrate cell types, including microglia, astrocytes, and neurons within the central nervous system. Growing research has demonstrated the significant involvement of Panx1 in synaptic physiology, such as its contribution to long-term synaptic plasticity, with a particular focus on the hippocampus, an essential structure for learning and memory. Investigations studying the role of Panx1 in synaptic plasticity have utilized knockout animal models and channel inhibition techniques, revealing that the absence or blockade of Panx1 channels in this region promotes synaptic potentiation, dendritic arborization, and spine formation. Despite substantial progress, the precise mechanism by which Panx1 regulates synaptic plasticity remains to be determined. Nevertheless, evidence suggests that Panx1 may exert its influence by releasing signaling molecules, such as adenosine triphosphate (ATP), or through the clearance of endocannabinoids (eCBs). This review aims to comprehensively explore the current literature on the role of Panx1 in synapses. By examining relevant articles, we seek to enhance our understanding of Panx1's contribution to synaptic fundamental processes and the potential implications for cognitive function.
Collapse
Affiliation(s)
- Javiera Illanes-González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; Centro para la Investigación Traslacional en Neurofarmacología, CItNe, Universidad de Valparaíso, Valparaíso, Chile
| | - Carolina Flores-Muñoz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; Centro para la Investigación Traslacional en Neurofarmacología, CItNe, Universidad de Valparaíso, Valparaíso, Chile
| | - Nathalia Vitureira
- Unidad Académica de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Álvaro O Ardiles
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; Centro para la Investigación Traslacional en Neurofarmacología, CItNe, Universidad de Valparaíso, Valparaíso, Chile; Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
2
|
Scheer M, Kyi P, Mammoto T, Mammoto A. Alveolar epithelial paxillin in postnatal lung alveolar development. Biol Open 2025; 14:bio061939. [PMID: 39991922 PMCID: PMC11957453 DOI: 10.1242/bio.061939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025] Open
Abstract
Focal adhesion protein, paxillin plays an important role in embryonic development. We have reported that paxillin controls directional cell motility and angiogenesis. The role of paxillin in lung development remains unclear. Paxillin expression is higher in mouse pulmonary alveolar epithelial type 2 (AT2) cells at postnatal day (P)10 (alveolar stage) compared to P0 (saccular stage). The alveolar and vascular structures are disrupted, lung compliance is reduced, and the postnatal survival rate is lower in tamoxifen-induced PxniΔAT2 neonatal mice, in which the levels of paxillin in AT2 cells are knocked down. Surfactant protein expression and lamellar body structure are also inhibited in PxniΔAT2 neonatal mouse lungs. The expression of lipid transporter ABCA3 and its transcriptional regulator CEBPA that control surfactant homeostasis is inhibited in PxniΔAT2 neonatal mouse AT2 cells. These findings suggest that paxillin controls lung alveolar development through CEBPA-ABCA3 signaling in AT2 cells. Modulation of paxillin in AT2 cells may be novel interventions for neonatal lung developmental disorder.
Collapse
Affiliation(s)
- Mikaela Scheer
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Priscilla Kyi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Tadanori Mammoto
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Akiko Mammoto
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
3
|
Chen GL, Li JY, Chen X, Liu JW, Zhang Q, Liu JY, Wen J, Wang N, Lei M, Wei JP, Yi L, Li JJ, Ling YP, Yi HQ, Hu Z, Duan J, Zhang J, Zeng B. Mechanosensitive channels TMEM63A and TMEM63B mediate lung inflation-induced surfactant secretion. J Clin Invest 2024; 134:e174508. [PMID: 38127458 PMCID: PMC10904053 DOI: 10.1172/jci174508] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023] Open
Abstract
Pulmonary surfactant is a lipoprotein complex lining the alveolar surface to decrease the surface tension and facilitate inspiration. Surfactant deficiency is often seen in premature infants and in children and adults with respiratory distress syndrome. Mechanical stretch of alveolar type 2 epithelial (AT2) cells during lung expansion is the primary physiological factor that stimulates surfactant secretion; however, it is unclear whether there is a mechanosensor dedicated to this process. Here, we show that loss of the mechanosensitive channels TMEM63A and TMEM63B (TMEM63A/B) resulted in atelectasis and respiratory failure in mice due to a deficit of surfactant secretion. TMEM63A/B were predominantly localized at the limiting membrane of the lamellar body (LB), a lysosome-related organelle that stores pulmonary surfactant and ATP in AT2 cells. Activation of TMEM63A/B channels during cell stretch facilitated the release of surfactant and ATP from LBs fused with the plasma membrane. The released ATP evoked Ca2+ signaling in AT2 cells and potentiated exocytic fusion of more LBs. Our study uncovered a vital physiological function of TMEM63 mechanosensitive channels in preparing the lungs for the first breath at birth and maintaining respiration throughout life.
Collapse
Affiliation(s)
- Gui-Lan Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Jing-Yi Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Xin Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Jia-Wei Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Qian Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Jie-Yu Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Jing Wen
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Na Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Ming Lei
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Jun-Peng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Li Yi
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Jia-Jia Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - Yu-Peng Ling
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| | - He-Qiang Yi
- Department of Cardiothoracic Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhenying Hu
- Human Aging Research Institute and School of Life Sciences and
| | - Jingjing Duan
- Human Aging Research Institute and School of Life Sciences and
| | - Jin Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Bo Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, and
| |
Collapse
|
4
|
Catalán V, Gómez-Ambrosi J, Ramírez B, Unamuno X, Becerril S, Rodríguez A, Baixauli J, Reina G, Sancho A, Silva C, Cienfuegos JA, Frühbeck G. Increased expression levels of PIEZO1 in visceral adipose tissue in obesity and type 2 diabetes are triggered by mechanical forces and are associated with inflammation. Mol Med 2024; 30:255. [PMID: 39707172 DOI: 10.1186/s10020-024-01008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND PIEZO1 has emerged as a mechanoreceptor linked with adipogenesis, adipose tissue (AT) inflammation and insulin resistance. We aimed to determine the impact of obesity and obesity-associated type 2 diabetes (T2D) as well as mechanical compression forces on the expression of PIEZO1 in visceral AT (VAT) and its relation with inflammation. METHODS Blood and VAT samples were obtained from 100 volunteers. Static compression studies in VAT explants were performed to study the PIEZO1 response. The effect of bariatric surgery on the expression of Piezo1 was assessed in a rat model of diet-induced obesity. RESULTS Obesity and obesity-associated T2D increased (P < 0.01) gene expression levels of PIEZO1 in VAT mainly due to adipocytes. SWELL1 and key markers of inflammation (NLRP3, NLRP6, IL1B, IL18 and IL8) were also upregulated in VAT in obesity and T2D being significantly associated (P < 0.01) with PIEZO1 levels. We further showed that the static compression of VAT explants promoted an upregulation of PIEZO1 (P < 0.01) and SWELL1 (P < 0.01) expression levels together with a strong increase in the expression and release of key inflammatory mediators. The treatment of THP-1-derived macrophages with the secretome of adipocytes from patients with obesity upregulated (P < 0.001) PIEZO1 levels. Rats undergoing bariatric surgery exhibited decreased (P < 0.01) expression levels of Piezo1 in the epididymal AT. CONCLUSIONS Static compression triggered an upregulation of PIEZO1 in VAT explants together with a strong inflammation. In addition, the increased expression of PIEZO1 in VAT in obesity and obesity-associated T2D, primarily attributable to adipocytes, is closely associated with SWELL1 and inflammatory markers.
Collapse
Affiliation(s)
- Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Xabier Unamuno
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Jorge Baixauli
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gabriel Reina
- Department of Microbiology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Ana Sancho
- Biomedical Engineering and Science Department, University of Navarra, TECNUN School of Engineering, San Sebastián, Spain
| | - Camilo Silva
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Javier A Cienfuegos
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain.
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
5
|
Bighi B, Ragazzini G, Gallerani A, Mescola A, Scagliarini C, Zannini C, Marcuzzi M, Olivi E, Cavallini C, Tassinari R, Bianchi M, Corsi L, Ventura C, Alessandrini A. Cell stretching devices integrated with live cell imaging: a powerful approach to study how cells react to mechanical cues. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 7:012005. [PMID: 39655854 DOI: 10.1088/2516-1091/ad9699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
Mechanical stimuli have multiple effects on cell behavior, affecting a number of cellular processes including orientation, proliferation or apoptosis, migration and invasion, the production of extracellular matrix proteins, the activation and translocation of transcription factors, the expression of different genes such as those involved in inflammation and the reprogramming of cell fate. The recent development of cell stretching devices has paved the way for the study of cell reactions to stretching stimuliin-vitro, reproducing physiological situations that are experienced by cells in many tissues and related to functions such as breathing, heart beating and digestion. In this work, we review the highly-relevant contributions cell stretching devices can provide in the field of mechanobiology. We then provide the details for the in-house construction and operation of these devices, starting from the systems that we already developed and tested. We also review some examples where cell stretchers can supply meaningful insights into mechanobiology topics and we introduce new results from our exploitation of these devices.
Collapse
Affiliation(s)
- Beatrice Bighi
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, via Campi 213/A, 41125 Modena, Italy
- CNR-Nanoscience Institute-S3, via Campi 213/A, 41125 Modena, Italy
| | | | - Alessia Gallerani
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, via Campi 213/A, 41125 Modena, Italy
| | - Andrea Mescola
- CNR-Nanoscience Institute-S3, via Campi 213/A, 41125 Modena, Italy
| | - Chiara Scagliarini
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, via Campi 213/A, 41125 Modena, Italy
| | - Chiara Zannini
- Eldor Lab, via di Corticella 183, 40128 Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (I.N.B.B.), via di Corticella 183, 40128 Bologna, Italy
| | - Martina Marcuzzi
- Department of Medical and Surgical Sciences, University of Bologna, via G. Massarenti 9, Bologna 40138, Italy
| | - Elena Olivi
- Eldor Lab, via di Corticella 183, 40128 Bologna, Italy
| | - Claudia Cavallini
- Eldor Lab, via di Corticella 183, 40128 Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (I.N.B.B.), via di Corticella 183, 40128 Bologna, Italy
| | | | - Michele Bianchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Lorenzo Corsi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Carlo Ventura
- Eldor Lab, via di Corticella 183, 40128 Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (I.N.B.B.), via di Corticella 183, 40128 Bologna, Italy
| | - Andrea Alessandrini
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, via Campi 213/A, 41125 Modena, Italy
- CNR-Nanoscience Institute-S3, via Campi 213/A, 41125 Modena, Italy
| |
Collapse
|
6
|
Liu G, Dong BB, Devanarayana S, Chen RC, Liu Q. Emerging roles of mechanosensitive ion channels in ventilator induced lung injury: a systematic review. Front Immunol 2024; 15:1479230. [PMID: 39664395 PMCID: PMC11631737 DOI: 10.3389/fimmu.2024.1479230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/08/2024] [Indexed: 12/13/2024] Open
Abstract
Background The pathogenetic mechanisms of ventilator-induced lung injury (VILI) still need to be elucidated. The mechanical forces during mechanical ventilation are continually sensed and transmitted by mechanosensitive ion channels (MSICs) in pulmonary endothelial, epithelial, and immune cells. In recent years, MSICs have been shown to be involved in VILI. Methods A systematic search across PubMed, the Cochrane Library, Web of Science, and ScienceDirect was performed from inception to March 2024, and the review was conducted in accordance with PRISMA guidelines. The potential eligible studies were evaluated by two authors independently. Study characteristics, quality assessment, and potential mechanisms were analyzed. Results We included 23 eligible studies, most of which were performed with murine animals in vivo. At the in vitro level, 52% and 48% of the experiments were conducted with human or animal cells, respectively. No clinical studies were found. The most reported MSICs include Piezo channels, transient receptor potential channels, potassium channels, and stretch-activated sodium channels. Piezo1 has been the most concerned channel in the recent five years. This study found that signal pathways, such as RhoA/ROCK1, could be enhanced by cyclic stretch-activated MSICs, which contribute to VILI through dysregulated inflammation and immune responses mediated by ion transport. The review indicates the emerging role of MSICs in the pathogenesis of VILI, especially as a signal-transmitting link between mechanical stretch and pathogenesis such as inflammation, disruption of cell junctions, and edema formation. Conclusions Mechanical stretch stimulates MSICs to increase transcellular ion exchange and subsequently generates VILI through inflammation and other pathogeneses mediated by MSICs signal-transmitting pathways. These findings make it possible to identify potential therapeutic targets for the prevention of lung injury through further exploration and more studies. Systematic review registration https://inplasy.com/inplasy-2024-10-0115/, identifier INPLASY2024100115.
