1
|
Hwang DJ, Yang HJ. Nutritional Strategies for Enhancing Performance and Training Adaptation in Weightlifters. Int J Mol Sci 2024; 26:240. [PMID: 39796095 PMCID: PMC11720227 DOI: 10.3390/ijms26010240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Weightlifting demands explosive power and neuromuscular coordination in brief, repeated intervals. These physiological demands underscore the critical role of nutrition, not only in optimizing performance during competitions but also in supporting athletes' rigorous training adaptations and ensuring effective recovery between sessions. As weightlifters strive to enhance their performance, well-structured nutritional strategies are indispensable. In this comprehensive review, we explored how weightlifters can optimize their performance through targeted nutritional strategies, including carbohydrate intake for glycogen replenishment and proteins for muscle growth and recovery. Additionally, the roles of key supplements, such as creatine, beta-alanine, and branch-chained amino acids in enhancing strength, delaying fatigue, and supporting muscle repair were discussed. A comprehensive literature review was conducted using PubMed, Google Scholar, and Web of Science to gather studies on nutritional strategies for weightlifting performance and training adaptation. The review focused on English-language articles relevant to weightlifters, including studies on powerlifting, while excluding those involving non-human subjects. Weightlifting requires explosive power, and proper nutrition is vital for performance and recovery, emphasizing the role of carbohydrate, protein, and fat intake. Nutrient timing and personalized strategies, informed by genetic and metabolomic analyses, enhance recovery and performance, while supplements like creatine, caffeine, and beta-alanine can significantly improve results when used correctly. Sustainable nutritional strategies are essential for enhancing weightlifter performance, emphasizing a balanced approach over extreme diets or excessive supplements. Further research is needed to refine these strategies based on individual athlete characteristics, ensuring consistent top-level performance throughout competitive seasons.
Collapse
Affiliation(s)
- Dong-Joo Hwang
- Sport Science Institute, Korea National Sport University, Seoul 05541, Republic of Korea;
| | - Hong-Jun Yang
- Institute of Health & Environment, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Meng X, Wu W, Tang Y, Peng M, Yang J, Yuan S, Hu Z, Liu W. Lactate/Hydroxycarboxylic Acid Receptor 1 in Alzheimer's Disease: Mechanisms and Therapeutic Implications-Exercise Perspective. Mol Neurobiol 2024; 61:7717-7731. [PMID: 38427215 DOI: 10.1007/s12035-024-04067-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Lactate has a novel function different from previously known functions despite its traditional association with hypoxia in skeletal muscle. It plays various direct and indirect physiological functions. It is a vital energy source within the central nervous system (CNS) and a signal transmitter regulating crucial processes, such as angiogenesis and inflammation. Activating lactate and its associated receptors elicits effects like synaptic plasticity and angiogenesis alterations. These effects can significantly influence the astrocyte-neuron lactate shuttle, potentially impacting cognitive performance. Decreased cognitive function relates to different neurodegenerative conditions, including Alzheimer's disease (AD), ischemic brain injury, and frontotemporal dementia. Therefore, lactic acid has significant potential for treating neurodegenerative disorders. Exercise is a method that induces the production of lactic acid, which is similar to the effect of lactate injections. It is a harmless and natural way to achieve comparable results. Animal experiments demonstrate that high-intensity intermittent exercise can increase vascular endothelial growth factor (VEGF) levels, thus promoting angiogenesis. In vivo, lactate receptor-hydroxycarboxylic acid receptor 1 (HCAR1) activation can occur by various stimuli, including variations in ion concentrations, cyclic adenosine monophosphate (cAMP) level elevations, and fluctuations in the availability of energy substrates. While several articles have been published on the benefits of physical activity on developing Alzheimer's disease in the CNS, could lactic acid act as a bridge? Understanding how HCAR1 responds to these signals and initiates associated pathways remains incomplete. This review comprehensively analyzes lactate-induced signaling pathways, investigating their influence on neuroinflammation, neurodegeneration, and cognitive decline. Consequently, this study describes the unique role of lactate in the progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Xiangyuan Meng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Weijia Wu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Yingzhe Tang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Mei Peng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Jialun Yang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Shunling Yuan
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Zelin Hu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China.
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
3
|
de Melo Madureira ÁN, de Oliveira JRS, de Menezes Lima VL. The Role of IL-6 Released During Exercise to Insulin Sensitivity and Muscle Hypertrophy. Mini Rev Med Chem 2022; 22:2419-2428. [PMID: 35264090 DOI: 10.2174/1389557522666220309161245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/25/2021] [Accepted: 01/27/2022] [Indexed: 11/22/2022]
Abstract
Interleukin-6 (IL-6) influences both inflammatory response and anti-inflammatory processes. This cytokine can be released by the exercising skeletal muscle, which characterizes it as a myokine. Unlike what is observed in inflammation, IL-6 produced by skeletal muscle is not preceded by the release of other pro-inflammatory cytokines, but is seems to be dependent on the lactate produced during exercise, thus causing different effects from those of seen in inflammatory state. After binding to its receptor, myokine IL-6 activates the PI3K-Akt pathway. One consequence of this upregulation is the potentiation of insulin signaling, which enhances insulin sensitivity. IL-6 increases GLUT-4 vesicle mobilization to muscle cell periphery, increasing the glucose transport into the cell, and also glycogen synthesis. Muscle glycogen provides energy for the ATP resynthesis, and regulates Ca2+ release by the sarcoplasmic reticulum, influencing muscle contraction, and, hence, muscle function by multiple pathways. Another implication for the upregulation of PI3K-Akt pathway is the activation of mTORC1, which regulates mRNA translational efficiency by regulating translation machinery, and translational capacity by inducing ribosomal biogenesis. Thus, IL-6 may contribute for skeletal muscle hypertrophy and function by increasing contractile protein synthesis.
