1
|
Chiovini B, Pálfi D, Majoros M, Juhász G, Szalay G, Katona G, Szőri M, Frigyesi O, Lukácsné Haveland C, Szabó G, Erdélyi F, Máté Z, Szadai Z, Madarász M, Dékány M, Csizmadia IG, Kovács E, Rózsa B, Mucsi Z. Theoretical Design, Synthesis, and In Vitro Neurobiological Applications of a Highly Efficient Two-Photon Caged GABA Validated on an Epileptic Case. ACS OMEGA 2021; 6:15029-15045. [PMID: 34151084 PMCID: PMC8210458 DOI: 10.1021/acsomega.1c01164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
In this paper, we present an additional, new cage-GABA compound, called 4-amino-1-(4'-dimethylaminoisopropoxy-5',7'-dinitro-2',3'-dihydro-indol-1-yl)-1-oxobutane-γ-aminobutyric acid (iDMPO-DNI-GABA), and currently, this compound is the only photoreagent, which can be applied for GABA uncaging without experimental compromises. By a systematic theoretical design and successful synthesis of several compounds, the best reagent exhibits a high two-photon efficiency within the 700-760 nm range with excellent pharmacological behavior, which proved to be suitable for a complex epileptic study. Quantum chemical design showed that the optimal length of the cationic side chain enhances the two-photon absorption by 1 order of magnitude due to the cooperating internal hydrogen bonding to the extra nitro group on the core. This feature increased solubility while suppressing membrane permeability. The efficiency was demonstrated in a systematic, wide range of in vitro single-cell neurophysiological experiments by electrophysiological as well as calcium imaging techniques. Scalable inhibitory ion currents were elicited by iDMPO-DNI-GABA with appropriate spatial-temporal precision, blocking both spontaneous and evoked cell activity with excellent efficiency. Additionally, to demonstrate its applicability in a real neurobiological study, we could smoothly and selectively modulate neuronal activities during artificial epileptic rhythms first time in a neural network of GCaMP6f transgenic mouse brain slices.
Collapse
Affiliation(s)
- Balázs Chiovini
- The
Faculty of Information Technology, Pázmány
Péter Catholic University, 50 Práter str., H-1083 Budapest, Hungary
- Laboratory
of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, 43 Szigony str., H-1083 Budapest, Hungary
| | - Dénes Pálfi
- The
Faculty of Information Technology, Pázmány
Péter Catholic University, 50 Práter str., H-1083 Budapest, Hungary
| | - Myrtill Majoros
- The
Faculty of Information Technology, Pázmány
Péter Catholic University, 50 Práter str., H-1083 Budapest, Hungary
| | - Gábor Juhász
- The
Faculty of Information Technology, Pázmány
Péter Catholic University, 50 Práter str., H-1083 Budapest, Hungary
- Laboratory
of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, 43 Szigony str., H-1083 Budapest, Hungary
| | - Gergely Szalay
- Laboratory
of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, 43 Szigony str., H-1083 Budapest, Hungary
| | - Gergely Katona
- Laboratory
of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, 43 Szigony str., H-1083 Budapest, Hungary
| | - Milán Szőri
- Institute
of Chemistry, Faculty of Materials Science and Engineering, University of Miskolc, H-3515 Miskolc, Hungary
| | - Orsolya Frigyesi
- Chemistry
Department, Femtonics Limited, Tűzoltó str. 59, H-1094 Budapest, Hungary
| | | | - Gábor Szabó
- Transgenic
Facility, Institute of Experimental Medicine, 43 Szigony str., H-1083 Budapest, Hungary
| | - Ferenc Erdélyi
- Transgenic
Facility, Institute of Experimental Medicine, 43 Szigony str., H-1083 Budapest, Hungary
| | - Zoltán Máté
- Transgenic
Facility, Institute of Experimental Medicine, 43 Szigony str., H-1083 Budapest, Hungary
| | - Zoltán Szadai
- The
Faculty of Information Technology, Pázmány
Péter Catholic University, 50 Práter str., H-1083 Budapest, Hungary
| | - Miklós Madarász
- Laboratory
of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, 43 Szigony str., H-1083 Budapest, Hungary
| | - Miklós Dékány
- Gedeon Richter
Plc, Gyömrői
str. 19-21, H-1103 Budapest, Hungary
| | - Imre G. Csizmadia
- Department
of Chemistry, University of Toronto, 80 St. George Street, M5S 3H6 Toronto, Ontario, Canada
| | - Ervin Kovács
- Chemistry
Department, Femtonics Limited, Tűzoltó str. 59, H-1094 Budapest, Hungary