Collapse
Affiliation(s)
- Gang Liu
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bin-bin Dong
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shalika Devanarayana
- School of International Education, Zhengzhou University, Zhengzhou, Henan, China
| | - Rong-Chang Chen
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Qi Liu
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Li J, Li J, Wu F, Yu Z, Yang L. Disruption of the interaction between caveolae and Piezo1 promotes pressure overload-induced cardiac remodeling. Biochem Biophys Res Commun 2024; 735:150456. [PMID: 39094230 DOI: 10.1016/j.bbrc.2024.150456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
Piezo1 channels are activated by mechanical stress and play a significant role in cardiac hypertrophy and fibrosis. However, the molecular mechanisms underlying Piezo1 activation on the cell membrane following pressure overload remain unclear. Caveolae are known to mitigate mechanical forces and regulate Piezo1 function. Therefore, this study aimed to investigate the interaction between caveolae and Piezo1 in the development of pressure overload-induced cardiac remodeling. We observed reduced colocalization between Piezo1 and Caveolin-3 in hypertrophic cardiomyocytes following abdominal aortic constriction and Angiotensin-II treatment, accompanied by increased Piezo1 function and expression. Furthermore, enhanced Piezo1 function was also noted upon caveolae disruption using methyl-beta-cyclodextrin (mβCD). Thus, our findings suggested that pressure overload led to Piezo1 translocation from caveolae, thereby augmenting its function and expression, which may contribute to cardiac remodeling.
Collapse
Affiliation(s)
- Juan Li
- Department of Anesthesiology, the Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Jiannan Li
- Department of Anesthesiology, the Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Fang Wu
- Senior Department of Otolaryngology-Head & Neck Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Zeming Yu
- Department of Anesthesiology, the Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Lu Yang
- Department of Anesthesiology, the Sixth Medical Center of PLA General Hospital, Beijing, 100048, China.
| |
Collapse
|
8
|
Mutafova-Yambolieva VN. Mechanosensitive release of ATP in the urinary bladder mucosa. Purinergic Signal 2024:10.1007/s11302-024-10063-6. [PMID: 39541058 DOI: 10.1007/s11302-024-10063-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The urinary bladder mucosa (urothelium and suburothelium/lamina propria) functions as a barrier between the content of the urine and the underlying bladder tissue. The bladder mucosa is also a mechanosensitive tissue that releases signaling molecules that affect functions of cells in the bladder wall interconnecting the mucosa with the detrusor muscle and the CNS. Adenosine 5'-triphosphate (ATP) is a primary mechanotransduction signal that is released from cells in the bladder mucosa in response to bladder wall distention and activates cell membrane-localized P2X and P2Y purine receptors on urothelial cells, sensory and efferent neurons, interstitial cells, and detrusor smooth muscle cells. The amounts of ATP at active receptor sites depend significantly on the amounts of extracellularly released ATP. Spontaneous and distention-induced release of ATP appear to be under differential control. This review is focused on mechanisms underlying urothelial release of ATP in response to mechanical stimulation. First, we present a brief overview of studies that report mechanosensitive ATP release in bladder cells or tissues. Then, we discuss experimental evidence for mechanosensitive release of urothelial ATP by vesicular and non-vesicular mechanisms and roles of the stretch-activated channels PIEZO channels, transient receptor potential vanilloid type 4, and pannexin 1. This is followed by brief discussion of possible involvement of calcium homeostasis modulator 1, acid-sensing channels, and connexins in the release of urothelial ATP. We conclude with brief discussion of limitations of current research and of needs for further studies to increase our understanding of mechanotransduction in the bladder wall and of purinergic regulation of bladder function.
Collapse
|
9
|
Xia T, Pan Z, Wan H, Li Y, Mao G, Zhao J, Zhang F, Pan S. Mechanisms of mechanical stimulation in the development of respiratory system diseases. Am J Physiol Lung Cell Mol Physiol 2024; 327:L724-L739. [PMID: 39316681 DOI: 10.1152/ajplung.00122.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024] Open
Abstract
During respiration, mechanical stress can initiate biological responses that impact the respiratory system. Mechanical stress plays a crucial role in the development of the respiratory system. However, pathological mechanical stress can impact the onset and progression of respiratory diseases by influencing the extracellular matrix and cell transduction processes. In this article, we explore the mechanisms by which mechanical forces communicate with and influence cells. We outline the basic knowledge of respiratory mechanics, elucidating the important role of mechanical stimulation in influencing respiratory system development and differentiation from a microscopic perspective. We also explore the potential mechanisms of mechanical transduction in the pathogenesis and development of respiratory diseases such as asthma, lung injury, pulmonary fibrosis, and lung cancer. Finally, we look forward to new research directions in cellular mechanotransduction, aiming to provide fresh insights for future therapeutic research on respiratory diseases.
Collapse
Affiliation(s)
- Tian Xia
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Ziyin Pan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | - Haoxin Wan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yongsen Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Guocai Mao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Fangbiao Zhang
- Department of Cardiothoracic Surgery, Lishui Municipal Central Hospital, Lishui, People's Republic of China
| | - Shu Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
10
|
Burgess JK, Gosens R. Mechanotransduction and the extracellular matrix: Key drivers of lung pathologies and drug responsiveness. Biochem Pharmacol 2024; 228:116255. [PMID: 38705536 DOI: 10.1016/j.bcp.2024.116255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/19/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
The lung is a biomechanically active organ, with multiscale mechanical forces impacting the organ, tissue and cellular responses within this microenvironment. In chronic lung diseases, such as chronic obstructive pulmonary disease, pulmonary fibrosis and others, the structure of the lung is drastically altered impeding gas exchange. These changes are, in part, reflected in alterations in the composition, amount and organization of the extracellular matrix within the different lung compartments. The transmission of mechanical forces within lung tissue are broadcast by this complex mix of extracellular matrix components, in particular the collagens, elastin and proteoglycans and the crosslinking of these components. At both a macro and a micro level, the mechanical properties of the microenvironment have a key regulatory role in ascertaining cellular responses and the function of the lung. Cells adhere to, and receive signals from, the extracellular matrix through a number of different surface receptors and complexes which are important for mechanotransduction. This review summarizes the multiscale mechanics in the lung and how the mechanical environment changes in lung disease and aging. We then examine the role of mechanotransduction in driving cell signaling events in lung diseases and finish with a future perspective of the need to consider how such forces may impact pharmacological responsiveness in lung diseases.
Collapse
Affiliation(s)
- Janette K Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands.
| | - Reinoud Gosens
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands; Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
11
|
Zheng M, Yao Y, Borkar NA, Thompson MA, Zhang E, Drake LY, Ye X, Vogel ER, Pabelick CM, Prakash YS. Piezo channels modulate human lung fibroblast function. Am J Physiol Lung Cell Mol Physiol 2024; 327:L547-L556. [PMID: 39189800 PMCID: PMC11905809 DOI: 10.1152/ajplung.00356.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024] Open
Abstract
Bronchial airways and lung parenchyma undergo both static and dynamic stretch in response to normal breathing as well as in the context of insults such as mechanical ventilation (MV) or in diseases such as asthma and chronic obstructive pulmonary disease (COPD) which lead to airway remodeling involving increased extracellular matrix (ECM) production. Here, the role of fibroblasts is critical, but the relationship between stretch- and fibroblast-induced ECM remodeling under these conditions is not well-explored. Piezo (PZ) channels play a role in mechanotransduction in many cell and organ systems, but their role in mechanical stretch-induced airway remodeling is not known. To explore this, we exposed human lung fibroblasts to 10% static stretch on a background of 5% oscillations for 48 h, with no static stretch considered controls. Collagen I, fibronectin, alpha-smooth muscle actin (α-SMA), and Piezo 1 (PZ1) expression was determined in the presence or absence of Yoda1 (PZ1 agonist) or GsMTx4 (PZ1 inhibitor). Collagen I, fibronectin, and α-SMA expression was increased by stretch and Yoda1, whereas pretreatment with GsMTx4 or knockdown of PZ1 by siRNA blunted this effect. Acute stretch in the presence and absence of Yoda1 demonstrated activation of the ERK pathway but not Smad. Measurement of [Ca2+]i responses to histamine showed significantly greater responses following stretch, effects that were blunted by knockdown of PZ1. Our findings identify an essential role for PZ1 in mechanical stretch-induced production of ECM mediated by ERK phosphorylation and Ca2+ influx in lung fibroblasts. Targeting PZ channels in fibroblasts may constitute a novel approach to ameliorate airway remodeling by decreasing ECM deposition.NEW & NOTEWORTHY The lung is an inherently mechanosensitive organ that can respond to mechanical forces in adaptive or maladaptive ways, including via remodeling resulting in increased fibrosis. We explored the mechanisms that link mechanical forces to remodeling using human lung fibroblasts. We found that mechanosensitive Piezo channels increase with stretch and mediate extracellular matrix formation and the fibroblast-to-myofibroblast transition that occurs with stretch. Our data highlight the importance of Piezo channels in lung mechanotransduction toward remodeling.
Collapse
Affiliation(s)
- Mengning Zheng
- Department of Respiratory and Critical Care Medicine, Guizhou Province People's Hospital, Guiyang, China
- Department of Anesthesiology and Perioperative Medicine, Rochester, Minnesota, United States
| | - Yang Yao
- Department of Anesthesiology and Perioperative Medicine, Rochester, Minnesota, United States
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Niyati A Borkar
- Department of Anesthesiology and Perioperative Medicine, Rochester, Minnesota, United States
| | - Michael A Thompson
- Department of Anesthesiology and Perioperative Medicine, Rochester, Minnesota, United States
| | - Emily Zhang
- Department of Anesthesiology and Perioperative Medicine, Rochester, Minnesota, United States
| | - Li Y Drake
- Department of Anesthesiology and Perioperative Medicine, Rochester, Minnesota, United States
| | - Xianwei Ye
- Department of Respiratory and Critical Care Medicine, Guizhou Province People's Hospital, Guiyang, China
| | - Elizabeth R Vogel
- Department of Anesthesiology and Perioperative Medicine, Rochester, Minnesota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
12
|
Chan NJ, Chen YY, Hsu CC, Lin YS, Zakeri M, Kim S, Khosravi M, Lee LY. Release of ATP in the lung evoked by inhalation of irritant gases in rats. J Appl Physiol (1985) 2024; 137:581-590. [PMID: 38932688 PMCID: PMC11424173 DOI: 10.1152/japplphysiol.00137.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024] Open
Abstract
Adenosine triphosphate (ATP) can be released into the extracellular milieu from various types of cells in response to a wide range of physical or chemical stresses. In the respiratory tract, extracellular ATP is recognized as an important signal molecule and trigger of airway inflammation. Chlorine (Cl2), sulfur dioxide (SO2), and ammonia (NH3) are potent irritant gases and common industrial air pollutants due to their widespread uses as chemical agents. This study was carried out to determine if acute inhalation challenges of these irritant gases, at the concentration and duration simulating the accidental exposures to these chemical gases in industrial operations, triggered the release of ATP in the rat respiratory tract; and if so, whether the level of ATP in bronchoalveolar lavage fluid (BALF) evoked by inhalation challenge of a given irritant gas was elevated by chronic allergic airway inflammation. Our results showed: 1) inhalation of these irritant gases caused significant increases in the ATP level in BALF, and the magnitude of evoked ATP release was in the order of Cl2 > SO2 > NH3. 2) Chronic airway inflammation induced by ovalbumin-sensitization markedly elevated the ATP level in BALF during baseline (breathing room air) but did not potentiate the release of ATP in the lung triggered by inhalation challenges of these irritant gases. These findings suggested a possible involvement of the ATP release in the lung in the regulation of overall airway responses to acute inhalation of irritant gases and the pathogenesis of chronic allergic airway inflammation.NEW & NOTEWORTHY Extracellular adenosine triphosphate (ATP) is a contributing factor and signaling molecule of airway inflammation. This study demonstrated for the first time that the ATP release in the lung was markedly elevated after acute inhalation challenges of three common industrial air pollutants; the order of the response magnitude was chlorine > sulfur dioxide > ammonia. These findings provided new information and improved our understanding of the adverse pulmonary effects caused by accidental inhalation exposures to these irritant gases.