Collapse
Affiliation(s)
- Álvaro Nóbrega de Melo Madureira
- Laboratory of Lipids and Application of Biomolecules to Prevalent and Neglected Diseases (LAB-DPN), Department of Biochemistry, Federal University of Pernambuco (UFPE)
| | - João Ricardhis Saturnino de Oliveira
- Laboratory of Lipids and Application of Biomolecules to Prevalent and Neglected Diseases (LAB-DPN), Department of Biochemistry, Federal University of Pernambuco (UFPE)
| | - Vera Lúcia de Menezes Lima
- Laboratory of Lipids and Application of Biomolecules to Prevalent and Neglected Diseases (LAB-DPN), Department of Biochemistry, Federal University of Pernambuco (UFPE)
| |
Collapse
|
4
|
Begrambekova YL, Orlova YA. Health benefits of aerobic exercise: known mechanisms and research potential. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2021. [DOI: 10.15829/1728-8800-2021-2878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The pandemic of noncommunicable diseases, which is currently one of the main threats to health and well-being of mankind, makes us look for ways to prevent their development early. Low cardiorespiratory endurance due to a sedentary lifestyle is associated with high cardiovascular risk, all-cause and cancer mortality. Skeletal muscles are the most important secretory organ and is characterized by outstanding metabolic performance and endurance. Exercise-induced low-dose stress contributes to mitochondrial biogenesis and remodeling of not only the muscular system, but also other systems involved in maintaining muscle activity, including regulating glucose and fat metabolism, maintaining immunity, and stimulating angiogenesis. These and other effects of physical activity are implements through the myokine system discovered in recent years. Shutting off the paracrine, exocrine and endocrine functions of muscles cannot be replenished in any other way and leads to disruption of vital adaptive processes. This review describes currently available evidence of unique role of aerobic physical activity in maintaining the human health, as well as to define the chain of pathological reactions during physical inactivity. The search was carried out in the Medline and PubMed Central databases for the keywords: cardiorespiratory endurance, non-communicable diseases, maximum oxygen consumption, myokines, interleukin-6, aerobic exercise.
Collapse
|
5
|
Gawedzka A, Grandys M, Duda K, Zapart-Bukowska J, Zoladz JA, Majerczak J. Plasma BCAA concentrations during exercise of varied intensities in young healthy men-the impact of endurance training. PeerJ 2020; 8:e10491. [PMID: 33391874 PMCID: PMC7759138 DOI: 10.7717/peerj.10491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/13/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Branched-chain amino acids (BCAA) i.e., leucine (Leu), isoleucine (Ile) and valine (Val) are important amino acids, which metabolism play a role in maintaining system energy homeostasis at rest and during exercise. As recently shown lowering of circulating BCAA level improves insulin sensitivity and cardiac metabolic health. However, little is known concerning the impact of a single bout of incremental exercise and physical training on the changes in blood BCAA. The present study aimed to determine the impact of a gradually increasing exercise intensity-up to maximal oxygen uptake (VO2max) on the changes of the plasma BCAA [∑BCAA]pl, before and after 5-weeks of moderate-intensity endurance training (ET). METHODS Ten healthy young, untrained men performed an incremental cycling exercise test up to exhaustion to reach VO2max, before and after ET. RESULTS We have found that exercise of low-to-moderate intensity (up to ∼50% of VO2max lasting about 12 min) had no significant effect on the [∑BCAA]pl, however the exercise of higher intensity (above 70% of VO2max lasting about 10 min) resulted in a pronounced decrease (p < 0.05) in [∑BCAA]pl. The lowering of plasma BCAA when performing exercise of higher intensity was preceded by a significant increase in plasma lactate concentration, showing that a significant attenuation of BCAA during incremental exercise coincides with exercise-induced acceleration of glycogen utilization. In addition, endurance training, which significantly increased power generating capabilities at VO2max (p = 0.004) had no significant impact on the changes of [∑BCAA]pl during this incremental exercise. CONCLUSION We have concluded that an exercise of moderate intensity of relatively short duration generally has no effect on the [∑BCAA]pl in young, healthy men, whereas significant decrease in [∑BCAA]pl occurs when performing exercise in heavy-intensity domain. The impact of exercise intensity on the plasma BCAA concentration seems to be especially important for patients with cardiometabolic risk undertaken cardiac rehabilitation or recreational activity.
Collapse
Affiliation(s)
- Anna Gawedzka
- Department of Muscle Physiology, Institute of Basic Sciences, Faculty of Rehabilitation, University School of Physical Education in Krakow, Krakow, Poland
- Department of Biochemical Analytics, Faculty of Pharmacy, Jagiellonian University, Medical College, Krakow, Poland
| | - Marcin Grandys
- Department of Muscle Physiology, Institute of Basic Sciences, Faculty of Rehabilitation, University School of Physical Education in Krakow, Krakow, Poland
| | - Krzysztof Duda
- Department of Muscle Physiology, Institute of Basic Sciences, Faculty of Rehabilitation, University School of Physical Education in Krakow, Krakow, Poland
- Institute of Health Care, State Higher Vocational School in Tarnow, Tarnow, Poland
| | - Justyna Zapart-Bukowska
- Department of Muscle Physiology, Institute of Basic Sciences, Faculty of Rehabilitation, University School of Physical Education in Krakow, Krakow, Poland
| | - Jerzy A. Zoladz
- Department of Muscle Physiology, Institute of Basic Sciences, Faculty of Rehabilitation, University School of Physical Education in Krakow, Krakow, Poland
| | - Joanna Majerczak
- Department of Neurobiology, Faculty of Health Sciences, Poznan University School of Physical Education in Poznan, Poznan, Poland
| |
Collapse
|
6
|
Guzzoni V, Briet L, Costa R, Souza RWA, Carani FR, Dal-Pai-Silva M, Silva KAS, Cunha TS, Marcondes FK. Intense resistance training induces pronounced metabolic stress and impairs hypertrophic response in hind-limb muscles of rats. Stress 2019; 22:377-386. [PMID: 30857457 DOI: 10.1080/10253890.2019.1573364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Skeletal muscle hypertrophy is an exercise-induced adaptation, particularly in resistance training (RT) programs that use large volumes and low loads. However, evidence regarding the role of rest intervals on metabolic stress and muscular adaptations is inconclusive. Thus, we aimed to investigate the effects of a strenuous RT model (jump-training) on skeletal muscle adaptations and metabolic stress, considering the scarce information about RT models for rats. We hypothesized that jump-training induces metabolic stress and influences negatively the growth of soleus (SOL) and extensor digitorum longus (EDL) muscles of rats. Male Wistar rats (aged 60 days) were randomly assigned to non-trained or trained groups (n = 8/group). Trained rats performed jump-training during 5 days a week for 1, 3, or 5 weeks with 30 s of inter-set rest intervals. Forty-eight hours after the experimental period, rats were euthanized and blood samples immediately drawn to measure creatine kinase activity, lactate and corticosterone concentrations. Muscle weight-to-body weight ratio (MW/BW), cross-sectional area (CSA) and myosin heavy chain (MHC) isoform expression were determined. Higher lactate levels occurred after 20 min of training in weeks 1 and 3. Corticosterone levels were higher after 5 weeks of training. Jump-training had negative effects on hypertrophy of types-I and II muscle fibers after 5 weeks of training, as evidenced by decreased CSA and reduced muscle weight. Our results demonstrated that pronounced metabolic stress and impairment of muscle growth might take place when variables of exercise training are not appropriately manipulated. Lay summary Resistance training (RT) has been used to increase muscle mass. In this regard, training variables (intensity, volume, and frequency) must be strictly controlled in order to evoke substantial muscular fitness. This study shows that rats submitted to 5 weeks of intensive resistance jump-training - high intensity, large volume, and short rest intervals - present high levels of blood corticosterone associated with negative effects on hypertrophy of types-I and II muscle fibers.
