1
|
Lu W, Wen J. The relationship among H 2S, neuroinflammation and MMP-9 in BBB injury following ischemic stroke. Int Immunopharmacol 2025; 146:113902. [PMID: 39724730 DOI: 10.1016/j.intimp.2024.113902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Blood-brain barrier (BBB) is located at the interface between the central nervous system (CNS) and the circulatory system, which maintains the microenvironmental homeostasis of the CNS. BBB damage is a result of CNS diseases, including ischemic stroke, and is a cause of CNS deterioration. Cerebral ischemia unleashes a profound inflammatory response to remove the damaged tissue in the CNS and prepare the brain for repair. However, the excessive neuroinflammation following stroke onset is associated with BBB breakdown, resulting in neuronal injury and worse neurological outcomes. Additionally, matrix metalloproteinases (MMPs) are likewise responsible for the BBB injury and participate in the pathological processes of neuroinflammation following ischemic stroke. Hydrogen sulfide (H2S) is one of gaseous signaling and freely diffusing molecules. Low concentration of H2S yields the neuroprotection against BBB damage following stroke. This review discussed the current knowledge about the detrimental roles of neuroinflammation and MMPs in BBB injury following ischemic stroke. Specifically, we provided an updated overview of H2S in protecting against BBB injury following ischemic stroke via anti-neuroinflammation and inhibiting MMP-9.
Collapse
Affiliation(s)
- Weizhuo Lu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Medical Branch, Hefei Technology College, Hefei, China.
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
2
|
Duan P, Li X, Bi Y, Feng W, Jin Z, Zhang X, He G, An D, Wen Z, Zhang B. GYY4137 ameliorates blood brain barrier damage by inhibiting autophagy mediated occludin degradation in cardiac arrest and resuscitation. Sci Rep 2025; 15:905. [PMID: 39762518 PMCID: PMC11704213 DOI: 10.1038/s41598-024-84948-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025] Open
Abstract
Cardiopulmonary resuscitation (CPR) after cardiac arrest (CA) is an important cause of neurological impairment and leads to considerable morbidity and mortality. The stability of the blood-brain barrier (BBB) is crucial for minimizing secondary neurological damage and improving long-term prognosis. However, the precise mechanisms and regulatory pathways that contribute to BBB dysfunction after CPR remain elusive. GYY4137 is an innovative hydrogen sulfide slow-release agent with excellent properties as a hydrogen sulfide substitute. The aim of this study was to investigate the protective effects of GYY4137 on CA/CPR and the underlying mechanisms of BBB protection. The effects of GYY4137 on systemic inflammation, BBB integrity, and autophagy were evaluated using a mouse CA/CPR model. The underlying mechanisms of occludin changes associated with GYY4137 were investigated using oxygen-glucose deprivation / reoxygenation (OGD/R) model. ELISA, neurological function and other tests showed that GYY4137 ameliorates systemic inflammation and neurological prognosis. Western blotting, transwell migration and tube formation assays showed that GYY4137 improves BBB function both in vivo and in vitro. The detection of autophagy flow and protein degradation pathways showed the inhibition of occludin reduction by GYY4137 was mainly achieved by suppressing autophagy mediated degradation. Taken together, GYY4137 may improve BBB dysfunction following CPR by increasing occludin content. This effect was achieved by inhibiting autophagic degradation rather than promoting synthesis. GYY4137 also mitigated systemic inflammation and improved neurological outcomes after CA/CPR. In summary, our study provides valuable insights into protecting the integrity of BBB and improving neurological outcomes after CPR.
Collapse
Affiliation(s)
- Pengyu Duan
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang Province, China
- The Key Laboratory of Anesthesiology and Intensive Care Research of Heilongjiang Province, Harbin, China
| | - Xiaoyan Li
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang Province, China
- The Key Laboratory of Anesthesiology and Intensive Care Research of Heilongjiang Province, Harbin, China
| | - Yonghong Bi
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang Province, China
- The Key Laboratory of Anesthesiology and Intensive Care Research of Heilongjiang Province, Harbin, China
| | - Weiyu Feng
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang Province, China
- The Key Laboratory of Anesthesiology and Intensive Care Research of Heilongjiang Province, Harbin, China
| | - Zhehao Jin
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang Province, China
- The Key Laboratory of Anesthesiology and Intensive Care Research of Heilongjiang Province, Harbin, China
| | - Xiaoqian Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang Province, China
- The Key Laboratory of Anesthesiology and Intensive Care Research of Heilongjiang Province, Harbin, China
| | - Guanghui He
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang Province, China
- The Key Laboratory of Anesthesiology and Intensive Care Research of Heilongjiang Province, Harbin, China
| | - Da An
- Department of Anesthesiology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zhibin Wen
- Department of Anesthesiology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Bing Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang Province, China.
