1
|
Zhang Z, Riley E, Chen S, Zhao L, Anderson AK, DeRosa E, Dai W. Age and gender-related patterns of arterial transit time and cerebral blood flow in healthy adults. Neuroimage 2025; 309:121098. [PMID: 39988291 DOI: 10.1016/j.neuroimage.2025.121098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 02/25/2025] Open
Abstract
Normal aging has been associated with increased arterial transit time (ATT) and reduced cerebral blood flow (CBF). However, age-related patterns of ATT and CBF and their relationship remain unclear. This is partly due to the lengthy scan times required for ATT measurements, which caused previous age-related CBF studies to not fully account for transit time. In this work, we aimed to elucidate age-related ATT and ATT-corrected CBF patterns. We examined 131 healthy subjects aged 19 to 82 years old using two pseudo-continuous arterial spin labeling (PCASL) MRI scans: one to measure fast low-resolution ATT maps with five post-labeling delays and the other to measure high-resolution perfusion-weighted maps with a single post-labeling delay. Both ATT and perfusion-weighed maps were applied with vessel suppression. We found that ATT increases with age in the frontal, temporoparietal, and occipital regions, with a more pronounced elongation in males compared to females in the middle temporal gyrus. ATT-corrected CBF decreases with age in several brain regions, including the anterior cingulate, insula, posterior cingulate, angular, precuneus, supramarginal, frontal, parietal, superior and middle temporal, occipital, and cerebellar regions, while remaining stable in the inferior temporal and subcortical regions. In contrast, without ATT correction, we detected artifactual decreases in the inferior temporal and precentral regions. These findings suggest that ATT provides valuable and independent insights into microvascular deficits and should be incorporated into CBF measurements for studies involving aging populations.
Collapse
Affiliation(s)
- Zongpai Zhang
- School of Computing, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Elizabeth Riley
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| | - Shichun Chen
- School of Computing, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Li Zhao
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Adam K Anderson
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| | - Eve DeRosa
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| | - Weiying Dai
- School of Computing, State University of New York at Binghamton, Binghamton, NY 13902, USA.
| |
Collapse
|
2
|
Tiwari YV, Muir ER, Jiang Z, Duong TQ. Diffusion-weighted arterial spin labeling MRI to investigate mannitol-induced blood brain barrier disruption. Magn Reson Imaging 2025; 117:110335. [PMID: 39864601 DOI: 10.1016/j.mri.2025.110335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/27/2024] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
PURPOSE Diffusion-weighted arterial spin labeling (DW-ASL) MRI has been proposed to determine the rate of water exchange (Kw) across the blood brain barrier (BBB). This study aims to further evaluate Kw MRI by comparing it with standard dynamic contrast-enhanced (DCE) MRI and histology in association with mannitol-induced disruption of the BBB. METHODS DW-ASL was measured using a multiple b-value MRI protocol in normal rats at three post-labeling delays (N = 19), before and after intra-carotid injection of mannitol to disrupt BBB in one hemisphere (N = 13). An approach using only two b-values to detect mannitol-induced changes was also tested. DCE MRI and Evans blue histology were performed on the same animals. Quantitative analysis and pixel-by-pixel correlation were performed amongst Kw, DCE MRI and Evans blue histology. RESULTS Kw in the grey matter in the normal rat brain was 252 ± 38 min-1 (±standard error of the mean). The two b-value approach provided reasonable approximation of multiple-b DW-ASL parameters, reducing acquisition time. Kw is sensitive to mannitol-induced changes in BBB permeability and was reduced to 89 ± 17 min-1 in the affected hemisphere compared to 191 ± 22 min-1 in the unaffected hemisphere (P < 0.05). Regions with abnormality in Kw maps were in general agreement with DCE and Evans blue maps, although there are some distinct differences in location and the change in values. CONCLUSION Kw is sensitive to mannitol-induced changes in the BBB, with BBB disruption confirmed by DCE MRI and Evans blue histology.
Collapse
Affiliation(s)
- Yash Vardhan Tiwari
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Eric R Muir
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
| | - Zhao Jiang
- Department of Radiology, Stony Brook University, Stony Brook, NY, USA
| | - Tim Q Duong
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
3
|
Berger PK, Bansal R, Sawardekar S, Monk C, Peterson BS. Associations of Maternal Prenatal Zinc Consumption with Infant Brain Tissue Organization and Neurodevelopmental Outcomes. Nutrients 2025; 17:303. [PMID: 39861433 PMCID: PMC11767866 DOI: 10.3390/nu17020303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES While studies in rat pups suggest that early zinc exposure is critical for optimal brain structure and function, associations of prenatal zinc intake with measures of brain development in infants are unknown. This study aimed to assess the associations of maternal zinc intake during pregnancy with MRI measures of brain tissue microstructure and neurodevelopmental outcomes, as well as to determine whether MRI measures of the brain mediated the relationship between maternal zinc intake and neurodevelopmental indices. METHODS Forty-one adolescent mothers were recruited for a longitudinal study during pregnancy. Maternal zinc intake was assessed during the third trimester of pregnancy using a 24 h dietary recall. Infant MRI scans were acquired at 3 weeks postpartum using a 3.0 Tesla scanner to measure fractional anisotropy (FA) and mean diffusivity (MD). Cognitive, language, and motor skills were assessed at 4, 14, and 24 months postpartum using the Bayley Scales of Infant Development. RESULTS Greater prenatal zinc intake was associated with reduced FA in cortical gray matter, particularly in the frontal lobe [medial superior frontal gyrus; β (95% CI) = -1.0 (-1.5, -0.5)], in developing white matter, and in subcortical gray matter nuclei. Greater prenatal zinc intake was associated with reduced MD in cortical gray matter and developing white matter [superior longitudinal fasciculus; -4.4 (-7.1, -1.7)]. Greater maternal zinc intake also was associated with higher cognitive development scores at 14 [0.1 (0.0, 0.1)] and 24 [0.1 (0.0, 0.2)] months of age; MRI indices of FA and MD did not mediate this relationship. CONCLUSIONS Maternal prenatal zinc intake was associated with more favorable measures of brain tissue microstructural maturation and cognitive development during infancy.
Collapse
Affiliation(s)
- Paige K. Berger
- Department of Pediatrics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Ravi Bansal
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Division of Child & Adolescent Psychiatry, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA;
| | - Siddhant Sawardekar
- Division of Child & Adolescent Psychiatry, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA;
| | - Catherine Monk
- Departments of Obstetrics and Gynecology and Psychiatry, Columbia University Medical Center, New York, NY 10032, USA;
| | - Bradley S. Peterson
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Division of Child & Adolescent Psychiatry, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA;
| |
Collapse
|
4
|
Perera C, Cruz R, Shemesh N, Carvalho T, Thomas DL, Wells J, Ianuș A. Non-invasive MRI of blood-cerebrospinal fluid-barrier function in a mouse model of Alzheimer's disease: a potential biomarker of early pathology. Fluids Barriers CNS 2024; 21:97. [PMID: 39633378 PMCID: PMC11616325 DOI: 10.1186/s12987-024-00597-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Choroid plexus (CP) or blood-cerebrospinal fluid-barrier (BCSFB) is a unique functional tissue which lines the brain's fluid-filled ventricles, with a crucial role in CSF production and clearance. BCSFB dysfunction is thought to contribute to toxic protein build-up in neurodegenerative disorders, including Alzheimer's disease (AD). However, the dynamics of this process remain unknown, mainly due to the paucity of in-vivo methods for assessing CP function. METHODS We harness recent developments in Arterial Spin Labelling MRI to measure water delivery across the BCSFB as a proxy for CP function, as well as cerebral blood flow (CBF), at different stages of AD in the widely used triple transgenic mouse model (3xTg), with ages between 8 and 32 weeks. We further compared the MRI results with Y-maze behaviour testing, and histologically validated the expected pathological changes, which recapitulate both amyloid and tau deposition. RESULTS Total BCSFB-mediated water delivery is significantly higher in 3xTg mice (> 50%) from 8 weeks (preclinical stage), an increase which is not explained by differences in ventricular volumes, while tissue parameters such as CBF and T1 are not different between groups at all ages. Behaviour differences between the groups were observed starting at 20 weeks, especially in terms of locomotion, with 3xTg animals showing a significantly smaller number of arm entries in the Y-maze. CONCLUSIONS Our work strongly suggests the involvement of CP in the early stages of AD, before the onset of symptoms and behavioural changes, providing a potential biomarker of pathology.