Collapse
Affiliation(s)
- Vinicius Guzzoni
- a Department of Physiological Sciences , Piracicaba Dental School, University of Campinas , Piracicaba , Brazil
- b Department of Cellular and Molecular Biology , Federal University of Paraíba , João Pessoa , Brazil
| | - Larissa Briet
- c Institute of Biology , University of Campinas , Campinas , Brazil
| | - Rafaela Costa
- a Department of Physiological Sciences , Piracicaba Dental School, University of Campinas , Piracicaba , Brazil
| | - Rodrigo W A Souza
- d Department of Morphology, Institute of Biosciences , São Paulo State University , Botucatu , Brazil
| | - Fernanda R Carani
- d Department of Morphology, Institute of Biosciences , São Paulo State University , Botucatu , Brazil
| | - Maeli Dal-Pai-Silva
- d Department of Morphology, Institute of Biosciences , São Paulo State University , Botucatu , Brazil
| | - Kleiton A S Silva
- e Department of Medicine , University of Missouri School of Medicine , Columbia , MO, USA
| | - Tatiana S Cunha
- f Science and Technology Institute , Federal University of São Paulo , São José dos Campos , Brazil
| | - Fernanda K Marcondes
- a Department of Physiological Sciences , Piracicaba Dental School, University of Campinas , Piracicaba , Brazil
| |
Collapse
|
7
|
Park JM, Josan S, Mayer D, Hurd RE, Chung Y, Bendahan D, Spielman DM, Jue T. Hyperpolarized 13C NMR observation of lactate kinetics in skeletal muscle. ACTA ACUST UNITED AC 2015; 218:3308-18. [PMID: 26347554 DOI: 10.1242/jeb.123141] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/21/2015] [Indexed: 01/02/2023]
Abstract
The production of glycolytic end products, such as lactate, usually evokes a cellular shift from aerobic to anaerobic ATP generation and O2 insufficiency. In the classical view, muscle lactate must be exported to the liver for clearance. However, lactate also forms under well-oxygenated conditions, and this has led investigators to postulate lactate shuttling from non-oxidative to oxidative muscle fiber, where it can serve as a precursor. Indeed, the intracellular lactate shuttle and the glycogen shunt hypotheses expand the vision to include a dynamic mobilization and utilization of lactate during a muscle contraction cycle. Testing the tenability of these provocative ideas during a rapid contraction cycle has posed a technical challenge. The present study reports the use of hyperpolarized [1-(13)C]lactate and [2-(13)C]pyruvate in dynamic nuclear polarization (DNP) NMR experiments to measure the rapid pyruvate and lactate kinetics in rat muscle. With a 3 s temporal resolution, (13)C DNP NMR detects both [1-(13)C]lactate and [2-(13)C]pyruvate kinetics in muscle. Infusion of dichloroacetate stimulates pyruvate dehydrogenase activity and shifts the kinetics toward oxidative metabolism. Bicarbonate formation from [1-(13)C]lactate increases sharply and acetyl-l-carnitine, acetoacetate and glutamate levels also rise. Such a quick mobilization of pyruvate and lactate toward oxidative metabolism supports the postulated role of lactate in the glycogen shunt and the intracellular lactate shuttle models. The study thus introduces an innovative DNP approach to measure metabolite transients, which will help delineate the cellular and physiological role of lactate and glycolytic end products.
Collapse
Affiliation(s)
- Jae Mo Park
- Radiology, Stanford University, Stanford, CA 94305, USA
| | - Sonal Josan
- Radiology, Stanford University, Stanford, CA 94305, USA Neuroscience Program, SRI International, Menlo Park, CA 94025, USA
| | - Dirk Mayer
- Neuroscience Program, SRI International, Menlo Park, CA 94025, USA Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD 21201, USA
| | | | - Youngran Chung
- Biochemistry and Molecular Medicine, University of California Davis, Davis, CA 95616, USA
| | - David Bendahan
- Centre de Resonance Magnetique Biologique et Medicale, Aix-Marseille University, Marseille 13385, France
| | | | - Thomas Jue
- Biochemistry and Molecular Medicine, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
8
|
Rogatzki MJ, Wright GA, Mikat RP, Brice AG. Blood Ammonium and Lactate Accumulation Response to Different Training Protocols Using the Parallel Squat Exercise. J Strength Cond Res 2014; 28:1113-8. [DOI: 10.1519/jsc.0b013e3182a1f84e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Ishii H, Nishida Y. Effect of Lactate Accumulation during Exercise-induced Muscle Fatigue on the Sensorimotor Cortex. J Phys Ther Sci 2014; 25:1637-42. [PMID: 24409038 PMCID: PMC3885857 DOI: 10.1589/jpts.25.1637] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/22/2013] [Indexed: 01/09/2023] Open
Abstract
[Purpose] During exercise, skeletal muscle motor units are recruited based on afferent
sensory input following peripheral metabolic by-product accumulation. The purpose of this
study was to investigate whether lactate plays a role in conveying fatigue-related
information to the brain. [Subjects] Eleven healthy adults participated in this study.
