1
|
Fujita S, Yoshida S, Matsuki T, Jaiswal MK, Seki K. The α1-adrenergic receptors in the amygdala regulate the induction of learned despair through protein kinase C-beta signaling. Behav Pharmacol 2021; 32:73-85. [PMID: 33164996 DOI: 10.1097/fbp.0000000000000605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hyperactivity of amygdala is observed in patients with major depressive disorder. Although the role of α1-adrenoceptor in amygdala on fear memory has been well studied, the role of α1-adrenoceptor in amygdala on depression-like behaviors remains unclear. Therefore, we investigated the effect of α1A-adrenoreceptor in amygdala on despair behavior, evaluated by the immobility time during tail suspension test (TST), pharmacological intervention, and immunohistological methods. C57BL6/J mice given a bilateral intra-amygdala injection of artificial cerebrospinal fluid exhibited an increased duration of immobility in the latter half of both trials of TST with a 24-h interval, a phenomenon known as learned despair. Intra-amygdala injection of WB4101 (1.7 nmol/0.1 µl), an α1 adrenoreceptor antagonist, but not propranolol (250 pmol/0.1 µl), a β-adrenoreceptor antagonist, blocked the induction of learned despair during TST. Immunostaining experiments revealed that ~61-75% of α1A-adrenoreceptor-positive neurons were colocalized with GAD65/67 in amygdala, implying that the α1-adrenoceptors in amygdala may enormously regulate the GABA release. Protein kinase C-beta (PKCβ) was predominantly expressed in the α1A-adrenoreceptor-positive neurons in the BLA, whereas protein kinase C-epsilon (PKCε) was highly expressed with the α1A-adrenoreceptor in the Central nucleus of amygdala. Intra-amygdala injection of ruboxistaurin (10 pmol/0.1 µl), a PKCβ inhibitor, blocked the induction of learned despair during TST, whereas neither TAT-εV1-2 (500 ng/0.1 μl), a cell-permeant PKCε inhibitory peptide, nor HBDDE (50 pmol/0.1 µl), an inhibitor of PKCα and -γ, affected the duration of immobility during TST. These data suggest that the α1-adrenoreceptor in amygdala regulates the induction of learned despair via PKCβ.
Collapse
Affiliation(s)
- Shisui Fujita
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, Koriyama, Fukushima
| | - Satomi Yoshida
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, Koriyama, Fukushima
| | - Tohru Matsuki
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Manoj Kumar Jaiswal
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kenjiro Seki
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, Koriyama, Fukushima
| |
Collapse
|
2
|
Hoffman JL, Faccidomo S, Kim M, Taylor SM, Agoglia AE, May AM, Smith EN, Wong LC, Hodge CW. Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 148:169-230. [PMID: 31733664 PMCID: PMC6939615 DOI: 10.1016/bs.irn.2019.10.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that represents the most common cause of dementia in the United States. Although the link between alcohol use and AD has been studied, preclinical research has potential to elucidate neurobiological mechanisms that underlie this interaction. This study was designed to test the hypothesis that nondependent alcohol drinking exacerbates the onset and magnitude of AD-like neural and behavioral pathology. We first evaluated the impact of voluntary 24-h, two-bottle choice home-cage alcohol drinking on the prefrontal cortex and amygdala neuroproteome in C57BL/6J mice and found a striking association between alcohol drinking and AD-like pathology. Bioinformatics identified the AD-associated proteins MAPT (Tau), amyloid beta precursor protein (APP), and presenilin-1 (PSEN-1) as the main modulators of alcohol-sensitive protein networks that included AD-related proteins that regulate energy metabolism (ATP5D, HK1, AK1, PGAM1, CKB), cytoskeletal development (BASP1, CAP1, DPYSL2 [CRMP2], ALDOA, TUBA1A, CFL2, ACTG1), cellular/oxidative stress (HSPA5, HSPA8, ENO1, ENO2), and DNA regulation (PURA, YWHAZ). To address the impact of alcohol drinking on AD, studies were conducted using 3xTg-AD mice that express human MAPT, APP, and PSEN-1 transgenes and develop AD-like brain and behavioral pathology. 