Collapse
Affiliation(s)
- Charith Perera
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Renata Cruz
- Champalimaud Research, Champalimaud Foundation, Av. Brasilia, Lisbon, 1400-038, Portugal
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Foundation, Av. Brasilia, Lisbon, 1400-038, Portugal
| | - Tânia Carvalho
- Champalimaud Research, Champalimaud Foundation, Av. Brasilia, Lisbon, 1400-038, Portugal
| | - David L Thomas
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Jack Wells
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Andrada Ianuș
- Champalimaud Research, Champalimaud Foundation, Av. Brasilia, Lisbon, 1400-038, Portugal.
- King's College London, School of Biomedical Engineering and Imaging Sciences, Imaging Physics and Engineering Research Department; Cancer Imaging Research Department, St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK.
| |
Collapse
|
5
|
Wu D, Li Y, Zhang S, Chen Q, Fang J, Cho J, Wang Y, Yan S, Zhu W, Lin J, Wang Z, Zhang Y. Trajectories and sex differences of brain structure, oxygenation and perfusion functions in normal aging. Neuroimage 2024; 302:120903. [PMID: 39461605 DOI: 10.1016/j.neuroimage.2024.120903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/07/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Brain structure, oxygenation and perfusion are important factors in aging. Coupling between regional cerebral oxygen consumption and perfusion also reflects functions of neurovascular unit (NVU). Their trajectories and sex differences during normal aging important for clinical interpretation are still not well defined. In this study, we aim to investigate the relationship between brain structure, functions and age, and exam the sex disparities. METHOD A total of 137 healthy subjects between 20∼69 years old were enrolled with conventional MRI, structural three-dimensional T1-weighted imaging (3D-T1WI), 3D multi-echo gradient echo sequence (3D-mGRE), and 3D pseudo-continuous arterial spin labeling (3D-pCASL). Oxygen extraction fraction (OEF) and cerebral blood flow (CBF) were respectively reconstructed from 3D-mGRE and 3D-pCASL images. Cerebral metabolic rate of oxygen (CMRO2) were calculated as follows: CMRO2=CBF·OEF·[H]a, [H]a=7.377 μmol/mL. Brains were segmented into global gray matter (GM), global white matter (WM), and 148 cortical subregions. OEF, CBF, CMRO2, and volumes of GM/WM relative to intracranial volumes (rel_GM/rel_WM) were compared between males and females. Generalized additive models were used to evaluate the aging trajectories of brain structure and functions. The coupling between OEF and CBF was analyzed by correlation analysis. P or PFDR < 0.05 was considered statistically significant. RESULTS Females had larger rel_GM, higher CMRO2 and CBF of GM/WM than males (P < 0.05). With control of sex, CBF of GM significantly declined between 20 and 32 years, CMRO2 of GM declined subsequently from 33 to 41 years and rel_GM decreased significantly at all ages (R2 = 0.27, P < 0.001; R2 = 0.17, P < 0.001; R2 = 0.52, P < 0.001). In subregion analysis, CBF declined dispersedly while CMRO2 declined widely across most subregions of the cortex during aging. Robust negative coupling between OEF and CBF was found in most of the subregions (r range = -0.12∼-0.48, PFDR < 0.05). CONCLUSION The sex disparities, age trajectories of brain structure and functions as well as the coupling of NVU in healthy individuals provide insights into normal aging which are potential targets for study of pathological conditions.
Collapse
Affiliation(s)
- Di Wu
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Yuanhao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyue Chen
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Jiayu Fang
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Junghun Cho
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA; Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Su Yan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyu Lin
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Zhenxiong Wang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China.
| | - Yaqin Zhang
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China.
| |
Collapse
|
6
|
Ishida S, Fujiwara Y, Matta Y, Takei N, Kanamoto M, Kimura H, Tsujikawa T. Enhanced parameter estimation in multiparametric arterial spin labeling using artificial neural networks. Magn Reson Med 2024; 92:2163-2180. [PMID: 38852172 DOI: 10.1002/mrm.30184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/11/2024]
Abstract
PURPOSE Multiparametric arterial spin labeling (MP-ASL) can quantify cerebral blood flow (CBF) and arterial cerebral blood volume (CBVa). However, its accuracy is compromised owing to its intrinsically low SNR, necessitating complex and time-consuming parameter estimation. Deep neural networks (DNNs) offer a solution to these limitations. Therefore, we aimed to develop simulation-based DNNs for MP-ASL and compared the performance of a supervised DNN (DNNSup), physics-informed unsupervised DNN (DNNUns), and the conventional lookup table method (LUT) using simulation and in vivo data. METHODS MP-ASL was performed twice during resting state and once during the breath-holding task. First, the accuracy and noise immunity were evaluated in the first resting state. Second, CBF and CBVa values were statistically compared between the first resting state and the breath-holding task using the Wilcoxon signed-rank test and Cliff's delta. Finally, reproducibility of the two resting states was assessed. RESULTS Simulation and first resting-state analyses demonstrated that DNNSup had higher accuracy, noise immunity, and a six-fold faster computation time than LUT. Furthermore, all methods detected task-induced CBF and CBVa elevations, with the effect size being larger with the DNNSup (CBF, p = 0.055, Δ = 0.286; CBVa, p = 0.008, Δ = 0.964) and DNNUns (CBF, p = 0.039, Δ = 0.286; CBVa, p = 0.008, Δ = 1.000) than that with LUT (CBF, p = 0.109, Δ = 0.214; CBVa, p = 0.008, Δ = 0.929). Moreover, all the methods exhibited comparable and satisfactory reproducibility. CONCLUSION DNNSup outperforms DNNUns and LUT with respect to estimation performance and computation time.
Collapse
Affiliation(s)
- Shota Ishida
- Department of Radiological Technology, Faculty of Medical Sciences, Kyoto College of Medical Science, Nantan, Japan
| | - Yasuhiro Fujiwara
- Department of Medical Image Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuki Matta
- Radiological Center, University of Fukui Hospital, Eiheiji, Japan
| | | | | | - Hirohiko Kimura
- Faculty of Medical Sciences, University of Fukui, Fukui, Japan
- Radiology Section, National Health Insurance Echizen-cho Ota Hospital, Echizen, Japan
| | - Tetsuya Tsujikawa
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
7
|
Shao X, Guo F, Kim J, Ress D, Zhao C, Shou Q, Jann K, Wang DJJ. Laminar multi-contrast fMRI at 7T allows differentiation of neuronal excitation and inhibition underlying positive and negative BOLD responses. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.01.24305167. [PMID: 39040201 PMCID: PMC11261924 DOI: 10.1101/2024.04.01.24305167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
A major challenge for human neuroimaging using functional MRI is the differentiation of neuronal excitation and inhibition which may induce positive and negative BOLD responses. Here we present an innovative multi-contrast laminar functional MRI technique that offers comprehensive and quantitative imaging of neurovascular (CBF, CBV, BOLD) and metabolic (CMRO2) responses across cortical layers at 7 Tesla. This technique was first validated through a finger-tapping experiment, revealing 'double-peak' laminar activation patterns within the primary motor cortex. By employing a ring-shaped visual stimulus that elicited positive and negative BOLD responses, we further observed distinct neurovascular and metabolic responses across cortical layers and eccentricities in the primary visual cortex. This suggests potential feedback inhibition of neuronal activities in both superficial and deep cortical layers underlying the negative BOLD signals in the fovea, and also illustrates the neuronal activities in visual areas adjacent to the activated eccentricities.
