1
|
Shim SH, Kim YK, Hwangbo Y, Yoon HJ, Kim JS, Lee YJ, Woo YS, Bahk WM. The Relationship between Plasma Erythropoietin Levels and Symptoms of Attention Deficit Hyperactivity Disorder. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2021; 19:334-340. [PMID: 33888662 PMCID: PMC8077052 DOI: 10.9758/cpn.2021.19.2.334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/16/2020] [Indexed: 01/01/2023]
Abstract
Objective There are animal models associating dopamine dysfunction with behavioral impairments that model attention deficit hyperactivity disorder (ADHD). Erythropoietin (EPO) has trophic effects on dopaminergic neurons. The aim of this study was to examine the EPO plasma levels and determine whether there was any correlation between plasma EPO levels and clinical characteristics of ADHD. Methods Plasma EPO levels were measured in 78 drug-naïve children with ADHD and in 81 healthy children. The severity of ADHD symptoms was determined by scores on the Korean ADHD Rating Scale (K-ARS) in ADHD children and healthy controls. Results The difference between median plasma EPO levels in ADHD children and in healthy controls was not statistically significant. Adjusting for age and sex, a linear regression analysis showed that inattention score was significantly higher in the second highest tertile of plasma EPO compared to those in the lowest tertile. Hyperactivity-impulsivity score was significantly higher in the highest tertile of plasma EPO compared to those in the lowest tertile. Moreover, total K-ARS scores were significantly higher in the second highest tertile of plasma EPO compared to those in the lowest tertile. Conclusion These findings suggest that plasma EPO levels were related to some ADHD symptoms, which could be used in the monitoring of the disorder.
Collapse
Affiliation(s)
- Se-Hoon Shim
- Department of Psychiatry, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, Ansan, Korea
| | - Young Hwangbo
- Department of Preventive Medicine, Soonchunhyang University College of Medicine, Cheonan, Korea
| | | | - Ji Sun Kim
- Department of Psychiatry, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Youn Jung Lee
- Department of Psychiatry, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Korea
| | - Young Sup Woo
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Won-Myong Bahk
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
2
|
Jarero-Basulto JJ, Rivera-Cervantes MC, Gasca-Martínez D, García-Sierra F, Gasca-Martínez Y, Beas-Zárate C. Current Evidence on the Protective Effects of Recombinant Human Erythropoietin and Its Molecular Variants against Pathological Hallmarks of Alzheimer's Disease. Pharmaceuticals (Basel) 2020; 13:ph13120424. [PMID: 33255969 PMCID: PMC7760199 DOI: 10.3390/ph13120424] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Substantial evidence in the literature demonstrates the pleiotropic effects of the administration of recombinant human erythropoietin (rhEPO) and its molecular variants in different tissues and organs, including the brain. Some of these reports suggest that the chemical properties of this molecule by itself or in combination with other agents (e.g., growth factors) could provide the necessary pharmacological characteristics to be considered a potential protective agent in neurological disorders such as Alzheimer’s disease (AD). AD is a degenerative disorder of the brain, characterized by an aberrant accumulation of amyloid β (Aβ) and hyperphosphorylated tau (tau-p) proteins in the extracellular and intracellular space, respectively, leading to inflammation, oxidative stress, excitotoxicity, and other neuronal alterations that compromise cell viability, causing neurodegeneration in the hippocampus and the cerebral cortex. Unfortunately, to date, it lacks an effective therapeutic strategy for its treatment. Therefore, in this review, we analyze the evidence regarding the effects of exogenous EPOs (rhEPO and its molecular variants) in several in vivo and in vitro Aβ and tau-p models of AD-type neurodegeneration, to be considered as an alternative protective treatment to this condition. Particularly, we focus on analyzing the differential effect of molecular variants of rhEPO when changes in doses, route of administration, duration of treatment or application times, are evaluated for the improved cellular alterations generated in this disease. This narrative review shows the evidence of the effectiveness of the exogenous EPOs as potential therapeutic molecules, focused on the mechanisms that establish cellular damage and clinical manifestation in the AD.