[Methods] Subjects performed handgrip exercises at 10%, 30%, and 50% maximal voluntary
contraction for 120 s. They were monitored for brachial artery blood pressure, respiratory
quotient, muscle fatigue (integrated electromyogram, median power frequency), blood
lactate levels, muscle blood flow, and brain activity. [Results] The handgrip exercise
protocol caused significant muscle fatigue based on 28% and 37% reductions in median power
frequency detected at 30% and 50% maximal voluntary contraction, respectively. Subjects
exhibited intensity-dependent increases in blood pressure, respiratory quotient, muscle
blood flow, and circulating lactate concentrations. Furthermore, brain activity increased
at 30% and 50% maximal voluntary contraction. Multiple regression analysis identified
muscle blood flow at 30% maximal voluntary contraction and lactate at 50% maximal
voluntary contraction with standardized partial regression coefficients of −0.64 and 0.75,
respectively. [Conclusion] These data suggest that blood lactate concentration and muscle
blood flow, which reflect muscle metabolism, may convey load intensity information to the
brain during muscle fatigue.
Collapse
Affiliation(s)
- Hideaki Ishii
- Doctoral Program, Rehabilitation Sciences, Seirei Christopher University, Japan ; Department of Rehabilitation, Nursing Home Hamamatsu Jyujinosono, Japan
| | - Yusuke Nishida
- Doctoral Program, Rehabilitation Sciences, Seirei Christopher University, Japan
| |
Collapse
|
10
|
Opitz D, Kreutz T, Lenzen E, Dillkofer B, Wahl P, Montiel-Garcia G, Graf C, Bloch W, Brixius K. Strength training alters MCT1-protein expression and exercise-induced translocation in erythrocytes of men with non-insulin-dependent type-2 diabetes. Can J Physiol Pharmacol 2013; 92:259-62. [PMID: 24593791 DOI: 10.1139/cjpp-2012-0405] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the cellular distribution of lactate transporter (MCT1) and its chaperone CD147 (using immunohistochemistry and fluorescence-activated cell sorting) in the erythrocytes of men with non-insulin-dependent type-2 diabetes (NIDDM, n = 11, 61 ± 8 years of age) under acute exercise (ergometer cycling test, World Health Organisation scheme) performed before and after a 3-month strength training program. Cytosolic MCT1 distribution and membraneous CD147 density did not change after acute exercise (ergometer). After the 3-month strength training, MCT1-density was increased and the reaction of MCT1 (but not that of CD147) towards acute exercise (ergometer) was altered. MCT1 localisation was shifted from the centre to the cellular membrane. This resulted in a decrease in the immunohistochemically measured cytosolic MCT1-density. We conclude that strength training alters the acute exercise reaction of MCT1 but not that of CD147 in erythrocytes in patients with NIDDM. This reaction may contribute to long-term normalisation and stabilisation of the regulation of lactate plasma concentration in NIDDM.
Collapse
Affiliation(s)
- David Opitz
- a Department of Molecular and Cellular Sport Medicine, German Sport University, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Belfry GR, Raymer GH, Marsh GD, Paterson DH, Thompson RT, Thomas SG. Muscle metabolic status and acid-base balance during 10-s work:5-s recovery intermittent and continuous exercise. J Appl Physiol (1985) 2012; 113:410-7. [PMID: 22604889 DOI: 10.1152/japplphysiol.01059.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gastrocnemius muscle phosphocreatine ([PCr]) and hydrogen ion ([H(+)]) were measured using (31)P-magnetic resonance spectroscopy during repeated bouts of 10-s heavy-intensity (HI) exercise and 5-s rest compared with continuous (CONT) HI exercise. Recreationally active male subjects (n = 7; 28 yr ± 9 yr) performed on separate occasions 12 min of isotonic plantar flexion (0.75 Hz) CONT and intermittent (INT; 10-s exercise, 5-s rest) exercise. The HI power output in both CONT and INT was set at 50% of the difference between the power output associated with the onset of intracellular acidosis and peak exercise determined from a prior incremental plantar flexion protocol. Intracellular concentrations of [PCr] and [H(+)] were calculated at 4 s and 9 s of the work period and at 4 s of the rest period in INT and during CONT exercise. [PCr] and [H(+)] (mean ± SE) were greater at 4 s of the rest periods vs. 9 s of exercise over the course of the INT exercise bout: [PCr] (20.7 mM ± 0.6 vs. 18.7 mM ± 0.5; P < 0.01); [H(+)] (370 nM ± 13.50 vs. 284 nM ± 13.6; P < 0.05). Average [H(+)] was similar for CONT vs. INT. We therefore suggest that there is a glycolytic contribution to ATP recovery during the very short rest period (<5 s) of INT and that the greater average power output of CONT did not manifest in greater [H(+)] and greater glycolytic contribution compared with INT exercise.