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural Sciences, 2 Magyar tudósok körútja, H-1117 Budapest, Hungary
| | - Balázs Rózsa
- The
Faculty of Information Technology, Pázmány
Péter Catholic University, 50 Práter str., H-1083 Budapest, Hungary
- Laboratory
of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, 43 Szigony str., H-1083 Budapest, Hungary
| | - Zoltán Mucsi
- Institute
of Chemistry, Faculty of Materials Science and Engineering, University of Miskolc, H-3515 Miskolc, Hungary
- Chemistry
Department, Femtonics Limited, Tűzoltó str. 59, H-1094 Budapest, Hungary
| |
Collapse
|
2
|
Pálfi D, Chiovini B, Szalay G, Kaszás A, Turi GF, Katona G, Ábrányi-Balogh P, Szőri M, Potor A, Frigyesi O, Lukácsné Haveland C, Szadai Z, Madarász M, Vasanits-Zsigrai A, Molnár-Perl I, Viskolcz B, Csizmadia IG, Mucsi Z, Rózsa B. High efficiency two-photon uncaging coupled by the correction of spontaneous hydrolysis. Org Biomol Chem 2019; 16:1958-1970. [PMID: 29497727 DOI: 10.1039/c8ob00025e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-photon (TP) uncaging of neurotransmitter molecules is the method of choice to mimic and study the subtleties of neuronal communication either in the intact brain or in slice preparations. However, the currently available caged materials are just at the limit of their usability and have several drawbacks. The local and focal nature of their use may for example be jeopardized by a high spontaneous hydrolysis rate of the commercially available compounds with increased photochemical release rate. Here, using quantum chemical modelling we show the mechanisms of hydrolysis and two-photon activation, and synthesized more effective caged compounds. Furthermore, we have developed a new enzymatic elimination method removing neurotransmitters inadvertently escaping from their compound during experiment. This method, usable both in one and two-photon experiments, allows for the use of materials with an increased rate of photochemical release. The efficiency of the new compound and the enzymatic method and of the new compound are demonstrated in neurophysiological experiments.
Collapse
Affiliation(s)
- Dénes Pálfi
- Two-Photon Measurement Technology Research Group, The Faculty of Information Technology, Pázmány Péter Catholic University, Práter str 50, H-1083 Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Feldmeyer D. Excitatory neuronal connectivity in the barrel cortex. Front Neuroanat 2012; 6:24. [PMID: 22798946 PMCID: PMC3394394 DOI: 10.3389/fnana.2012.00024] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 06/15/2012] [Indexed: 01/18/2023] Open
Abstract
Neocortical areas are believed to be organized into vertical modules, the cortical columns, and the horizontal layers 1–6. In the somatosensory barrel cortex these columns are defined by the readily discernible barrel structure in layer 4. Information processing in the neocortex occurs along vertical and horizontal axes, thereby linking individual barrel-related columns via axons running through the different cortical layers of the barrel cortex. Long-range signaling occurs within the neocortical layers but also through axons projecting through the white matter to other neocortical areas and subcortical brain regions. Because of the ease of identification of barrel-related columns, the rodent barrel cortex has become a prototypical system to study the interactions between different neuronal connections within a sensory cortical area and between this area and other cortical as well subcortical regions. Such interactions will be discussed specifically for the feed-forward and feedback loops between the somatosensory and the somatomotor cortices as well as the different thalamic nuclei. In addition, recent advances concerning the morphological characteristics of excitatory neurons and their impact on the synaptic connectivity patterns and signaling properties of neuronal microcircuits in the whisker-related somatosensory cortex will be reviewed. In this context, their relationship between the structural properties of barrel-related columns and their function as a module in vertical synaptic signaling in the whisker-related cortical areas will be discussed.