- The Key Laboratory of Anesthesiology and Intensive Care Research of Heilongjiang Province, Harbin, China.
| |
Collapse
|
3
|
Ye Y, Xie X, Bi Y, Liu Q, Weng X, Qiu L, Zhao H, Hei S, Yang L, Wang C, Zhu W, Zeng T. Naoqing formula alleviates acute ischaemic stroke-induced ferroptosis via activating Nrf2/xCT/GPX4 pathway. Front Pharmacol 2024; 15:1525456. [PMID: 39741629 PMCID: PMC11686226 DOI: 10.3389/fphar.2024.1525456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 11/28/2024] [Indexed: 01/03/2025] Open
Abstract
Backgrounds Ferroptosis is a form of regulated cell death. The accumulation of iron in the brain is linked to trigger ferroptosis after an ischaemic stroke (IS). Naoqing formula (NQ) is a traditional Chinese medicine metabolites with the clinical function of activating blood circulation, which is applied to treat IS clinically in China. Methods Mice and SH-SY5Y cells were utilized to investigate the protective effects and the underlying mechanism of NQ against middle cerebral artery occlusion (MCAO) induced acute ischaemic stroke (AIS) and neuronal cellular ferroptosis caused by ferroptosis inducer Erastin in vitro and in vivo. Utilizing molecular biological techniques, transcriptomics, and proteomics analyses, the role of NQ in Nrf2 regulation and ferroptosis was evaluated through the pharmacologic inhibition of Nrf2. Results NQ attenuated AIS-induced neuronal damage and cerebral infarction by increasing cortical blood flow (CBF). Transcriptomics and proteomics analyses revealed that NQ might regulate lipid and iron metabolism through Nrf2 pathway. Additionally, NQ can protect AIS from ferroptosis by reducing oxidative stress and iron overload. Meanwhile, Nrf2, solute carrier family 7 member 11 (SLC7A11; also known as xCT) and glutathione peroxidase 4 (GPX4) were upregulated in NQ-treated AIS mice. Consistent with the results in vivo, NQ led to ferroptosis resistance upon exposure to a ferroptosis-inducing compound through activation of Nrf2/xCT/GPX4 pathway in vitro. Notably, in vivo inhibition of Nrf2 expression by ML385 aggravated the ferroptotic events and weakened the neuroprotective effect of NQ as well as subsequently reduced the expression of xCT and GPX4. Conclusion This study demonstrated that NQ protected against AIS via suppression of ferroptosis and oxidative stress, which were largely dependent on the upregulation of Nrf2 pathway.
Collapse
Affiliation(s)
- Yujun Ye
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- School of Combine Traditional Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
- Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xuexin Xie
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- School of Combine Traditional Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
- Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yiming Bi
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qing Liu
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xuliang Weng
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lingling Qiu
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - He Zhao
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shangyan Hei
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ling Yang
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chengyin Wang
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weifeng Zhu
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ting Zeng
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Cazalla E, Cuadrado A, García-Yagüe ÁJ. Role of the transcription factor NRF2 in maintaining the integrity of the Blood-Brain Barrier. Fluids Barriers CNS 2024; 21:93. [PMID: 39574123 PMCID: PMC11580557 DOI: 10.1186/s12987-024-00599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND The Blood-Brain Barrier (BBB) is a complex and dynamic interface that regulates the exchange of molecules and cells between the blood and the central nervous system. It undergoes structural and functional throughout oxidative stress and inflammation, which may compromise its integrity and contribute to the pathogenesis of neurodegenerative diseases. MAIN BODY Maintaining BBB integrity is of utmost importance in preventing a wide range of neurological disorders. NRF2 is the main transcription factor that regulates cellular redox balance and inflammation-related gene expression. It has also demonstrated a potential role in regulating tight junction integrity and contributing to the inhibition of ECM remodeling, by reducing the expression of several metalloprotease family members involved in maintaining BBB function. Overall, we review current insights on the role of NRF2 in addressing protection against the effects of BBB dysfunction, discuss its involvement in BBB maintenance in different neuropathological diseases, as well as, some of its potential activators that have been used in vitro and in vivo animal models for preventing barrier dysfunction. CONCLUSIONS Thus, emerging evidence suggests that upregulation of NRF2 and its target genes could suppress oxidative stress, and neuroinflammation, restore BBB integrity, and increase its protection.