Collapse
Affiliation(s)
- Nai-Ju Chan
- Department of Physiology, University of Kentucky Medical Center, Lexington, Kentucky, United States
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yueh-Yin Chen
- Department of Physiology, University of Kentucky Medical Center, Lexington, Kentucky, United States
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Chun Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - You Shuei Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Maxwell Zakeri
- Department of Physiology, University of Kentucky Medical Center, Lexington, Kentucky, United States
| | - Seonwook Kim
- Department of Physiology, University of Kentucky Medical Center, Lexington, Kentucky, United States
| | - Mehdi Khosravi
- Department of Medicine, University of Kentucky Medical Center, Lexington, Kentucky, United States
| | - Lu-Yuan Lee
- Department of Physiology, University of Kentucky Medical Center, Lexington, Kentucky, United States
| |
Collapse
|
13
|
Yao Y, Zheng M, Borkar NA, Thompson MA, Zhang EY, Koloko Ngassie ML, Wang S, Pabelick CM, Vogel ER, Prakash YS. Role of STIM1 in stretch-induced signaling in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2024; 327:L150-L159. [PMID: 38771147 PMCID: PMC11687955 DOI: 10.1152/ajplung.00370.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/12/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
Alteration in the normal mechanical forces of breathing can contribute to changes in contractility and remodeling characteristic of airway diseases, but the mechanisms that mediate these effects in airway cells are still under investigation. Airway smooth muscle (ASM) cells contribute to both contractility and extracellular matrix (ECM) remodeling. In this study, we explored ASM mechanisms activated by mechanical stretch, focusing on mechanosensitive piezo channels and the key Ca2+ regulatory protein stromal interaction molecule 1 (STIM1). Expression of Ca2+ regulatory proteins, including STIM1, Orai1, and caveolin-1, mechanosensitive ion channels Piezo-1 and Piezo-2, and NLRP3 inflammasomes were upregulated by 10% static stretch superimposed on 5% cyclic stretch. These effects were blunted by STIM1 siRNA. Histamine-induced [Ca2+]i responses and inflammasome activation were similarly blunted by STIM1 knockdown. These data show that the effects of mechanical stretch in human ASM cells are mediated through STIM1, which activates multiple pathways, including Piezo channels and the inflammasome, leading to potential downstream changes in contractility and ECM remodeling.NEW & NOTEWORTHY Mechanical forces on the airway can contribute to altered contractility and remodeling in airway diseases, but the mechanisms are not clearly understood. Using human airway smooth muscle cells exposed to cyclic forces with static stretch to mimic breathing and static pressure, we found that the effects of stretch are mediated through STIM1, resulting in the activation of multiple pathways, including Piezo channels and the inflammasome, with potential downstream influences on contractility and remodeling.
Collapse
Affiliation(s)
- Yang Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Medical University, Xi’an, People’s Republic of China
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, United States
| | - Mengning Zheng
- Department of Respiratory and Critical Care Medicine, Guizhou Province People’s Hospital, Guiyang, People’s Republic of China
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, United States
| | - Niyati A. Borkar
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, United States
| | - Michael A. Thompson
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, United States
| | - Emily Y. Zhang
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, United States
| | - Maunick Lefin Koloko Ngassie
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, United States
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Shengyu Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Medical University, Xi’an, People’s Republic of China
| | - Christina M. Pabelick
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Elizabeth R. Vogel
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, United States
| | - Y. S. Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
14
|
Hurrell BP, Shen S, Li X, Sakano Y, Kazemi MH, Quach C, Shafiei-Jahani P, Sakano K, Ghiasi H, Akbari O. Piezo1 channels restrain ILC2s and regulate the development of airway hyperreactivity. J Exp Med 2024; 221:e20231835. [PMID: 38530239 PMCID: PMC10965393 DOI: 10.1084/jem.20231835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/16/2024] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
Mechanosensitive ion channels sense force and pressure in immune cells to drive the inflammatory response in highly mechanical organs. Here, we report that Piezo1 channels repress group 2 innate lymphoid cell (ILC2)-driven type 2 inflammation in the lungs. Piezo1 is induced on lung ILC2s upon activation, as genetic ablation of Piezo1 in ILC2s increases their function and exacerbates the development of airway hyperreactivity (AHR). Conversely, Piezo1 agonist Yoda1 reduces ILC2-driven lung inflammation. Mechanistically, Yoda1 inhibits ILC2 cytokine secretion and proliferation in a KLF2-dependent manner, as we found that Piezo1 engagement reduces ILC2 oxidative metabolism. Consequently, in vivo Yoda1 treatment reduces the development of AHR in experimental models of ILC2-driven allergic asthma. Human-circulating ILC2s express and induce Piezo1 upon activation, as Yoda1 treatment of humanized mice reduces human ILC2-driven AHR. Our studies define Piezo1 as a critical regulator of ILC2s, and we propose the potential of Piezo1 activation as a novel therapeutic approach for the treatment of ILC2-driven allergic asthma.
Collapse
Affiliation(s)
- Benjamin P. Hurrell
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stephen Shen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xin Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yoshihiro Sakano
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mohammad Hossein Kazemi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christine Quach
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Pedram Shafiei-Jahani
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kei Sakano
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Homayon Ghiasi
- Department of Surgery, Center for Neurobiology and Vaccine Development, Ophthalmology Research, Cedars-Sinai Burns and Allen Research Institute, Los Angeles, CA, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
15
|
Micek HM, Yang N, Dutta M, Rosenstock L, Ma Y, Hielsberg C, McCord M, Notbohm J, McGregor S, Kreeger PK. The role of Piezo1 mechanotransduction in high-grade serous ovarian cancer: Insights from an in vitro model of collective detachment. SCIENCE ADVANCES 2024; 10:eadl4463. [PMID: 38669327 PMCID: PMC11051664 DOI: 10.1126/sciadv.adl4463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
Slowing peritoneal spread in high-grade serous ovarian cancer (HGSOC) would improve patient prognosis and quality of life. HGSOC spreads when single cells and spheroids detach, float through the peritoneal fluid and take over new sites, with spheroids thought to be more aggressive than single cells. Using our in vitro model of spheroid collective detachment, we determine that increased substrate stiffness led to the detachment of more spheroids. We identified a mechanism where Piezo1 activity increased MMP-1/MMP-10, decreased collagen I and fibronectin, and increased spheroid detachment. Piezo1 expression was confirmed in omental masses from patients with stage III/IV HGSOC. Using OV90 and CRISPR-modified PIEZO1-/- OV90 in a mouse xenograft model, we determined that while both genotypes efficiently took over the omentum, loss of Piezo1 significantly decreased ascitic volume, tumor spheroids in the ascites, and the number of macroscopic tumors in the mesentery. These results support that slowing collective detachment may benefit patients and identify Piezo1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Hannah M. Micek
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ning Yang
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Mayuri Dutta
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Lauren Rosenstock
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yicheng Ma
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Caitlin Hielsberg
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Molly McCord
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Biophysics Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jacob Notbohm
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Biophysics Program, University of Wisconsin-Madison, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Stephanie McGregor
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Pamela K. Kreeger
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
16
|
Jairaman A, Prakriya M. Calcium Signaling in Airway Epithelial Cells: Current Understanding and Implications for Inflammatory Airway Disease. Arterioscler Thromb Vasc Biol 2024; 44:772-783. [PMID: 38385293 PMCID: PMC11090472 DOI: 10.1161/atvbaha.123.318339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Airway epithelial cells play an indispensable role in protecting the lung from inhaled pathogens and allergens by releasing an array of mediators that orchestrate inflammatory and immune responses when confronted with harmful environmental triggers. While this process is undoubtedly important for containing the effects of various harmful insults, dysregulation of the inflammatory response can cause lung diseases including asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. A key cellular mechanism that underlies the inflammatory responses in the airway is calcium signaling, which stimulates the production and release of chemokines, cytokines, and prostaglandins from the airway epithelium. In this review, we discuss the role of major Ca2+ signaling pathways found in airway epithelial cells and their contributions to airway inflammation, mucociliary clearance, and surfactant production. We highlight the importance of store-operated Ca2+ entry as a major signaling hub in these processes and discuss therapeutic implications of targeting Ca2+ signaling for airway inflammation.
Collapse
Affiliation(s)
- Amit Jairaman
- Department of Physiology and Biophysics, School of Medicine, University of California-Irvine (UCI) (A.J.)
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (M.P.)
| |
Collapse
|
17
|
Zhu Y, Wang T, Yang Y, Wang Z, Chen X, Wang L, Niu R, Sun Z, Zhang C, Luo Y, Hu Y, Gu W. Low shear stress exacerbates atherosclerosis by inducing the generation of neutrophil extracellular traps via Piezo1-mediated mechanosensation. Atherosclerosis 2024; 391:117473. [PMID: 38412763 DOI: 10.1016/j.atherosclerosis.2024.117473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND AND AIMS Atherosclerosis is a chronic lipid-driven inflammatory disease largely influenced by hemodynamics. Neutrophil extracellular trap (NET)-mediated inflammation plays an important role in atherosclerosis. However, little is known about the relationship between low shear stress (LSS) and NET generation, as well as the underlying mechanism. METHODS We induced LSS by partial ligation of the left carotid artery in high-fat diet-fed male ApoE-/- mice. To further validate the direct relationship between LSS and NET formation invitro, differentiated human promyelocytic leukemia HL-60 cells and bone marrow-derived neutrophils were suspended in fluid flow under normal or low shear stress using a parallel-plate flow chamber system. RESULTS Four weeks after surgery, ligated carotid arteries had more lipid deposition, larger plaque area, and increased NET formation than unligated arteries. Inhibition of NETosis could significantly reduce plaque formation in ApoE-/- mice. Invitro, LSS could promote NET generation directly through downregulation of Piezo1, a mechanosensitive ion channel. Downregulation of Piezol could activate neutrophils and promote NETosis in static conditions. Conversely, Yoda1-evoked activation of Piezo1 attenuated LSS-induced NETosis. Mechanistically, downregulation of Piezo1 resulted in decreased Ca2+ influx and increased histone deacetylase 2 (HDAC2), which increased reactive oxygen species levels and led to NETosis. LSS-induced NET generation also promoted apoptosis and adherence of endothelial cells. CONCLUSION LSS directly promotes NETosis through the Piezo1-HDAC2 axis in atherosclerosis progression. This study uncovers the essential role of Piezo1-mediated mechanical signaling in NET generation and plaque formation, which provides a promising therapeutic strategy for atherosclerosis.
Collapse
Affiliation(s)
- Ying Zhu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Tian Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400030, China; College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yan Yang
- Department of Cardiovascular Surgery, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zining Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Xiaohui Chen
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Liu Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Ruyan Niu
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Zixin Sun
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Chong Zhang
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400030, China.
| | - Yijie Hu
- Department of Cardiovascular Surgery, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Wei Gu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
18
|
Cho Y, Fakhouri F, Ballinger MN, Englert JA, Hayes D, Kolipaka A, Ghadiali SN. Magnetic Resonance Elastography and Computational Modeling Identify Heterogeneous Lung Biomechanical Properties during Cystic Fibrosis. RESEARCH SQUARE 2024:rs.3.rs-4125891. [PMID: 38562870 PMCID: PMC10984019 DOI: 10.21203/rs.3.rs-4125891/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The lung is a dynamic mechanical organ and several pulmonary disorders are characterized by heterogeneous changes in the lung's local mechanical properties (i.e. stiffness). These alterations lead to abnormal lung tissue deformation (i.e. strain) which have been shown to promote disease progression. Although heterogenous mechanical properties may be important biomarkers of disease, there is currently no non-invasive way to measure these properties for clinical diagnostic purposes. In this study, we use a magnetic resonance elastography technique to measure heterogenous distributions of the lung's shear stiffness in healthy adults and in people with Cystic Fibrosis. Additionally, computational finite element models which directly incorporate the measured heterogenous mechanical properties were developed to assess the effects on lung tissue deformation. Results indicate that consolidated lung regions in people with Cystic Fibrosis exhibited increased shear stiffness and reduced spatial heterogeneity compared to surrounding non-consolidated regions. Accounting for heterogenous lung stiffness in healthy adults did not change the globally averaged strain magnitude obtained in computational models. However, computational models that used heterogenous stiffness measurements predicted significantly more variability in local strain and higher spatial strain gradients. Finally, computational models predicted lower strain variability and spatial strain gradients in consolidated lung regions compared to non-consolidated regions. These results indicate that spatial variability in shear stiffness alters local strain and strain gradient magnitudes in people with Cystic Fibrosis. This imaged-based modeling technique therefore represents a clinically viable way to non-invasively assess lung mechanics during both health and disease.