3xTg-AD and wild-type mice consumed alcohol or saccharin for 4 months. Behavioral tests were administered during a 1-month alcohol-free period. Alcohol intake induced AD-like behavioral pathologies in 3xTg-AD mice including impaired spatial memory in the Morris Water Maze, diminished sensorimotor gating as measured by prepulse inhibition, and exacerbated conditioned fear. Multiplex immunoassay conducted on brain lysates showed that alcohol drinking upregulated primary markers of AD pathology in 3xTg-AD mice: Aβ 42/40 ratio in the lateral entorhinal and prefrontal cortex and total Tau expression in the lateral entorhinal cortex, medial prefrontal cortex, and amygdala at 1-month post alcohol exposure. Immunocytochemistry showed that alcohol use upregulated expression of pTau (Ser199/Ser202) in the hippocampus, which is consistent with late-stage AD. According to the NIA-AA Research Framework, these results suggest that alcohol use is associated with Alzheimer's pathology. Results also showed that alcohol use was associated with a general reduction in Akt/mTOR signaling via several phosphoproteins (IR, IRS1, IGF1R, PTEN, ERK, mTOR, p70S6K, RPS6) in multiple brain regions including hippocampus and entorhinal cortex. Dysregulation of Akt/mTOR phosphoproteins suggests alcohol may target this pathway in AD progression. These results suggest that nondependent alcohol drinking increases the onset and magnitude of AD-like neural and behavioral pathology in 3xTg-AD mice.
Collapse
Affiliation(s)
- Jessica L Hoffman
- Department of Psychiatry, Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sara Faccidomo
- Department of Psychiatry, Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Michelle Kim
- Department of Psychiatry, Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Seth M Taylor
- Department of Psychiatry, Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Abigail E Agoglia
- Department of Psychiatry, Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ashley M May
- Department of Psychiatry, Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Evan N Smith
- Department of Psychiatry, Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - L C Wong
- Department of Psychiatry, Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Clyde W Hodge
- Department of Psychiatry, Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
3
|
Kumar S, Porcu P, Werner DF, Matthews DB, Diaz-Granados JL, Helfand RS, Morrow AL. The role of GABA(A) receptors in the acute and chronic effects of ethanol: a decade of progress. Psychopharmacology (Berl) 2009; 205:529-64. [PMID: 19455309 PMCID: PMC2814770 DOI: 10.1007/s00213-009-1562-z] [Citation(s) in RCA: 334] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 04/30/2009] [Indexed: 12/12/2022]
Abstract
The past decade has brought many advances in our understanding of GABA(A) receptor-mediated ethanol action in the central nervous system. We now know that specific GABA(A) receptor subtypes are sensitive to ethanol at doses attained during social drinking while other subtypes respond to ethanol at doses attained by severe intoxication. Furthermore, ethanol increases GABAergic neurotransmission through indirect effects, including the elevation of endogenous GABAergic neuroactive steroids, presynaptic release of GABA, and dephosphorylation of GABA(A) receptors promoting increases in GABA sensitivity. Ethanol's effects on intracellular signaling also influence GABAergic transmission in multiple ways that vary across brain regions and cell types. The effects of chronic ethanol administration are influenced by adaptations in GABA(A) receptor function, expression, trafficking, and subcellular localization that contribute to ethanol tolerance, dependence, and withdrawal hyperexcitability. Adolescents exhibit altered sensitivity to ethanol actions, the tendency for higher drinking and longer lasting GABAergic adaptations to chronic ethanol administration. The elucidation of the mechanisms that underlie adaptations to ethanol exposure are leading to a better understanding of the regulation of inhibitory transmission and new targets for therapies to support recovery from ethanol withdrawal and alcoholism.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, 3027 Thurston-Bowles Building, CB #7178, Chapel Hill, NC 27599-7178, USA
| | - Patrizia Porcu
- Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, 3027 Thurston-Bowles Building, CB #7178, Chapel Hill, NC 27599-7178, USA
| | - David F. Werner
- Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, 3027 Thurston-Bowles Building, CB #7178, Chapel Hill, NC 27599-7178, USA
