1
|
Liu Z, Sun P, He X, Lin D, Ke L, Shi C, Yang H, Deng L, Lin Z, Chen L. Synergistic inactivation effect of ultrasound and nano-emulsified basil essential oil on the metabolic responses of Salmonella on sprouts. Int J Food Microbiol 2025; 431:111082. [PMID: 39893936 DOI: 10.1016/j.ijfoodmicro.2025.111082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
This study investigated the effectiveness and mechanisms of ultrasound (US), nano-emulsified basil essential oil (NBEO), and their combination (NBEO_US) in inactivating Salmonella enterica cells inoculated on pea sprouts. The results demonstrated that the combined treatment was more effective than individual treatments in inactivating the target. This led to a decrease of 4.4 to 5.0 log CFU/g. Transmission electron microscopy showed that NBEO_US leads to the disruption of the bacteria morphology. Additionally, the leakage of cell constituents (proteins and nucleotide) demonstrated that NBEO_US disrupted the structural integrity of S. enterica cells. In addition, the metabolomics analysis using 1H NMR showed that NBEO_US had a detrimental effect on energy and amino acid metabolism in bacterial cells, specifically affecting glycolysis and amino acid production. Also, NBEO_US affected the Embden-Meyerhof-Parnas pathway in S. enterica cells by decreasing the activity of hexokinase, phosphofructokinase, and pyruvate kinase. Finally, the application of NBEO_US resulted in a substantial (P < 0.05) increase in the hardness of the treated pea sprouts while simultaneously decreasing their lightness. The present investigation illustrated the synergistic antibacterial mechanism of NBEO_US against S. enterica strains using sprouts as a food model. By understanding the microbiological changes in metabolic pathways induced by the combined treatment, sanitization strategies can be optimized to specifically target critical vulnerabilities, thereby ensuring safer and more efficient production of fresh produce.
Collapse
Affiliation(s)
- Zifei Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Peiwen Sun
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Xichen He
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Dingsong Lin
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Lijing Ke
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, UK College of Food Science and Engineering, Leeds, LS2 9JT, United Kingdom of Great Britain and Northern Ireland
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongshun Yang
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Lingchi Deng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | - Zejia Lin
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore 117543, Singapore.
| | - Lin Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore.
| |
Collapse
|
2
|
Ni KD, Fu X, Luo Y, He X, Yin HH, Mo DP, Wu JX, Wu MJ, Zheng X, Liu YN, Jiang Q, Zhang LT, Lin AZ, Huang L, Pan QJ, Yin XD, Zhang HY, Meng YW, Zhou X, Pan J, Guo Z, Liu JY. Epoxy metabolites of linoleic acid promote the development of breast cancer via orchestrating PLEC/NFκB1/CXCL9-mediated tumor growth and metastasis. Cell Death Dis 2024; 15:901. [PMID: 39695149 DOI: 10.1038/s41419-024-07300-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Breast cancer (BC) is a common malignant tumor in women and requires a comprehensive understanding of its pathogenesis for the development of new therapeutic strategies. Polyunsaturated fatty acids (PUFAs) metabolism-driven inflammation is a causative factor in cancer development. However, the function of PUFAs' metabolism in BC remains largely unknown. Here we report the role and underlying mechanism of epoxyoctadecenoic acids (EpOMEs), the metabolites of linoleic acid mediated by cytochrome P450 (CYP) monooxygenases, in promoting the development of BC, particularly triple-negative BC (TNBC). A metabolomics study identified that EpOMEs were significantly increased in the plasma of BC patients and MMTV-PyMT mice, which accounted for the upregulation of CYP2J2 in BC tumor tissues and tumor cells. Decreased EpOMEs by treatment of CYP monooxygenase inhibitors significantly alleviated tumor development in MMTV-PyMT mice. Treatment with EpOMEs and overexpression of CYP2J2 to increase EpOMEs in TNBC cells significantly promoted cellular proliferation, migration, tumor growth, and metastasis. Whereas knockdown of CYP2J2 to decrease EpOMEs inhibited tumorigenesis and lung metastasis of TNBC, which was reversed by EpOME administration. Transcriptomics and proteomics analyses revealed CXCL9 and PLEC were critical for EpOME-mediated promotion of TNBC. Knockdown of CXCL9 and PLEC inhibited TNBC progression and EpOME-mediated promotion of TNBC. Both overexpression of CYP2J2 and EpOME treatment upregulate PLEC, while PLEC upregulates NFκB1, which is a transcription regulator of CXCL9. This study extends the understanding of the function of PUFAs metabolism in BC development, providing potential therapeutic targets and dietary guidelines for patients with TNBC and other BCs. The illustration of the hypothetical mechanism CYP2J2/EpOMEs promotes the tumorigenesis and metastasis of TNBC via PLEC/NFKB1/CXCL9 signaling pathway.