Collapse
Affiliation(s)
| | | | | | | | - Don Hayes
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine
| | | | | |
Collapse
|
19
|
Hook JL. A role for TMEM63 in the lung. J Clin Invest 2024; 134:e178948. [PMID: 38426500 PMCID: PMC10904035 DOI: 10.1172/jci178948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Surfactants are essential for breathing. Although major progress has been made in the past half century toward an understanding of surfactant secretion mechanisms, the identity of the mechanosensor that couples breathing to surfactant secretion has remained elusive. In this issue of the JCI, Chen, Li, and colleagues provide evidence that the mechanosensor is the transmembrane 63 (TMEM63) ion channel. These findings open new avenues for future research into lung mechanobiology.
Collapse
Affiliation(s)
- Jaime L. Hook
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine and
- Global Health and Emerging Pathogens Institute, Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
20
|
Coste B, Delmas P. PIEZO Ion Channels in Cardiovascular Functions and Diseases. Circ Res 2024; 134:572-591. [PMID: 38422173 DOI: 10.1161/circresaha.123.322798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The cardiovascular system provides blood supply throughout the body and as such is perpetually applying mechanical forces to cells and tissues. Thus, this system is primed with mechanosensory structures that respond and adapt to changes in mechanical stimuli. Since their discovery in 2010, PIEZO ion channels have dominated the field of mechanobiology. These have been proposed as the long-sought-after mechanosensitive excitatory channels involved in touch and proprioception in mammals. However, more and more pieces of evidence point to the importance of PIEZO channels in cardiovascular activities and disease development. PIEZO channel-related cardiac functions include transducing hemodynamic forces in endothelial and vascular cells, red blood cell homeostasis, platelet aggregation, and arterial blood pressure regulation, among others. PIEZO channels contribute to pathological conditions including cardiac hypertrophy and pulmonary hypertension and congenital syndromes such as generalized lymphatic dysplasia and xerocytosis. In this review, we highlight recent advances in understanding the role of PIEZO channels in cardiovascular functions and diseases. Achievements in this quickly expanding field should open a new road for efficient control of PIEZO-related diseases in cardiovascular functions.
Collapse
Affiliation(s)
- Bertrand Coste
- Centre de Recherche en CardioVasculaire et Nutrition, Aix-Marseille Université - INSERM 1263 - INRAE 1260, Marseille, France
| | - Patrick Delmas
- Centre de Recherche en CardioVasculaire et Nutrition, Aix-Marseille Université - INSERM 1263 - INRAE 1260, Marseille, France
| |
Collapse
|
21
|
Sawai Y, Suzuki Y, Asagiri M, Hida S, Kondo R, Zamponi GW, Giles WR, Imaizumi Y, Yamamura H. Caveolin-1 forms a complex with P2X7 receptor and tunes P2X7-mediated ATP signaling in mouse bone marrow-derived macrophages. Am J Physiol Cell Physiol 2024; 326:C125-C142. [PMID: 37955123 DOI: 10.1152/ajpcell.00303.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
The ionotropic purinergic P2X7 receptor responds to extracellular ATP and can trigger proinflammatory immune signaling in macrophages. Caveolin-1 (Cav-1) is known to modulate functions of macrophages and innate immunity. However, it is unknown how Cav-1 modulates P2X7 receptor activity in macrophages. We herein examined P2X7 receptor activity and macrophage functions using bone marrow-derived macrophages (BMDMs) from wild-type (WT) and Cav-1 knockout (KO) mice. ATP (1 mM) application caused biphasic increase in cytosolic [Ca2+] and sustained decrease in cytosolic [K+]. A specific P2X7 receptor blocker, A-740003, inhibited the maintained cytosolic [Ca2+] increase and cytosolic [K+] decrease. Total internal reflection fluorescent imaging and proximity ligation assays revealed a novel molecular complex formation between P2X7 receptors and Cav-1 in WT BMDMs that were stimulated with lipopolysaccharides. This molecular coupling was increased by ATP application. Specifically, the ATP-induced Ca2+ influx and K+ efflux through P2X7 receptors were increased in Cav-1 KO BMDMs, even though the total and surface protein levels of P2X7 receptors in WT and Cav-1 KO BMDMs were unchanged. Cell-impermeable dye (TO-PRO3) uptake analysis revealed that macropore formation of P2X7 receptors was enhanced in Cav-1 KO BMDMs. Cav-1 KO BMDMs increased ATP-induced IL-1β secretion, reactive oxygen species production, Gasdermin D (GSDMD) cleavage, and lactate dehydrogenase release indicating pyroptosis. A-740003 completely prevented ATP-induced pyroptosis. In combination, these datasets show that Cav-1 has a negative effect on P2X7 receptor activity in BMDMs and that Cav-1 in macrophages may contribute to finely tuned immune responses by preventing excessive IL-1β secretion and pyroptosis.NEW & NOTEWORTHY In bone marrow-derived macrophages, Cav-1 suppresses the macropore formation of P2X7 receptors through their direct or indirect interactions, resulting in reduced membrane permeability of cations (Ca2+ and K+) and large cell-impermeable dye (TO-PRO3) induced by ATP. Cav-1 also inhibits ATP-induced IL-1β secretion, ROS production, GSDMD cleavage, and pyroptosis. Cav-1 contributes to the maintenance of proper immune responses by finely tuning IL-1β secretion and cell death in macrophages.
Collapse
Affiliation(s)
- Yuuki Sawai
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yoshiaki Suzuki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Masataka Asagiri
- Department of Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Shigeaki Hida
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Rubii Kondo
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Wayne R Giles
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
22
|
Ahmed DW, Eiken MK, DePalma SJ, Helms AS, Zemans RL, Spence JR, Baker BM, Loebel C. Integrating mechanical cues with engineered platforms to explore cardiopulmonary development and disease. iScience 2023; 26:108472. [PMID: 38077130 PMCID: PMC10698280 DOI: 10.1016/j.isci.2023.108472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024] Open
Abstract
Mechanical forces provide critical biological signals to cells during healthy and aberrant organ development as well as during disease processes in adults. Within the cardiopulmonary system, mechanical forces, such as shear, compressive, and tensile forces, act across various length scales, and dysregulated forces are often a leading cause of disease initiation and progression such as in bronchopulmonary dysplasia and cardiomyopathies. Engineered in vitro models have supported studies of mechanical forces in a number of tissue and disease-specific contexts, thus enabling new mechanistic insights into cardiopulmonary development and disease. This review first provides fundamental examples where mechanical forces operate at multiple length scales to ensure precise lung and heart function. Next, we survey recent engineering platforms and tools that have provided new means to probe and modulate mechanical forces across in vitro and in vivo settings. Finally, the potential for interdisciplinary collaborations to inform novel therapeutic approaches for a number of cardiopulmonary diseases are discussed.
Collapse
Affiliation(s)
- Donia W. Ahmed
- Department of Biomedical Engineering, University of Michigan, Lurie Biomedical Engineering Building, 1101 Beal Avenue, Ann Arbor, MI 48109, USA
| | - Madeline K. Eiken
- Department of Biomedical Engineering, University of Michigan, Lurie Biomedical Engineering Building, 1101 Beal Avenue, Ann Arbor, MI 48109, USA
| | - Samuel J. DePalma
- Department of Biomedical Engineering, University of Michigan, Lurie Biomedical Engineering Building, 1101 Beal Avenue, Ann Arbor, MI 48109, USA
| | - Adam S. Helms
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rachel L. Zemans
- Department of Internal Medicine, Division of Pulmonary Sciences and Critical Care Medicine – Gastroenterology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Jason R. Spence
- Department of Internal Medicine – Gastroenterology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Brendon M. Baker
- Department of Biomedical Engineering, University of Michigan, Lurie Biomedical Engineering Building, 1101 Beal Avenue, Ann Arbor, MI 48109, USA
| | - Claudia Loebel
- Department of Biomedical Engineering, University of Michigan, Lurie Biomedical Engineering Building, 1101 Beal Avenue, Ann Arbor, MI 48109, USA
- Department of Materials Science & Engineering, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| |
Collapse
|
23
|
Abstract
Pulmonary surfactant is a critical component of lung function in healthy individuals. It functions in part by lowering surface tension in the alveoli, thereby allowing for breathing with minimal effort. The prevailing thinking is that low surface tension is attained by a compression-driven squeeze-out of unsaturated phospholipids during exhalation, forming a film enriched in saturated phospholipids that achieves surface tensions close to zero. A thorough review of past and recent literature suggests that the compression-driven squeeze-out mechanism may be erroneous. Here, we posit that a surfactant film enriched in saturated lipids is formed shortly after birth by an adsorption-driven sorting process and that its composition does not change during normal breathing. We provide biophysical evidence for the rapid formation of an enriched film at high surfactant concentrations, facilitated by adsorption structures containing hydrophobic surfactant proteins. We examine biophysical evidence for and against the compression-driven squeeze-out mechanism and propose a new model for surfactant function. The proposed model is tested against existing physiological and pathophysiological evidence in neonatal and adult lungs, leading to ideas for biophysical research, that should be addressed to establish the physiological relevance of this new perspective on the function of the mighty thin film that surfactant provides.
Collapse
Affiliation(s)
- Fred Possmayer
- Department of Biochemistry, Western University, London, Ontario N6A 3K7, Canada
- Department of Obstetrics/Gynaecology, Western University, London, Ontario N6A 3K7, Canada
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manon, Honolulu, Hawaii 96822, United States
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96826, United States
| | - Ruud A W Veldhuizen
- Department of Physiology & Pharmacology, Western University, London, Ontario N6A 5C1, Canada
- Department of Medicine, Western University, London, Ontario N6A 3K7, Canada
- Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
| | - Nils O Petersen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Department of Chemistry, Western University, London, Ontario N6A 5B7, Canada
| |
Collapse
|
24
|
Zheng M, Borkar NA, Yao Y, Ye X, Vogel ER, Pabelick CM, Prakash YS. Mechanosensitive channels in lung disease. Front Physiol 2023; 14:1302631. [PMID: 38033335 PMCID: PMC10684786 DOI: 10.3389/fphys.2023.1302631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Mechanosensitive channels (MS channels) are membrane proteins capable of responding to mechanical stress over a wide dynamic range of external mechanical stimuli. In recent years, it has been found that MS channels play an important role as "sentinels" in the process of cell sensing and response to extracellular and intracellular force signals. There is growing appreciation for mechanical activation of ion channels and their subsequent initiation of downstream signaling pathways. Members of the transient receptor potential (TRP) superfamily and Piezo channels are broadly expressed in human tissues and contribute to multiple cellular functions. Both TRP and Piezo channels are thought to play key roles in physiological homeostasis and pathophysiology of disease states including in the lung. Here, we review the current state of knowledge on the expression, regulation, and function of TRP and Piezo channels in the context of the adult lung across the age spectrum, and in lung diseases such as asthma, COPD and pulmonary fibrosis where mechanical forces likely play varied roles in the structural and functional changes characteristic of these diseases. Understanding of TRP and Piezo in the lung can provide insights into new targets for treatment of pulmonary disease.
Collapse
Affiliation(s)
- Mengning Zheng
- Department of Respiratory and Critical Care Medicine, Guizhou Province People’s Hospital, Guiyang, Guizhou, China
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Niyati A. Borkar
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Yang Yao
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi, China
| | - Xianwei Ye
- Department of Respiratory and Critical Care Medicine, Guizhou Province People’s Hospital, Guiyang, Guizhou, China
| | - Elizabeth R. Vogel
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Christina M. Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Y. S. Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
25
|
Liu X, Niu W, Zhao S, Zhang W, Zhao Y, Li J. Piezo1:the potential new therapeutic target for fibrotic diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 184:42-49. [PMID: 37722629 DOI: 10.1016/j.pbiomolbio.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Fibrosis is a pathological process that occurs in various organs, characterized by excessive deposition of extracellular matrix (ECM), leading to structural damage and, in severe cases, organ failure. Within the fibrotic microenvironment, mechanical forces play a crucial role in shaping cell behavior and function, yet the precise molecular mechanisms underlying how cells sense and transmit these mechanical cues, as well as the physical aspects of fibrosis progression, remain less understood. Piezo1, a mechanosensitive ion channel protein, serves as a pivotal mediator, converting mechanical stimuli into electrical or chemical signals. Accumulating evidence suggests that Piezo1 plays a central role in ECM formation and hemodynamics in the mechanical transduction of fibrosis expansion. This review provides an overview of the current understanding of the role of Piezo1 in fibrosis progression, encompassing conditions such as myocardial fibrosis, pulmonary fibrosis, renal fibrosis, and other fibrotic diseases. The main goal is to pave the way for potential clinical applications in the field of fibrotic diseases.