Collapse
Affiliation(s)
- Eduardo Cazalla
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonio Cuadrado
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ángel Juan García-Yagüe
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain.
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
5
|
Song N, Yu JE, Ji E, Choi KH, Lee S. Hydrogen sulfide inhibits gene expression associated with aortic valve degeneration by inducing NRF2-related pro-autophagy effect in human aortic valve interstitial cells. Mol Cell Biochem 2024; 479:2653-2662. [PMID: 37861880 DOI: 10.1007/s11010-023-04881-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023]
Abstract
Aortic valve stenosis (AS) is the most common valvular heart disease but there are currently no effective medical treatments that can delay disease progression due to a lack of knowledge of the precise pathophysiology. The expression of sulfide: quinone oxidoreductase (SQOR) and nuclear factor erythroid 2-related factor 2 (NRF2) was decreased in the aortic valve of AS patients. However, the role of SQOR and NRF2 in the pathophysiology of AS has not been found. We investigated the effects of hydrogen sulfide (H2S)-releasing compounds on diseased aortic valve interstitial cells (AVICs) to explain the cellular mechanism of SQOR and elucidate the medical value of H2S for AS treatment. Sodium hydrosulfide (NaHS) treatment increased the expression of SQOR and NRF2 gene and consequently induced the NRF2 target genes, such as NAD(P)H quinone dehydrogenase 1 and cystathionine γ-lyase. In addition, NaHS dose-dependently decreased the expression level of fibrosis and inflammation-related genes (MMP9, TNF-α, IL6) and calcification-related genes (ALP, osteocalcin, RUNX2, COL1A1) in human AVICs. Furthermore, NaHS activated the AMPK-mTOR pathway and inhibited the PI3K-AKT pathway, resulting in a pro-autophagy effect in human AVICs. An NRF2 inhibitor, brusatol, attenuated NaHS-induced AMPK activation and decreased the autophagy markers Beclin-1 and LC3AB, suggesting that the mechanism of action of H2S is related to NRF2. In conclusion, H2S decreased gene expression levels related to aortic valve degeneration and activated AMPK-mTOR-mediated pro-autophagy function associated with NRF2 in human AVICs. Therefore, H2S could be a potential therapeutic target for the development of AS treatment.
Collapse
Affiliation(s)
- Naaleum Song
- Division of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Medical Science, Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, 88 Olympic-ro 43 Gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Jeong Eun Yu
- Division of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Medical Science, Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, 88 Olympic-ro 43 Gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Eunhye Ji
- Division of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyoung-Hee Choi
- Division of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sahmin Lee
- Division of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- Department of Medical Science, Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, 88 Olympic-ro 43 Gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
6
|
Ying Q, Rong J, Hong M, Heng Z, Zhang Z, Xu Y. The emerging role of adaptor proteins in regulating innate immunity of sepsis. Pharmacol Res 2024; 205:107223. [PMID: 38797359 DOI: 10.1016/j.phrs.2024.107223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Sepsis is a life-threatening syndrome caused by a dysregulated immune response. A large number of adaptor proteins have been found to play a pivotal role in sepsis via protein-protein interactions, thus participating in inflammatory cascades, leading to the generation of numerous inflammatory cytokines, as well as oxidative stress and regulated cell death. Although available strategies for the diagnosis and management of sepsis have improved, effective and specific treatments are lacking. This review focuses on the emerging role of adaptor proteins in regulating the innate immunity of sepsis and evaluates the potential value of adaptor protein-associated therapeutic strategy for sepsis.