Collapse
Affiliation(s)
- José J. Jarero-Basulto
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, Zapopan 45220, Mexico
- Correspondence: (J.J.J.-B.); (M.C.R.-C.); Tel.: +52-33-37771150 ((J.J.J.-B. & M.C.R.-C.)
| | - Martha C. Rivera-Cervantes
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, Zapopan 45220, Mexico
- Correspondence: (J.J.J.-B.); (M.C.R.-C.); Tel.: +52-33-37771150 ((J.J.J.-B. & M.C.R.-C.)
| | - Deisy Gasca-Martínez
- Behavioral Analysis Unit, Neurobiology Institute, Campus UNAM-Juriquilla, Querétaro 76230, Mexico;
| | - Francisco García-Sierra
- Department of Cell Biology, Center of Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Ciudad de Mexico 07360, Mexico;
| | - Yadira Gasca-Martínez
- Development and Neural Regeneration Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, Zapopan 45220, Mexico; (Y.G.-M.); (C.B.-Z.)
| | - Carlos Beas-Zárate
- Development and Neural Regeneration Laboratory, Cell and Molecular Biology Department, CUCBA, University of Guadalajara, Zapopan 45220, Mexico; (Y.G.-M.); (C.B.-Z.)
| |
Collapse
|
3
|
Audet MC, Anisman H. Interplay between pro-inflammatory cytokines and growth factors in depressive illnesses. Front Cell Neurosci 2013; 7:68. [PMID: 23675319 PMCID: PMC3650474 DOI: 10.3389/fncel.2013.00068] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/22/2013] [Indexed: 01/18/2023] Open
Abstract
The development of depressive disorders had long been attributed to monoamine variations, and pharmacological treatment strategies likewise focused on methods of altering monoamine availability. However, the limited success achieved by treatments that altered these processes spurred the search for alternative mechanisms and treatments. Here we provide a brief overview concerning a possible role for pro-inflammatory cytokines and growth factors in major depression, as well as the possibility of targeting these factors in treating this disorder. The data suggest that focusing on one or another cytokine or growth factor might be counterproductive, especially as these factors may act sequentially or in parallel in affecting depressive disorders. It is also suggested that cytokines and growth factors might be useful biomarkers for individualized treatments of depressive illnesses.
Collapse
|
4
|
Janik P, Kwiecinski H, Sokolowska B, Niebroj-Dobosz I. Erythropoietin concentration in serum and cerebrospinal fluid of patients with amyotrophic lateral sclerosis. J Neural Transm (Vienna) 2009; 117:343-7. [PMID: 20012656 DOI: 10.1007/s00702-009-0354-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 11/25/2009] [Indexed: 01/16/2023]
Abstract
Erythropoietin (EPO) acts as a neuroprotective factor and is upregulated after neuronal injury. It has been reported that in cerebrospinal fluid (CSF) of amyotrophic lateral sclerosis (ALS) patients, the EPO concentration is decreased. In this study, EPO levels in serum and CSF of 30 patients with ALS and in 15 controls, using an ELISA technique, were estimated. EPO level in serum was decreased, especially in patients with bulbar onset ALS. A trend toward a progressive EPO decline with the duration of the disease in the mild + moderate ALS cases was observed. In severe cases, a tendency towards a positive correlation of EPO and duration of the disease was present. Serum EPO values were age related only in mild + moderate ALS in patients below 40 years of age. In CSF, the EPO levels were significantly decreased. Lower EPO values in the bulbar onset ALS when compared with the spinal onset ALS were present. The EPO decrease did not correlate with the severity and duration of the disease. Age relation of the EPO level only in the mild + moderate ALS cases more than 40 years was present. Lack of differences in EPO levels between patients with ALS of rapid and slow progression indicates that EPO concentration cannot be used as a prognostic factor. Nevertheless, the decreased serum and CSF EPO concentration and the known EPO neuroprotective action may indicate that EPO administration can be a new promising therapeutic approach in ALS.