Collapse
Affiliation(s)
- Dirk Feldmeyer
- Institute of Neuroscience and Medicine, INM-2, Research Centre Jülich Jülich, Germany
| |
Collapse
|
4
|
Oviedo HV, Reyes AD. Integration of subthreshold and suprathreshold excitatory barrages along the somatodendritic axis of pyramidal neurons. PLoS One 2012; 7:e33831. [PMID: 22457793 PMCID: PMC3311551 DOI: 10.1371/journal.pone.0033831] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 02/20/2012] [Indexed: 01/23/2023] Open
Abstract
Neurons integrate inputs arriving in different cellular compartments to produce action potentials that are transmitted to other neurons. Because of the voltage- and time-dependent conductances in the dendrites and soma, summation of synaptic inputs is complex. To examine summation of membrane potentials and firing rates, we performed whole-cell recordings from layer 5 cortical pyramidal neurons in acute slices of the rat's somatosensory cortex. We delivered subthreshold and suprathreshold stimuli at the soma and several sites on the apical dendrite, and injected inputs that mimic synaptic barrages at individual or distributed sites. We found that summation of subthreshold potentials differed from that of firing rates. Subthreshold summation was linear when barrages were small but became supralinear as barrages increased. When neurons were discharging repetitively the rules were more diverse. At the soma and proximal apical dendrite summation of the evoked firing rates was predominantly sublinear whereas in the distal dendrite summation ranged from supralinear to sublinear. In addition, the integration of inputs delivered at a single location differed from that of distributed inputs only for suprathreshold responses. These results indicate that convergent inputs onto the apical dendrite and soma do not simply summate linearly, as suggested previously, and that distinct presynaptic afferents that target specific sites on the dendritic tree may perform unique sets of computations.
Collapse
Affiliation(s)
- Hysell V Oviedo
- Cold Spring Harbor Lab, Cold Spring Harbor, New York, United States of America.
| | | |
Collapse
|
5
|
Boucsein C, Nawrot MP, Schnepel P, Aertsen A. Beyond the cortical column: abundance and physiology of horizontal connections imply a strong role for inputs from the surround. Front Neurosci 2011; 5:32. [PMID: 21503145 PMCID: PMC3072165 DOI: 10.3389/fnins.2011.00032] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/28/2011] [Indexed: 11/13/2022] Open
Abstract
Current concepts of cortical information processing and most cortical network models largely rest on the assumption that well-studied properties of local synaptic connectivity are sufficient to understand the generic properties of cortical networks. This view seems to be justified by the observation that the vertical connectivity within local volumes is strong, whereas horizontally, the connection probability between pairs of neurons drops sharply with distance. Recent neuroanatomical studies, however, have emphasized that a substantial fraction of synapses onto neocortical pyramidal neurons stems from cells outside the local volume. Here, we discuss recent findings on the signal integration from horizontal inputs, showing that they could serve as a substrate for reliable and temporally precise signal propagation. Quantification of connection probabilities and parameters of synaptic physiology as a function of lateral distance indicates that horizontal projections constitute a considerable fraction, if not the majority, of inputs from within the cortical network. Taking these non-local horizontal inputs into account may dramatically change our current view on cortical information processing.
Collapse
Affiliation(s)
- Clemens Boucsein
- Bernstein Center Freiburg, Neurobiology and Biophysics, Faculty of Biology, University of Freiburg Freiburg, Germany
| | | | | | | |
Collapse
|
6
|
Zayat L, Noval MG, Campi J, Calero CI, Calvo DJ, Etchenique R. A new inorganic photolabile protecting group for highly efficient visible light GABA uncaging. Chembiochem 2008; 8:2035-8. [PMID: 17939147 DOI: 10.1002/cbic.200700354] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Leonardo Zayat
- Departamento de Química Inorgánica Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
7
|
Two-photon photostimulation and imaging of neural circuits. Nat Methods 2007; 4:943-50. [PMID: 17965719 DOI: 10.1038/nmeth1105] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 09/23/2007] [Indexed: 11/08/2022]
|
8
|
Lübke J, Feldmeyer D. Excitatory signal flow and connectivity in a cortical column: focus on barrel cortex. Brain Struct Funct 2007; 212:3-17. [PMID: 17717695 DOI: 10.1007/s00429-007-0144-2] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 05/08/2007] [Indexed: 10/23/2022]
Abstract
A basic feature of the neocortex is its organization in functional, vertically oriented columns, recurring modules of signal processing and a system of transcolumnar long-range horizontal connections. These columns, together with their network of neurons, present in all sensory cortices, are the cellular substrate for sensory perception in the brain. Cortical columns contain thousands of neurons and span all cortical layers. They receive input from other cortical areas and subcortical brain regions and in turn their neurons provide output to various areas of the brain. The modular concept presumes that the neuronal network in a cortical column performs basic signal transformations, which are then integrated with the activity in other networks and more extended brain areas. To understand how sensory signals from the periphery are transformed into electrical activity in the neocortex it is essential to elucidate the spatial-temporal dynamics of cortical signal processing and the underlying neuronal 'microcircuits'. In the last decade the 'barrel' field in the rodent somatosensory cortex, which processes sensory information arriving from the mysticial vibrissae, has become a quite attractive model system because here the columnar structure is clearly visible. In the neocortex and in particular the barrel cortex, numerous neuronal connections within or between cortical layers have been studied both at the functional and structural level. Besides similarities, clear differences with respect to both physiology and morphology of synaptic transmission and connectivity were found. It is therefore necessary to investigate each neuronal connection individually, in order to develop a realistic model of neuronal connectivity and organization of a cortical column. This review attempts to summarize recent advances in the study of individual microcircuits and their functional relevance within the framework of a cortical column, with emphasis on excitatory signal flow.
