1
|
Liu L, Chen J, Yin W, Gao P, Fan Y, Wen D, Jiao Y, Yu W. The peripheral Atf3 + neuronal population is responsible for nerve regeneration at the early stage of nerve injury revealed by single-cell RNA sequencing. Acta Biochim Biophys Sin (Shanghai) 2024; 57:424-436. [PMID: 39539109 PMCID: PMC11986441 DOI: 10.3724/abbs.2024169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/12/2024] [Indexed: 11/16/2024] Open
Abstract
Peripheral nerve injury (PNI) can transform primary somatosensory neurons to a regenerative state. However, the details of the transcriptomic changes associated with the nerve regeneration of somatosensory neurons remain unclear. In this study, single-cell RNA sequencing (scRNA-seq) is conducted on mouse dorsal root ganglion (DRG) cells after the early stage of nerve injury on day 3 after chronic constriction injury (CCI). We observe that a novel CCI-induced neuronal population (CIP) emerge and express high levels of activating transcription factor ( Atf3), a neuronal injury marker. CIP neurons highly express regeneration-associated genes (RAGs) and are enriched in regeneration-related gene ontology (GO) terms, suggesting that these neurons can constitute a pro-regenerative population. Moreover, intercellular communication networks show that CIP neurons closely communicate with satellite glial cells (SGCs) and specifically transmit strong Fgf3- Fgfr1 signaling to SGCs, which could initiate regeneration-associated transcriptional changes in SGCs. We also confirm that regenerative progress occurs at the early stage of nerve injury because immunohistochemistry shows that the expression of ATF3 is significantly increased beginning at 3 days post-CCI and decreased at 1 month post-CCI. Our bioinformatics analysis at single-cell resolution advances the knowledge of regenerative dynamic transcriptional changes in DRG cells after injury and the underlying molecular mechanisms involved.
Collapse
Affiliation(s)
- Li Liu
- Department of AnesthesiologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghai200127China
| | - Junhui Chen
- Department of AnesthesiologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghai200127China
| | - Wen Yin
- Department of AnesthesiologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghai200127China
| | - Po Gao
- Department of AnesthesiologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghai200127China
| | - Yinghui Fan
- Department of AnesthesiologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghai200127China
| | - Daxiang Wen
- Department of AnesthesiologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghai200127China
| | - Yingfu Jiao
- Department of AnesthesiologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghai200127China
| | - Weifeng Yu
- Department of AnesthesiologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghai200127China
| |
Collapse
|
2
|
Longhitano L, Vicario N, Forte S, Giallongo C, Broggi G, Caltabiano R, Barbagallo GMV, Altieri R, Raciti G, Di Rosa M, Caruso M, Parenti R, Liso A, Busi F, Lolicato M, Mione MC, Li Volti G, Tibullo D. Lactate modulates microglia polarization via IGFBP6 expression and remodels tumor microenvironment in glioblastoma. Cancer Immunol Immunother 2023; 72:1-20. [PMID: 35654889 PMCID: PMC9813126 DOI: 10.1007/s00262-022-03215-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/25/2022] [Indexed: 01/09/2023]
Abstract
Lactic acidosis has been reported in solid tumor microenvironment (TME) including glioblastoma (GBM). In TME, several signaling molecules, growth factors and metabolites have been identified to induce resistance to chemotherapy and to sustain immune escape. In the early phases of the disease, microglia infiltrates TME, contributing to tumorigenesis rather than counteracting its growth. Insulin-like Growth Factor Binding Protein 6 (IGFBP6) is expressed during tumor development, and it is involved in migration, immune-escape and inflammation, thus providing an attractive target for GBM therapy. Here, we aimed at investigating the crosstalk between lactate metabolism and IGFBP6 in TME and GBM progression. Our results show that microglia exposed to lactate or IGFBP6 significantly increased the Monocarboxylate transporter 1 (MCT1) expression together with genes involved in mitochondrial metabolism. We, also, observed an increase in the M2 markers and a reduction of inducible nitric oxide synthase (iNOS) levels, suggesting a role of lactate/IGFBP6 metabolism in immune-escape activation. GBM cells exposed to lactate also showed increased levels of IGFBP6 and vice-versa. Such a phenomenon was coupled with a IGFBP6-mediated sonic hedgehog (SHH) ignaling increase. We, finally, tested our hypothesis in a GBM zebrafish animal model, where we observed an increase in microglia cells and igfbp6 gene expression after lactate exposure. Our results were confirmed by the analysis of human transcriptomes datasets and immunohistochemical assay from human GBM biopsies, suggesting the existence of a lactate/IGFBP6 crosstalk in microglial cells, so that IGFBP6 expression is regulated by lactate production in GBM cells and in turn modulates microglia polarization.