| | | | | | - Rebecca S. Helfand
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| | - A. Leslie Morrow
- Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, 3027 Thurston-Bowles Building, CB #7178, Chapel Hill, NC 27599-7178, USA, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, 3027 Thurston-Bowles Building, CB #7178, Chapel Hill, NC 27599-7178, USA
| |
Collapse
|
4
|
DeFazio RA, Raval AP, Lin HW, Dave KR, Della-Morte D, Perez-Pinzon MA. GABA synapses mediate neuroprotection after ischemic and epsilonPKC preconditioning in rat hippocampal slice cultures. J Cereb Blood Flow Metab 2009; 29:375-84. [PMID: 18957990 PMCID: PMC2696173 DOI: 10.1038/jcbfm.2008.126] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Delayed neuroprotection against ischemic challenges is conferred by both ischemic preconditioning (IPC) and preconditioning by activation of the epsilon-isoform of protein kinase C (epsilonPKC-PC). In vivo, ischemic preconditioning enhances GABA release and ameliorates glutamate release during lethal cerebral ischemia. We tested the hypothesis that IPC and epsilonPKC-PC confer neuroprotection by GABA synapses in rat organotypic hippocampal slices. Ischemic preconditioning or epsilonPKC-PC was induced with 15 mins oxygen-glucose deprivation (OGD) or psiepsilonRACK, a selective epsilonPKC activator; and test ischemia consisted of 40 mins OGD. At the time of peak neuroprotection (48 h after preconditioning), we recorded GABA(A) receptor-mediated miniature postsynaptic currents (GABA mPSCs) in vulnerable CA1 pyramidal neurons using whole-cell voltage clamp techniques. The frequency and amplitude of GABA mPSCs significantly increased 48 h after IPC. In contrast, epsilonPKC-PC enhanced only the amplitude of GABA mPSCs with no effect on frequency. We next asked if neuroprotection depended on these changes in GABA synapses. Weak antagonism of the GABA(A) receptor with bicuculline (100 nmol/L) decreased the amplitude of GABA mPSCs by 20.9+/-6.1%. When applied during test ischemia, 100 nmol/L bicuculline abolished neuroprotection conferred by either IPC or epsilonPKC-PC. We conclude that neuroprotection conferred by preconditioning depends on functional modifications of GABA synapses.
Collapse
Affiliation(s)
- R Anthony DeFazio
- Cerebral Vascular Disease Research Center, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida 33101, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Matowe WC, Ananthalakshmi KVV, Kombian SB. Role of protein kinase C in substance P-induced synaptic depression in the nucleus accumbens in vitro. Med Princ Pract 2007; 16:90-9. [PMID: 17303942 DOI: 10.1159/000098359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2006] [Accepted: 04/26/2006] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES This study set out to determine the roles of protein kinase A (PKA) and protein kinase C (PKC) signalling cascades in substance P- (SP-) mediated synaptic depression in the nucleus accumbens. MATERIALS AND METHODS We used whole-cell patch recording in rat forebrain slices to study the effects of excitatory and inhibitory modulators of PKA and PKC to determine their effects on SP-induced synaptic depression. RESULTS We showed that cAMP and PKC, but not PKA, are involved in SP-induced synaptic depression. Bath application of SP (1 microM) depressed evoked excitatory postsynaptic currents (EPSCs) by -27.50 +/- 5.6% (n = 8). Pretreatment of slices with 10 microM forskolin or rolipram prevented SP (1 microM) from depressing evoked EPSCs (-0.8 +/- 6.7%, n = 6; p > 0.05 and 1.6 +/- 5.6%, n = 8; p > 0.05, respectively). Furthermore, 8-bromo cAMP (1 mM) also blocked the effect of SP (-0.5 +/- 14.8, n = 4, p > 0.05). However, H-89 (1 microM) did not block the SP-induced synaptic depression (-32.3 +/- 4.0%, n = 4, p < 0.05). By contrast, PKC inhibitors bisindolylmaleimide (1 microM; 4.0 +/- 5.1%, n = 6; p > 0.05) and calphostin C (400 nM; -6.7 +/- 6.5%, n = 4, p > 0.05) both blocked SP-induced synaptic depression. Phorbol dibutyrate caused a synaptic depression of -33.0. +/- 5.0% and abolished the effect of SP (1 microM, -5.9 +/- 8.6%, n = 4, p > 0.05). CONCLUSION Our findings demonstrate that PKC and cAMP are involved in SP-induced synaptic depression while PKA is apparently not involved. Involvement of multiple signalling pathways may reflect the fact that SP uses several intermediates to depress EPSCs.