Collapse
Affiliation(s)
- Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - Fanhua Guo
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - JungHwan Kim
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston
| | - David Ress
- Department of Neuroscience, Baylor College of Medicine
| | - Chenyang Zhao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - Qinyang Shou
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - Kay Jann
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| | - Danny JJ Wang
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California
| |
Collapse
|
8
|
Jaafar N, Alsop DC. Arterial Spin Labeling: Key Concepts and Progress Towards Use as a Clinical Tool. Magn Reson Med Sci 2024; 23:352-366. [PMID: 38880616 PMCID: PMC11234948 DOI: 10.2463/mrms.rev.2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Arterial spin labeling (ASL), a non-invasive MRI technique, has emerged as a valuable tool for researchers that can measure blood flow and related parameters. This review aims to provide a qualitative overview of the technical principles and recent developments in ASL and to highlight its potential clinical applications. A growing literature demonstrates impressive ASL sensitivity to a range of neuropathologies and treatment responses. Despite its potential, challenges persist in the translation of ASL to widespread clinical use, including the lack of standardization and the limited availability of comprehensive training. As experience with ASL continues to grow, the final stage of translation will require moving beyond single site observational studies to multi-site experience and measurement of the added contribution of ASL to patient care and outcomes.
Collapse
Affiliation(s)
- Narjes Jaafar
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - David C. Alsop
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Panholzer J, Malsiner-Walli G, Grün B, Kalev O, Sonnberger M, Pichler R. Multiparametric Analysis Combining DSC-MR Perfusion and [18F]FET-PET is Superior to a Single Parameter Approach for Differentiation of Progressive Glioma from Radiation Necrosis. Clin Neuroradiol 2024; 34:351-360. [PMID: 38157019 DOI: 10.1007/s00062-023-01372-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE Perfusion-weighted (PWI) magnetic resonance imaging (MRI) and O‑(2-[18F]fluoroethyl-)-l-tyrosine ([18F]FET) positron emission tomography (PET) are both useful for discrimination of progressive disease (PD) from radiation necrosis (RN) in patients with gliomas. Previous literature showed that the combined use of FET-PET and MRI-PWI is advantageous; hhowever the increased diagnostic performances were only modest compared to the use of a single modality. Hence, the goal of this study was to further explore the benefit of combining MRI-PWI and [18F]FET-PET for differentiation of PD from RN. Secondarily, we evaluated the usefulness of cerebral blood flow (CBF), mean transit time (MTT) and time to peak (TTP) as previous studies mainly examined cerebral blood volume (CBV). METHODS In this single center study, we retrospectively identified patients with WHO grades II-IV gliomas with suspected tumor recurrence, presenting with ambiguous findings on structural MRI. For differentiation of PD from RN we used both MRI-PWI and [18F]FET-PET. Dynamic susceptibility contrast MRI-PWI provided normalized parameters derived from perfusion maps (r(relative)CBV, rCBF, rMTT, rTTP). Static [18F]FET-PET parameters including mean and maximum tumor to brain ratios (TBRmean, TBRmax) were calculated. Based on histopathology and radioclinical follow-up we diagnosed PD in 27 and RN in 10 cases. Using the receiver operating characteristic (ROC) analysis, area under the curve (AUC) values were calculated for single and multiparametric models. The performances of single and multiparametric approaches were assessed with analysis of variance and cross-validation. RESULTS After application of inclusion and exclusion criteria, we included 37 patients in this study. Regarding the in-sample based approach, in single parameter analysis rTBRmean (AUC = 0.91, p < 0.001), rTBRmax (AUC = 0.89, p < 0.001), rTTP (AUC = 0.87, p < 0.001) and rCBVmean (AUC = 0.84, p < 0.001) were efficacious for discrimination of PD from RN. The rCBFmean and rMTT did not reach statistical significance. A classification model consisting of TBRmean, rCBVmean and rTTP achieved an AUC of 0.98 (p < 0.001), outperforming the use of rTBRmean alone, which was the single parametric approach with the highest AUC. Analysis of variance confirmed the superiority of the multiparametric approach over the single parameter one (p = 0.002). While cross-validation attributed the highest AUC value to the model consisting of TBRmean and rCBVmean, it also suggested that the addition of rTTP resulted in the highest accuracy. Overall, multiparametric models performed better than single parameter ones. CONCLUSION A multiparametric MRI-PWI and [18F]FET-PET model consisting of TBRmean, rCBVmean and PWI rTTP significantly outperformed the use of rTBRmean alone, which was the best single parameter approach. Secondarily, we firstly report the potential usefulness of PWI rTTP for discrimination of PD from RN in patients with glioma; however, for validation of our findings the prospective studies with larger patient samples are necessary.
Collapse
Affiliation(s)
- Jürgen Panholzer
- Department of Neurology, Kepler University Hospital, Linz, Austria.
- Faculty of Medicine, Johannes Kepler University, Linz, Austria.
| | - Gertraud Malsiner-Walli
- Institute for Statistics and Mathematics, WU University of Economics and Business, Vienna, Austria
| | - Bettina Grün
- Institute for Statistics and Mathematics, WU University of Economics and Business, Vienna, Austria
| | - Ognian Kalev
- Department for Pathology and Molecular Pathology, Neuromed Campus, Kepler University Hospital, Linz, Austria
| | - Michael Sonnberger
- Department for Neuroradiology, Neuromed Campus, Kepler University Hospital, Linz, Austria
| | - Robert Pichler
- Department for Nuclear Medicine, Neuromed Campus, Kepler University Hospital, Linz, Austria
- Institute of Nuclear Medicine, Steyr Hospital, Steyr, Austria
- Department of Radiology, Clinic of Nuclear Medicine, Medical University Graz, Graz, Austria
| |
Collapse
|
10
|
Suzuki Y, Clement P, Dai W, Dolui S, Fernández-Seara M, Lindner T, Mutsaerts HJMM, Petr J, Shao X, Taso M, Thomas DL. ASL lexicon and reporting recommendations: A consensus report from the ISMRM Open Science Initiative for Perfusion Imaging (OSIPI). Magn Reson Med 2024; 91:1743-1760. [PMID: 37876299 PMCID: PMC10950547 DOI: 10.1002/mrm.29815] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/22/2023] [Accepted: 07/13/2023] [Indexed: 10/26/2023]
Abstract
The 2015 consensus statement published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group and the European Cooperation in Science and Technology ( COST) Action ASL in Dementia aimed to encourage the implementation of robust arterial spin labeling (ASL) perfusion MRI for clinical applications and promote consistency across scanner types, sites, and studies. Subsequently, the recommended 3D pseudo-continuous ASL sequence has been implemented by most major MRI manufacturers. However, ASL remains a rapidly and widely developing field, leading inevitably to further divergence of the technique and its associated terminology, which could cause confusion and hamper research reproducibility. On behalf of the ISMRM Perfusion Study Group, and as part of the ISMRM Open Science Initiative for Perfusion Imaging (OSIPI), the ASL Lexicon Task Force has been working on the development of an ASL Lexicon and Reporting Recommendations for perfusion imaging and analysis, aiming to (1) develop standardized, consensus nomenclature and terminology for the broad range of ASL imaging techniques and parameters, as well as for the physiological constants required for quantitative analysis; and (2) provide a community-endorsed recommendation of the imaging parameters that we encourage authors to include when describing ASL methods in scientific reports/papers. In this paper, the sequences and parameters in (pseudo-)continuous ASL, pulsed ASL, velocity-selective ASL, and multi-timepoint ASL for brain perfusion imaging are included. However, the content of the lexicon is not intended to be limited to these techniques, and this paper provides the foundation for a growing online inventory that will be extended by the community as further methods and improvements are developed and established.
Collapse
Affiliation(s)
- Yuriko Suzuki
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Patricia Clement
- Department of Medical Imaging, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Weiying Dai
- State University of New York at Binghamton, Binghamton, NY, USA
| | - Sudipto Dolui
- Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - Maria Fernández-Seara
- Department of Radiology, Clínica Universidad de Navarra, Pamplona, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | | | - Henk JMM Mutsaerts
- Department of Radiology and Nuclear medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, the Netherlands, Amsterdam
| | - Jan Petr
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Manuel Taso
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - David L Thomas
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | | |
Collapse
|
11
|
Taso M, Alsop DC. Arterial Spin Labeling Perfusion Imaging. Magn Reson Imaging Clin N Am 2024; 32:63-72. [PMID: 38007283 DOI: 10.1016/j.mric.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Noninvasive imaging of tissue perfusion is a valuable tool for both research and clinical applications. Arterial spin labeling (ASL) is a contrast-free perfusion imaging method that enables measuring and quantifying tissue blood flow using MR imaging. ASL uses radiofrequency and magnetic field gradient pulses to label arterial blood water, which then serves as an endogenous tracer. This review highlights the basic mechanism of ASL perfusion imaging, labeling strategies, and quantification. ASL has been widely used during the past 30 years for the study of normal brain function as well as in multiple neurovascular, neuro-oncological and degenerative pathologic conditions.