Collapse
Affiliation(s)
- Lucia Longhitano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Stefano Forte
- IOM Ricerca, 95029 Viagrande, CT Italy ,Department of Medical and Surgical Sciences and Advanced Technologies, F. Ingrassia, Anatomic Pathology, University of Catania, Catania, Italy
| | | | - Giuseppe Broggi
- Department of Drug Sciences, University of Catania, Catania, Italy
| | | | | | - Roberto Altieri
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Giuseppina Raciti
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Massimo Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Arcangelo Liso
- Department of Cellular, Computational and Integrative Biology Cibio, University of Trento, 38123 Trento, Italy
| | - Federica Busi
- Department of Cellular, Computational and Integrative Biology Cibio, University of Trento, 38123 Trento, Italy
| | - Marco Lolicato
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Maria Caterina Mione
- Department of Cellular, Computational and Integrative Biology Cibio, University of Trento, 38123 Trento, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
3
|
Tsushima H, Yamada K. Effects of adipokine administration to the hypothalamic preoptic area on body temperature in rats. J Pharmacol Sci 2020; 144:61-68. [PMID: 32684333 DOI: 10.1016/j.jphs.2020.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 07/05/2020] [Accepted: 07/08/2020] [Indexed: 11/15/2022] Open
Abstract
The effects of adipokine administration to the hypothalamic preoptic area (POA), which is one of the body temperature (BT) regulation centers in the central nervous system, on BT were investigated in male Wistar rats. BT was measured in conscious rats using telemetry. Insulin-like growth factor-1 (IGF-1), interleukin-1β (IL-1β), monocyte chemoattractant protein-1 and lipocalin-2 produced hyperthermia, and the effects induced by IL-1β (25 ng) and IGF-1 (5 μg) were sustainable and remarkable. IL-6 did not show any significant effect. The IGF-1-induced effect was inhibited by pretreatment with IGF binding protein 3 (IGFBP3) or NVP-AEW541 (NVP, a selective inhibitor of type 1 IGF receptor tyrosine kinase, IGF1R TK). NVP-induced inhibition was observed only in the early phase of IGF-1-induced hyperthermia. In addition, IGF-1 increased the IL-1β concentration in the microdialysate of POA perfusion, but did not increase the IL-1β concentration in the plasma or the PGE2 concentration in the microdialysate. These findings suggested that IGF-1 produced hyperthermia, which was mediated, at least a part, through an increased IL-1β concentration after activation of IGF1R TK in the POA, and the IGF-IGFBP system possibly participates in BT homeostasis in the POA.
Collapse
Affiliation(s)
- Hiromi Tsushima
- Laboratory of Pharmacology, College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, 463-8521, Japan.