Collapse
Affiliation(s)
- Glen R Belfry
- University of Western Ontario, London, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
12
|
Wallimann T, Tokarska-Schlattner M, Schlattner U. The creatine kinase system and pleiotropic effects of creatine. Amino Acids 2011; 40:1271-96. [PMID: 21448658 PMCID: PMC3080659 DOI: 10.1007/s00726-011-0877-3] [Citation(s) in RCA: 483] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 12/02/2010] [Indexed: 11/24/2022]
Abstract
The pleiotropic effects of creatine (Cr) are based mostly on the functions of the enzyme creatine kinase (CK) and its high-energy product phosphocreatine (PCr). Multidisciplinary studies have established molecular, cellular, organ and somatic functions of the CK/PCr system, in particular for cells and tissues with high and intermittent energy fluctuations. These studies include tissue-specific expression and subcellular localization of CK isoforms, high-resolution molecular structures and structure–function relationships, transgenic CK abrogation and reverse genetic approaches. Three energy-related physiological principles emerge, namely that the CK/PCr systems functions as (a) an immediately available temporal energy buffer, (b) a spatial energy buffer or intracellular energy transport system (the CK/PCr energy shuttle or circuit) and (c) a metabolic regulator. The CK/PCr energy shuttle connects sites of ATP production (glycolysis and mitochondrial oxidative phosphorylation) with subcellular sites of ATP utilization (ATPases). Thus, diffusion limitations of ADP and ATP are overcome by PCr/Cr shuttling, as most clearly seen in polar cells such as spermatozoa, retina photoreceptor cells and sensory hair bundles of the inner ear. The CK/PCr system relies on the close exchange of substrates and products between CK isoforms and ATP-generating or -consuming processes. Mitochondrial CK in the mitochondrial outer compartment, for example, is tightly coupled to ATP export via adenine nucleotide transporter or carrier (ANT) and thus ATP-synthesis and respiratory chain activity, releasing PCr into the cytosol. This coupling also reduces formation of reactive oxygen species (ROS) and inhibits mitochondrial permeability transition, an early event in apoptosis. Cr itself may also act as a direct and/or indirect anti-oxidant, while PCr can interact with and protect cellular membranes. Collectively, these factors may well explain the beneficial effects of Cr supplementation. The stimulating effects of Cr for muscle and bone growth and maintenance, and especially in neuroprotection, are now recognized and the first clinical studies are underway. Novel socio-economically relevant applications of Cr supplementation are emerging, e.g. for senior people, intensive care units and dialysis patients, who are notoriously Cr-depleted. Also, Cr will likely be beneficial for the healthy development of premature infants, who after separation from the placenta depend on external Cr. Cr supplementation of pregnant and lactating women, as well as of babies and infants are likely to be of benefit for child development. Last but not least, Cr harbours a global ecological potential as an additive for animal feed, replacing meat- and fish meal for animal (poultry and swine) and fish aqua farming. This may help to alleviate human starvation and at the same time prevent over-fishing of oceans.
Collapse
Affiliation(s)
- Theo Wallimann
- Institute of Cell Biology, ETH Zurich, Zurich, Switzerland.
| | | | | |
Collapse
|
13
|
Chen YJ, Chen HY, Wang MF, Hsu MH, Liang WM, Cheng FC. Effects of magnesium on exercise performance and plasma glucose and lactate concentrations in rats using a novel blood-sampling technique. Appl Physiol Nutr Metab 2010; 34:1040-7. [PMID: 20029512 DOI: 10.1139/h09-105] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Repeated blood sampling in rodents is often necessary and difficult. Magnesium has been touted as an agent for enhancing physical activity. An auto-blood-sampling device coupled with a microdialysis analyzer was developed to determine blood glucose and lactate concentrations in rats subjected to treadmill exercise. The effects of magnesium on exercise performance and blood energy metabolism were also evaluated. Sprague-Dawley rats fed a magnesium-adequate diet were randomly assigned to 2 experimental groups. Exercise performance was evaluated at 3 treadmill speeds (10, 15, and 20 m.min(-1)) with or without magnesium administration (90 mg.kg-1, intraperitoneal) in the first experiment. In the other experiment, each rat was fitted with a catheter in the jugular vein for collection of blood samples during the treadmill exercise at a speed of 20 m.min(-1). Exercise performance was significantly higher at the lower speed of 10 m.min(-1) in the control group. In addition, exercise performance was significantly enhanced only at 20 m.min(-1) in the magnesium-sulfate-treated group when compared with the control group. Blood samples were collected every 15 min. Glucose concentrations increased significantly and then declined immediately after completion of the exercise task at 20 m.min-1 in both groups. However, glucose concentrations increased immediately after administration of magnesium and increased further during exercise when compared with those of the control group. Findings from a repeated blood-sampling assay suggest that increased blood glucose contributes to enhanced exercise performance by rats injected intraperitoneally with magnesium.
Collapse
Affiliation(s)
- Ying-Ju Chen
- Stem Cell Center, Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | | | | | | | | | | |
Collapse
|
14
|
Freitas JS, Carneiro-Junior MA, Franco FSC, Rezende LS, Santos ASD, Maia HDO, Marins JCB, Natali AJ. Treinamento aeróbio em natação melhora a resposta de parâmetros metabólicos de ratos durante teste de esforço. REV BRAS MED ESPORTE 2010. [DOI: 10.1590/s1517-86922010000200012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Foram investigados os efeitos do treinamento aeróbio em natação com baixa intensidade sobre as respostas do lactato e da glicose sanguíneos de ratos durante teste de esforço. Ratos Wistar adultos foram distribuídos aleatoriamente em dois grupos: sedentário (n = 6) e treinado (n = 6). Todos receberam água e ração ad libitum e foram mantidos em ambiente com temperatura de 22 ± 2ºC e ciclo claro/escuro de 12 horas. O grupo treinado foi submetido a um programa de natação contínua sem sobrecarga, 30 min/dia, cinco dias/semana, por seis semanas. Três dias após a última sessão de treino, as concentrações sanguíneas de lactato e glicose foram medidas em três momentos durante dois testes de esforço de 20 minutos (repouso, 10 min e 20 min), sendo um sem carga e outro com carga (5% do peso corporal), separados por dois dias. Observou-se correlação inversa entre lactato e glicose durante o exercício (ρ = - 0,74; P < 0,001). A concentração de lactato elevou-se do repouso para 10 min (P < 0,05) e estabilizou-se entre 10 e 20 min, em ambos os grupos nos dois testes. No teste com carga, o lactato estabilizou-se em níveis mais elevados frente aos níveis sem carga (P < 0,05), nos dois grupos. Os animais treinados exibiram níveis de lactato mais baixos do que os sedentários (P < 0,05) nos dois testes. A glicose sanguínea decaiu do repouso até 20 min nos sedentários, no teste com carga (P < 0,05). Nos treinados, a glicose sanguínea estabilizou-se em ambos os testes (P > 0,05). Conclui-se que o treinamento aeróbio em natação aplicado foi capaz de alterar as respostas do lactato e glicose sanguíneos de ratos durante os testes de esforço.