Collapse
Affiliation(s)
- Qiaoyu Ying
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jiabing Rong
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Min Hong
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zetao Heng
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhaocai Zhang
- Department of Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Yinchuan Xu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| |
Collapse
|
7
|
Song Y, Qu Y, Mao C, Zhang R, Jiang D, Sun X. Post-translational modifications of Keap1: the state of the art. Front Cell Dev Biol 2024; 11:1332049. [PMID: 38259518 PMCID: PMC10801156 DOI: 10.3389/fcell.2023.1332049] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
The Keap1-Nrf2 signaling pathway plays a crucial role in cellular defense against oxidative stress-induced damage. Its activation entails the expression and transcriptional regulation of several proteins involved in detoxification and antioxidation processes within the organism. Keap1, serving as a pivotal transcriptional regulator within this pathway, exerts control over the activity of Nrf2. Various post-translational modifications (PTMs) of Keap1, such as alkylation, glycosylation, glutathiylation, S-sulfhydration, and other modifications, impact the binding affinity between Keap1 and Nrf2. Consequently, this leads to the accumulation of Nrf2 and its translocation to the nucleus, and subsequent activation of downstream antioxidant genes. Given the association between the Keap1-Nrf2 signaling pathway and various diseases such as cancer, neurodegenerative disorders, and diabetes, comprehending the post-translational modification of Keap1 not only deepens our understanding of Nrf2 signaling regulation but also contributes to the identification of novel drug targets and biomarkers. Consequently, this knowledge holds immense importance in the prevention and treatment of diseases induced by oxidative stress.
Collapse
Affiliation(s)
- Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Qu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Caiyun Mao
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Deyou Jiang
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xutao Sun
- Department of Synopsis of the Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
8
|
Shentu Y, Chen M, Wang H, Du X, Zhang W, Xie G, Zhou S, Ding L, Zhu Y, Zhu M, Zhang N, Du C, Ma J, Chen R, Yang J, Fan X, Gong Y, Zhang H, Fan J. Hydrogen sulfide ameliorates lipopolysaccharide-induced anxiety-like behavior by inhibiting checkpoint kinase 1 activation in the hippocampus of mice. Exp Neurol 2024; 371:114586. [PMID: 37898396 DOI: 10.1016/j.expneurol.2023.114586] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Hydrogen sulfide (H2S), an endogenous gasotransmitter, exhibits the anxiolytic roles through its anti-inflammatory effects, although its underlying mechanisms remain largely elusive. Emerging evidence has documented that cell cycle checkpoint kinase 1 (Chk1)-regulated DNA damage plays an important role in the neurodegenerative diseases; however, there are few relevant reports on the research of Chk1 in neuropsychiatric diseases. Here, we aimed to investigate the regulatory role of H2S on Chk1 in lipopolysaccharide (LPS)-induced anxiety-like behavior focusing on inflammasome activation in the hippocampus. Cystathionine γ-lyase (CSE, a H2S-producing enzyme) knockout (CSE-/-) mice displayed anxiety-like behavior and activation of inflammasome-mediated inflammatory responses, manifesting by the increase levels of interleukin-1β (IL-1β), IL-6, and ionized calcium-binding adaptor molecule-1 (Iba-1, microglia marker) expression in the hippocampus. Importantly, expression of p-Chk1 and γ-H2AX (DNA damage marker) levels were also increased in the hippocampus of CSE-/- mice. LPS treatment decreased the expression of CSE and CBS while increased p-Chk1 and γ-H2AX levels and inflammasome-activated neuroinflammation in the hippocampus of mice. Moreover, p-Chk1 and γ-H2AX protein levels and cellular immunoactivity were significantly increased while CSE and CBS were markedly decreased in cultured BV2 cells followed by LPS treatment. Treatment of mice with GYY4137, a donor of H2S, inhibited LPS-induced increased in p-Chk1 and γ-H2AX levels, mitigated inflammasome activation and inflammatory responses as well as amelioration of anxiety-like behavior. Notably, SB-218078, a selective Chk1 inhibitor treatment attenuated the effect of LPS on inflammasome activation and inflammatory responses and the induction of anxiety-like behavior. Finally, STAT3 knockdown with AAV-STAT3 shRNA alleviated LPS-induced anxiety-like behavior and inhibited inflammasome activation in the hippocampus, and blockade of NLRP3 with MCC950 attenuated neuroinflammation induction and ameliorated LPS-induced anxiety-like behavior. Overall, this study indicates that downregulation of Chk1 activity by H2S activation may be considered as a valid strategy for preventing the progression of LPS-induced anxiety-like behavior.