| | - Kazuyo Yamada
- Laboratory of Biochemistry, College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, 463-8521, Japan
| |
Collapse
|
4
|
Lewitt MS, Boyd GW. The Role of Insulin-Like Growth Factors and Insulin-Like Growth Factor-Binding Proteins in the Nervous System. BIOCHEMISTRY INSIGHTS 2019; 12:1178626419842176. [PMID: 31024217 PMCID: PMC6472167 DOI: 10.1177/1178626419842176] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 01/23/2023]
Abstract
The insulin-like growth factors (IGF-I and IGF-II) and their receptors are widely expressed in nervous tissue from early embryonic life. They also cross the blood brain barriers by active transport, and their regulation as endocrine factors therefore differs from other tissues. In brain, IGFs have paracrine and autocrine actions that are modulated by IGF-binding proteins and interact with other growth factor signalling pathways. The IGF system has roles in nervous system development and maintenance. There is substantial evidence for a specific role for this system in some neurodegenerative diseases, and neuroprotective actions make this system an attractive target for new therapeutic approaches. In developing new therapies, interaction with IGF-binding proteins and other growth factor signalling pathways should be considered. This evidence is reviewed, gaps in knowledge are highlighted, and recommendations are made for future research.
Collapse
Affiliation(s)
- Moira S Lewitt
- School of Health & Life Sciences, University of the West of Scotland, Paisley, UK
| | - Gary W Boyd
- School of Health & Life Sciences, University of the West of Scotland, Paisley, UK
| |
Collapse
|
5
|
Gaowa S, Bao N, Da M, Qiburi Q, Ganbold T, Chen L, Altangerel A, Temuqile T, Baigude H. Traditional Mongolian medicine Eerdun Wurile improves stroke recovery through regulation of gene expression in rat brain. JOURNAL OF ETHNOPHARMACOLOGY 2018; 222:249-260. [PMID: 29758340 DOI: 10.1016/j.jep.2018.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/28/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eerdun Wurile (EW) is one of the key Mongolian medicines for treatment of neurological and cardiological disorders. EW is ranked most regularly used Mongolian medicine in clinic. Components of EW which mainly originate from natural products are well defined and are unique to Mongolian medicine. AIM OF THE STUDY Although the recipe of EW contains known neuroactive chemicals originated from plants, its mechanism of action has never been elucidated at molecular level. The objective of the present study is to explore the mechanism of neuroregenerative activity of EW by focusing on the regulation of gene expression in the brain of rat model of stroke. MATERIALS AND METHODS Rat middle cerebral artery occlusion (MCAO) models were treated with EW for 15 days. Then, total RNAs from the cerebral cortex of rat MCAO models treated with either EW or control (saline) were extracted and analyzed by transcriptome sequencing. Differentially expressed genes were analyzed for their functions during the recovery of ischemic stroke. The expression level of significantly differentially expressed genes such as growth factors, microglia markers and secretive enzymes in the lesion was further validated by RT-qPCR and immunohistochemistry. RESULTS Previously identified neuroactive compounds, such as geniposide (Yu et al., 2009), myristicin (Shin et al., 1988), costunolide (Okugawa et al., 1996), toosendanin (Shi and Chen, 1999) were detected in EW formulation. Bederson scale indicated that the treatment of rat MCAO models with EW showed significantly lowered neurological deficits (p < 0.01). The regional cerebral blood circulation was also remarkably higher in rat MCAO models treated with EW compared to the control group. A total of 186 genes were upregulated in the lesion of rat MCAO models treated with EW compared to control group. Among them, growth factors such as Igf1 (p < 0.05), Igf2 (p < 0.01), Grn (p < 0.01) were significantly upregulated in brain after treatment of rat MCAO models with EW. Meanwhile, greatly enhanced expression of microglia markers, as well as complementary components and secretive proteases were also detected. CONCLUSION Our data collectively indicated that EW enhances expression of growth factors including Igf1 and Igf2 in neurons and microglia, and may stimulate microglia polarization in the brain. The consequences of such activity include stimulation of neuron growth, hydrolysis and clearance of cell debris at the lesion, as well as the angiogenesis.