Collapse
Affiliation(s)
- Joachim Lübke
- Research Centre Jülich, Institute of Neurosciences and Biophysics INB-3, Leo-Brandt-Str, 52425 Jülich, Germany
| | | |
Collapse
|
9
|
Spiral Phase Microscopy. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s1076-5670(06)46001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
10
|
Jin X, Prince DA, Huguenard JR. Enhanced excitatory synaptic connectivity in layer v pyramidal neurons of chronically injured epileptogenic neocortex in rats. J Neurosci 2006; 26:4891-900. [PMID: 16672663 PMCID: PMC6674164 DOI: 10.1523/jneurosci.4361-05.2006] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Formation of new recurrent excitatory circuits after brain injuries has been hypothesized as a major factor contributing to epileptogenesis. Increases in total axonal length and the density of synaptic boutons are present in layer V pyramidal neurons of chronic partial isolations of rat neocortex, a model of posttraumatic epileptogenesis. To explore the functional consequences of these changes, we used laser-scanning photostimulation combined with whole-cell patch-clamp recording from neurons in layer V of somatosensory cortex to map changes in excitatory synaptic connectivity after injury. Coronal slices were submerged in artificial CSF (23 degrees C) containing 100 microM caged glutamate, APV (2-amino-5-phosphonovaleric acid), and high divalent cation concentration to block polysynaptic responses. Focal uncaging of glutamate, accomplished by switching a pulsed UV laser to give a 200-400 micros light stimulus, evoked single- or multiple-component composite EPSCs. In neurons of the partially isolated cortex, there were significant increases in the fraction of uncaging sites from which EPSCs could be evoked ("hot spots") and a decrease in the mean amplitude of individual elements in the composite EPSC. When plotted along the cortical depth, the changes in EPSCs took place mainly between 150 and 200 microm above and below the somata, suggesting a specific enhancement of recurrent excitatory connectivity among layer V pyramidal neurons of the undercut neocortex. These changes may shift the balance within cortical circuits toward increased synaptic excitation and contribute to epileptogenesis.
Collapse
|
11
|
Boucsein C, Nawrot M, Rotter S, Aertsen A, Heck D. Controlling synaptic input patterns in vitro by dynamic photo stimulation. J Neurophysiol 2005; 94:2948-58. [PMID: 15928061 DOI: 10.1152/jn.00245.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent experimental and theoretical work indicates that both the intensity and the temporal structure of synaptic activity strongly modulate the integrative properties of single neurons in the intact brain. However, studying these effects experimentally is complicated by the fact that, in experimental systems, network activity is either absent, as in the acute slice preparation, or difficult to monitor and to control, as in in vivo recordings. Here, we present a new implementation of neurotransmitter uncaging in acute brain slices that uses functional projections to generate tightly controlled, spatio-temporally structured synaptic input patterns in individual neurons. For that, a set of presynaptic neurons is activated in a precisely timed sequence through focal photolytic release of caged glutamate with the help of a fast laser scanning system. Integration of synaptic inputs can be studied in postsynaptic neurons that are not directly stimulated with the laser, but receive input from the targeted neurons through intact axonal projections. Our new approach of dynamic photo stimulation employs functional synapses, accounts for their spatial distribution on the dendrites, and thus allows study of the integrative properties of single neurons with physiologically realistic input. Data obtained with our new technique suggest that, not only the neuronal spike generator, but also synaptic transmission and dendritic integration in neocortical pyramidal cells, can be highly reliable.