Collapse
Affiliation(s)
- Manuel Taso
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - David C Alsop
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Beirinckx Q, Bladt P, van der Plas MCE, van Osch MJP, Jeurissen B, den Dekker AJ, Sijbers J. Model-based super-resolution reconstruction for pseudo-continuous Arterial Spin Labeling. Neuroimage 2024; 286:120506. [PMID: 38185186 DOI: 10.1016/j.neuroimage.2024.120506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024] Open
Abstract
Arterial spin labeling (ASL) is a promising, non-invasive perfusion magnetic resonance imaging technique for quantifying cerebral blood flow (CBF). Unfortunately, ASL suffers from an inherently low signal-to-noise ratio (SNR) and spatial resolution, undermining its potential. Increasing spatial resolution without significantly sacrificing SNR or scan time represents a critical challenge towards routine clinical use. In this work, we propose a model-based super-resolution reconstruction (SRR) method with joint motion estimation that breaks the traditional SNR/resolution/scan-time trade-off. From a set of differently oriented 2D multi-slice pseudo-continuous ASL images with a low through-plane resolution, 3D-isotropic, high resolution, quantitative CBF maps are estimated using a Bayesian approach. Experiments on both synthetic whole brain phantom data, and on in vivo brain data, show that the proposed SRR Bayesian estimation framework outperforms state-of-the-art ASL quantification.
Collapse
Affiliation(s)
- Quinten Beirinckx
- imec-Vision Lab, Department of Physics, University of Antwerp, Antwerp, Belgium; μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Piet Bladt
- imec-Vision Lab, Department of Physics, University of Antwerp, Antwerp, Belgium; μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Merlijn C E van der Plas
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias J P van Osch
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ben Jeurissen
- imec-Vision Lab, Department of Physics, University of Antwerp, Antwerp, Belgium; Lab for Equilibrium Investigations and Aerospace, Department of Physics, University of Antwerp, Antwerp, Belgium; μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Arnold J den Dekker
- imec-Vision Lab, Department of Physics, University of Antwerp, Antwerp, Belgium; μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Jan Sijbers
- imec-Vision Lab, Department of Physics, University of Antwerp, Antwerp, Belgium; μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
13
|
Li Y, Wang Z. Deeply Accelerated Arterial Spin Labeling Perfusion MRI for Measuring Cerebral Blood Flow and Arterial Transit Time. IEEE J Biomed Health Inform 2023; 27:5937-5945. [PMID: 37812536 PMCID: PMC10841663 DOI: 10.1109/jbhi.2023.3312662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Cerebral blood flow (CBF) indicates both vascular integrity and brain function. Regional CBF can be non-invasively measured with arterial spin labeling (ASL) perfusion MRI. By repeating the same ASL MRI sequence several times, each with a different post-labeling delay (PLD), another important neurovascular index, the arterial transit time (ATT) can be estimated by fitting the acquired ASL signal to a kinetic model. This process however faces two challenges: one is the multiplicatively prolonged scan time, making it impractically for clinical use due to the escalated risk of motions; the other is the reduced signal-to-noise-ratio (SNR) in the long PLD scans due to the T1 decay of the labeled spins. Increasing SNR needs more repetitions which will further increase the total scan time. Currently, there lacks a way to accurately estimate ATT from a parsimonious number of PLDs. In this paper, we proposed a deep learning-based algorithm to reduce the number of PLDs and to accurately estimate ATT and CBF. Two separate deep networks were trained: one is designed to estimate CBF and ATT from ASL data with a single PLD; the other is to estimate CBF and ATT from ASL data with two PLDs. The models were trained and tested using the large Human Connectome Project multiple-PLD ASL MRI. Performance of the DL-based approach was compared to the traditional full dataset-based data fitting approach. Our results showed that ATT and CBF can be reliably estimated using deep networks even with one PLD.
Collapse
|
14
|
Kim D, Lipford ME, He H, Ding Q, Ivanovic V, Lockhart SN, Craft S, Whitlow CT, Jung Y. Parametric cerebral blood flow and arterial transit time mapping using a 3D convolutional neural network. Magn Reson Med 2023; 90:583-595. [PMID: 37092852 PMCID: PMC10847038 DOI: 10.1002/mrm.29674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/13/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023]
Abstract
PURPOSE To reduce the total scan time of multiple postlabeling delay (multi-PLD) pseudo-continuous arterial spin labeling (pCASL) by developing a hierarchically structured 3D convolutional neural network (H-CNN) that estimates the arterial transit time (ATT) and cerebral blow flow (CBF) maps from the reduced number of PLDs as well as averages. METHODS A total of 48 subjects (38 females and 10 males), aged 56-80 years, compromising a training group (n = 45) and a validation group (n = 3) underwent MRI including multi-PLD pCASL. We proposed an H-CNN to estimate the ATT and CBF maps using a reduced number of PLDs and a separately reduced number of averages. The proposed method was compared with a conventional nonlinear model fitting method using the mean absolute error (MAE). RESULTS The H-CNN provided the MAEs of 32.69 ms for ATT and 3.32 mL/100 g/min for CBF estimations using a full data set that contains six PLDs and six averages in the 3 test subjects. The H-CNN also showed that the smaller number of PLDs can be used to estimate both ATT and CBF without significant discrepancy from the reference (MAEs of 231.45 ms for ATT and 9.80 mL/100 g/min for CBF using three of six PLDs). CONCLUSION The proposed machine learning-based ATT and CBF mapping offers substantially reduced scan time of multi-PLD pCASL.
Collapse
Affiliation(s)
- Donghoon Kim
- Department of Biomedical Engineering University of California, Davis, California, USA
- Department of Radiology, University of California, Davis, California, USA
| | - Megan E. Lipford
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Hongjian He
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science, Zhejiang University, China
| | - Qiuping Ding
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science, Zhejiang University, China
| | - Vladimir Ivanovic
- Department of Radiology, Medical College of Wisconsin, Wisconsin, USA
| | - Samuel N. Lockhart
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Suzanne Craft
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Christopher T. Whitlow
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Youngkyoo Jung
- Department of Biomedical Engineering University of California, Davis, California, USA
- Department of Radiology, University of California, Davis, California, USA
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
15
|
Joshi D, Prasad S, Saini J, Ingalhalikar M. Role of Arterial Spin Labeling (ASL) Images in Parkinson's Disease (PD): A Systematic Review. Acad Radiol 2023; 30:1695-1708. [PMID: 36435728 DOI: 10.1016/j.acra.2022.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022]
Abstract
RATIONALE AND OBJECTIVES Parkinson's disease is a chronic progressive neurodegenerative disorder with standard structural MRIs often showing no gross abnormalities. Quantitative perfusion MRI modality Arterial Spin Labeling (ASL) is helpful in identifying PD specific perfusion patterns. Absolute Cerebral blood flow (CBF) measurement using ASL provides insights into regional perfusion abnormalities. We reviewed the role of ASL to identify specific brain regions responsible for motor, non-motor symptoms and neurovascular changes observed in PD. Challenges in assessing the blood perfusion level are discussed with future development for improving the evaluation of ASL perfusion maps. MATERIALS AND METHODS We included CBF quantification studies using ASL for PD diagnosis. A systematic search was performed in Pubmed, Scopus and Web of Science. The perfusion parameters CBF and arterial arrival time (AAT) measured using ASL were considered for brain region assessment. Clinical aspects of PD have been analyzed using ASL perfusion maps. RESULTS The systematic search identified 153 unique records. Thirty articles were selected after verification of inclusion and exclusion criteria. Voxel and region-based analyses in white and gray matter tissues have been performed to identify PD-specific perfusion patterns by reported articles. Predominant brain regions such as basal ganglia sub-regions, frontoparietal network, precuneus, occipital lobe, sensory motor area regions, visual network, which are associated with motor and non-motor symptoms in PD, were identified with CBF hypoperfusion, indicating neuronal loss and cerebrovascular dysfunction. CONCLUSION CBF and AAT values derived from ASL can potentially be used as biomarkers to discriminate PD from similar brain-related disorders.