Collapse
Affiliation(s)
- Xin Liu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weipin Niu
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuqing Zhao
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenjuan Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Zhao
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Jing Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
26
|
Fang XZ, Li M, Wang YX, Zhang P, Sun MM, Xu JX, Yang YY, He YJ, Yu Y, Li RT, Zhou T, Reng LH, Sun DY, Shu HQ, Yuan SY, Xu JQ, Shang Y. Mechanosensitive ion channel Piezo1 mediates mechanical ventilation-exacerbated ARDS-associated pulmonary fibrosis. J Adv Res 2023; 53:175-186. [PMID: 36526145 PMCID: PMC10658225 DOI: 10.1016/j.jare.2022.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Pulmonary fibrosis is a major cause of the poor prognosis of acute respiratory distress syndrome (ARDS). While mechanical ventilation (MV) is an indispensable life-saving intervention for ARDS, it may cause the remodeling process in lung epithelial cells to become disorganized and exacerbate ARDS-associated pulmonary fibrosis. Piezo1 is a mechanosensitive ion channel that is known to play a role in regulating diverse physiological processes, but whether Piezo1 is necessary for MV-exacerbated ARDS-associated pulmonary fibrosis remains unknown. OBJECTIVES This study aimed to explore the role of Piezo1 in MV-exacerbated ARDS-associated pulmonary fibrosis. METHODS Human lung epithelial cells were stimulated with hydrochloric acid (HCl) followed by mechanical stretch for 48 h. A two-hitmodel of MV afteracidaspiration-inducedlunginjuryin mice was used. Mice were sacrificed after 14 days of MV. Pharmacological inhibition and knockout of Piezo1 were used to delineate the role of Piezo1 in MV-exacerbated ARDS-associated pulmonary fibrosis. In some experiments, ATP or the ATP-hydrolyzing enzyme apyrase was administered. RESULTS The stimulation of human lung epithelial cells to HCl resulted in phenotypes of epithelial-mesenchymal transition (EMT), which were enhanced by mechanical stretching. MV exacerbated pulmonary fibrosis in mice exposed to HCl. Pharmacologicalinhibitionorknockout of Piezo1 attenuated the MV-exacerbated EMT process and lung fibrosis in vivo and in vitro. Mechanistically, the observed effects were mediated by Piezo1-dependent Ca2+ influx and ATP release in lung epithelial cells. CONCLUSIONS Our findings identify a key role for Piezo1 in MV-exacerbated ARDS-associated pulmonary fibrosis that is mediated by increased ATP release in lung epithelial cells. Inhibiting Piezo1 may constitute a novelstrategyfor the treatment of MV-exacerbated ARDS-associated pulmonary fibrosis.
Collapse
Affiliation(s)
- Xiang-Zhi Fang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Li
- Department of Pain Management, Wuhan No. 1 Hospital, Wuhan, Hubei Province, China
| | - Ya-Xin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Zhang
- Department of Paediatrics, Jinling Hospital, School of Medicine, Nanjing University, China
| | - Miao-Miao Sun
- Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Xin Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Yi Yang
- Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Jun He
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Yu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui-Ting Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Zhou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Le-Hao Reng
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - De-Yi Sun
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua-Qing Shu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi-Ying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji-Qian Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
27
|
Weilinger NL, Yang K, Choi HB, Groten CJ, Wendt S, Murugan M, Wicki-Stordeur LE, Bernier LP, Velayudhan PS, Zheng J, LeDue JM, Rungta RL, Tyson JR, Snutch TP, Wu LJ, MacVicar BA. Pannexin-1 opening in neuronal edema causes cell death but also leads to protection via increased microglia contacts. Cell Rep 2023; 42:113128. [PMID: 37742194 PMCID: PMC10824275 DOI: 10.1016/j.celrep.2023.113128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/26/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Neuronal swelling during cytotoxic edema is triggered by Na+ and Cl- entry and is Ca2+ independent. However, the causes of neuronal death during swelling are unknown. Here, we investigate the role of large-conductance Pannexin-1 (Panx1) channels in neuronal death during cytotoxic edema. Panx1 channel inhibitors reduce and delay neuronal death in swelling triggered by voltage-gated Na+ entry with veratridine. Neuronal swelling causes downstream production of reactive oxygen species (ROS) that opens Panx1 channels. We confirm that ROS activates Panx1 currents with whole-cell electrophysiology and find scavenging ROS is neuroprotective. Panx1 opening and subsequent ATP release attract microglial processes to contact swelling neurons. Depleting microglia using the CSF1 receptor antagonist PLX3397 or blocking P2Y12 receptors exacerbates neuronal death, suggesting that the Panx1-ATP-dependent microglia contacts are neuroprotective. We conclude that cytotoxic edema triggers oxidative stress in neurons that opens Panx1 to trigger death but also initiates neuroprotective feedback mediated by microglia contacts.
Collapse
Affiliation(s)
- Nicholas L Weilinger
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Kai Yang
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hyun B Choi
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Christopher J Groten
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Stefan Wendt
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | - Leigh E Wicki-Stordeur
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Louis-Philippe Bernier
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Prashanth S Velayudhan
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jeffrey M LeDue
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ravi L Rungta
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Stomatology and Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
| | - John R Tyson
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Terrance P Snutch
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Brian A MacVicar
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
28
|
Xu Y, Huang Y, Cheng X, Hu B, Jiang D, Wu L, Peng S, Hu J. Mechanotransductive receptor Piezo1 as a promising target in the treatment of fibrosis diseases. Front Mol Biosci 2023; 10:1270979. [PMID: 37900917 PMCID: PMC10602816 DOI: 10.3389/fmolb.2023.1270979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Fibrosis could happen in every organ, leading to organic malfunction and even organ failure, which poses a serious threat to global health. Early treatment of fibrosis has been reported to be the turning point, therefore, exploring potential correlates in the pathogenesis of fibrosis and how to reverse fibrosis has become a pressing issue. As a mechanism-sensitive cationic calcium channel, Piezo1 turns on in response to changes in the lipid bilayer of the plasma membrane. Piezo1 exerts multiple biological roles, including inhibition of inflammation, cytoskeletal stabilization, epithelial-mesenchymal transition, stromal stiffness, and immune cell mechanotransduction, interestingly enough. These processes are closely associated with the development of fibrotic diseases. Recent studies have shown that deletion or knockdown of Piezo1 attenuates the onset of fibrosis. Therefore, in this paper we comprehensively describe the biology of this gene, focusing on its potential relevance in pulmonary fibrosis, renal fibrosis, pancreatic fibrosis, and cardiac fibrosis diseases, except for the role of drugs (agonists), increased intracellular calcium and mechanical stress using this gene in alleviating fibrosis.
Collapse
Affiliation(s)
- Yi Xu
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Yiqian Huang
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Xiaoqing Cheng
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Danling Jiang
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lidong Wu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
29
|
Figueiredo IAD, Ferreira SRD, Fernandes JM, Silva BA, Vasconcelos LHC, Cavalcante FA. A review of the pathophysiology and the role of ion channels on bronchial asthma. Front Pharmacol 2023; 14:1236550. [PMID: 37841931 PMCID: PMC10568497 DOI: 10.3389/fphar.2023.1236550] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
Asthma is one of the main non-communicable chronic diseases and affects a huge portion of the population. It is a multifactorial disease, classified into several phenotypes, being the allergic the most frequent. The pathophysiological mechanism of asthma involves a Th2-type immune response, with high concentrations of allergen-specific immunoglobulin E, eosinophilia, hyperreactivity and airway remodeling. These mechanisms are orchestrated by intracellular signaling from effector cells, such as lymphocytes and eosinophils. Ion channels play a fundamental role in maintaining the inflammatory response on asthma. In particular, transient receptor potential (TRP), stock-operated Ca2+ channels (SOCs), Ca2+-activated K+ channels (IKCa and BKCa), calcium-activated chloride channel (TMEM16A), cystic fibrosis transmembrane conductance regulator (CFTR), piezo-type mechanosensitive ion channel component 1 (PIEZO1) and purinergic P2X receptor (P2X). The recognition of the participation of these channels in the pathological process of asthma is important, as they become pharmacological targets for the discovery of new drugs and/or pharmacological tools that effectively help the pharmacotherapeutic follow-up of this disease, as well as the more specific mechanisms involved in worsening asthma.
Collapse
Affiliation(s)
- Indyra Alencar Duarte Figueiredo
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Sarah Rebeca Dantas Ferreira
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Jayne Muniz Fernandes
- Graduação em Farmácia, Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Bagnólia Araújo da Silva
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Luiz Henrique César Vasconcelos
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
- Departamento de Fisiologia e Patologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Fabiana de Andrade Cavalcante
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
- Departamento de Fisiologia e Patologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| |
Collapse
|
30
|
Zhao C, Liu H, Tian C, Zhang C, Wang W. Multi-scale numerical simulation on mechano-transduction of osteocytes in different gravity fields. Comput Methods Biomech Biomed Engin 2023; 26:1419-1430. [PMID: 36048419 DOI: 10.1080/10255842.2022.2117552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/13/2022] [Accepted: 08/23/2022] [Indexed: 11/03/2022]
Abstract
A three-dimensional model for osteocyte was established to research the mechanisms of mechano-transduction and amplification of primary cilium and osteocyte process in every gravity field. The results showed that significant stress concentration was observed in the area of physical connection between TES and the osteocyte process, where the fluid shear stress (FSS) was around two orders of magnitude higher than that in other areas. Due to the significant amplification effect of the TES structure on mechanical stimulation, making osteocyte process the "optimal mechanical receptor". In microgravity, the mechanical signal conduction ability of the osteocyte decreased significantly.. HighlightsAt the micro-nano scale, a 3D model for single bone lacunae-osteocyte system is established.The stress amplification mechanism of the transverse element is verified.Compared with the primary cilium, osteocyte process is the 'optimal mechanical receptor'.In microgravity, the mechanical signal conduction ability of osteocyte system decreased.
Collapse
Affiliation(s)
- Chaohui Zhao
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, People's Republic of China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, People's Republic of China
| | - Haiying Liu
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, People's Republic of China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, People's Republic of China
| | - Congbiao Tian
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, People's Republic of China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, People's Republic of China
| | - Chunqiu Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, People's Republic of China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, People's Republic of China
| | - Wei Wang
- Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin, People's Republic of China
| |
Collapse
|
31
|
Zong B, Yu F, Zhang X, Pang Y, Zhao W, Sun P, Li L. Mechanosensitive Piezo1 channel in physiology and pathophysiology of the central nervous system. Ageing Res Rev 2023; 90:102026. [PMID: 37532007 DOI: 10.1016/j.arr.2023.102026] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
Since the discovery of the mechanosensitive Piezo1 channel in 2010, there has been a significant amount of research conducted to explore its regulatory role in the physiology and pathology of various organ systems. Recently, a growing body of compelling evidence has emerged linking the activity of the mechanosensitive Piezo1 channel to health and disease of the central nervous system. However, the exact mechanisms underlying these associations remain inadequately comprehended. This review systematically summarizes the current research on the mechanosensitive Piezo1 channel and its implications for central nervous system mechanobiology, retrospects the results demonstrating the regulatory role of the mechanosensitive Piezo1 channel on various cell types within the central nervous system, including neural stem cells, neurons, oligodendrocytes, microglia, astrocytes, and brain endothelial cells. Furthermore, the review discusses the current understanding of the involvement of the Piezo1 channel in central nervous system disorders, such as Alzheimer's disease, multiple sclerosis, glaucoma, stroke, and glioma.