Collapse
Affiliation(s)
- Kai-Di Ni
- CNTTI of College of Pharmacy and Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
| | - Xian Fu
- CNTTI of College of Pharmacy and Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
| | - Ying Luo
- Department of Clinical Laboratory, Shanghai Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, China
| | - Xin He
- CNTTI of College of Pharmacy and Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
| | - Hou-Hua Yin
- CNTTI of College of Pharmacy and Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
| | - Dong-Ping Mo
- Department of Clinical Laboratory, Jiangsu Cancer Hospital, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jing-Xian Wu
- Department of Pathology, College of Basic Medicine of Chongqing Medical University, Chongqing, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ming-Jun Wu
- Center for Science & technology Innovation, Chongqing Medical University, Chongqing, China
| | - Xiao Zheng
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
- Center for Novel Target and Therapeutic Intervention (CNTTI), College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Ya-Nan Liu
- CNTTI of College of Pharmacy and Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
| | - Qing Jiang
- CNTTI of College of Pharmacy and Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
| | - Ling-Tong Zhang
- CNTTI of College of Pharmacy and Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
| | - Ai-Zhi Lin
- CNTTI of College of Pharmacy and Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
| | - Ling Huang
- CNTTI of College of Pharmacy and Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
| | - Qing-Jin Pan
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
- Center for Novel Target and Therapeutic Intervention (CNTTI), College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xue-Dong Yin
- The Department of Breast and Thyroid surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huan-Yu Zhang
- The Second Clinical College of Chongqing Medical University, Chongqing, China
| | - Yi-Wen Meng
- CNTTI of College of Pharmacy and Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
| | - Xue Zhou
- CNTTI of College of Pharmacy and Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
| | - Jianbo Pan
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
- Center for Novel Target and Therapeutic Intervention (CNTTI), College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Zufeng Guo
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China
- Center for Novel Target and Therapeutic Intervention (CNTTI), College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jun-Yan Liu
- CNTTI of College of Pharmacy and Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing, China.
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Chung MY, Kim BH. Fatty acids and epigenetics in health and diseases. Food Sci Biotechnol 2024; 33:3153-3166. [PMID: 39328231 PMCID: PMC11422405 DOI: 10.1007/s10068-024-01664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 09/28/2024] Open
Abstract
Lipids are crucial for human health and reproduction and include diverse fatty acids (FAs), notably polyunsaturated FAs (PUFAs) and short-chain FAs (SCFAs) that are known for their health benefits. Bioactivities of PUFAs, including ω-6 and ω-3 FAs as well as SCFAs, have been widely studied in various tissues and diseases. Epigenetic regulation has been suggested as a significant mechanism affecting the progression of various diseases, including cancers and metabolic and inflammatory diseases. Epigenetics encompasses the reversible modulation of gene expression without altering the DNA sequence itself, mediated by mechanisms such as DNA methylation, histone acetylation, and chromatin remodeling. Bioactive FAs have been demonstrated to regulate gene expression via epigenetic modifications that are potentially important for modulating metabolic control and disease risk. This review paper discusses the evidence in support of bioactive FAs, including ω-6 and ω-3 FAs and SCFAs, eliciting various disease prevention via epigenetic regulation including methylation or acetylation. Graphical abstract
Collapse
Affiliation(s)
- Min-Yu Chung
- Department of Food and Nutrition, Gangseo University, Seoul, 07661 Republic of Korea
| | - Byung Hee Kim
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul, 04310 Republic of Korea
| |
Collapse
|
4
|