Collapse
Affiliation(s)
- Dhanashri Joshi
- Symbiosis Center of Medical Image Analysis, Symbiosis International (Deemed) University, Pune,MH, India
| | - Shweta Prasad
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, KA, India; Department of Clinical Neurosciences, National Institute of Mental Health and Neurosciences, Bengaluru,, KA, India
| | - Jitender Saini
- Department of Neuroimaging & Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, KA, India
| | - Madhura Ingalhalikar
- Symbiosis Center of Medical Image Analysis, Symbiosis International (Deemed) University, Pune,MH, India.
| |
Collapse
|
16
|
Nishikawa Y, Takahashi N, Nishikawa S, Shimamoto Y, Nishimori K, Kobayashi M, Kimura H, Tsujikawa T, Kasuno K, Mori T, Kiyono Y, Okazawa H, Iwano M. Feasibility of Renal Blood Flow Measurement Using 64Cu-ATSM PET/MRI: A Quantitative PET and MRI Study. Diagnostics (Basel) 2023; 13:diagnostics13101685. [PMID: 37238171 DOI: 10.3390/diagnostics13101685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
This study aimed to evaluate the renal blood flow (RBF) in patients with chronic kidney disease (CKD) using 64Cu(II)-diacetyl-bis(4-methylthiosemicarbazonate) (64Cu-ATSM) for positron emission tomography (PET)/magnetic resonance imaging (MRI). We included five healthy controls (HCs) and ten patients with CKD. The estimated glomerular filtration rate (eGFR) was calculated from the serum creatinine (cr) and cystatin C (cys) levels. The estimated RBF (eRBF) was calculated using the eGFR, hematocrit, and filtration fraction. A single dose of 64Cu-ATSM (300-400 MBq) was administered for RBF evaluation, and a 40 min dynamic PET scan was performed with simultaneous arterial spin labeling (ASL) imaging. PET-RBF images were obtained from the dynamic PET images at 3 min after injection using the image-derived input function method. The mean eRBF values calculated from various eGFR values differed significantly between the patients and HCs; both groups also differed significantly in terms of the RBF values (mL/min/100 g) measured using PET (151 ± 20 vs. 124 ± 22, p < 0.05) and ASL-MRI (172 ± 38 vs. 125 ± 30, p < 0.001). The ASL-MRI-RBF was positively correlated with the eRBFcr-cys (r = 0.858, p < 0.001). The PET-RBF was positively correlated with the eRBFcr-cys (r = 0.893, p < 0.001). The ASL-RBF was positively correlated with the PET-RBF (r = 0.849, p < 0.001). 64Cu-ATSM PET/MRI demonstrated the reliability of PET-RBF and ASL-RBF by comparing them with eRBF. This is the first study to demonstrate that 64Cu-ATSM-PET is useful for assessing the RBF and is well correlated with ASL-MRI.
Collapse
Affiliation(s)
- Yudai Nishikawa
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Naoki Takahashi
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Sho Nishikawa
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Yuki Shimamoto
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Kazuhisa Nishimori
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Mamiko Kobayashi
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Hideki Kimura
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Tetsuya Tsujikawa
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Kenji Kasuno
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Tetsuya Mori
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan
| | - Yasushi Kiyono
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan
| | - Hidehiko Okazawa
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan
| | - Masayuki Iwano
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
17
|
Bansal R, Peterson BS. Geometry-derived statistical significance: A probabilistic framework for detecting true positive findings in MRI data. Brain Behav 2023; 13:e2865. [PMID: 36869597 PMCID: PMC10097156 DOI: 10.1002/brb3.2865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 03/05/2023] Open
Abstract
INTRODUCTION The false discovery rate (FDR) procedure does not incorporate the geometry of the random field and requires high statistical power at each voxel, a requirement not satisfied by the limited number of participants in imaging studies. Topological FDR, threshold free cluster enhancement (TFCE), and probabilistic TFCE improve statistical power by incorporating local geometry. However, topological FDR requires specifying a cluster defining threshold and TFCE requires specifying transformation weights. METHODS Geometry-derived statistical significance (GDSS) procedure overcomes these limitations by combining voxelwise p-values for the test statistic with the probabilities computed from the local geometry for the random field, thereby providing substantially greater statistical power than the procedures currently used to control for multiple comparisons. We use synthetic data and real-world data to compare its performance against the performance of these other, previously developed procedures. RESULTS GDSS provided substantially greater statistical power relative to the comparator procedures, which was less variable to the number of participants. GDSS was more conservative than TFCE: that is, it rejected null hypotheses at voxels with much higher effect sizes than TFCE. Our experiments also showed that the Cohen's D effect size decreases as the number of participants increases. Therefore, sample size calculations from small studies may underestimate the participants required in larger studies. Our findings also suggest effect size maps should be presented along with p-value maps for correct interpretation of findings. CONCLUSIONS GDSS compared with the other procedures provides considerably greater statistical power for detecting true positives while limiting false positives, especially in small sized (<40 participants) imaging cohorts.
Collapse
Affiliation(s)
- Ravi Bansal
- Institute for the Developing MindChildren's Hospital Los AngelesCaliforniaUSA
- Department of Pediatrics and PsychiatryKeck School of Medicine at the University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Bradley S. Peterson
- Institute for the Developing MindChildren's Hospital Los AngelesCaliforniaUSA
- Department of PsychiatryKeck School of Medicine at the University of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
18
|
Guo J. Robust dual-module velocity-selective arterial spin labeling (dm-VSASL) with velocity-selective saturation and inversion. Magn Reson Med 2023; 89:1026-1040. [PMID: 36336852 PMCID: PMC9792445 DOI: 10.1002/mrm.29513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/02/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE Compared to conventional arterial spin labeling (ASL) methods, velocity-selective ASL (VSASL) is more sensitive to artifacts from eddy currents, diffusion attenuation, and motion. Background suppression is typically suboptimal in VSASL, especially of CSF. As a result, the temporal SNR and quantification accuracy of VSASL are compromised, hindering its application despite its advantage of being delay-insensitive. METHODS A novel dual-module VSASL (dm-VSASL) strategy is developed to improve the SNR efficiency and the temporal SNR with a more balanced gradient configuration in the label/control image acquisition. This strategy applies for both VS saturation (VSS) and VS inversion (VSI) labeling. The dm-VSASL schemes were compared with single-module labeling and a previously developed multi-module schemes for the SNR performance, background suppression efficacy, and sensitivity to artifacts in simulation and in vivo experiments, using pulsed ASL as the reference. RESULTS Dm-VSASL enabled more robust labeling and efficient backgroud suppre across brain tissues, especially of CSF, resulting in significantly reduced artifacts and improved temporal SNR. Compared to single-module labeling, dm-VSASL significantly improved the temporal SNR in gray (by 90.8% and 94.9% for dm-VSS and dm-VSI, respectively; P < 0.001) and white (by 41.5% and 55.1% for dm-VSS and dm-VSI, respectively; P < 0.002) matter. Dm-VSI also improved the SNR of VSI by 5.4% (P = 0.018). CONCLUSION Dm-VSASL can significantly improve the robustness of VS labeling, reduce artifacts, and allow efficient background suppression. When implemented with VSI, it provides the highest SNR efficiency among VSASL methods. Dm-VSASL is a powerful ASL method for robust, accurate, and delay-insensitive perfusion mapping.