Collapse
Affiliation(s)
- Boyi Zong
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Fengzhi Yu
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaoyou Zhang
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Yige Pang
- Department of Neurosurgery, Zibo Central Hospital, Zibo 255000, Shandong, China
| | - Wenrui Zhao
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Peng Sun
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Lin Li
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China; Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
32
|
Chen X, Yuan S, Mi L, Long Y, He H. Pannexin1: insight into inflammatory conditions and its potential involvement in multiple organ dysfunction syndrome. Front Immunol 2023; 14:1217366. [PMID: 37711629 PMCID: PMC10498923 DOI: 10.3389/fimmu.2023.1217366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023] Open
Abstract
Sepsis represents a global health concern, and patients with severe sepsis are at risk of experiencing MODS (multiple organ dysfunction syndrome), which is associated with elevated mortality rates and a poorer prognosis. The development of sepsis involves hyperactive inflammation, immune disorder, and disrupted microcirculation. It is crucial to identify targets within these processes to develop therapeutic interventions. One such potential target is Panx1 (pannexin-1), a widely expressed transmembrane protein that facilitates the passage of molecules smaller than 1 KDa, such as ATP. Accumulating evidence has implicated the involvement of Panx1 in sepsis-associated MODS. It attracts immune cells via the purinergic signaling pathway, mediates immune responses via the Panx1-IL-33 axis, promotes immune cell apoptosis, regulates blood flow by modulating VSMCs' and vascular endothelial cells' tension, and disrupts microcirculation by elevating endothelial permeability and promoting microthrombosis. At the level of organs, Panx1 contributes to inflammatory injury in multiple organs. Panx1 primarily exacerbates injury and hinders recovery, making it a potential target for sepsis-induced MODS. While no drugs have been developed explicitly against Panx1, some compounds that inhibit Panx1 hemichannels have been used extensively in experiments. However, given that Panx1's role may vary during different phases of sepsis, more investigations are required before interventions against Panx1 can be applied in clinical. Overall, Panx1 may be a promising target for sepsis-induced MODS. Nevertheless, further research is needed to understand its complex role in different stages of sepsis fully and to develop suitable pharmaceutical interventions for clinical use.
Collapse
Affiliation(s)
| | | | | | - Yun Long
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Huaiwu He
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
33
|
Garavaglia ML, Bodega F, Porta C, Milzani A, Sironi C, Dalle-Donne I. Molecular Impact of Conventional and Electronic Cigarettes on Pulmonary Surfactant. Int J Mol Sci 2023; 24:11702. [PMID: 37511463 PMCID: PMC10380520 DOI: 10.3390/ijms241411702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
The alveolar epithelium is covered by a non-cellular layer consisting of an aqueous hypophase topped by pulmonary surfactant, a lipo-protein mixture with surface-active properties. Exposure to cigarette smoke (CS) affects lung physiology and is linked to the development of several diseases. The macroscopic effects of CS are determined by several types of cell and molecular dysfunction, which, among other consequences, lead to surfactant alterations. The purpose of this review is to summarize the published studies aimed at uncovering the effects of CS on both the lipid and protein constituents of surfactant, discussing the molecular mechanisms involved in surfactant homeostasis that are altered by CS. Although surfactant homeostasis has been the topic of several studies and some molecular pathways can be deduced from an analysis of the literature, it remains evident that many aspects of the mechanisms of action of CS on surfactant homeostasis deserve further investigation.
Collapse
Affiliation(s)
| | - Francesca Bodega
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Cristina Porta
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Aldo Milzani
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Chiara Sironi
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Isabella Dalle-Donne
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
34
|
Van Campenhout R, Caufriez A, Tabernilla A, Maerten A, De Boever S, Sanz-Serrano J, Kadam P, Vinken M. Pannexin1 channels in the liver: an open enemy. Front Cell Dev Biol 2023; 11:1220405. [PMID: 37492223 PMCID: PMC10363690 DOI: 10.3389/fcell.2023.1220405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023] Open
Abstract
Pannexin1 proteins form communication channels at the cell plasma membrane surface, which allow the transfer of small molecules and ions between the intracellular compartment and extracellular environment. In this way, pannexin1 channels play an important role in various cellular processes and diseases. Indeed, a plethora of human pathologies is associated with the activation of pannexin1 channels. The present paper reviews and summarizes the structure, life cycle, regulation and (patho)physiological roles of pannexin1 channels, with a particular focus on the relevance of pannexin1 channels in liver diseases.
Collapse
|
35
|
Yao Y, Borkar NA, Zheng M, Wang S, Pabelick CM, Vogel ER, Prakash YS. Interactions between calcium regulatory pathways and mechanosensitive channels in airways. Expert Rev Respir Med 2023; 17:903-917. [PMID: 37905552 PMCID: PMC10872943 DOI: 10.1080/17476348.2023.2276732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION Asthma is a chronic lung disease influenced by environmental and inflammatory triggers and involving complex signaling pathways across resident airway cells such as epithelium, airway smooth muscle, fibroblasts, and immune cells. While our understanding of asthma pathophysiology is continually progressing, there is a growing realization that cellular microdomains play critical roles in mediating signaling relevant to asthma in the context of contractility and remodeling. Mechanosensitive pathways are increasingly recognized as important to microdomain signaling, with Piezo and transient receptor protein (TRP) channels at the plasma membrane considered important for converting mechanical stimuli into cellular behavior. Given their ion channel properties, particularly Ca2+ conduction, a question becomes whether and how mechanosensitive channels contribute to Ca2+ microdomains in airway cells relevant to asthma. AREAS COVERED Mechanosensitive TRP and Piezo channels regulate key Ca2+ regulatory proteins such as store operated calcium entry (SOCE) involving STIM and Orai channels, and sarcoendoplasmic (SR) mechanisms such as IP3 receptor channels (IP3Rs), and SR Ca2+ ATPase (SERCA) that are important in asthma pathophysiology including airway hyperreactivity and remodeling. EXPERT OPINION Physical and/or functional interactions between Ca2+ regulatory proteins and mechanosensitive channels such as TRP and Piezo can toward understanding asthma pathophysiology and identifying novel therapeutic approaches.
Collapse
Affiliation(s)
- Yang Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi, China
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | - Niyati A Borkar
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | - Mengning Zheng
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Respiratory and Critical Care Medicine, Guizhou Province People’s Hospital, Guiyang, Guizhou, China
| | - Shengyu Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi, China
| | - Christina M Pabelick
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Elizabeth R Vogel
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - YS Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
36
|
Jiang M, Zhang YX, Bu WJ, Li P, Chen JH, Cao M, Dong YC, Sun ZJ, Dong DL. Piezo1 channel activation stimulates ATP production through enhancing mitochondrial respiration and glycolysis in vascular endothelial cells. Br J Pharmacol 2023; 180:1862-1877. [PMID: 36740831 DOI: 10.1111/bph.16050] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Piezo1 channels are mechanosensitive cationic channels that are activated by mechanical stretch or shear stress. Endothelial Piezo1 activation by shear stress caused by blood flow induces ATP release from endothelial cells; however, the link between shear stress and endothelial ATP production is unclear. EXPERIMENTAL APPROACH The mitochondrial respiratory function of cells was measured by using high-resolution respirometry system Oxygraph-2k. The intracellular Ca2+ concentration was evaluated by using Fluo-4/AM and mitochondrial Ca2+ concentration by Rhod-2/AM. KEY RESULTS The specific Piezo1 channel activator Yoda1 or its analogue Dooku1 increased [Ca2+ ]i in human umbilical vein endothelial cells (HUVECs), and both Yoda1 and Dooku1 increased mitochondrial oxygen consumption rates (OCRs) and mitochondrial ATP production in HUVECs and primary cultured rat aortic endothelial cells (RAECs). Knockdown of Piezo1 inhibited Yoda1- and Dooku1-induced increases of mitochondrial OCRs and mitochondrial ATP production in HUVECs. The shear stress mimetics, Yoda1 and Dooku1, and the Piezo1 knock-down technique also demonstrated that Piezo1 activation increased glycolysis in HUVECs. Chelating extracellular Ca2+ with EGTA or chelating cytosolic Ca2+ with BAPTA-AM did not affect Yoda1- and Dooku1-induced increases of mitochondrial OCRs and ATP production, but chelating cytosolic Ca2+ inhibited Yoda1- and Dooku1-induced increase of glycolysis. Confocal microscopy showed that Piezo1 channels are present in mitochondria of endothelial cells, and Yoda1 and Dooku1 increased mitochondrial Ca2+ in endothelial cells. CONCLUSION AND IMPLICATIONS Piezo1 channel activation stimulates ATP production through enhancing mitochondrial respiration and glycolysis in vascular endothelial cells, suggesting a novel role of Piezo1 channel in endothelial ATP production.
Collapse
Affiliation(s)
- Man Jiang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Yi-Xin Zhang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Wen-Jie Bu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Ping Li
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Jia-Hui Chen
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Ming Cao
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Yan-Chao Dong
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Zhi-Jie Sun
- Department of Pharmacology, China Pharmaceutical University, Nanjing, PR China
| | - De-Li Dong
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
- Department of Pharmacology, China Pharmaceutical University, Nanjing, PR China
| |
Collapse
|
37
|
Zhang EY, Bartman CM, Prakash YS, Pabelick CM, Vogel ER. Oxygen and mechanical stretch in the developing lung: risk factors for neonatal and pediatric lung disease. Front Med (Lausanne) 2023; 10:1214108. [PMID: 37404808 PMCID: PMC10315587 DOI: 10.3389/fmed.2023.1214108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
Chronic airway diseases, such as wheezing and asthma, remain significant sources of morbidity and mortality in the pediatric population. This is especially true for preterm infants who are impacted both by immature pulmonary development as well as disproportionate exposure to perinatal insults that may increase the risk of developing airway disease. Chronic pediatric airway disease is characterized by alterations in airway structure (remodeling) and function (increased airway hyperresponsiveness), similar to adult asthma. One of the most common perinatal risk factors for development of airway disease is respiratory support in the form of supplemental oxygen, mechanical ventilation, and/or CPAP. While clinical practice currently seeks to minimize oxygen exposure to decrease the risk of bronchopulmonary dysplasia (BPD), there is mounting evidence that lower levels of oxygen may carry risk for development of chronic airway, rather than alveolar disease. In addition, stretch exposure due to mechanical ventilation or CPAP may also play a role in development of chronic airway disease. Here, we summarize the current knowledge of the impact of perinatal oxygen and mechanical respiratory support on the development of chronic pediatric lung disease, with particular focus on pediatric airway disease. We further highlight mechanisms that could be explored as potential targets for novel therapies in the pediatric population.
Collapse
Affiliation(s)
- Emily Y. Zhang
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Colleen M. Bartman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Y. S. Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Christina M. Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Elizabeth R. Vogel
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
38
|
Grannemann C, Pabst A, Honert A, Schieren J, Martin C, Hank S, Böll S, Bläsius K, Düsterhöft S, Jahr H, Merkel R, Leube R, Babendreyer A, Ludwig A. Mechanical activation of lung epithelial cells through the ion channel Piezo1 activates the metalloproteinases ADAM10 and ADAM17 and promotes growth factor and adhesion molecule release. BIOMATERIALS ADVANCES 2023; 152:213516. [PMID: 37348330 DOI: 10.1016/j.bioadv.2023.213516] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/25/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
In the lung, pulmonary epithelial cells undergo mechanical stretching during ventilation. The associated cellular mechanoresponse is still poorly understood at the molecular level. Here, we demonstrate that activation of the mechanosensitive cation channel Piezo1 in a human epithelial cell line (H441) and in primary human lung epithelial cells induces the proteolytic activity of the metalloproteinases ADAM10 and ADAM17 at the plasma membrane. These ADAMs are known to convert cell surface expressed proteins into soluble and thereby play major roles in proliferation, barrier regulation and inflammation. We observed that chemical activation of Piezo1 promotes cleavage of substrates that are specific for either ADAM10 or ADAM17. Activation of Piezo1 also induced the synthesis and ADAM10/17-dependent release of the growth factor amphiregulin (AREG). In addition, junctional adhesion molecule A (JAM-A) was shed in an ADAM10/17-dependent manner resulting in a reduction of cell contacts. Stretching experiments combined with Piezo1 knockdown further demonstrated that mechanical activation promotes shedding via Piezo1. Most importantly, high pressure ventilation of murine lungs increased AREG and JAM-A release into the alveolar space, which was reduced by a Piezo1 inhibitor. Our study provides a novel link between stretch-induced Piezo1 activation and the activation of ADAM10 and ADAM17 in lung epithelium. This may help to understand acute respiratory distress syndrome (ARDS) which is induced by ventilation stress and goes along with perturbed epithelial permeability and release of growth factors.