Collapse
Affiliation(s)
- W C Matowe
- Department of Pharmacy Practice, Faculty of Pharmacy, Health Sciences Center, Kuwait University, Kuwait.
| | | | | |
Collapse
|
6
|
Besheer J, Lepoutre V, Mole B, Hodge CW. GABAA receptor regulation of voluntary ethanol drinking requires PKCepsilon. Synapse 2006; 60:411-9. [PMID: 16881070 PMCID: PMC2864065 DOI: 10.1002/syn.20314] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein kinase C (PKC) regulates a variety of neural functions, including ion channel activity, neurotransmitter release, receptor desensitization and differentiation. We have shown previously that mice lacking the epsilon-isoform of PKC (PKCepsilon) self-administer 75% less ethanol and exhibit supersensitivity to acute ethanol and allosteric positive modulators of GABA(A) receptors when compared with wild-type controls. The purpose of the present study was to examine involvement of PKCepsilon in GABA(A) receptor regulation of voluntary ethanol drinking. To address this question, PKCepsilon null-mutant and wild-type control mice were allowed to drink ethanol (10% v/v) vs. water on a two-bottle continuous access protocol. The effects of diazepam (nonselective GABA(A) BZ positive modulator), zolpidem (GABA(A) alpha1 agonist), L-655,708 (BZ-sensitive GABA(A) alpha5 inverse agonist), and flumazenil (BZ antagonist) were then tested on ethanol drinking. Ethanol intake (grams/kg/day) by wild-type mice decreased significantly after diazepam or zolpidem but increased after L-655,708 administration. Flumazenil antagonized diazepam-induced reductions in ethanol drinking in wild-type mice. However, ethanol intake by PKCepsilon null mice was not altered by any of the GABAergic compounds even though effects were seen on water drinking in these mice. Increased acute sensitivity to ethanol and diazepam, which was previously reported, was confirmed in PKCepsilon null mice. Thus, results of the present study show that PKCepsilon null mice do not respond to doses of GABA(A) BZ receptor ligands that regulate ethanol drinking by wild-type control mice. This suggests that PKCepsilon may be required for GABA(A) receptor regulation of chronic ethanol drinking.