Collapse
Affiliation(s)
- Yangping Shentu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Mengfan Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hui Wang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaotong Du
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Institute of Cixi Biomedical Research, Wenzhou Medical University, Cixi, Zhejiang 315302, China
| | - Wenjing Zhang
- Renji College, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guizhen Xie
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shaoyan Zhou
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lu Ding
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yun Zhu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Min Zhu
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Nan Zhang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Congkuo Du
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianshe Ma
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ran Chen
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jinge Yang
- Department of Medical Technology, Jiangxi Medical College, Shangrao, Jiangxi 334709, China
| | - Xiaofang Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yongsheng Gong
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Institute of Cixi Biomedical Research, Wenzhou Medical University, Cixi, Zhejiang 315302, China.
| | - Junming Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Institute of Cixi Biomedical Research, Wenzhou Medical University, Cixi, Zhejiang 315302, China.
| |
Collapse
|
9
|
Li Y, Chen L, Zheng D, Liu JX, Liu C, Qi SH, Hu PC, Yang XF, Min JW. Echinocystic acid alleviated hypoxic-ischemic brain damage in neonatal mice by activating the PI3K/Akt/Nrf2 signaling pathway. Front Pharmacol 2023; 14:1103265. [PMID: 36843928 PMCID: PMC9947717 DOI: 10.3389/fphar.2023.1103265] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is considered a major cause of death and long-term neurological injury in newborns. Studies have demonstrated that oxidative stress and apoptosis play a major role in the progression of neonatal HIE. Echinocystic acid (EA), a natural plant extract, shows great antioxidant and antiapoptotic activities in various diseases. However, it has not yet been reported whether EA exerts a neuroprotective effect against neonatal HIE. Therefore, this study was undertaken to explore the neuroprotective effects and potential mechanisms of EA in neonatal HIE using in vivo and in vitro experiments. In the in vivo study, a hypoxic-ischemic brain damage (HIBD) model was established in neonatal mice, and EA was administered immediately after HIBD. Cerebral infarction, brain atrophy and long-term neurobehavioral deficits were measured. Hematoxylin and eosin (H&E), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and dihydroethidium (DHE) staining were performed, and the contents of malondialdehyde (MDA) and glutathione (GSH) were detected. In the in vitro study, an oxygen-glucose deprivation/reperfusion (OGD/R) model was employed in primary cortical neurons, and EA was introduced during OGD/R. Cell death and cellular ROS levels were determined. To illustrate the mechanism, the PI3K inhibitor LY294002 and Nrf2 inhibitor ML385 were used. The protein expression levels of p-PI3K, PI3K, p-Akt, Akt, Nrf2, NQO1, and HO-1 were measured by western blotting. The results showed that EA treatment significantly reduced cerebral infarction, attenuated neuronal injury, and improved brain atrophy and long-term neurobehavioral deficits in neonatal mice subjected to HIBD. Meanwhile, EA effectively increased the survival rate in neurons exposed to OGD/R and inhibited oxidative stress and apoptosis in both in vivo and in vitro studies. Moreover, EA activated the PI3K/Akt/Nrf2 pathway in neonatal mice following HIBD and in neurons after OGD/R. In conclusion, these results suggested that EA alleviated HIBD by ameliorating oxidative stress and apoptosis via activation of the PI3K/Akt/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Ling Chen
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Da Zheng
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Jian-Xia Liu
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Chao Liu
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Shao-Hua Qi
- Department of Systems Medicine and Bioengineering, Houston Methodist Cancer Center, Weill Cornell Medicine, Houston, TX, United States
| | - Peng-Chao Hu
- Department of Oncology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Xiao-Fei Yang
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China
| | - Jia-Wei Min
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, China,*Correspondence: Jia-Wei Min,
| |
Collapse
|
10
|
Electroacupuncture Alleviates Neuroinflammation by Inhibiting the HMGB1 Signaling Pathway in Rats with Sepsis-Associated Encephalopathy. Brain Sci 2022; 12:brainsci12121732. [PMID: 36552192 PMCID: PMC9776077 DOI: 10.3390/brainsci12121732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/29/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Sepsis-Associated Encephalopathy (SAE) is common in sepsis patients, with high mortality rates. It is believed that neuroinflammation is an important mechanism involved in SAE. High mobility group box 1 protein (HMGB1), as a late pro-inflammatory factor, is significantly increased during sepsis in different brain regions, including the hippocampus. HMGB1 causes neuroinflammation and cognitive impairment through direct binding to advanced glycation end products (RAGE) and Toll-like receptor 4 (TLR4). Electroacupuncture (EA) at Baihui (GV20) and Zusanli (ST36) is beneficial for neurological diseases and experimental sepsis. Our study used EA to treat SAE induced by lipopolysaccharide (LPS) in male Sprague-Dawley rats. The Y maze test was performed to assess working memory. Immunofluorescence (IF) and Western blotting (WB) were used to determine neuroinflammation and the HMGB1 signaling pathway. Results showed that EA could improve working memory impairment in rats with SAE. EA alleviated neuroinflammation by downregulating the hippocampus's HMGB1/TLR4 and HMGB1/RAGE signaling, reducing the levels of pro-inflammatory factors, and relieving microglial and astrocyte activation. However, EA did not affect the tight junctions' expression of the blood-brain barrier (BBB) in the hippocampus.