Collapse
Affiliation(s)
- Caroline Grannemann
- Institute of Molecular Pharmacology, RWTH Aachen University, Aachen, Germany
| | - Alessa Pabst
- Institute of Molecular Pharmacology, RWTH Aachen University, Aachen, Germany
| | - Annika Honert
- Institute of Molecular Pharmacology, RWTH Aachen University, Aachen, Germany
| | - Jana Schieren
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Christian Martin
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Sophia Hank
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Svenja Böll
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Katharina Bläsius
- Institute of Molecular Pharmacology, RWTH Aachen University, Aachen, Germany
| | - Stefan Düsterhöft
- Institute of Molecular Pharmacology, RWTH Aachen University, Aachen, Germany
| | - Holger Jahr
- Institute of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Rudolf Merkel
- Institute of Biological Information Processing 2, Mechanobiology, Research Centre Juelich, Juelich, Germany
| | - Rudolf Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Aaron Babendreyer
- Institute of Molecular Pharmacology, RWTH Aachen University, Aachen, Germany.
| | - Andreas Ludwig
- Institute of Molecular Pharmacology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
39
|
Aresta Branco MSL, Gutierrez Cruz A, Peri LE, Mutafova-Yambolieva VN. The Pannexin 1 Channel and the P2X7 Receptor Are in Complex Interplay to Regulate the Release of Soluble Ectonucleotidases in the Murine Bladder Lamina Propria. Int J Mol Sci 2023; 24:9964. [PMID: 37373111 PMCID: PMC10298213 DOI: 10.3390/ijms24129964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/25/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The bladder urothelium releases ATP into the lamina propria (LP) during filling, which can activate P2X receptors on afferent neurons and trigger the micturition reflex. Effective ATP concentrations are largely dependent on metabolism by membrane-bound and soluble ectonucleotidases (s-ENTDs), and the latter are released in the LP in a mechanosensitive manner. Pannexin 1 (PANX1) channel and P2X7 receptor (P2X7R) participate in urothelial ATP release and are physically and functionally coupled, hence we investigated whether they modulate s-ENTDs release. Using ultrasensitive HPLC-FLD, we evaluated the degradation of 1,N6-etheno-ATP (eATP, substrate) to eADP, eAMP, and e-adenosine (e-ADO) in extraluminal solutions that were in contact with the LP of mouse detrusor-free bladders during filling prior to substrate addition, as an indirect measure of s-ENDTS release. Deletion of Panx1 increased the distention-induced, but not the spontaneous, release of s-ENTDs, whereas activation of P2X7R by BzATP or high concentration of ATP in WT bladders increased both. In Panx1-/- bladders or WT bladders treated with the PANX1 inhibitory peptide 10Panx, however, BzATP had no effect on s-ENTDS release, suggesting that P2X7R activity depends on PANX1 channel opening. We concluded, therefore, that P2X7R and PANX1 are in complex interaction to regulate s-ENTDs release and maintain suitable ATP concentrations in the LP. Thus, while stretch-activated PANX1 hinders s-ENTDS release possibly to preserve effective ATP concentration at the end of bladder filling, P2X7R activation, presumably in cystitis, would facilitate s-ENTDs-mediated ATP degradation to counteract excessive bladder excitability.
Collapse
Affiliation(s)
| | | | | | - Violeta N. Mutafova-Yambolieva
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV 89557, USA; (M.S.L.A.B.); (A.G.C.); (L.E.P.)
| |
Collapse
|
40
|
Tang Y, Zhao C, Zhuang Y, Zhong A, Wang M, Zhang W, Zhu L. Mechanosensitive Piezo1 protein as a novel regulator in macrophages and macrophage-mediated inflammatory diseases. Front Immunol 2023; 14:1149336. [PMID: 37334369 PMCID: PMC10275567 DOI: 10.3389/fimmu.2023.1149336] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
Macrophages are the most important innate immune cells in humans. They are almost ubiquitous in peripheral tissues with a large variety of different mechanical milieus. Therefore, it is not inconceivable that mechanical stimuli have effects on macrophages. Emerging as key molecular detectors of mechanical stress, the function of Piezo channels in macrophages is becoming attractive. In this review, we addressed the architecture, activation mechanisms, biological functions, and pharmacological regulation of the Piezo1 channel and review the research advancements in functions of Piezo1 channels in macrophages and macrophage-mediated inflammatory diseases as well as the potential mechanisms involved.
Collapse
Affiliation(s)
- Yu Tang
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chuanxiang Zhao
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai’an, Jiangsu, China
| | - Ying Zhuang
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Anjing Zhong
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ming Wang
- Department of Medical Imaging, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Liqun Zhu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
41
|
Malko P, Jia X, Wood I, Jiang LH. Piezo1 channel-mediated Ca 2+ signaling inhibits lipopolysaccharide-induced activation of the NF-κB inflammatory signaling pathway and generation of TNF-α and IL-6 in microglial cells. Glia 2023; 71:848-865. [PMID: 36447422 DOI: 10.1002/glia.24311] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/20/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
Abstract
Microglial cells are crucial in maintaining central nervous system (CNS) homeostasis and mediating CNS disease pathogenesis. Increasing evidence supports that alterations in the mechanical properties of CNS microenvironments influence glial cell phenotypes, but the mechanisms regulating microglial cell function remain elusive. Here, we examined the mechanosensitive Piezo1 channel in microglial cells, particularly, how Piezo1 channel activation regulates pro-inflammatory activation and production of pro-inflammatory cytokines, using BV2 and primary microglial cells. Piezo1 expression in microglial cells was detected both at mRNA and protein levels. Application of Piezo1 channel activator Yoda1 induced Ca2+ flux to increase intracellular Ca2+ concentration that was reduced by treatment with ruthenium red, a Piezo1 inhibitor, or Piezo1-specific siRNA, supporting that Piezo1 functions as a cell surface Ca2+ -permeable channel. Priming with lipopolysaccharide (LPS) induced microglial cell activation and production of TNF-α and IL-6, which were inhibited by treatment with Yoda1. Furthermore, LPS priming induced the activation of ERK, p38 MAPKs, and NF-κB. LPS-induced activation of NF-κB, but not ERK and p38, was inhibited by treatment with Yoda1. Yoda1-induced inhibition was blunted by siRNA-mediated depletion of Piezo1 expression and, furthermore, treatment with BAPTA-AM to prevent intracellular Ca2+ increase. Collectively, our results support that Piezo1 channel activation downregulates the pro-inflammatory function of microglial cells, especially production of TNF-α and IL-6, by initiating intracellular Ca2+ signaling to inhibit the NF-κB inflammatory signaling pathway. These findings reveal Piezo1 channel activation as a previously unrecognized mechanism regulating microglial cell function, raising an interesting perspective on targeting this molecular mechanism to alleviate neuroinflammation and associated CNS pathologies.
Collapse
Affiliation(s)
- Philippa Malko
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Xiaoling Jia
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Ian Wood
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Lin-Hua Jiang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,Department of Physiology and Pathophysiology, and Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, Xinxiang, China.,A4245-Transplantation, Immunology and Inflammation, Faculty of Medicine, University of Tours, Tours, France
| |
Collapse
|
42
|
Zamprogno P, Schulte J, Ferrari D, Rechberger K, Sengupta A, van Os L, Weber T, Zeinali S, Geiser T, Guenat OT. Lung-on-a-Chip Models of the Lung Parenchyma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:191-211. [PMID: 37195532 DOI: 10.1007/978-3-031-26625-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Since the publication of the first lung-on-a-chip in 2010, research has made tremendous progress in mimicking the cellular environment of healthy and diseased alveoli. As the first lung-on-a-chip products have recently reached the market, innovative solutions to even better mimic the alveolar barrier are paving the way for the next generation lung-on-chips. The original polymeric membranes made of PDMS are being replaced by hydrogel membranes made of proteins from the lung extracellular matrix, whose chemical and physical properties exceed those of the original membranes. Other aspects of the alveolar environment are replicated, such as the size of the alveoli, their three-dimensional structure, and their arrangement. By tuning the properties of this environment, the phenotype of alveolar cells can be tuned, and the functions of the air-blood barrier can be reproduced, allowing complex biological processes to be mimicked. Lung-on-a-chip technologies also provide the possibility of obtaining biological information that was not possible with conventional in vitro systems. Pulmonary edema leaking through a damaged alveolar barrier and barrier stiffening due to excessive accumulation of extracellular matrix proteins can now be reproduced. Provided that the challenges of this young technology are overcome, there is no doubt that many application areas will benefit greatly.
Collapse
Affiliation(s)
- Pauline Zamprogno
- Organs-on-Chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
| | - Jan Schulte
- Organs-on-Chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
| | - Dario Ferrari
- Organs-on-Chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
| | - Karin Rechberger
- Organs-on-Chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
| | - Arunima Sengupta
- Organs-on-Chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
| | - Lisette van Os
- Organs-on-Chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
| | - Tobias Weber
- Organs-on-Chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
| | - Soheila Zeinali
- Organs-on-Chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
| | - Thomas Geiser
- Department of Pulmonary Medicine, University Hospital of Bern, Bern, Switzerland
| | - Olivier T Guenat
- Organs-on-Chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland.
- Department of Pulmonary Medicine, University Hospital of Bern, Bern, Switzerland.
- Department of General Thoracic Surgery, University Hospital of Bern, Bern, Switzerland.
| |
Collapse
|
43
|
Fu A, Chang M, Zhu H, Liu H, Wu D, Zeng H. Air-blood barrier (ABB) on a chip. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
44
|
Ni K, Che B, Yang C, Qin Y, Gu R, Wang C, Luo M, Deng L. Emerging toolset of three-dimensional pulmonary cell culture models for simulating lung pathophysiology towards mechanistic elucidation and therapeutic treatment of SARS-COV-2 infection. Front Pharmacol 2022; 13:1033043. [PMID: 36578545 PMCID: PMC9790924 DOI: 10.3389/fphar.2022.1033043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
The ongoing COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) poses a never before seen challenge to human health and the world economy. However, it is difficult to widely use conventional animal and cell culture models in understanding the underlying pathological mechanisms of COVID-19, which in turn hinders the development of relevant therapeutic treatments, including drugs. To overcome this challenge, various three-dimensional (3D) pulmonary cell culture models such as organoids are emerging as an innovative toolset for simulating the pathophysiology occurring in the respiratory system, including bronchial airways, alveoli, capillary network, and pulmonary interstitium, which provide a robust and powerful platform for studying the process and underlying mechanisms of SARS-CoV-2 infection among the potential primary targets in the lung. This review introduces the key features of some of these recently developed tools, including organoid, lung-on-a-chip, and 3D bioprinting, which can recapitulate different structural compartments of the lung and lung function, in particular, accurately resembling the human-relevant pathophysiology of SARS-CoV-2 infection in vivo. In addition, the recent progress in developing organoids for alveolar and airway disease modeling and their applications for discovering drugs against SARS-CoV-2 infection are highlighted. These innovative 3D cell culture models together may hold the promise to fully understand the pathogenesis and eventually eradicate the pandemic of COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mingzhi Luo
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou, Jiangsu, China
| | - Linhong Deng
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou, Jiangsu, China
| |
Collapse
|
45
|
Human cancer cells generate spontaneous calcium transients and intercellular waves that modulate tumor growth. Biomaterials 2022; 290:121823. [DOI: 10.1016/j.biomaterials.2022.121823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/24/2022] [Indexed: 11/02/2022]
|
46
|
Shahidullah M, Rosales JL, Delamere N. Activation of Piezo1 Increases Na,K-ATPase-Mediated Ion Transport in Mouse Lens. Int J Mol Sci 2022; 23:12870. [PMID: 36361659 PMCID: PMC9656371 DOI: 10.3390/ijms232112870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 10/31/2023] Open
Abstract
Lens ion homeostasis depends on Na,K-ATPase and NKCC1. TRPV4 and TRPV1 channels, which are mechanosensitive, play important roles in mechanisms that regulate the activity of these transporters. Here, we examined another mechanosensitive channel, piezo1, which is also expressed in the lens. The purpose of the study was to examine piezo1 function. Recognizing that activation of TRPV4 and TRPV1 causes changes in lens ion transport mechanisms, we carried out studies to determine whether piezo1 activation changes either Na,K-ATPase-mediated or NKCC1-mediated ion transport. We also examined channel function of piezo1 by measuring calcium entry. Rb uptake was measured as an index of inwardly directed potassium transport by intact mouse lenses. Intracellular calcium concentration was measured in Fura-2 loaded cells by a ratiometric imaging technique. Piezo1 immunolocalization was most evident in the lens epithelium. Potassium (Rb) uptake was increased in intact lenses as well as in cultured lens epithelium exposed to Yoda1, a piezo1 agonist. The majority of Rb uptake is Na,K-ATPase-dependent, although there also is a significant NKCC-dependent component. In the presence of ouabain, an Na,K-ATPase inhibitor, Yoda1 did not increase Rb uptake. In contrast, Yoda1 increased Rb uptake to a similar degree in the presence or absence of 1 µM bumetanide, an NKCC inhibitor. The Rb uptake response to Yoda1 was inhibited by the selective piezo1 antagonist GsMTx4, and also by the nonselective antagonists ruthenium red and gadolinium. In parallel studies, Yoda1 was observed to increase cytoplasmic calcium concentration in cells loaded with Fura-2. The calcium response to Yoda1 was abolished by gadolinium or ruthenium red. The calcium and Rb uptake responses to Yoda1 were absent in calcium-free bathing solution, consistent with calcium entry when piezo1 is activated. Taken together, these findings point to stimulation of Na,K-ATPase, but not NKCC, when piezo1 is activated. Na,K-ATPase is the principal mechanism responsible for ion and water homeostasis in the lens. The functional role of lens piezo1 is a topic for further study.