Collapse
|
15
|
Araujo GGD, Papoti M, Manchado-Gobatto FDB, Mello MARD, Gobatto CA. Padronização de um protocolo experimental de treinamento periodizado em natação utilizando ratos Wistar. REV BRAS MED ESPORTE 2010. [DOI: 10.1590/s1517-86922010000100010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Verificar os efeitos de 12 semanas de treinamento periodizado de natação em ratos sobre os valores de glicogênio muscular (GM) e hepático (GH), capacidade aeróbia (LAn) e anaeróbia (Tlim) e creatina quinase (CK). Foram utilizados 70 ratos da linhagem Wistar com 60 dias, adaptados individualmente ao meio líquido por duas semanas. Os animais foram divididos em grupos: controle (GC, n = 40) e periodizado (GP, n = 30); a intensidade do treinamento foi equivalente ao peso corporal do animal (% do PC). O treinamento (T) para o GP foi dividido em períodos preparatório básico (PPB, seis semanas), específico (PPE, 4,5 semanas) e polimento (PP, 1,5 semana), tendo como estímulos intensidades leve (4% do PC), moderada (5% do PC), pesada (6% do PC) e intensa (13% do PC). Vinte e quatro horas após a adaptação, 10 ratos do GC foram sacrificados e avaliados pelo teste de lactato mínimo para mensuração dos valores de linha de base de GM, GH, CK, LAn e Tlim. Os dez animais restantes do GC e GP foram sacrificados ao final de cada período de T. O treinamento periodizado aumentou a concentração de glicogênio muscular ao final do período de polimento. O glicogênio hepático não se alterou no GC, porém no GP houve redução significativa no início do período específico com elevação no período de polimento. A concentração de CK não se modificou ao final dos PPB, PPE e PP. O LAn reduziu ao longo do período experimental no GC, mas ao final do PP para o GP, o LAn atingiu os mesmos valores do início do treinamento. O Tlim aumentou no PP. Desse modo, pode-se concluir que o treinamento periodizado provocou supercompensação energética ao final da periodização. A capacidade anaeróbia aumentou no PP bem como o LAn, que obteve maiores valores em relação ao GC nesse período.
Collapse
Affiliation(s)
| | - Marcelo Papoti
- Universidade Estadual Paulista; Universidade Estadual Paulista
| | | | | | | |
Collapse
|
16
|
Greenberg MJ, Mealy TR, Jones M, Szczesna-Cordary D, Moore JR. The direct molecular effects of fatigue and myosin regulatory light chain phosphorylation on the actomyosin contractile apparatus. Am J Physiol Regul Integr Comp Physiol 2010; 298:R989-96. [PMID: 20089714 DOI: 10.1152/ajpregu.00566.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscle, during periods of exertion, experiences several different fatigue-based changes in contractility, including reductions in force, velocity, power output, and energy usage. The fatigue-induced changes in contractility stem from many different factors, including alterations in the levels of metabolites, oxidative damage, and phosphorylation of the myosin regulatory light chain (RLC). Here, we measured the direct molecular effects of fatigue-like conditions on actomyosin's unloaded sliding velocity using the in vitro motility assay. We examined how changes in ATP, ADP, P(i), and pH affect the ability of the myosin to translocate actin and whether the effects of each individual molecular species are additive. We found that the primary causes of the reduction in unloaded sliding velocity are increased [ADP] and lowered pH and that the combined effects of the molecular species are nonadditive. Furthermore, since an increase in RLC phosphorylation is often associated with fatigue, we examined the differential effects of myosin RLC phosphorylation and fatigue on actin filament velocity. We found that phosphorylation of the RLC causes a 22% depression in sliding velocity. On the other hand, RLC phosphorylation ameliorates the slowing of velocity under fatigue-like conditions. We also found that phosphorylation of the myosin RLC increases actomyosin affinity for ADP, suggesting a kinetic role for RLC phosphorylation. Furthermore, we showed that ADP binding to skeletal muscle is load dependent, consistent with the existence of a load-dependent isomerization of the ADP bound state.
Collapse
Affiliation(s)
- Michael J Greenberg
- Department of Physiology and Biophysics, Boston University School of Medicine, L-720, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
17
|
Larsen RG, Callahan DM, Foulis SA, Kent-Braun JA. In vivo oxidative capacity varies with muscle and training status in young adults. J Appl Physiol (1985) 2009; 107:873-9. [PMID: 19556459 DOI: 10.1152/japplphysiol.00260.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is well established that exercise training results in increased muscle oxidative capacity. Less is known about how oxidative capacities in distinct muscles, in the same individual, are affected by different levels of physical activity. We hypothesized that 1) trained individuals would have higher oxidative capacity than untrained individuals in both tibialis anterior (TA) and vastus lateralis (VL) and 2) oxidative capacity would be higher in TA than VL in untrained, but not in trained, individuals. Phosphorus magnetic resonance spectroscopy was used to measure the rate of phosphocreatine recovery (k(PCr)), which reflects the rate of oxidative phosphorylation, following a maximal voluntary isometric contraction of the TA and VL in healthy untrained (7 women, 7 men, 25.7 +/- 3.6 yr; mean +/- SD) and trained (5 women, 7 men, 27.5 +/- 3.4 yr) adults. Daily physical activity levels were measured using accelerometry. The trained group spent threefold more time ( approximately 90 vs. approximately 30 min/day; P < 0.001) in moderate to vigorous physical activity (MVPA). Overall, k(PCr) was higher in VL than in TA (P = 0.01) and higher in trained than in untrained participants (P < 0.001). The relationship between k(PCr) and MVPA was more robust in VL (r = 0.64, P = 0.001, n = 25) than in TA (r = 0.38, P = 0.06, n = 25). These results indicate greater oxidative capacity in vivo in trained compared with untrained individuals in two distinct muscles of the lower limb and provide novel evidence of higher oxidative capacity in VL compared with TA in young humans, irrespective of training status. The basis for this difference is not known at this time but likely reflects a difference in usage patterns between the muscles.