Collapse
Affiliation(s)
- Saren Gaowa
- School of Basic Medical Science, Beijing University of Chinese Medicine, Chaoyang District, Beijing 100029, PR China; Inner Mongolia Medical University, Hohhot, Inner Mongolia 010020, PR China; International Hospital of Mongolian Medicine, Hohhot, Inner Mongolia 010021, PR China
| | - Narisi Bao
- School of Basic Medical Science, Beijing University of Chinese Medicine, Chaoyang District, Beijing 100029, PR China; Inner Mongolia Medical University, Hohhot, Inner Mongolia 010020, PR China
| | - Man Da
- International Hospital of Mongolian Medicine, Hohhot, Inner Mongolia 010021, PR China
| | - Qiburi Qiburi
- Institute of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Tsogzolmaa Ganbold
- Institute of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Lu Chen
- Institute of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Altanzul Altangerel
- Institute of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Temuqile Temuqile
- Inner Mongolia Medical University, Hohhot, Inner Mongolia 010020, PR China; International Hospital of Mongolian Medicine, Hohhot, Inner Mongolia 010021, PR China
| | - Huricha Baigude
- Institute of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China.
| |
Collapse
|
6
|
Bake S, Okoreeh AK, Alaniz RC, Sohrabji F. Insulin-Like Growth Factor (IGF)-I Modulates Endothelial Blood-Brain Barrier Function in Ischemic Middle-Aged Female Rats. Endocrinology 2016; 157:61-9. [PMID: 26556536 PMCID: PMC4701884 DOI: 10.1210/en.2015-1840] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In comparison with young females, middle-aged female rats sustain greater cerebral infarction and worse functional recovery after stroke. These poorer stroke outcomes in middle-aged females are associated with an age-related reduction in IGF-I levels. Poststroke IGF-I treatment decreases infarct volume in older females and lowers the expression of cytokines in the ischemic hemisphere. IGF-I also reduces transfer of Evans blue dye to the brain, suggesting that this peptide may also promote blood-brain barrier function. To test the hypothesis that IGF-I may act at the blood-brain barrier in ischemic stroke, 2 approaches were used. In the first approach, middle-aged female rats were subjected to middle cerebral artery occlusion and treated with IGF-I after reperfusion. Mononuclear cells from the ischemic hemisphere were stained for CD4 or triple-labeled for CD4/CD25/FoxP3 and subjected to flow analyses. Both cohorts of cells were significantly reduced in IGF-I-treated animals compared with those in vehicle controls. Reduced trafficking of immune cells to the ischemic site suggests that blood-brain barrier integrity is better maintained in IGF-I-treated animals. The second approach directly tested the effect of IGF-I on barrier function of aging endothelial cells. Accordingly, brain microvascular endothelial cells from middle-aged female rats were cultured ex vivo and subjected to ischemic conditions (oxygen-glucose deprivation). IGF-I treatment significantly reduced the transfer of fluorescently labeled BSA across the endothelial monolayer as well as cellular internalization of fluorescein isothiocyanate-BSA compared with those in vehicle-treated cultures, Collectively, these data support the hypothesis that IGF-I improves blood-brain barrier function in middle-aged females.