Collapse
Affiliation(s)
- P Janik
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | | | | | | |
Collapse
|
5
|
Xu M, Scott JE, Liu KZ, Bishop HR, Renaud DE, Palmer RM, Soussi-Gounni A, Scott DA. The influence of nicotine on granulocytic differentiation - inhibition of the oxidative burst and bacterial killing and increased matrix metalloproteinase-9 release. BMC Cell Biol 2008; 9:19. [PMID: 18412948 PMCID: PMC2375863 DOI: 10.1186/1471-2121-9-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 04/15/2008] [Indexed: 12/25/2022] Open
Abstract
Background Neutrophils leave the bone marrow as terminally differentiated cells, yet little is known of the influence of nicotine or other tobacco smoke components on neutrophil differentiation. Therefore, promyelocytic HL-60 cells were differentiated into neutrophils using dimethylsulfoxide in the presence and absence of nicotine (3-(1-methyl-2-pyrrolidinyl) pyridine). Differentiation was evaluated over 5 days by monitoring terminal differentiation markers (CD11b expression and formazan deposition); cell viability, growth phase, kinetics, and apoptosis; assessing cellular morphology and ultrastructure; and conformational changes to major cellular components. Key neutrophil effector functions (oxidative burst, bacterial killing, matrix metalloproteinase release) were also examined. Results Nicotine increased the percentage of cells in late differentiation phases (metamyelocytes, banded neutrophils and segmented neutrophils) compared to DMSO alone (p < 0.05), but did not affect any other marker of neutrophil differentiation examined. However, nicotine exposure during differentiation suppressed the oxidative burst in HL-60 cells (p < 0.001); inhibited bacterial killing (p < 0.01); and increased the LPS-induced release of MMP-9, but not MMP-2 (p < 0.05). These phenomena may be α-7-acetylcholine nicotinic receptor-dependent. Furthermore, smokers exhibited an increased MMP-9 burden compared to non-smokers in vivo (p < 0.05). Conclusion These findings may partially explain the known increase in susceptibility to bacterial infection and neutrophil-associated destructive inflammatory diseases in individuals chronically exposed to nicotine.
Collapse
Affiliation(s)
- Minqi Xu
- Department of Oral Biology, University of Manitoba, Winnipeg, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Widl K, Brettschneider J, Schattauer D, Süssmuth S, Huber R, Ludolph AC, Tumani H. Erythropoietin in cerebrospinal fluid: age-related reference values and relevance in neurological disease. Neurochem Res 2007; 32:1163-8. [PMID: 17401663 DOI: 10.1007/s11064-007-9286-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 01/11/2007] [Indexed: 10/23/2022]
Abstract
We aimed to establish age-related reference values for Erythropoietin (EPO) in cerebrospinal fluid (CSF) and to evaluate concentrations in neurological diseases. CSF and serum EPO was measured in controls with tension-type headache (CTTH), in patients with ALS, dementia and depression using ELISA technique. Stability experiments showed CSF EPO to be stable for two and a half months and over two thaw/freeze cycles. A positive correlation of CSF EPO with age was found (P<0.01). We found a CSF/serum EPO concentration ratio of 0.126, pointing towards an intrathecal synthesis of EPO. The ALS group showed significantly lowered CSF EPO compared to age-matched CTTH (P<0.012), whereas the dementia and depression group showed no significant differences compared to CTTH.The establishment of age-related reference values in a large cohort of controls will improve the interpretation of future CSF EPO evaluations in neurological diseases.