Collapse
Affiliation(s)
- Joyce Besheer
- Bowles Center for Alcohol Studies, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Veronique Lepoutre
- Bowles Center for Alcohol Studies, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Beth Mole
- Bowles Center for Alcohol Studies, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Clyde W. Hodge
- Bowles Center for Alcohol Studies, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
7
|
Wallner M, Hanchar HJ, Olsen RW. Low dose acute alcohol effects on GABA A receptor subtypes. Pharmacol Ther 2006; 112:513-28. [PMID: 16814864 PMCID: PMC2847605 DOI: 10.1016/j.pharmthera.2006.05.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 05/15/2006] [Indexed: 12/23/2022]
Abstract
GABA(A) receptors (GABA(A)Rs) are the main inhibitory neurotransmitter receptors and have long been implicated in mediating at least part of the acute actions of ethanol. For example, ethanol and GABAergic drugs including barbiturates and benzodiazepines share many pharmacological properties. Besides the prototypical synaptic GABA(A)R subtypes, nonsynaptic GABA(A)Rs have recently emerged as important regulators of neuronal excitability. While high doses (> or =100 mM) of ethanol have been reported to enhance activity of most GABA(A)R subtypes, most abundant synaptic GABA(A)Rs are essentially insensitive to ethanol concentrations that occur during social ethanol consumption (< 30 mM). However, extrasynaptic delta and beta3 subunit-containing GABA(A)Rs, associated in the brain with alpha4 or alpha6 subunits, are sensitive to low millimolar ethanol concentrations, as produced by drinking half a glass of wine. Additionally, we found that a mutation in the cerebellar alpha6 subunit (alpha6R100Q), initially reported in rats selectively bred for increased alcohol sensitivity, is sufficient to produce increased alcohol-induced motor impairment and further increases of alcohol sensitivity in recombinant alpha6beta3delta receptors. Furthermore, the behavioral alcohol antagonist Ro15-4513 blocks the low dose alcohol enhancement on alpha4/6/beta3delta receptors, without reducing GABA-induced currents. In binding assays alpha4beta3delta GABA(A)Rs bind [(3)H]Ro15-4513 with high affinity, and this binding is inhibited, in an apparently competitive fashion, by low ethanol concentrations, as well as analogs of Ro15-4513 that are active to antagonize ethanol or Ro15-4513's block of ethanol. We conclude that most low to moderate dose alcohol effects are mediated by alcohol actions on alcohol/Ro15-4513 binding sites on GABA(A)R subtypes.
Collapse
Affiliation(s)
| | | | - Richard W. Olsen
- Corresponding author. Tel.: +1 310 825 5093; fax: +1 310 267 2003. (R.W. Olsen)
| |
Collapse
|
8
|
Raval AP, Dave KR, Prado R, Katz LM, Busto R, Sick TJ, Ginsberg MD, Mochly-Rosen D, Pérez-Pinzón MA. Protein kinase C delta cleavage initiates an aberrant signal transduction pathway after cardiac arrest and oxygen glucose deprivation. J Cereb Blood Flow Metab 2005; 25:730-41. [PMID: 15716854 DOI: 10.1038/sj.jcbfm.9600071] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein kinase C (PKC) isozymes have been known to mediate a variety of complex and diverse cellular functions. deltaPKC has been implicated in mediating apoptosis. Using two models of cerebral ischemia, cardiac arrest in rats and oxygen glucose deprivation (OGD) in organotypic hippocampal slices, we tested whether an ischemic insult promoted deltaPKC cleavage during the reperfusion and whether the upstream pathway involved release of cytochrome c and caspase 3 cleavage. We showed that cardiac arrest/OGD significantly enhanced deltaPKC translocation and increased its cleavage at 3 h of reperfusion. Since deltaPKC is one of the substrates for caspase 3, we next determined caspase 3 activation after cardiac arrest and OGD. The maximum decrease in levels of procaspase 3 was observed at 3 h of reperfusion after cardiac arrest and OGD. We also determined cytochrome c release, since it is upstream of caspase 3 activation. Cytochrome c in cytosol increased at 1 h of reperfusion after cardiac arrest/OGD. Inhibition of either deltaPKC/caspase 3 during OGD and early reperfusion resulted in neuroprotection in CA1 region of hippocampus. Our results support the deleterious role of deltaPKC in reperfusion injury. We propose that early cytochrome c release and caspase 3 activation promote deltaPKC translocation/cleavage.