Dreyfuss JM, Djordjilović V, Pan H, Bussberg V, MacDonald AM, Narain NR, Kiebish MA, Blüher M, Tseng YH, Lynes MD. ScreenDMT reveals DiHOMEs are replicably inversely associated with BMI and stimulate adipocyte calcium influx. Commun Biol 2024; 7:996. [PMID: 39143411 PMCID: PMC11324735 DOI: 10.1038/s42003-024-06646-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
Activating brown adipose tissue (BAT) improves systemic metabolism, making it a promising target for metabolic syndrome. BAT is activated by 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME), which we previously identified to be inversely associated with BMI and which directly improves metabolism in multiple tissues. Here we profile plasma lipidomics from 83 people and test which lipids' association with BMI replicates in a concordant direction using our novel tool ScreenDMT, whose power and validity we demonstrate via mathematical proofs and simulations. We find that the linoleic acid diols 12,13-diHOME and 9,10-diHOME are both replicably inversely associated with BMI and mechanistically activate calcium influx in mouse brown and white adipocytes in vitro, which implicates this signaling pathway and 9,10-diHOME as candidate therapeutic targets. ScreenDMT can be applied to test directional mediation, directional replication, and qualitative interactions, such as identifying biomarkers whose association is shared (replication) or opposite (qualitative interaction) across diverse populations.
Collapse
Affiliation(s)
- Jonathan M Dreyfuss
- Bioinformatics & Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Vera Djordjilović
- Department of Economics, Ca' Foscari University of Venice, Cannaregio 873, Venice, Italy
| | - Hui Pan
- Bioinformatics & Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital, Leipzig, Germany
| | - Yu-Hua Tseng
- Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Matthew D Lynes
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA.
- Department of Medicine, MaineHealth, Portland, ME, USA.
- Roux Institute at Northeastern University, Portland, ME, USA.
| |
Collapse
|
5
|
Klekowski J, Chabowski M, Krzystek-Korpacka M, Fleszar M. The Utility of Lipidomic Analysis in Colorectal Cancer Diagnosis and Prognosis-A Systematic Review of Recent Literature. Int J Mol Sci 2024; 25:7722. [PMID: 39062964 PMCID: PMC11277303 DOI: 10.3390/ijms25147722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Colorectal cancer (CRC) is among the most prevalent and lethal malignancies. Lipidomic investigations have revealed numerous disruptions in lipid profiles across various cancers. Studies on CRC exhibit potential for identifying novel diagnostic or prognostic indicators through lipidomic signatures. This review examines recent literature regarding lipidomic markers for CRC. PubMed database was searched for eligible articles concerning lipidomic biomarkers of CRC. After selection, 36 articles were included in the review. Several studies endeavor to establish sets of lipid biomarkers that demonstrate promising potential to diagnose CRC based on blood samples. Phosphatidylcholine, phosphatidylethanolamine, ceramides, and triacylglycerols (TAGs) appear to offer the highest diagnostic accuracy. In tissues, lysophospholipids, ceramides, and TAGs were among the most altered lipids, while unsaturated fatty acids also emerged as potential biomarkers. In-depth analysis requires both cell culture and animal studies. CRC involves multiple lipid metabolism alterations. Although numerous lipid species have been suggested as potential diagnostic markers, the establishment of standardized methods and the conduct of large-scale studies are necessary to facilitate their clinical application.
Collapse
Affiliation(s)
- Jakub Klekowski
- Department of Nursing and Obstetrics, Division of Anesthesiological and Surgical Nursing, Faculty of Health Science, Wroclaw Medical University, 50-367 Wroclaw, Poland;
- Department of Surgery, 4th Military Clinical Hospital, 50-981 Wroclaw, Poland
| | - Mariusz Chabowski
- Department of Surgery, 4th Military Clinical Hospital, 50-981 Wroclaw, Poland
- Department of Clinical Surgical Sciences, Faculty of Medicine, Wroclaw University of Science and Technology, 50-556 Wroclaw, Poland
| | - Małgorzata Krzystek-Korpacka
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.K.-K.); (M.F.)
| | - Mariusz Fleszar
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.K.-K.); (M.F.)