Collapse
Affiliation(s)
- Karin Widl
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081, Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|
7
|
Brettschneider J, Widl K, Schattauer D, Ludolph AC, Tumani H. Cerebrospinal fluid erythropoietin (EPO) in amyotrophic lateral sclerosis. Neurosci Lett 2007; 416:257-60. [PMID: 17368721 DOI: 10.1016/j.neulet.2007.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Revised: 01/28/2007] [Accepted: 02/01/2007] [Indexed: 11/17/2022]
Abstract
A candidate neuroprotective agent for neurodegenerative disorders is erythropoietin (EPO). We measured EPO in cerebrospinal fluid (CSF) and serum of patients with amyotrophic lateral sclerosis (ALS). Patients with ALS (N=60), Alzheimer's disease (AD, N=20) and age-matched controls (N=33) were included. Patients with ALS included 30 patients who showed a rapid progression of disease, and 30 patients that showed a slower progression. EPO was measured using ELISA technique. We found CSF EPO levels to be lower in ALS as compared to AD and controls (p<0.05), while no differences were found with regard to serum levels. Patients with ALS who showed a rapid disease progression had lower CSF EPO levels compared to those who progressed more slowly (p=0.03). Low CSF EPO in ALS may imply that the EPO-associated capacity to protect neurons from degeneration is impaired in ALS. Low concentrations of CSF EPO seem to point towards a rapid progression of disease that may be associated with a poorer prognosis.
Collapse
|
8
|
Brettschneider J, Widl K, Ehrenreich H, Riepe M, Tumani H. Erythropoietin in the cerebrospinal fluid in neurodegenerative diseases. Neurosci Lett 2006; 404:347-51. [PMID: 16815630 DOI: 10.1016/j.neulet.2006.06.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 05/31/2006] [Accepted: 06/05/2006] [Indexed: 11/17/2022]
Abstract
Erythropoietin (EPO) and its specific receptor (EPOR) have been proposed to act as an endogenous system protecting against neuronal injury and neurodegeneration. We measured EPO in cerebrospinal fluid (CSF) of patients with neurodegenerative diseases, and tested for a correlation with an established biomarker of neuro-axonal damage, tau protein. Patients with Alzheimer's disease (AD, N=40), vascular dementia (VD, N=19), frontotemporal lobe dementia (FTLD, N=5), ALS (N=30) and controls (N=49) were included. Cerebrospinal fluid and serum levels of EPO and tau were measured using ELISA techniques. We found CSF EPO in ALS to be lower than in controls (p=0.04), while no difference between patients with AD, VD, FTLD and controls was detectable. CSF EPO correlated with age (p<0.001) as well as with tau protein (p=0.002) in all patients pooled. In contrast to the upregulation of the EPO/EPOR system in brain tissue upon various conditions of neuronal distress, CSF EPO concentrations in neurodegenerative disease were found in the same range or even reduced as compared to controls. This may be due to a relative deficiency of endogenous CNS EPO in these conditions and/or to a more efficient extraction of free EPO molecules from brain intercellular fluid by increased numbers of EPOR.
Collapse
|
9
|
Buemi M, Cavallaro E, Floccari F, Sturiale A, Aloisi C, Trimarchi M, Corica F, Frisina N. The pleiotropic effects of erythropoietin in the central nervous system. J Neuropathol Exp Neurol 2003; 62:228-36. [PMID: 12638727 DOI: 10.1093/jnen/62.3.228] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Erythropoietin (Epo) is a hydrophobic sialoglycoproteic hormone produced by the kidney and responsible for the proliferation, maturation, and differentiation of the precursors of the erythroid cell line. Human recombinant erythropoietin (rHuEpo) is used to treat different types of anemia, not only in uremic patients but also in newborns with anemia of prematurity, in patients with cancer-related anemia or myeloproliferative disease, thalassemias, bone marrow transplants, or those with chronic infectious diseases. The pleiotropic functions of Epo are well known. It has been shown that this hormone can modulate the inflammatory and immune response, has direct hemodynamic and vasoactive effects, could be considered a proangiogenic factor because of its interaction with vascular endothelial growth factor, and its ability to stimulate mitosis and motility of endothelial cells. The multifunctional role of Epo has further been confirmed by the discovery in the central nervous system of a specific Epo/Epo receptor (EpoR) system. Both Epo and EpoR are expressed by astrocytes and neurons and Epo is present in the cerebrospinal fluid (CSF). Therefore, novel functions of Epo, tissue-specific regulation, and the mechanisms of action have been investigated. In this review we have tried to summarize the current data on the role of Epo on brain function. We discuss the different sites of cerebral expression and mechanisms of regulation of Epo and its receptor and its role in the development and maturation of the brain. Second, we discuss the neurotrophic and neuroprotective function of Epo in different conditions of neuronal damage, such as hypoxia, cerebral ischemia, and subarachnoid hemorrhage, and the consequent possibility that rHuEpo therapy could soon be used in clinical practice to limit neuronal damage induced by these diseases.