Collapse
Affiliation(s)
- Ryan G Larsen
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | |
Collapse
|
18
|
Liu W, Priddy TS, Carlson GM. Physicochemical changes in phosphorylase kinase associated with its activation. Protein Sci 2008; 17:2111-9. [PMID: 18794211 DOI: 10.1110/ps.037895.108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Phosphorylase kinase (PhK) regulates glycogenolysis through its Ca(2+)-dependent phosphorylation and activation of glycogen phosphorylase. The activity of PhK increases dramatically as the pH is raised from 6.8 to 8.2 (denoted as upward arrow pH), but Ca(2+) dependence is retained. Little is known about the structural changes associated with PhK's activation by upward arrow pH and Ca(2+), but activation by both mechanisms is mediated through regulatory subunits of the (alphabetagammadelta)(4) PhK complex. In this study, changes in the structure of PhK induced by upward arrow pH and Ca(2+) were investigated using second derivative UV absorption, synchronous fluorescence, circular dichroism spectroscopy, and zeta potential analyses. The joint effects of Ca(2+) and upward arrow pH on the physicochemical properties of PhK were found to be interdependent, with their effects showing a strong inflection point at pH approximately 7.6. Comparing the properties of the conformers of PhK present under the condition where it would be least active (pH 6.8 - Ca(2+)) versus that where it would be most active (pH 8.2 + Ca(2+)), the joint activation by upward arrow pH and Ca(2+) is characterized by a relatively large increase in the content of sheet structure, a decrease in interactions between helix and sheet structures, and a dramatically less negative electrostatic surface charge. A model is presented that accounts for the interdependent activating effects of upward arrow pH and Ca(2+) in terms of the overall physicochemical properties of the four PhK conformers described herein, and published data corroborating the transitions between these conformers are tabulated.
Collapse
Affiliation(s)
- Weiya Liu
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | |
Collapse
|
19
|
Abstract
Fatigue of skeletal muscle involves many systems beginning with the central nervous system and ending with the contractile machinery. This review concentrates on those factors that directly affect the actomyosin interaction: the build-up of metabolites; myosin phosphorylation; and oxidation of the myofibrillar proteins by free radicals. The decrease in [ATP] and increase in [ADP] appear to play little role in modulating function. The increase in phosphate inhibits tension. The decrease in pH, long thought to be a major factor, is now known to play a more minor role. Myosin phosphorylation potentiates the force achieved in a twitch, and a further role in inhibiting velocity is proposed. Protein oxidation can both potentiate and inhibit the actomyosin interaction. It is concluded that these factors, taken together, do not fully explain the inhibition of the actomyosin interaction observed in living fibers, and thus additional modulators of this interaction remain to be discovered.
Collapse
Affiliation(s)
- Roger Cooke
- Department of Biochemistry and Biophysics and Cardiovascular Research Institute, University of California, San Francisco, California 94158-2517, USA.
| |
Collapse
|
20
|
Jeyasingham MD, Artigues A, Nadeau OW, Carlson GM. Structural evidence for co-evolution of the regulation of contraction and energy production in skeletal muscle. J Mol Biol 2008; 377:623-9. [PMID: 18281058 DOI: 10.1016/j.jmb.2007.12.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 12/21/2007] [Indexed: 11/18/2022]
Abstract
Skeletal muscle phosphorylase kinase (PhK) is a Ca(2+)-dependent enzyme complex, (alpha beta gamma delta)(4), with the delta subunit being tightly bound endogenous calmodulin (CaM). The Ca(2+)-dependent activation of glycogen phosphorylase by PhK couples muscle contraction with glycogen breakdown in the "excitation-contraction-energy production triad." Although the Ca(2+)-dependent protein-protein interactions among the relevant contractile components of muscle are well characterized, such interactions have not been previously examined in the intact PhK complex. Here we show that zero-length cross-linking of the PhK complex produces a covalent dimer of its catalytic gamma and CaM subunits. Utilizing mass spectrometry, we determined the residues cross-linked to be in an EF hand of CaM and in a region of the gamma subunit sharing high sequence similarity with the Ca(2+)-sensitive molecular switch of troponin I that is known to bind actin and troponin C, a homolog of CaM. Our findings represent an unusual binding of CaM to a target protein and supply an explanation for the low Ca(2+) stoichiometry of PhK that has been reported. They also provide direct structural evidence supporting co-evolution of the coordinate regulation by Ca(2+) of contraction and energy production in muscle through the sharing of a common structural motif in troponin I and the catalytic subunit of PhK for their respective interactions with the homologous Ca(2+)-binding proteins troponin C and CaM.
Collapse
Affiliation(s)
- Marina D Jeyasingham
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Mail Stop 3030, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
21
|
Abstract
Repeated, intense use of muscles leads to a decline in performance known as muscle fatigue. Many muscle properties change during fatigue including the action potential, extracellular and intracellular ions, and many intracellular metabolites. A range of mechanisms have been identified that contribute to the decline of performance. The traditional explanation, accumulation of intracellular lactate and hydrogen ions causing impaired function of the contractile proteins, is probably of limited importance in mammals. Alternative explanations that will be considered are the effects of ionic changes on the action potential, failure of SR Ca2+release by various mechanisms, and the effects of reactive oxygen species. Many different activities lead to fatigue, and an important challenge is to identify the various mechanisms that contribute under different circumstances. Most of the mechanistic studies of fatigue are on isolated animal tissues, and another major challenge is to use the knowledge generated in these studies to identify the mechanisms of fatigue in intact animals and particularly in human diseases.