Collapse
|
11
|
Zhan L, Zheng J, Meng J, Fu D, Pang L, Ji C. Toll-like receptor 4 deficiency alleviates lipopolysaccharide-induced intestinal barrier dysfunction. Biomed Pharmacother 2022; 155:113778. [DOI: 10.1016/j.biopha.2022.113778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/02/2022] Open
|
12
|
Recent Development of the Molecular and Cellular Mechanisms of Hydrogen Sulfide Gasotransmitter. Antioxidants (Basel) 2022; 11:antiox11091788. [PMID: 36139861 PMCID: PMC9495975 DOI: 10.3390/antiox11091788] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Hydrogen sulfide has been recently identified as the third biological gasotransmitter, along with the more well studied nitric oxide (NO) and carbon monoxide (CO). Intensive studies on its potential as a therapeutic agent for cardiovascular, inflammatory, infectious and neuropathological diseases have been undertaken. Here we review the possible direct targets of H2S in mammals. H2S directly interacts with reactive oxygen/nitrogen species and is involved in redox signaling. H2S also reacts with hemeproteins and modulates metal-containing complexes. Once being oxidized, H2S can persulfidate proteins by adding -SSH to the amino acid cysteine. These direct modifications by H2S have significant impact on cell structure and many cellular functions, such as tight junctions, autophagy, apoptosis, vesicle trafficking, cell signaling, epigenetics and inflammasomes. Therefore, we conclude that H2S is involved in many important cellular and physiological processes. Compounds that donate H2S to biological systems can be developed as therapeutics for different diseases.
Collapse
|
13
|
de Mello AH, Liu T, Garofalo RP, Casola A. Hydrogen Sulfide Donor GYY4137 Rescues NRF2 Activation in Respiratory Syncytial Virus Infection. Antioxidants (Basel) 2022; 11:1410. [PMID: 35883901 PMCID: PMC9311616 DOI: 10.3390/antiox11071410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/14/2022] Open
Abstract
Respiratory syncytial virus (RSV) can cause severe respiratory illness in infants, immunocompromised, and older adults. Despite its burden, no vaccine or specific treatment is available. RSV infection is associated with increased reactive oxygen species (ROS) production, degradation of the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2), and decreased antioxidant enzymes (AOEs), leading to oxidative damage and lung injury. Hydrogen sulfide (H2S) is an endogenous gaseous molecule that plays a physiological role in numerous cellular processes and a protective role in multiple pathological conditions, displaying vasoactive, cytoprotective, anti-inflammatory, and antioxidant activities. H2S can promote NRF2 activation through the sulfhydration of Kelch-like ECH-associated protein 1, the cytoplasmic repressor of NRF2. Here we investigated whether increasing cellular H2S levels could rescue NRF2 and NRF2-dependent gene expression in RSV-infected primary airway epithelial cells. We found that treatment with the H2S donor GYY4137 significantly increased NRF2 levels and AOEs gene expression by decreasing KEAP1 levels, and by modulating pathways involved in RSV-induced NRF2 degradation, such as NRF2 ubiquitination, and promyelocytic leukemia (PML) protein levels. These results suggest that the administration of exogenous H2S can positively impact the altered redox balance associated with RSV infection, which represents an important determinant of RSV-induced lung disease.