Collapse
Affiliation(s)
- Mohammad Shahidullah
- Department of Physiology, University of Arizona, 1501 N Campbell Avenue, Tucson, AZ 85724, USA
- Department of Ophthalmology and Vision Science, University of Arizona, 1501 N Campbell Avenue, Tucson, AZ 85724, USA
| | - Joaquin Lopez Rosales
- Department of Physiology, University of Arizona, 1501 N Campbell Avenue, Tucson, AZ 85724, USA
| | - Nicholas Delamere
- Department of Physiology, University of Arizona, 1501 N Campbell Avenue, Tucson, AZ 85724, USA
- Department of Ophthalmology and Vision Science, University of Arizona, 1501 N Campbell Avenue, Tucson, AZ 85724, USA
| |
Collapse
|
47
|
Suppression of Ca 2+ oscillations by SERCA inhibition in human alveolar type 2 A549 cells: rescue by ochratoxin A but not CDN1163. Life Sci 2022; 308:120913. [PMID: 36037871 DOI: 10.1016/j.lfs.2022.120913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022]
Abstract
AIMS Lung type 2 alveolar cells, by secreting surfactant to lower surface tension, contribute to enhance lung compliance. Stretching, as a result of lung expansion, triggers type 1 alveolar cell to release ATP, which in turn stimulates Ca2+-dependent surfactant secretion by neighboring type 2 cells. In this report, we studied ATP-triggered Ca2+ signaling in human alveolar type 2 A549 cells. MAIN METHODS Ca2+ signaling was examined using microfluorimetric measurement with fura-2 as fluorescent dye. KEY FINDINGS Ca2+ oscillations triggered by ATP relied on inositol 1,4,5-trisphosphate-induced Ca2+ release and store-operated Ca2+ entry. Pathological conditions such as influenza virus infection and diabetes reportedly inhibit sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA). We found that a very mild inhibition of SERCA by cyclopiazonic acid (CPA) sufficed to decrease Ca2+ oscillation frequency and the percentage of cells exhibiting Ca2+ oscillations. Ochratoxin A (OTA), an activator of SERCA, could prevent the suppressive effects by CPA. Inhibition of SERCA by hydrogen peroxide also suppressed Ca2+ oscillations. Interestingly, hydrogen peroxide-induced inhibition was prevented by OTA but aggravated by CDN1163, an allosteric activator of SERCA. CDN1163 also had an untoward effect of releasing intracellular Ca2+. SIGNIFICANCE Different modes of activation of SERCA may determine the outcome of rescue of Ca2+ oscillations in case of SERCA inhibition in alveolar type 2 cells.
Collapse
|
48
|
Sengupta A, Roldan N, Kiener M, Froment L, Raggi G, Imler T, de Maddalena L, Rapet A, May T, Carius P, Schneider-Daum N, Lehr CM, Kruithof-de Julio M, Geiser T, Marti TM, Stucki JD, Hobi N, Guenat OT. A New Immortalized Human Alveolar Epithelial Cell Model to Study Lung Injury and Toxicity on a Breathing Lung-On-Chip System. FRONTIERS IN TOXICOLOGY 2022; 4:840606. [PMID: 35832493 PMCID: PMC9272139 DOI: 10.3389/ftox.2022.840606] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
The evaluation of inhalation toxicity, drug safety and efficacy assessment, as well as the investigation of complex disease pathomechanisms, are increasingly relying on in vitro lung models. This is due to the progressive shift towards human-based systems for more predictive and translational research. While several cellular models are currently available for the upper airways, modelling the distal alveolar region poses several constraints that make the standardization of reliable alveolar in vitro models relatively difficult. In this work, we present a new and reproducible alveolar in vitro model, that combines a human derived immortalized alveolar epithelial cell line (AXiAEC) and organ-on-chip technology mimicking the lung alveolar biophysical environment (AXlung-on-chip). The latter mimics key features of the in vivo alveolar milieu: breathing-like 3D cyclic stretch (10% linear strain, 0.2 Hz frequency) and an ultrathin, porous and elastic membrane. AXiAECs cultured on-chip were characterized for their alveolar epithelial cell markers by gene and protein expression. Cell barrier properties were examined by TER (Transbarrier Electrical Resistance) measurement and tight junction formation. To establish a physiological model for the distal lung, AXiAECs were cultured for long-term at air-liquid interface (ALI) on-chip. To this end, different stages of alveolar damage including inflammation (via exposure to bacterial lipopolysaccharide) and the response to a profibrotic mediator (via exposure to Transforming growth factor β1) were analyzed. In addition, the expression of relevant host cell factors involved in SARS-CoV-2 infection was investigated to evaluate its potential application for COVID-19 studies. This study shows that AXiAECs cultured on the AXlung-on-chip exhibit an enhanced in vivo-like alveolar character which is reflected into: 1) Alveolar type 1 (AT1) and 2 (AT2) cell specific phenotypes, 2) tight barrier formation (with TER above 1,000 Ω cm2) and 3) reproducible long-term preservation of alveolar characteristics in nearly physiological conditions (co-culture, breathing, ALI). To the best of our knowledge, this is the first time that a primary derived alveolar epithelial cell line on-chip representing both AT1 and AT2 characteristics is reported. This distal lung model thereby represents a valuable in vitro tool to study inhalation toxicity, test safety and efficacy of drug compounds and characterization of xenobiotics.
Collapse
Affiliation(s)
- Arunima Sengupta
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Nuria Roldan
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Mirjam Kiener
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for BioMedical Research DBMR, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Laurène Froment
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Giulia Raggi
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Theo Imler
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | | | - Aude Rapet
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | | | - Patrick Carius
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany.,Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | - Nicole Schneider-Daum
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany.,Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany.,Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | - Marianna Kruithof-de Julio
- Department for BioMedical Research DBMR, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Thomas Geiser
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Thomas Michael Marti
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Janick D Stucki
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Nina Hobi
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Olivier T Guenat
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland.,Department of Pulmonary Medicine, Inselspital, Bern University Hospital, Bern, Switzerland.,Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
49
|
The spectrin cytoskeleton integrates endothelial mechanoresponses. Nat Cell Biol 2022; 24:1226-1238. [PMID: 35817960 DOI: 10.1038/s41556-022-00953-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 06/01/2022] [Indexed: 12/13/2022]
Abstract
Physiological blood flow induces the secretion of vasoactive compounds, notably nitric oxide, and promotes endothelial cell elongation and reorientation parallel to the direction of applied shear. How shear is sensed and relayed to intracellular effectors is incompletely understood. Here, we demonstrate that an apical spectrin network is essential to convey the force imposed by shear to endothelial mechanosensors. By anchoring CD44, spectrins modulate the cell surface density of hyaluronan and sense and translate shear into changes in plasma membrane tension. Spectrins also regulate the stability of apical caveolae, where the mechanosensitive PIEZO1 channels are thought to reside. Accordingly, shear-induced PIEZO1 activation and the associated calcium influx were absent in spectrin-deficient cells. As a result, cell realignment and flow-induced endothelial nitric oxide synthase stimulation were similarly dependent on spectrin. We conclude that the apical spectrin network is not only required for shear sensing but also transmits and distributes the resulting tensile forces to mechanosensors that elicit protective and vasoactive responses.
Collapse
|
50
|
Gong Y, Laheji F, Berenson A, Qian A, Park SO, Kok R, Selig M, Hahn R, Sadjadi R, Kemp S, Eichler F. Peroxisome Metabolism Contributes to PIEZO2-Mediated Mechanical Allodynia. Cells 2022; 11:1842. [PMID: 35681537 PMCID: PMC9180358 DOI: 10.3390/cells11111842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/21/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
Mutations in the peroxisomal half-transporter ABCD1 cause X-linked adrenoleukodystrophy, resulting in elevated very long-chain fatty acids (VLCFA), progressive neurodegeneration and an associated pain syndrome that is poorly understood. In the nervous system of mice, we found ABCD1 expression to be highest in dorsal root ganglia (DRG), with satellite glial cells (SGCs) displaying higher expression than neurons. We subsequently examined sensory behavior and DRG pathophysiology in mice deficient in ABCD1 compared to wild-type mice. Beginning at 8 months of age, Abcd1-/y mice developed persistent mechanical allodynia. DRG had a greater number of IB4-positive nociceptive neurons expressing PIEZO2, the mechanosensitive ion channel. Blocking PIEZO2 partially rescued the mechanical allodynia. Beyond affecting neurons, ABCD1 deficiency impacted SGCs, as demonstrated by high levels of VLCFA, increased glial fibrillary acidic protein (GFAP), as well as genes disrupting neuron-SGC connectivity. These findings suggest that lack of the peroxisomal half-transporter ABCD1 leads to PIEZO2-mediated mechanical allodynia as well as SGC dysfunction. Given the known supportive role of SGCs to neurons, this elucidates a novel mechanism underlying pain in X-linked adrenoleukodystrophy.
Collapse
Affiliation(s)
- Yi Gong
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.G.); (F.L.); (A.B.); (A.Q.); (S.-O.P.); (M.S.); (R.H.); (R.S.)
| | - Fiza Laheji
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.G.); (F.L.); (A.B.); (A.Q.); (S.-O.P.); (M.S.); (R.H.); (R.S.)
| | - Anna Berenson
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.G.); (F.L.); (A.B.); (A.Q.); (S.-O.P.); (M.S.); (R.H.); (R.S.)
| | - April Qian
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.G.); (F.L.); (A.B.); (A.Q.); (S.-O.P.); (M.S.); (R.H.); (R.S.)
| | - Sang-O Park
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.G.); (F.L.); (A.B.); (A.Q.); (S.-O.P.); (M.S.); (R.H.); (R.S.)
| | - Rene Kok
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, 1105 Amsterdam, The Netherlands; (R.K.); (S.K.)
| | - Martin Selig
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.G.); (F.L.); (A.B.); (A.Q.); (S.-O.P.); (M.S.); (R.H.); (R.S.)
| | - Ryan Hahn
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.G.); (F.L.); (A.B.); (A.Q.); (S.-O.P.); (M.S.); (R.H.); (R.S.)
| | - Reza Sadjadi
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.G.); (F.L.); (A.B.); (A.Q.); (S.-O.P.); (M.S.); (R.H.); (R.S.)
| | - Stephan Kemp
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, 1105 Amsterdam, The Netherlands; (R.K.); (S.K.)
- Department of Pediatric Neurology, Emma Children’s Hospital, Amsterdam University Medical Center, Amsterdam Neuroscience, University of Amsterdam, 1105 Amsterdam, The Netherlands
| | - Florian Eichler
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (Y.G.); (F.L.); (A.B.); (A.Q.); (S.-O.P.); (M.S.); (R.H.); (R.S.)
| |
Collapse
|