Collapse
Affiliation(s)
- Ami P Raval
- Department of Neurology and Neuroscience Program, Cerebral Vascular Disease Research Center, University of Miami School of Medicine, Florida 33101, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Dave KR, Raval AP, Purroy J, Kirkinezos IG, Moraes CT, Bradley WG, Pérez-Pinzón MA. Aberrant δPKC activation in the spinal cord of Wobbler mouse: a model of motor neuron disease. Neurobiol Dis 2005; 18:126-33. [PMID: 15649703 DOI: 10.1016/j.nbd.2004.08.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Revised: 07/12/2004] [Accepted: 08/24/2004] [Indexed: 11/26/2022] Open
Abstract
Protein kinase C (PKC) was suggested to play a role in the pathology of amyotrophic lateral sclerosis (ALS) patients. Activation of PKC delta (deltaPKC) modulates mitochondrially induced apoptosis. The goal of the present study was to define whether deltaPKC activation occurs in Wobbler mouse spinal cord (a model of motor neuron disease). The level of deltaPKC in the soluble fraction was significantly decreased in the spinal cord of Wobbler mice, which was associated with a significant increase in deltaPKC cleavage. Since caspase-3 is known to cleave deltaPKC, we determined caspase-3 activation in the Wobbler mice spinal cord, immunohistochemically. The results demonstrated intense immunoreactivity for activated caspase-3 in corticospinal tract motor neurons of Wobbler mice spinal cord. We hypothesize from these results that caspase-3 activation cleaves deltaPKC, which in turn promotes an aberrant signal transduction pathway in the Wobbler spinal cord.
Collapse
Affiliation(s)
- Kunjan R Dave
- Department of Neurology, University of Miami School of Medicine, Miami, FL 33101, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Kumar S, Fleming RL, Morrow AL. Ethanol regulation of γ-aminobutyric acidA receptors: genomic and nongenomic mechanisms. Pharmacol Ther 2004; 101:211-26. [PMID: 15031000 DOI: 10.1016/j.pharmthera.2003.12.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
gamma-Aminobutyric acid(A) (GABA(A)) receptors are ligand-gated ion channels that, predominantly, mediate inhibitory synaptic transmission in the CNS. These receptors are pentameric complexes that are comprised of subunits from several classes (alpha, beta, gamma, delta, ), with each class consisting of several isoforms. Chronic ethanol consumption alters GABA(A) receptor function producing cellular tolerance to GABA and ethanol, cross-tolerance to benzodiazepines and barbiturates, and sensitization to inverse agonists. Recent studies have clearly demonstrated that GABA(A) receptors play an important role in ethanol dependence and functional properties of GABA(A) receptor are altered following chronic ethanol administration. However, the exact mechanisms that account for alterations in GABA(A) receptor function following chronic ethanol administration have not been resolved. The mechanisms responsible for adaptation of GABA(A) receptors to chronic ethanol exposure may involve ethanol-induced changes in cell surface expression, subcellular localization, synaptic localization, receptor phosphorylation, neurosteroids, and/or changes in GABA(A) receptor subunit composition. In this review, we provide an overview of recent data pertaining to mechanisms that could be responsible for altered properties and expression of GABA(A) receptors following chronic ethanol administration.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Psychiatry, Center For Alcohol Studies, University of Chapel Hill at North Carolina, CB#7178, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
11
|
Ping P, Song C, Zhang J, Guo Y, Cao X, Li RC, Wu W, Vondriska TM, Pass JM, Tang XL, Pierce WM, Bolli R. Formation of protein kinase Cε-Lck signaling modules confers cardioprotection. J Clin Invest 2002. [DOI: 10.1172/jci0213200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
12
|