Collapse
Affiliation(s)
- Aline Haas de Mello
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA; (A.H.d.M.); (T.L.); (R.P.G.)
| | - Tianshuang Liu
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA; (A.H.d.M.); (T.L.); (R.P.G.)
| | - Roberto P. Garofalo
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA; (A.H.d.M.); (T.L.); (R.P.G.)
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Antonella Casola
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA; (A.H.d.M.); (T.L.); (R.P.G.)
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
14
|
Gupta R, Sahu M, Tripathi R, Ambasta RK, Kumar P. Protein S-sulfhydration: Unraveling the prospective of hydrogen sulfide in the brain, vasculature and neurological manifestations. Ageing Res Rev 2022; 76:101579. [PMID: 35124235 DOI: 10.1016/j.arr.2022.101579] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) and hydrogen polysulfides (H2Sn) are essential regulatory signaling molecules generated by the entire body, including the central nervous system. Researchers have focused on the classical H2S signaling from the past several decades, whereas the last decade has shown the emergence of H2S-induced protein S-sulfhydration signaling as a potential therapeutic approach. Cysteine S-persulfidation is a critical paradigm of post-translational modification in the process of H2S signaling. Additionally, studies have shown the cross-relationship between S-sulfhydration and other cysteine-induced post-translational modifications, namely nitrosylation and carbonylation. In the central nervous system, S-sulfhydration is involved in the cytoprotection through various signaling pathways, viz. inflammatory response, oxidative stress, endoplasmic reticulum stress, atherosclerosis, thrombosis, and angiogenesis. Further, studies have demonstrated H2S-induced S-sulfhydration in regulating different biological processes, such as mitochondrial integrity, calcium homeostasis, blood-brain permeability, cerebral blood flow, and long-term potentiation. Thus, protein S-sulfhydration becomes a crucial regulatory molecule in cerebrovascular and neurodegenerative diseases. Herein, we first described the generation of intracellular H2S followed by the application of H2S in the regulation of cerebral blood flow and blood-brain permeability. Further, we described the involvement of S-sulfhydration in different biological and cellular functions, such as inflammatory response, mitochondrial integrity, calcium imbalance, and oxidative stress. Moreover, we highlighted the importance of S-sulfhydration in cerebrovascular and neurodegenerative diseases.
Collapse
|
15
|
Zhu Z, Chambers S, Zeng Y, Bhatia M. Gases in Sepsis: Novel Mediators and Therapeutic Targets. Int J Mol Sci 2022; 23:3669. [PMID: 35409029 PMCID: PMC8998565 DOI: 10.3390/ijms23073669] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Sepsis, a potentially lethal condition resulting from failure to control the initial infection, is associated with a dysregulated host defense response to pathogens and their toxins. Sepsis remains a leading cause of morbidity, mortality and disability worldwide. The pathophysiology of sepsis is very complicated and is not yet fully understood. Worse still, the development of effective therapeutic agents is still an unmet need and a great challenge. Gases, including nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S), are small-molecule biological mediators that are endogenously produced, mainly by enzyme-catalyzed reactions. Accumulating evidence suggests that these gaseous mediators are widely involved in the pathophysiology of sepsis. Many sepsis-associated alterations, such as the elimination of invasive pathogens, the resolution of disorganized inflammation and the preservation of the function of multiple organs and systems, are shaped by them. Increasing attention has been paid to developing therapeutic approaches targeting these molecules for sepsis/septic shock, taking advantage of the multiple actions played by NO, CO and H2S. Several preliminary studies have identified promising therapeutic strategies for gaseous-mediator-based treatments for sepsis. In this review article, we summarize the state-of-the-art knowledge on the pathophysiology of sepsis; the metabolism and physiological function of NO, CO and H2S; the crosstalk among these gaseous mediators; and their crucial effects on the development and progression of sepsis. In addition, we also briefly discuss the prospect of developing therapeutic interventions targeting these gaseous mediators for sepsis.
Collapse
Affiliation(s)
- Zhixing Zhu
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (Z.Z.); (S.C.)