Collapse
MESH Headings
- Aging
- Animals
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/immunology
- Blood-Brain Barrier/metabolism
- Blood-Brain Barrier/pathology
- Brain Ischemia/drug therapy
- Brain Ischemia/immunology
- Brain Ischemia/metabolism
- Brain Ischemia/pathology
- Capillary Permeability/drug effects
- Cell Hypoxia/drug effects
- Cells, Cultured
- Cerebrum/drug effects
- Cerebrum/immunology
- Cerebrum/metabolism
- Cerebrum/pathology
- Drug Implants
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Female
- Humans
- Hypoglycemia/etiology
- Insulin-Like Growth Factor I/administration & dosage
- Insulin-Like Growth Factor I/genetics
- Insulin-Like Growth Factor I/pharmacology
- Insulin-Like Growth Factor I/therapeutic use
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/pathology
- Microvessels/drug effects
- Microvessels/immunology
- Microvessels/metabolism
- Microvessels/pathology
- Nerve Tissue Proteins/agonists
- Nerve Tissue Proteins/antagonists & inhibitors
- Nerve Tissue Proteins/metabolism
- Rats, Sprague-Dawley
- Receptor, IGF Type 1/agonists
- Receptor, IGF Type 1/metabolism
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/pharmacology
- Recombinant Proteins/therapeutic use
- Signal Transduction/drug effects
- Stroke/drug therapy
- Stroke/immunology
- Stroke/metabolism
- Stroke/pathology
Collapse
Affiliation(s)
- Shameena Bake
- Women's Health in Neuroscience Program (S.B., A.K.O., F.S.), Department of Neuroscience and Experimental Therapeutics and Department of Microbial Pathogenesis and Immunology (R.C.A.), Texas A&M University Health Science Center, Bryan, Texas 77807
| | - Andre K Okoreeh
- Women's Health in Neuroscience Program (S.B., A.K.O., F.S.), Department of Neuroscience and Experimental Therapeutics and Department of Microbial Pathogenesis and Immunology (R.C.A.), Texas A&M University Health Science Center, Bryan, Texas 77807
| | - Robert C Alaniz
- Women's Health in Neuroscience Program (S.B., A.K.O., F.S.), Department of Neuroscience and Experimental Therapeutics and Department of Microbial Pathogenesis and Immunology (R.C.A.), Texas A&M University Health Science Center, Bryan, Texas 77807
| | - Farida Sohrabji
- Women's Health in Neuroscience Program (S.B., A.K.O., F.S.), Department of Neuroscience and Experimental Therapeutics and Department of Microbial Pathogenesis and Immunology (R.C.A.), Texas A&M University Health Science Center, Bryan, Texas 77807
| |
Collapse
|
7
|
Sasaki T, Oga T, Nakagaki K, Sakai K, Sumida K, Hoshino K, Miyawaki I, Saito K, Suto F, Ichinohe N. Developmental expression profiles of axon guidance signaling and the immune system in the marmoset cortex: Potential molecular mechanisms of pruning of dendritic spines during primate synapse formation in late infancy and prepuberty (I). Biochem Biophys Res Commun 2014; 444:302-6. [DOI: 10.1016/j.bbrc.2014.01.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 01/11/2014] [Indexed: 02/07/2023]
|
8
|
Sohrabji F, Williams M. Stroke neuroprotection: oestrogen and insulin-like growth factor-1 interactions and the role of microglia. J Neuroendocrinol 2013; 25:1173-81. [PMID: 23763366 PMCID: PMC5630268 DOI: 10.1111/jne.12059] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/30/2013] [Accepted: 06/09/2013] [Indexed: 12/25/2022]
Abstract
Oestrogen has been shown to be neuroprotective for stroke and other neural injury models. Oestrogen promotes a neuroprotective phenotype through myriad actions, including stimulating neurogenesis, promoting neuronal differentiation and survival, suppressing neuroinflammation and maintaining the integrity of the blood-brain barrier. At the molecular level, oestrogen directly modulates genes that are beneficial for repair and regeneration via the canonical oestrogen receptor. Increasingly, evidence indicates that oestrogen acts in concert with growth factors to initiate neuroprotection. Oestrogen and insulin-like growth factor (IGF)-1 act cooperatively to influence cell survival, and combined steroid hormone/growth factor interaction has been well documented in the context of neurones and astrocytes. Here, we summarise the evidence that oestrogen-mediated neuroprotection is critically dependent on IGF-1 signalling, and specifically focus on microglia as the source of IGF-1 and the locus of oestrogen-IGF-1 interactions in stroke neuroprotection.