Collapse
Affiliation(s)
- Jia Guo
- Correspondence Jia Guo, PhD, Department of Bioengineering, 900 University Ave, University of California Riverside, Riverside, CA 92521, USA,
| |
Collapse
|
19
|
Yamashita K, Sugimori H, Nakamizo A, Amano T, Kuwashiro T, Watanabe T, Kawamata K, Furuya K, Harada S, Kamei R, Maehara J, Okada Y, Noguchi T. Different hemodynamics of basal ganglia between moyamoya and non-moyamoya diseases using intravoxel incoherent motion imaging and single-photon emission computed tomography. Acta Radiol 2023; 64:769-775. [PMID: 35466686 DOI: 10.1177/02841851221092895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Moyamoya disease (MMD) and non-MMD have different pathogenesis, clinical presentation, and treatment policy. PURPOSE To identify differences in hemodynamics between MMD and non-MMD using intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) and single-photon emission computed tomography (SPECT). MATERIAL AND METHODS Patients who had undergone 99mTc-ECD or 123I-IMP SPECT, and IVIM imaging were retrospectively studied. IVIM imaging was acquired using six different b-values. Cerebral blood flow ratio (CBFR) in the basal ganglia was calculated using a standardized volume-of-interest template. The cerebellum was used as a reference region. IVIM perfusion fraction (f) was obtained using a two-step fitting algorithm. Elliptical regions of interest were placed in bilateral basal ganglia on the IVIM f map. Patients were classified into MMD and non-MMD groups. The correlation between CBFR and mean IVIM f (fmean) in the basal ganglia was evaluated using Spearman's rank correlation coefficient. RESULTS In total, 20 patients with MMD and 28 non-MMD patients were analyzed. No significant differences in fmean were observed among MMD, affected hemisphere with non-MMD (non-MMDaff), and unaffected hemispheres with non-MMD (non-MMDunaff). A negative correlation was seen between fmean and CBFR in the MMD group (r = -0.40, P = 0.0108), but not in the non-MMD group (non-MMDaff, r = 0.07, P = 0.69; non-MMDunaff, r = -0.22, P = 0.29). No significant differences were found among MMD and non-MMD patients, irrespective of SPECT tracers. CONCLUSION The combination of IVIM MRI and SPECT appears to allow non-invasive identification of differences in hemodynamics between MMD and non-MMD.
Collapse
Affiliation(s)
- Koji Yamashita
- Department of Radiology, Clinical Research Institute, 37085National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Hiroshi Sugimori
- Department of Cerebrovascular Medicine and Neurology, Clinical Research Institute, 37085National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Akira Nakamizo
- Department of Neurosurgery, Clinical Research Institute, 37085National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Toshiyuki Amano
- Department of Neurosurgery, Clinical Research Institute, 37085National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Takahiro Kuwashiro
- Department of Cerebrovascular Medicine and Neurology, Clinical Research Institute, 37085National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Takeharu Watanabe
- Department of Medical Technology, Division of Radiology, 37085National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Keisuke Kawamata
- Department of Medical Technology, Division of Radiology, 37085National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Kiyomi Furuya
- Department of Radiology, Clinical Research Institute, 37085National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Shino Harada
- Department of Radiology, Clinical Research Institute, 37085National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Ryotaro Kamei
- Department of Radiology, Clinical Research Institute, 37085National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Junki Maehara
- Department of Radiology, Clinical Research Institute, 37085National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Yasushi Okada
- Department of Cerebrovascular Medicine and Neurology, Clinical Research Institute, 37085National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Tomoyuki Noguchi
- Department of Radiology, Clinical Research Institute, 37085National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| |
Collapse
|
20
|
Kitajima M, Uetani H. Arterial Spin Labeling for Pediatric Central Nervous System Diseases: Techniques and Clinical Applications. Magn Reson Med Sci 2023; 22:27-43. [PMID: 35321984 PMCID: PMC9849418 DOI: 10.2463/mrms.rev.2021-0118] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/12/2022] [Indexed: 01/28/2023] Open
Abstract
Dynamic susceptibility contrast (DSC) and arterial spin labeling (ASL) are techniques used to evaluate brain perfusion using MRI. DSC requires dynamic image acquisition with a rapid administration of gadolinium-based contrast agent. In contrast, ASL obtains brain perfusion information using magnetically labeled blood water as an endogenous tracer. For the evaluation of brain perfusion in pediatric neurological diseases, ASL has a significant advantage compared to DSC, CT, and single-photon emission CT/positron emission tomography because of the lack of radiation exposure and contrast agent administration. However, in ASL, optimization of several parameters, including the type of labeling, image acquisition, background suppression, and postlabeling delay, is required, because they have a significant effect on the quantification of cerebral blood flow (CBF).In this article, we first review recent technical developments of ASL and age-dependent physiological characteristics in pediatric brain perfusion. We then review the clinical implementation of ASL in pediatric neurological diseases, including vascular diseases, brain tumors, acute encephalopathy with biphasic seizure and late reduced diffusion (AESD), and migraine. In moyamoya disease, ASL can be used for brain perfusion and vessel assessment in pre- and post-treatment. In arteriovenous malformations, ASL is sensitive to detect small degrees of shunt. Furthermore, in vascular diseases, the implementation of ASL-based time-resolved MR angiography is described. In neoplasms, ASL-derived CBF has a high diagnostic accuracy for differentiation between low- and high-grade pediatric brain tumors. In AESD and migraine, ASL may allow for accurate early diagnosis and provide pathophysiological information.
Collapse
Affiliation(s)
- Mika Kitajima
- Department of Medical Imaging Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Hiroyuki Uetani
- Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| |
Collapse
|
21
|
Lee D, Le TT, Im GH, Kim SG. Whole-brain perfusion mapping in mice by dynamic BOLD MRI with transient hypoxia. J Cereb Blood Flow Metab 2022; 42:2270-2286. [PMID: 35903000 PMCID: PMC9670005 DOI: 10.1177/0271678x221117008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Non-invasive mapping of cerebral perfusion is critical for understanding neurovascular and neurodegenerative diseases. However, perfusion MRI methods cannot be easily implemented for whole-brain studies in mice because of their small size. To overcome this issue, a transient hypoxia stimulus was applied to induce a bolus of deoxyhemoglobins as an endogenous paramagnetic contrast in blood oxygenation level-dependent (BOLD) MRI. Based on stimulus-duration-dependent studies, 5 s anoxic stimulus was chosen, which induced a decrease in arterial oxygenation to 59%. Dynamic susceptibility changes were acquired with whole-brain BOLD MRI using both all-vessel-sensitive gradient-echo and microvascular-sensitive spin-echo readouts. Cerebral blood flow (CBF) and cerebral blood volume (CBV) were quantified by modeling BOLD dynamics using a partial-volume-corrected arterial input function. In the mouse under ketamine/xylazine anesthesia, total CBF and CBV were 112.0 ± 15.0 ml/100 g/min and 3.39 ± 0.59 ml/100 g (n = 15 mice), respectively, whereas microvascular CBF and CBV were 85.8 ± 6.9 ml/100 g/min and 2.23 ± 0.27 ml/100 g (n = 7 mice), respectively. Regional total vs. microvascular perfusion metrics were highly correlated but a slight mismatch was observed in the large-vessel areas and cortical depth profiles. Overall, this non-invasive, repeatable, simple hypoxia BOLD-MRI approach is viable for perfusion mapping of rodents.
Collapse
Affiliation(s)
- DongKyu Lee
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Republic of Korea
| | - Thuy Thi Le
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Republic of Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Geun Ho Im
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Republic of Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, Republic of Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
22
|
Knudsen LV, Sheldrick AJ, Vafaee MS, Michel TM. Diversifying autism neuroimaging research: An arterial spin labeling review. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2022:13623613221137230. [DOI: 10.1177/13623613221137230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cognition and brain homeostasis depends on cerebral blood flow to secure adequate oxygen and nutrient distribution to the brain tissue. Altered cerebral blood flow has previously been reported in individuals diagnosed with autism spectrum condition in comparison to non-autistics. This phenomenon might suggest cerebral blood flow as a potential biomarker for autism spectrum condition. Major technological advancement enables the non-invasive and quantitative measurement of cerebral blood flow via arterial spin labeling magnetic resonance imaging. However, most neuroimaging studies in autistic individuals exploit the indirect blood oxygen level dependent functional magnetic resonance imaging signal instead. Therefore, this review examines the use of arterial spin labeling to further investigate the neurobiology of the autism spectrum condition. Followed by a comparison of results from molecular imaging and arterial spin labeling studies and a discussion concerning the future direction and potential of arterial spin labeling in this context. We found that arterial spin labeling study results are consistent with those of molecular imaging, especially after considering the effect of age and sex. Arterial spin labeling has numerous application possibilities besides the quantification of cerebral blood flow, including assessment of functional connectivity and arterial transit time. Therefore, we encourage researchers to explore and consider the application of arterial spin labeling for future scientific studies in the quest to better understand the neurobiology of autism spectrum condition. Lay abstract Brain function and health depend on cerebral blood flow to secure the necessary delivery of oxygen and nutrients to the brain tissue. However, cerebral blood flow appears to be altered in autistic compared to non-autistic individuals, potentially suggesting this difference to be a cause and potential identification point of autism. Recent technological development enables precise and non-invasive measurement of cerebral blood flow via the magnetic resonance imaging method referred to as arterial spin labeling. However, most neuroimaging studies still prefer using the physiologically indirect measure derived from functional magnetic resonance imaging. Therefore, this review examines the use of arterial spin labeling to further investigate the neurobiology of autism. Furthermore, the review includes a comparison of results from molecular imaging and arterial spin labeling followed by a discussion concerning the future direction and potential of arterial spin labeling. We found that arterial spin labeling study results are consistent with those of molecular imaging, especially after considering the effect of age and sex. In addition, arterial spin labeling has numerous application possibilities besides the quantification of cerebral blood flow. Therefore, we encourage researchers to explore and consider the application of arterial spin labeling for future scientific studies in the quest to better understand the neurobiology of autism.