- Omics Research Center, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
6
|
Meng YW, Liu JY. Pathological and pharmacological functions of the metabolites of polyunsaturated fatty acids mediated by cyclooxygenases, lipoxygenases, and cytochrome P450s in cancers. Pharmacol Ther 2024; 256:108612. [PMID: 38369063 DOI: 10.1016/j.pharmthera.2024.108612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
Oxylipins have garnered increasing attention because they were consistently shown to play pathological and/or pharmacological roles in the development of multiple cancers. Oxylipins are the metabolites of polyunsaturated fatty acids via both enzymatic and nonenzymatic pathways. The enzymes mediating the metabolism of PUFAs include but not limited to lipoxygenases (LOXs), cyclooxygenases (COXs), and cytochrome P450s (CYPs) pathways, as well as the down-stream enzymes. Here, we systematically summarized the pleiotropic effects of oxylipins in different cancers through pathological and pharmacological aspects, with specific reference to the enzyme-mediated oxylipins. We discussed the specific roles of oxylipins on cancer onset, growth, invasion, and metastasis, as well as the expression changes in the associated metabolic enzymes and the associated underlying mechanisms. In addition, we also discussed the clinical application and potential of oxylipins and related metabolic enzymes as the targets for cancer prevention and treatment. We found the specific function of most oxylipins in cancers, especially the underlying mechanisms and clinic applications, deserves and needs further investigation. We believe that research on oxylipins will provide not only more therapeutic targets for various cancers but also dietary guidance for both cancer patients and healthy humans.
Collapse
Affiliation(s)
- Yi-Wen Meng
- CNTTI of the Institute of Life Sciences & Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing 400016, China
| | - Jun-Yan Liu
- CNTTI of the Institute of Life Sciences & Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing 400016, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
7
|
Pourmand E, Zhang F, Sarparast M, Alan JK, Lee KSS. Quantitative Profiling Method for Oxylipins in Neurodegenerative Diseases by Liquid Chromatography Coupled with Tandem Mass Spectrometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560544. [PMID: 37873260 PMCID: PMC10592938 DOI: 10.1101/2023.10.02.560544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Aging is one of the major risk factors for many chronic diseases, including diabetes, neuropathy, hypertension, cancer, and neurodegenerative diseases. However, the mechanism behind aging and how aging affects a variety of disease progression remains unknown. Recent research demonstrated the cytochrome P450 (CYP)-epoxide hydrolase (EH) metabolites of polyunsaturated fatty acids (PUFAs) play a critical role in the abovementioned age-associated diseases. Therefore, aging could affect the abovementioned chronic diseases by modulating CYP-EH PUFA metabolism. Unfortunately, investigating how aging affects CYP-EH metabolism in human and mammalian models poses significant challenges. In this regard, we will use C. elegans as a model organism to investigate the aging effects on CYP-EH metabolism of PUFA, owing to its long history of being used to study aging and its associated benefits of conducting aging research. This project will develop analytical tools to measure the endogenous levels of CYP-EH PUFA metabolites in C. elegans using state-of-the-art ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). These metabolites are very potent but present in low abundance. The dramatic increase in sensitivity in UPLC-MS/MS allows us to monitor these metabolites over the lifespan of C. elegans with minimum samples. Our results show that C. elegans produces similar CYP PUFA metabolites to mammals and humans using our SPE-UPLC-MS/MS method. We will also show that our method successfully determined the CYP-EH PUFA metabolites profile changes induced by the inhibition of C. elegans EH. The method developed from this project will significantly improve our understanding of the role of dietary PUFAs and associated metabolism on aging and neurodegeneration and will uncover new mechanisms of how aging affects neurodegeneration through the modulation of PUFA metabolic pathways.
Collapse
Affiliation(s)
- Elham Pourmand
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Fan Zhang
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Morteza Sarparast
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Jamie K Alan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Kin Sing Stephen Lee
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
- Institute of Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|