Collapse
Affiliation(s)
- F Sohrabji
- Women's Health in Neuroscience Program, Neuroscience and Experimental Therapeutics, TAMHSC College of Medicine, Bryan, TX, USA
| | | |
Collapse
|
9
|
Zhang R, Xu GL, Li Y, He LJ, Chen LM, Wang GB, Lin SY, Luo GY, Gao XY, Shan HB. The role of insulin-like growth factor 1 and its receptor in the formation and development of colorectal carcinoma. J Int Med Res 2013; 41:1228-35. [PMID: 23801064 DOI: 10.1177/0300060513487631] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To investigate the role of insulin-like growth factor (IGF)-1 and its receptor (IGF1R) in the formation and development of colorectal carcinoma. METHODS Colorectal tissue and matching serum samples were collected from patients with adenomatous polyps or carcinoma and healthy control subjects. IGF1R mRNA levels were determined via quantitative real-time reverse transcription-polymerase chain reaction. Serum IGF1 was quantified using enzyme-linked immunosorbent assay. RESULTS Serum IGF1 concentrations and mucosal IGF1R mRNA levels were significantly higher in patients with adenomatous polyps (n = 24) or carcinoma (n = 13) compared with healthy control subjects (n = 13). There was a significant positive correlation between serum IGF1 and mucosal IGF1R mRNA in patients with adenomatous polyps. CONCLUSIONS High circulating IGF1 concentrations and mucosal IGF1R expression may play important roles in both the formation and development of colorectal carcinoma. IGF1 and its receptor may be activated before carcinogenesis, and may promote the growth and malignant transformation of adenomatous polyps. IGF1 and IGF1R may be useful biomarkers for evaluating the stage and risk of carcinogenesis.
Collapse
Affiliation(s)
- Rong Zhang
- State Key Laboratory of Oncology in Southern China, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Layer V cortical neurons require microglial support for survival during postnatal development. Nat Neurosci 2013; 16:543-51. [PMID: 23525041 DOI: 10.1038/nn.3358] [Citation(s) in RCA: 600] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/13/2013] [Indexed: 01/19/2023]
|
11
|
Braun A, Dang J, Johann S, Beyer C, Kipp M. Selective regulation of growth factor expression in cultured cortical astrocytes by neuro-pathological toxins. Neurochem Int 2009; 55:610-8. [PMID: 19524632 DOI: 10.1016/j.neuint.2009.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 06/02/2009] [Accepted: 06/03/2009] [Indexed: 12/14/2022]
Abstract
Astrocytes are integrated in the complex regulation of neurodegeneration and neuronal damage in the CNS. It is well-known that astroglia produces a plethora of growth factors which might be protective for neurons. Growth factors prevent neurons from cell death and promote proliferation and differentiation of precursor cells. Previous data suggest that astrocytes may respond to toxic stimuli by a selective mobilization of guarding molecules. In the present study, we have investigated the potency of different pathological stimuli such as lipopolysaccharides, tumor necrosis factor alpha, glutamate, and hydrogen peroxide to activate cultured cortical astroglia and stimulate growth factor expression. Astroglial cultures were exposed to the above factors for 24h at non-toxic concentrations for astrocytes. Growth factor expression was analyzed by real-time PCR, oligo-microarray technique, and ELISA. Insulin-like growth factor-1 was selectively down-regulated by lipopolysaccharides and tumor necrosis factor alpha, bone morphogenetic protein 6 by all stimuli. In contrast, lipopolysaccharides, tumor necrosis factor alpha, and glutamate increased leukemia inhibitory factor. Fibroblast growth factor 2 was up-regulated by lipopolysaccharides and tumor necrosis factor alpha and down-regulated by hydrogen peroxide. Besides hydrogen peroxide, all other stimuli promoted vascular epithelial growth factor A mRNA and protein expression. It appears that lipopolysaccharides but not tumor necrosis factor alpha effects on vascular epithelial growth factor A depend on the classic NFkappaB pathway. Our data clearly demonstrate that astroglia actively responses to diverse pathological compounds by a selective expression pattern of growth factors. These findings make astrocytes likely candidates to participate in disease-specific characteristics of neuronal support or damage.