Collapse
Affiliation(s)
- Clemens Boucsein
- Neurobiology and Biophysics, Institute of Biology III, Albert-Ludwigs-University, Freiburg, Germany.
| | | | | | | | | |
Collapse
|
12
|
Oviedo H, Reyes AD. Variation of input-output properties along the somatodendritic axis of pyramidal neurons. J Neurosci 2005; 25:4985-95. [PMID: 15901779 PMCID: PMC6724862 DOI: 10.1523/jneurosci.0562-05.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 04/11/2005] [Accepted: 04/12/2005] [Indexed: 11/21/2022] Open
Abstract
The firing evoked by injection of simulated barrages of EPSCs into the proximal dendrite of layer 5 pyramidal neurons is greater than when comparable inputs are injected into the soma. This boosting is mediated by dendritic Na+ conductances. However, the presence of other active conductances in the dendrites, some of which are nonuniformly distributed, suggests that the degree of boosting may differ along the somatodendritic axis. Here, we injected EPSC barrages at the soma and at the proximal, middle, and distal segments of the apical dendrite and measured boosting of subthreshold and suprathreshold responses. We found that although boosting was maintained throughout the apical dendrite, the degree of boosting changed nonmonotonically with distance from the soma. Boosting dipped in the middle dendritic segments as a result of the deactivation of the hyperpolarization-activated cation current, Ih, but increased in the distal dendrites as a result of the activation of Ca2+ conductances. In the distal dendrites, EPSC barrages evoked repetitive bursts of action potentials, and the bursting pattern changed systematically with the magnitude of the input barrages. The quantitative changes in boosting along the somatodendritic axis suggest that inputs from different classes of presynaptic cells are weighted differently, depending on the location of the synaptic contacts. Moreover, the tight coupling between burst characteristics and stimulus parameters indicate that the distal dendrites can support a coding scheme that is different from that at sites closer to the soma, consistent with the notion of a separate dendritic integration site.
Collapse
Affiliation(s)
- Hysell Oviedo
- Center for Neural Science, New York University, New York, New York 10003, USA.
| | | |
Collapse
|
13
|
Kötter R, Schubert D, Dyhrfjeld-Johnsen J, Luhmann HJ, Staiger JF. Optical release of caged glutamate for stimulation of neurons in the in vitro slice preparation. JOURNAL OF BIOMEDICAL OPTICS 2005; 10:11003. [PMID: 15847569 DOI: 10.1117/1.1852555] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Optical stimulation techniques prove useful to map functional inputs in the in vitro brain slice preparation: Glutamate released by a focused beam of UV light induces action potentials, which can be detected in postsynaptic neurons. The direct activation effect is influenced by factors such as compound concentration, focus depth, light absorption in the tissue, and sensitivity of different neuronal domains. We analyze information derived from direct stimulation experiments in slices from rat barrel cortex and construct a computational model of a layer V pyramidal neuron that reproduces the experimental findings. The model predictions concerning the influence of focus depth on input maps and action potential generation are investigated further in subsequent experiments where the focus depth of a high-numerical-aperture lens is systematically varied. With our setup flashes from a xenon light source can activate neuronal compartments to a depth of 200 mum below the surface of the slice. The response amplitude is influenced both by tissue depth and focus plane. Specific somatodendritic structures can be targeted as the probability of action potential induction falls off exponentially with distance. Somata and primary apical dendrites are most sensitive to uncaged glutamate with locally increased sensitivity on proximal apical dendrites. We conclude that optical stimulation can be targeted with high precision.
Collapse
Affiliation(s)
- Rolf Kötter
- Heinrich Heine University, C & O Vogt Brain Research Institute, Institute of Anatomy II, Moorenstr. 5, D-40225 Düsseldorf, Germany.