Collapse
Affiliation(s)
- M Buemi
- Unità di Terapia Subintensiva Metabolica e Dialitica, Dipartimento di Medicina Interna,Università di Messina, Messina, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Sugawa M, Sakurai Y, Ishikawa-Ieda Y, Suzuki H, Asou H. Effects of erythropoietin on glial cell development; oligodendrocyte maturation and astrocyte proliferation. Neurosci Res 2002; 44:391-403. [PMID: 12445627 DOI: 10.1016/s0168-0102(02)00161-x] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigated the effects of erythropoietin (Epo) in glial cell development, especially the maturation of late stage immature oligodendrocytes and the proliferation of astrocytes. Epo mRNA level in oligodendrocytes was much more prominent than those in neurons or astrocytes, which were the same as those in the young adult kidney, while Epo receptor (Epo-R) mRNA level were almost the same among neural cells, kidney and liver tissues. On immunohistochemical examination, Epo-R expression was also detected in O4-positive immature oligodendrocytes and glial fibrillary acidic protein positive astrocytes. These results suggested that types of both glial cells are responsive to Epo. The numbers of mature oligodendrocytes, which are characterized by myelin basic protein and process development, were increased by treatment with recombinant human Epo (rhEpo) (0.001-0.1 U/ml). The maturation of oligodendrocytes was also enhanced by coculture with astrocytes in vitro. However, when mixed cultured cells (oligodendrocytes+astrocytes) were treated with anti-Epo antibody and/or soluble Epo-R, the differentiation of oligodendrocytes was partially inhibited. Interestingly, high dose rhEpo (1, 3, 10 U/ml) markedly enhanced the proliferation of astrocytes. These results suggested that Epo not only promotes the differentiation and/or maturation in oligodendrocytes, but also enhances the proliferation of astrocytes. It is generally accepted that astrocytes produce Epo, and therefore Epo might act on astrocytes in an autocrine manner. The astrocytes stimulated with Epo may further accelerate the maturation of oligodendrocytes. These comprehensive effects of Epo might also affect the ability of oligodendrocyte lineage cells to promote myelin repair in the normal and damaged adult central nervous system.
Collapse
Affiliation(s)
- Makoto Sugawa
- Fuji-Gotemba Research Laboratories, Chugai Pharmaceutical Company Ltd, 1-135 Komakado, Gotemba, Shizuoka 412-8513, Japan.
| | | | | | | | | |
Collapse
|
11
|
Abstract
Epo was once regarded as a cytokine with only hematopoietic effects. It is now clear that the distributions of Epo and Epo-R are more widespread in the developing human. Epo-R is widely distributed during early fetal development, leading to speculation that Epo acts in concert with other growth factors to optimize growth and development. Areas in which Epo has important recognized effects are on endothelial cells, and in the developing heart, gastrointestinal tract, and brain. It may also be important in the regulation of vascular growth during the menstrual cycle, and in the stimulation of testosterone production in men. Epo and Epo-R are prominent in the brain during fetal development, leading to speculation that they play an important role in neurodevelopment. There are also promising data regarding rEpo as a possible neuroprotective agent in such conditions as hypoxia, because it decreases programmed cell death induced during such adverse conditions. It is unlikely, however, that rEpo crosses the blood-brain barrier in normal premature infants, and it is not clear whether the CNS effects of rEpo, should it cross the blood-brain barrier, are harmful or beneficial in the setting of a developing brain.
Collapse
Affiliation(s)
- S E Juul
- Division of Neonatology, University of Florida College of Medicine, Gainesville, USA.
| |
Collapse
|
12
|
Affiliation(s)
- S E Juul
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, USA
| |
Collapse
|