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China;
| | - Stephen Chambers
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (Z.Z.); (S.C.)
| | - Yiming Zeng
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China;
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (Z.Z.); (S.C.)
| |
Collapse
|
16
|
Zhang Y, Chen S, Tian W, Zhu H, Li W, Dai W, Zhang X, Gu X, Su D. Emerging Trends and Hot Spots in Sepsis-Associated Encephalopathy Research From 2001 to 2021: A Bibliometric Analysis. Front Med (Lausanne) 2022; 9:817351. [PMID: 35295600 PMCID: PMC8918530 DOI: 10.3389/fmed.2022.817351] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/27/2022] [Indexed: 12/30/2022] Open
Abstract
Study Objectives To evaluate sepsis-associated encephalopathy (SAE) research and to quantitatively and qualitatively predict research hot spots using bibliometric analysis. Methods We extracted relevant publications from the Web of Science Core Collection on July 28, 2021. We investigated the retrieved data by bibliometric analysis (e.g. co-cited and cluster analysis, keyword co-occurrence) using the software CiteSpace and VOSviewer, the Online Analysis Platform of Literature Metrology (http://bibliometric.com/) and Bibliometrix to analyse and predict the trends and hot spots in this field. Main Results We identified 1,582 published articles and reviews on SAE from 2001 to 2021. During this period, the number of manuscripts on SAE increased steadily and peaked in 2021. The USA and China were the leading countries that had a critical impact on SAE research. Among all institutions, Vanderbilt University and Pittsburgh University held leading positions and became central in the collaboration network. Among all the journals, Critical Care Medicine published the maximum number of manuscripts in the field of SAE within 20 years. Dal-Pizzol Felipe was the most productive author (61 papers) and received the largest number of citations (930 citations). Co-citation cluster analysis revealed that the most popular terms on SAE in the manner of cluster labels were critical illness, sepsis-associated encephalopathy, polymicrobial sepsis, posterior reversible encephalopathy syndrome, rat brain, intensive care unit, prior sepsis, molecular hydrogen, inflammation drive, metabolic encephalopathies, delirium pathophysiology, and clinical neuroscience. Keyword burst detection indicated that neuroinflammation, blood-brain barrier (BBB) and mitochondria dysfunction were the current research hot spots. Conclusions Our study revealed that neuroinflammation, blood-brain barrier, and mitochondria dysfunction had been the research foci of SAE over the past 20 years. These have emerged as the basis for transformation from basic research to clinical application in finding effective methods for the prevention and treatment of SAE.
Collapse
|
17
|
Luteolin Confers Cerebroprotection after Subarachnoid Hemorrhage by Suppression of NLPR3 Inflammasome Activation through Nrf2-Dependent Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5838101. [PMID: 34777689 PMCID: PMC8589510 DOI: 10.1155/2021/5838101] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 02/07/2023]
Abstract
Luteolin (LUT) possesses multiple biologic functions and has beneficial effects for cardiovascular and cerebral vascular diseases. Here, we investigated the protective effects of LUT against subarachnoid hemorrhage (SAH) and the involvement of underlying molecular mechanisms. In a rat model of SAH, LUT significantly inhibited SAH-induced neuroinflammation as evidenced by reduced microglia activation, decreased neutrophil infiltration, and suppressed proinflammatory cytokine release. In addition, LUT markedly ameliorated SAH-induced oxidative damage and restored the endogenous antioxidant systems. Concomitant with the suppressed oxidative stress and neuroinflammation, LUT significantly improved neurologic function and reduced neuronal cell death after SAH. Mechanistically, LUT treatment significantly enhanced the expression of nuclear factor-erythroid 2-related factor 2 (Nrf2), while it downregulated nod-like receptor pyrin domain-containing 3 (NLRP3) inflammasome activation. Inhibition of Nrf2 by ML385 dramatically abrogated LUT-induced Nrf2 activation and NLRP3 suppression and reversed the beneficial effects of LUT against SAH. In neurons and microglia coculture system, LUT also mitigated oxidative stress, inflammatory response, and neuronal degeneration. These beneficial effects were associated with activation of the Nrf2 and inhibitory effects on NLRP3 inflammasome and were reversed by ML385 treatment. Taken together, this present study reveals that LUT confers protection against SAH by inhibiting NLRP3 inflammasome signaling pathway, which may be modulated by Nrf2 activation.
Collapse
|