Collapse
Affiliation(s)
- Alena Braun
- Institute of Neuroanatomy, RWTH Aachen University, Germany
| | | | | | | | | |
Collapse
|
12
|
Kardami E, Dang X, Iacobas DA, Nickel BE, Jeyaraman M, Srisakuldee W, Makazan J, Tanguy S, Spray DC. The role of connexins in controlling cell growth and gene expression. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2007; 94:245-64. [PMID: 17462721 DOI: 10.1016/j.pbiomolbio.2007.03.009] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this paper is to provide a brief overview of current thinking on the role of connexins, in particular Cx43, in growth regulation, and a more detailed discussion as to potential mechanisms involved with an emphasis on gene expression. While the precise molecular mechanism by which connexins can affect the growth of normal or tumor cells remains elusive, a number of exciting reports have expanded our understanding and are presented in some detail. Thus, we will discuss (Section 2): the role of protein-protein interactions in integrating connexins into multiple signal transduction pathways; phosphorylation at specific sites and reversal of growth inhibition; the role of the carboxy-terminal regulatory domain as a signaling molecule. Some of our latest work on the potential functions of endogenously produced carboxy-terminal fragments of Cx43 are also presented (Section 3). Finally, Section 4 will pay tribute to the rapidly emerging realization that connexins such as Cx43 and Cx32 exert important and extensive effects on gene expression, particularly those genes linked to growth regulation.
Collapse
Affiliation(s)
- Elissavet Kardami
- Institute of Cardiovascular Sciences, University of Manitoba and St Boniface Research Centre, Winnipeg, MAN, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Borges K, Shaw R, Dingledine R. Gene expression changes after seizure preconditioning in the three major hippocampal cell layers. Neurobiol Dis 2007; 26:66-77. [PMID: 17239605 PMCID: PMC2295285 DOI: 10.1016/j.nbd.2006.12.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 10/31/2006] [Accepted: 12/05/2006] [Indexed: 12/23/2022] Open
Abstract
Rodents experience hippocampal damage after status epilepticus (SE) mainly in pyramidal cells while sparing the dentate granule cell layer (DGCL). Hippocampal damage was prevented in rats that had been preconditioned by brief seizures on 2 consecutive days before SE. To identify neuroprotective genes and biochemical pathways changed after preconditioning we compared the effect of preconditioning on gene expression in the CA1 and CA3 pyramidal and DGCLs, harvested by laser capture microscopy. In the DGCL the expression of 632 genes was altered, compared to only 151 and 58 genes in CA1 and CA3 pyramidal cell layers. Most of the differentially expressed genes regulate tissue structure and intra- and extracellular signaling, including neurotransmission. A selective upregulation of energy metabolism transcripts occurred in CA1 pyramidal cells relative to the DGCL. These results reveal a broad transcriptional response of the DGCL to preconditioning, and suggest several mechanisms underlying the neuroprotective effect of preconditioning seizures.
Collapse
Affiliation(s)
- Karin Borges
- Department of Pharmacology, School of Medicine, 1510 Clifton Rd, Emory University, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
14
|
Mazurek B, Rheinländer C, Fuchs FU, Amarjargal N, Kuban RJ, Ungethüm U, Haupt H, Kietzmann T, Gross J. Einfluss von Ischämie/Hypoxie auf die HIF-1-Aktivität und Expression von hypoxieabhängigen Genen in der Kochlea der neugeborenen Ratte. HNO 2006; 54:689-97. [PMID: 16479386 DOI: 10.1007/s00106-005-1371-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Transcription factor HIF-1 (hypoxia-inducible factor-1) regulates the expression of genes which are involved in glucose supply, growth, metabolism, redox reactions and blood supply. Hypoxia and ischemia play an important role in the pathogenesis of tinnitus and hearing loss. Therefore, HIF-1 activity and the expression of HIF-1 dependent genes in the cochlea were examined under ischemic and hypoxic conditions. MATERIAL AND METHODS For the HIF-1 analysis, single-cell cultures of the organ of Corti (OC), stria vascularis (SV) and modiolus (MOD) were used. mRNA expression was analyzed in the organotypic culture using a microarray technique (RN U34-chip, Affymetrix). RESULTS Ischemia (hypoxia without glucose) and pure hypoxia increase the HIF-1 activity identically, with the highest increase found in MOD and OC. The HIF-1 alpha mRNA levels were found to be higher in SV than in the OC and MOD. During culturing, there is a clear increase in HIF-1 alpha mRNA and the expression of a number of HIF-1 dependent genes, such as Gapdh/glyceraldehyde-3-phosphate dehydrogenase, Slc2a1/solute carrier family 2 (facilitated glucose transporter), member 1, Tf/transferrin and Tfrc/transferrin receptor, in all three regions. In SV, MOD and OC, increase in the expression of Hmox1/hemoxygenase 1, Nos2/nitric oxide synthase, inducible and Tfrc is particularly high. Hypoxia (5 h) results in an increased expression of Igf2/Insulin-like growth factor 2. CONCLUSION The present data underline the contribution of radical forming processes to the pathogenesis of inner ear diseases. For experimental research, it is important to note that organotypic culture may be coupled with hypoxia.