| | | | | | | | | |
Collapse
|
14
|
Schierloh A, Eder M, Zieglgänsberger W, Dodt HU. Effects of sensory deprivation on columnar organization of neuronal circuits in the rat barrel cortex. Eur J Neurosci 2004; 20:1118-24. [PMID: 15305882 DOI: 10.1111/j.1460-9568.2004.03557.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We examined whether sensory deprivation during formation of the cortical circuitry influences the pattern of intracortical single-cell connections in rat barrel cortex. Excitatory postsynaptic potentials (EPSPs) from layer 2/3 (L2/3) pyramidal neurons were recorded in vitro using patch-clamp techniques. In order to evoke EPSPs, presynaptic neurons were stimulated by photolytically applied glutamate, thus generating action potentials. Synaptic connections between the stimulated and the recorded neuron were identified by the occurrence of PSPs following photostimulation. Sensory deprivation changed the pattern of projections from L4 and L2/3 neurons to L2/3 pyramidal cells. In slices of non-deprived rats 86% of the total presynaptic neurons were located in the first and only 10% in the second barrel column. Deprivation changed these values to 67% and 26%, respectively. Therefore, the probability of presynaptic cells projecting to L2/3 neurons was shifted from adjacent to more remote barrel columns. These results indicate that deprivation of sensory input influences the pattern of intracortical connections.
Collapse
Affiliation(s)
- Anja Schierloh
- Max-Planck-Institute of Psychiatry, Kraepelinstr. 2, D-80804 Munich.
| | | | | | | |
Collapse
|
15
|
Eder M, Zieglgänsberger W, Dodt HU. Shining light on neurons--elucidation of neuronal functions by photostimulation. Rev Neurosci 2004; 15:167-83. [PMID: 15357140 DOI: 10.1515/revneuro.2004.15.3.167] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Many neuronal functions can be elucidated by techniques that allow for a precise stimulation of defined regions of a neuron and its afferents. Photolytic release of neurotransmitters from 'caged' derivates in the vicinity of visualized neurons in living brain slices meets this request. This technique allows the study of the subcellular distribution and properties of functional native neurotransmitter receptors. These are prerequisites for a detailed analysis of the expression and spatial specificity of synaptic plasticity. Photostimulation can further be used to fast map the synaptic connectivity between nearby and, more importantly, distant cells in a neuronal network. Here we give a personal review of some of the technical aspects of photostimulation and recent findings, which illustrate the advantages of this technique.
Collapse
Affiliation(s)
- Matthias Eder
- Clinical Neuropharmacology, Max-Planck-Institute of Psychiatry, Munich, Germany.
| | | | | |
Collapse
|
16
|
Yasuda R, Nimchinsky EA, Scheuss V, Pologruto TA, Oertner TG, Sabatini BL, Svoboda K. Imaging Calcium Concentration Dynamics in Small Neuronal Compartments. Sci Signal 2004; 2004:pl5. [PMID: 14872098 DOI: 10.1126/stke.2192004pl5] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Calcium and its regulation play central roles diverse physiologic processes. Quantification of calcium concentrations ([Ca2+]) in small neuronal compartments is crucial to understanding Ca2+-dependent signaling. Here, we describe techniques that are optimized for 2-photon imaging of [Ca2+] dynamics in small compartments such as dendrites and dendritic spines.
Collapse
Affiliation(s)
- Ryohei Yasuda
- Howard Hughes Medical Institute, The Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Schierloh A, Eder M, Zieglgänsberger W, Dodt HU. Sensory deprivation changes the pattern of synaptic connectivity in rat barrel cortex. Neuroreport 2003; 14:1787-91. [PMID: 14534421 DOI: 10.1097/00001756-200310060-00006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We examined whether sensory deprivation during formation of the cortical circuitry influences the pattern of intracortical single-cell connections in rat barrel cortex. Excitatory postsynaptic potentials from layer 5 pyramidal neurons were recorded in vitro using patch-clamp techniques. In order to evoke such postsynaptic potentials presumptive presynaptic neurons were stimulated by photolytically applied glutamate thus generating action potentials. Synaptic connections between the stimulated and the recorded neuron were identified by the occurrence of postsynaptic potentials following photostimulation. Sensory deprivation altered the projections from layer 2/3 neurons to layer 5 pyramidal cells (L2/3-->L5 projections). In slices of non-deprived rats the input probability of L2/3-->L5 projections showed a periodic pattern with more synaptic connections originating from the borders of the barrel columns, and less synaptic connections originating from the centres. After whisker clipping this periodic pattern disappeared completely and the input probability declined monotonically with increasing distance between stimulated and recorded neuron. These results indicate that sensory input is a prerequisite to establish a synaptic projection pattern which is correlated to the columnar organisation of the anatomical barrel structure.
Collapse
|