Ping P, Song C, Zhang J, Guo Y, Cao X, Li RCX, Wu W, Vondriska TM, Pass JM, Tang XL, Pierce WM, Bolli R. Formation of protein kinase C(epsilon)-Lck signaling modules confers cardioprotection. J Clin Invest 2002; 109:499-507. [PMID: 11854322 PMCID: PMC150872 DOI: 10.1172/jci13200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The epsilon isoform of protein kinase C (PKCepsilon) is a member of the PKC family of serine/threonine kinases and plays a critical role in protection against ischemic injury in multiple organs. Functional proteomic analyses of PKCepsilon signaling show that this isozyme forms multiprotein complexes in the heart; however, the precise signaling mechanisms whereby PKCepsilon orchestrates cardioprotection are poorly understood. Here we report that Lck, a member of the Src family of tyrosine kinases, forms a functional signaling module with PKCepsilon. In cardiac cells, PKCepsilon interacts with, phosphorylates, and activates Lck. In vivo studies showed that cardioprotection elicited either by cardiac-specific transgenic activation of PKCepsilon or by ischemic preconditioning enhances the formation of PKCepsilon-Lck modules. Disruption of these modules, via ablation of the Lck gene, abrogated the infarct-sparing effects of these two forms of cardioprotection, indicating that the formation of PKCepsilon-Lck signaling modules is required for the manifestation of a cardioprotective phenotype. These findings demonstrate, for the first time to our knowledge, that the assembly of a module (PKCepsilon-Lck) is an obligatory step in the signal transduction that results in a specific phenotype. Thus, PKCepsilon-Lck modules may serve as novel therapeutic targets for the prevention of ischemic injury.
Collapse
Affiliation(s)
- Peipei Ping
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Olive MF, Mehmert KK, Nannini MA, Camarini R, Messing RO, Hodge CW. Reduced ethanol withdrawal severity and altered withdrawal-induced c-fos expression in various brain regions of mice lacking protein kinase C-epsilon. Neuroscience 2001; 103:171-9. [PMID: 11311798 DOI: 10.1016/s0306-4522(00)00566-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Withdrawal from chronic ethanol consumption can be accompanied by motor seizures, which may be a result of altered GABA(A) receptor function. Recently, we have generated and characterized mice lacking the epsilon isoform of protein kinase C as being supersensitive to the behavioral and biochemical effects of positive GABA(A) receptor allosteric modulators, including ethanol. The aim of the present study was to determine whether protein kinase C-epsilon null mutant mice display altered seizure severity during alcohol withdrawal. In addition, we used c-fos immunohistochemistry immediately following seizure assessment to identify potential brain regions involved in any observed differences in withdrawal severity. Mice were allowed to consume an ethanol-containing or control liquid diet as the sole source of food for 14 days. During the 7-h period following removal of the diet, both ethanol-fed wild-type and protein kinase C-epsilon null mutant mice displayed an overall increase in Handling-Induced Convulsion score versus control-fed mice. However, at 6 and 7h following diet removal, the Handling-Induced Convulsion score was reduced in ethanol-fed protein kinase C-epsilon null mutant mice compared to ethanol-fed wild-type mice. Ethanol-fed protein kinase C-epsilon null mutant mice also exhibited a decrease in the number of Fos-positive cells in the lateral septum, and an increase in the number of Fos-positive cells in the dentate gyrus, mediodorsal thalamus, paraventricular nuclei of the thalamus and hypothalamus, and substantia nigra compared to ethanol-fed wild-type mice. These data demonstrate that deletion of protein kinase C-epsilon results in diminished progression of ethanol withdrawal-associated seizure severity, suggesting that selective pharmacological inhibitors of protein kinase C-epsilon may be useful in the treatment of seizures during alcohol withdrawal. These data also provide insight into potential brain regions involved in generation or suppression of ethanol withdrawal seizures.
Collapse
Affiliation(s)
- M F Olive
- Department of Neurology and Ernest Gallo Clinic and Research Center, University of California at San Francisco, 5858 Horton Street, Emeryville, CA 94608, USA
| | | | | | | | | | | |
Collapse
|