Collapse
|
23
|
Multi-Echo Investigations of Positive and Negative CBF and Concomitant BOLD Changes: Positive and negative CBF and BOLD changes. Neuroimage 2022; 263:119661. [PMID: 36198353 DOI: 10.1016/j.neuroimage.2022.119661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/21/2022] Open
Abstract
Unlike the positive blood oxygenation level-dependent (BOLD) response (PBR), commonly taken as an indication of an 'activated' brain region, the physiological origin of negative BOLD signal changes (i.e. a negative BOLD response, NBR), also referred to as 'deactivation' is still being debated. In this work, an attempt was made to gain a better understanding of the underlying mechanism by obtaining a comprehensive measure of the contributing cerebral blood flow (CBF) and its relationship to the NBR in the human visual cortex, in comparison to a simultaneously induced PBR in surrounding visual regions. To overcome the low signal-to-noise ratio (SNR) of CBF measurements, a newly developed multi-echo version of a center-out echo planar-imaging (EPI) readout was employed with pseudo-continuous arterial spin labeling (pCASL). It achieved very short echo and inter-echo times and facilitated a simultaneous detection of functional CBF and BOLD changes at 3 T with improved sensitivity. Evaluations of the absolute and relative changes of CBF and the effective transverse relaxation rate,R2* the coupling ratios, and their dependence on CBF at rest, CBFrest indicated differences between activated and deactivated regions. Analysis of the shape of the respective functional responses also revealed faster negative responses with more pronounced post-stimulus transients. Resulting differences in the flow-metabolism coupling ratios were further examined for potential distinctions in the underlying neuronal contributions.
Collapse
|
24
|
Qin Q, Alsop DC, Bolar DS, Hernandez‐Garcia L, Meakin J, Liu D, Nayak KS, Schmid S, van Osch MJP, Wong EC, Woods JG, Zaharchuk G, Zhao MY, Zun Z, Guo J. Velocity-selective arterial spin labeling perfusion MRI: A review of the state of the art and recommendations for clinical implementation. Magn Reson Med 2022; 88:1528-1547. [PMID: 35819184 PMCID: PMC9543181 DOI: 10.1002/mrm.29371] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/16/2022] [Accepted: 06/08/2022] [Indexed: 12/11/2022]
Abstract
This review article provides an overview of the current status of velocity-selective arterial spin labeling (VSASL) perfusion MRI and is part of a wider effort arising from the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group. Since publication of the 2015 consensus paper on arterial spin labeling (ASL) for cerebral perfusion imaging, important advancements have been made in the field. The ASL community has, therefore, decided to provide an extended perspective on various aspects of technical development and application. Because VSASL has the potential to become a principal ASL method because of its unique advantages over traditional approaches, an in-depth discussion was warranted. VSASL labels blood based on its velocity and creates a magnetic bolus immediately proximal to the microvasculature within the imaging volume. VSASL is, therefore, insensitive to transit delay effects, in contrast to spatially selective pulsed and (pseudo-) continuous ASL approaches. Recent technical developments have improved the robustness and the labeling efficiency of VSASL, making it a potentially more favorable ASL approach in a wide range of applications where transit delay effects are of concern. In this review article, we (1) describe the concepts and theoretical basis of VSASL; (2) describe different variants of VSASL and their implementation; (3) provide recommended parameters and practices for clinical adoption; (4) describe challenges in developing and implementing VSASL; and (5) describe its current applications. As VSASL continues to undergo rapid development, the focus of this review is to summarize the fundamental concepts of VSASL, describe existing VSASL techniques and applications, and provide recommendations to help the clinical community adopt VSASL.
Collapse
Affiliation(s)
- Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - David C. Alsop
- Department of RadiologyBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMassachusettsUSA
| | - Divya S. Bolar
- Center for Functional Magnetic Resonance Imaging, Department of RadiologyUniversity of CaliforniaSan Diego La JollaCaliforniaUSA
| | | | - James Meakin
- Department of Radiology, Nuclear Medicine and AnatomyRadboud University Medical CenterNijmegenThe Netherlands
| | - Dapeng Liu
- The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Krishna S. Nayak
- Magnetic Resonance Engineering Laboratory, Ming Hsieh Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Sophie Schmid
- C.J. Gorter Center for high field MRI, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Matthias J. P. van Osch
- C.J. Gorter Center for high field MRI, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Eric C. Wong
- Center for Functional Magnetic Resonance Imaging, Department of RadiologyUniversity of CaliforniaSan Diego La JollaCaliforniaUSA
| | - Joseph G. Woods
- Center for Functional Magnetic Resonance Imaging, Department of RadiologyUniversity of CaliforniaSan Diego La JollaCaliforniaUSA
| | - Greg Zaharchuk
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Moss Y. Zhao
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Zungho Zun
- Department of RadiologyWeill Cornell MedicineNew YorkNew YorkUSA
| | - Jia Guo
- Department of BioengineeringUniversity of California RiversideRiversideCaliforniaUSA
| | | |
Collapse
|
25
|
Jain V, de Godoy LL, Mohan S, Chawla S, Learned K, Jain G, Wehrli FW, Alonso-Basanta M. Cerebral hemodynamic and metabolic dysregulation in the postradiation brain. J Neuroimaging 2022; 32:1027-1043. [PMID: 36156829 DOI: 10.1111/jon.13053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022] Open
Abstract
Technological advances in the delivery of radiation and other novel cancer therapies have significantly improved the 5-year survival rates over the last few decades. Although recent developments have helped to better manage the acute effects of radiation, the late effects such as impairment in cognition continue to remain of concern. Accruing data in the literature have implicated derangements in hemodynamic parameters and metabolic activity of the irradiated normal brain as predictive of cognitive impairment. Multiparametric imaging modalities have allowed us to precisely quantify functional and metabolic information, enhancing the anatomic and morphologic data provided by conventional MRI sequences, thereby contributing as noninvasive imaging-based biomarkers of radiation-induced brain injury. In this review, we have elaborated on the mechanisms of radiation-induced brain injury and discussed several novel imaging modalities, including MR spectroscopy, MR perfusion imaging, functional MR, SPECT, and PET that provide pathophysiological and functional insights into the postradiation brain, and its correlation with radiation dose as well as clinical neurocognitive outcomes. Additionally, we explored some innovative imaging modalities, such as quantitative blood oxygenation level-dependent imaging, susceptibility-based oxygenation measurement, and T2-based oxygenation measurement, that hold promise in delineating the potential mechanisms underlying deleterious neurocognitive changes seen in the postradiation setting. We aim that this comprehensive review of a range of imaging modalities will help elucidate the hemodynamic and metabolic injury mechanisms underlying cognitive impairment in the irradiated normal brain in order to optimize treatment regimens and improve the quality of life for these patients.