Collapse
Affiliation(s)
- B Mazurek
- Molekularbiologisches Forschungslabor der HNO-Klinik, Charité--Universitätsmedizin Berlin
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kaur C, Sivakumar V, Dheen ST, Ling EA. Insulin-like growth factor I and II expression and modulation in amoeboid microglial cells by lipopolysaccharide and retinoic acid. Neuroscience 2006; 138:1233-44. [PMID: 16448778 DOI: 10.1016/j.neuroscience.2005.12.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 11/23/2005] [Accepted: 12/01/2005] [Indexed: 01/15/2023]
Abstract
Insulin-like growth factors I and II are known to regulate the development of the CNS. We examined the developmental changes in insulin-like growth factor I and insulin-like growth factor II expression in the postnatal rat corpus callosum. Insulin-like growth factor I and insulin-like growth factor II mRNA expression increased at 3 days as compared with 1 day whereas the protein expression increased up to 7 days. Insulin-like growth factor I and insulin-like growth factor II immunoexpression was specifically localized in round cells confirmed by double immunofluorescence with OX-42 to be the amoeboid microglial cells. Insulin-like growth factor I expression was observed up to 7 days in amoeboid microglial cells while insulin-like growth factor II expression was detected in 1-3 day old rats. Exposure of primary rat microglial cell cultures to lipopolysaccharide increased insulin-like growth factor I and insulin-like growth factor II mRNA and protein expression significantly along with their immunoexpression in microglial cells. The lipopolysaccharide-induced increase in insulin-like growth factor I and insulin-like growth factor II mRNA and protein expression was significantly decreased with all-trans-retinoic acid. We conclude that insulin-like growth factor I and insulin-like growth factor II expression in amoeboid microglial cells in the developing brain is related to their activation. Once the activation is inhibited, either by transformation of the amoeboid microglial cells into ramified microglia regarded as resting cells or as shown by the effect of all-trans-retinoic acid administration, insulin-like growth factor I and insulin-like growth factor II mRNA and protein expression is downregulated.
Collapse
Affiliation(s)
- C Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive, National University of Singapore, Singapore 117597.
| | | | | | | |
Collapse
|
16
|
Gebicke-Haerter PJ. Microarrays and expression profiling in microglia research and in inflammatory brain disorders. J Neurosci Res 2005; 81:327-41. [PMID: 15948185 DOI: 10.1002/jnr.20479] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Expression profiling by using microarrays is a powerful tool for investigating transcriptional changes in a variety of diseases. In this survey, microarray data selected from the literature from in vivo and in vitro studies are scrutinized to find differentially expressed genes in common within specific inflammatory conditions in brain or microglial cell cultures, if there are at least two independent investigations available. Viral encephalitis, multiple sclerosis, epileptic seizures, ischemic lesions, and traumatic brain injury are the disorders covered. Moreover, by taking into account expression data obtained from cultured microglia, two examples are presented of how one can deal (or should not deal) with lists of candidate genes showing up in these kinds of studies without sophisticated software programs. Finally, some general remarks are made about pivotal issues when beginning to use microarray technology.
Collapse
|