Collapse
|
22
|
Selivanov VA, de Atauri P, Centelles JJ, Cadefau J, Parra J, Cussó R, Carreras J, Cascante M. The changes in the energy metabolism of human muscle induced by training. J Theor Biol 2007; 252:402-10. [PMID: 17996255 DOI: 10.1016/j.jtbi.2007.09.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 09/21/2007] [Accepted: 09/26/2007] [Indexed: 11/26/2022]
Abstract
The biochemical effects of training programmes have been studied with a kinetic model of central metabolism, using enzyme activities and metabolite concentrations measured at rest and after 30 s maximum-intensity exercise, collected before and after long and short periods of training, which differed only by the duration of the rest intervals. After short periods of training the glycolytic flux at rest was three times higher than it had been before training, whereas during exercise the flux and energy consumption remained the same as before training. Long periods of training had less effect on the glycolytic flux at rest, but increased it in response to exercise, increasing the contribution of oxidative phosphorylation.
Collapse
Affiliation(s)
- V A Selivanov
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Associated Unit to CSIC, Institute of Biomedicine of University of Barcelona and CeRQT at Barcelona Scientific Park, Diagonal 645, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Priddy TS, Middaugh CR, Carlson GM. Electrostatic changes in phosphorylase kinase induced by its obligatory allosteric activator Ca2+. Protein Sci 2007; 16:517-27. [PMID: 17322534 PMCID: PMC2203309 DOI: 10.1110/ps.062577507] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Skeletal muscle phosphorylase kinase (PhK) is a 1.3-MDa hexadecameric complex that catalyzes the phosphorylation and activation of glycogen phosphorylase b. PhK has an absolute requirement for Ca(2+) ions, which couples the cascade activation of glycogenolysis with muscle contraction. Ca(2+) activates PhK by binding to its nondissociable calmodulin subunits; however, specific changes in the structure of the PhK complex associated with its activation by Ca(2+) have been poorly understood. We present herein the first comparative investigation of the physical characteristics of highly purified hexadecameric PhK in the absence and presence of Ca(2+) ions using a battery of biophysical probes as a function of temperature. Ca(2+)-induced differences in the tertiary and secondary structure of PhK measured by fluorescence, UV absorption, FTIR, and CD spectroscopies as low resolution probes of PhK's structure were subtle. In contrast, the surface electrostatic properties of solvent accessible charged and polar groups were altered upon the binding of Ca(2+) ions to PhK, which substantially affected both its diffusion rate and electrophoretic mobility, as measured by dynamic light scattering and zeta potential analyses, respectively. Overall, the observed physicochemical effects of Ca(2+) binding to PhK were numerous, including a decrease in its electrostatic surface charge that reduced particle mobility without inducing a large alteration in secondary structure content or hydrophobic tertiary interactions. Without exception, for all analyses in which the temperature was varied, the presence of Ca(2+) rendered the enzyme increasingly labile to thermal perturbation.
Collapse
Affiliation(s)
- Timothy S Priddy
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA
| | | | | |
Collapse
|
24
|
Hug F, Grélot L, Le Fur Y, Cozzone PJ, Bendahan D. Recovery kinetics throughout successive bouts of various exercises in elite cyclists. Med Sci Sports Exerc 2007; 38:2151-8. [PMID: 17146323 DOI: 10.1249/01.mss.0000235882.86734.9a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE In the present study we investigated whether a high volume of cycling training would influence the metabolic changes associated with a succession of three exhaustive cycling exercises. METHODS Seven professional road cyclists (VO2max: 74.3 +/- 3.7 mL.min.kg; maximal power tolerated: 475 +/- 18 W; training: 22 +/- 3 h.wk) and seven sport sciences students (VO2max: 54.2 +/- 5.3 mL.min.kg; maximal power tolerated: 341 +/- 26 W; training: 6 +/- 2 h.wk) performed three different exhaustive cycling exercise bouts (progressive, constant load, and sprint) on an electrically braked cycloergometer positioned near the magnetic resonance scanner. Less than 45 s after the completion of each exercise bout, recovery kinetics of high-energy phosphorylated compounds and pH were measured using P-MR spectroscopy. RESULTS Resting values for phosphomonoesters (PME) and phosphodiesters (PDE) were significantly elevated in the cyclist group (PME/ATP: 0.82 +/- 0.11 vs 0.58 +/- 0.19; PDE/ATP: 0.27 +/- 0.03 vs 0.21 +/- 0.05). Phosphocreatine (PCr) consumption and inorganic phosphate (Pi) accumulation measured at end of exercise bouts 1 (PCr: 6.5 +/- 3.2 vs 10.4 +/- 1.6 mM; Pi: 1.6 +/- 0.7 vs 6.8 +/- 3.4 mM) and 3 (PCr: 5.6 +/- 2.4 vs 9.3 +/- 3.9 mM; Pi: 1.5 +/- 0.5 vs 7.7 +/- 3.3 mM) were reduced in cyclists compared with controls. During the recovery period after each exercise bout, the pH-recovery rate was larger in professional road cyclists, whereas the PCr-recovery kinetics were significantly faster for cyclists only for bout 3. DISCUSSION Whereas the PDE and PME elevation at rest in professional cyclists may indicate fiber-type changes and an imbalance between glycogenolytic and glycolytic activity, the lower PCr consumption during exercise and the faster pH-recovery kinetic clearly suggest an improved mitochondrial function.
Collapse
Affiliation(s)
- François Hug
- University of Nantes, Nantes Atlantic Universities, Laboratory of Motricity, Interactions, and Performance, Nantes, France.
| | | | | | | | | |
Collapse
|
25
|
Thanks Mike ???and First Shot on Obesity Management, Incentives, and Social Responsibility. Exerc Sport Sci Rev 2006. [DOI: 10.1097/00003677-200601000-00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|