Collapse
Affiliation(s)
- Varsha Jain
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Radiation Oncology, Jefferson University Hospital, 111 South 11th Street, Philadelphia, PA, 19107, USA
| | - Laiz Laura de Godoy
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Suyash Mohan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kim Learned
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gaurav Jain
- Department of Neurological Surgery, Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Felix W Wehrli
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michelle Alonso-Basanta
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
26
|
Zhang X. Effects of Anesthesia on Cerebral Blood Flow and Functional Connectivity of Nonhuman Primates. Vet Sci 2022; 9:516. [PMID: 36288129 PMCID: PMC9609818 DOI: 10.3390/vetsci9100516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 02/07/2023] Open
Abstract
Nonhuman primates (NHPs) are the closest living relatives of humans and play a critical and unique role in neuroscience research and pharmaceutical development. General anesthesia is usually required in neuroimaging studies of NHPs to keep the animal from stress and motion. However, the adverse effects of anesthesia on cerebral physiology and neural activity are pronounced and can compromise the data collection and interpretation. Functional connectivity is frequently examined using resting-state functional MRI (rsfMRI) to assess the functional abnormality in the animal brain under anesthesia. The fMRI signal can be dramatically suppressed by most anesthetics in a dose-dependent manner. In addition, rsfMRI studies may be further compromised by inter-subject variations when the sample size is small (as seen in most neuroscience studies of NHPs). Therefore, proper use of anesthesia is strongly demanded to ensure steady and consistent physiology maintained during rsfMRI data collection of each subject. The aim of this review is to summarize typical anesthesia used in rsfMRI scans of NHPs and the effects of anesthetics on cerebral physiology and functional connectivity. Moreover, the protocols with optimal rsfMRI data acquisition and anesthesia procedures for functional connectivity study of macaque monkeys are introduced.
Collapse
Affiliation(s)
- Xiaodong Zhang
- EPC Imaging Center and Division of Neuropharmacology and Neurologic Diseases, Emory National Primate Research Center, Emory University, 954 Gatewood RD, Atlanta, GA 30329, USA
| |
Collapse
|
27
|
Schmithorst VJ, Adams PS, Badaly D, Lee VK, Wallace J, Beluk N, Votava-Smith JK, Weinberg JG, Beers SR, Detterich J, Wood JC, Lo CW, Panigrahy A. Impaired Neurovascular Function Underlies Poor Neurocognitive Outcomes and Is Associated with Nitric Oxide Bioavailability in Congenital Heart Disease. Metabolites 2022; 12:metabo12090882. [PMID: 36144286 PMCID: PMC9504090 DOI: 10.3390/metabo12090882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 12/03/2022] Open
Abstract
We use a non-invasive MRI proxy of neurovascular function (pnvf) to assess the ability of the vasculature to supply baseline metabolic demand, to compare pediatric and young adult congenital heart disease (CHD) patients to normal referents and relate the proxy to neurocognitive outcomes and nitric oxide bioavailability. In a prospective single-center study, resting-state blood-oxygen-level-dependent (BOLD) and arterial spin labeling (ASL) MRI scans were successfully obtained from 24 CHD patients (age = 15.4 ± 4.06 years) and 63 normal referents (age = 14.1 ± 3.49) years. Pnvf was computed on a voxelwise basis as the negative of the ratio of functional connectivity strength (FCS) estimated from the resting-state BOLD acquisition to regional cerebral blood flow (rCBF) as estimated from the ASL acquisition. Pnvf was used to predict end-tidal CO2 (PETCO2) levels and compared to those estimated from the BOLD data. Nitric oxide availability was obtained via nasal measurements (nNO). Pnvf was compared on a voxelwise basis between CHD patients and normal referents and correlated with nitric oxide availability and neurocognitive outcomes as assessed via the NIH Toolbox. Pnvf was shown as highly predictive of PETCO2 using theoretical modeling. Pnvf was found to be significantly reduced in CHD patients in default mode network (DMN, comprising the ventromedial prefrontal cortex and posterior cingulate/precuneus), salience network (SN, comprising the insula and dorsal anterior cingulate), and central executive network (CEN, comprising posterior parietal and dorsolateral prefrontal cortex) regions with similar findings noted in single cardiac ventricle patients. Positive correlations of Pnvf in these brain regions, as well as the hippocampus, were found with neurocognitive outcomes. Similarly, positive correlations between Pnvf and nitric oxide availability were found in frontal DMN and CEN regions, with particularly strong correlations in subcortical regions (putamen). Reduced Pnvf in CHD patients was found to be mediated by nNO. Mediation analyses further supported that reduced Pnvf in these regions underlies worse neurocognitive outcome in CHD patients and is associated with nitric oxide bioavailability. Impaired neuro-vascular function, which may be non-invasively estimated via combined arterial-spin label and BOLD MR imaging, is a nitric oxide bioavailability dependent factor implicated in adverse neurocognitive outcomes in pediatric and young adult CHD.
Collapse
Affiliation(s)
| | - Phillip S. Adams
- Department of Pediatric Anesthesiology, UPMC Children’s Hospital, Pittsburgh, PA 15224, USA
| | - Daryaneh Badaly
- Learning and Development Center, Child Mind Institute, New York, NY 10022, USA
| | - Vincent K. Lee
- Department of Pediatric Radiology, UPMC Children’s Hospital, Pittsburgh, PA 15224, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Julia Wallace
- Department of Pediatric Radiology, UPMC Children’s Hospital, Pittsburgh, PA 15224, USA
| | - Nancy Beluk
- Department of Pediatric Radiology, UPMC Children’s Hospital, Pittsburgh, PA 15224, USA
| | | | | | - Sue R. Beers
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jon Detterich
- Heart Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - John C. Wood
- Heart Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Cecilia W. Lo
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ashok Panigrahy
- Department of Pediatric Radiology, UPMC Children’s Hospital, Pittsburgh, PA 15224, USA
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Correspondence: ; Tel.: +1-412-692-5510; Fax: +1-412-692-6929
| |
Collapse
|
28
|
Perera C, Tolomeo D, Baker RR, Ohene Y, Korsak A, Lythgoe MF, Thomas DL, Wells JA. Investigating changes in blood-cerebrospinal fluid barrier function in a rat model of chronic hypertension using non-invasive magnetic resonance imaging. Front Mol Neurosci 2022; 15:964632. [PMID: 36117909 PMCID: PMC9478509 DOI: 10.3389/fnmol.2022.964632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/02/2022] [Indexed: 12/03/2022] Open
Abstract
Chronic hypertension is a major risk factor for the development of neurodegenerative disease, yet the etiology of hypertension-driven neurodegeneration remains poorly understood. Forming a unique interface between the systemic circulation and the brain, the blood-cerebrospinal fluid barrier (BCSFB) at the choroid plexus (CP) has been proposed as a key site of vulnerability to hypertension that may initiate downstream neurodegenerative processes. However, our ability to understand BCSFB's role in pathological processes has, to date, been restricted by a lack of non-invasive functional measurement techniques. In this work, we apply a novel Blood-Cerebrospinal Fluid Barrier Arterial Spin Labeling (BCSFB-ASL) Magnetic resonance imaging (MRI) approach with the aim of detecting possible derangement of BCSFB function in the Spontaneous Hypertensive Rat (SHR) model using a non-invasive, translational technique. SHRs displayed a 36% reduction in BCSFB-mediated labeled arterial water delivery into ventricular cerebrospinal fluid (CSF), relative to normotensive controls, indicative of down-regulated choroid plexus function. This was concomitant with additional changes in brain fluid biomarkers, namely ventriculomegaly and changes in CSF composition, as measured by T1 lengthening. However, cortical cerebral blood flow (CBF) measurements, an imaging biomarker of cerebrovascular health, revealed no measurable change between the groups. Here, we provide the first demonstration of BCSFB-ASL in the rat brain, enabling non-invasive assessment of BCSFB function in healthy and hypertensive rats. Our data highlights the potential for BCSFB-ASL to serve as a sensitive early biomarker for hypertension-driven neurodegeneration, in addition to investigating the mechanisms relating hypertension to neurodegenerative outcomes.
Collapse
Affiliation(s)
- Charith Perera
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - Daniele Tolomeo
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - Rebecca R. Baker
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - Yolanda Ohene
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, United Kingdom
| | - Alla Korsak
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Mark F. Lythgoe
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - David L. Thomas
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, United Kingdom
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jack A. Wells
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| |
Collapse
|
29
|
Taso M, Munsch F, Alsop DC. The Boston ASL Template and Simulator: Initial development and implementation. J Neuroimaging 2022; 32:1080-1089. [PMID: 36045507 DOI: 10.1111/jon.13042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Templates are a hallmark of image analysis in neuroimaging. However, while numerous structural templates exist and have facilitated single-subject and large group studies, templates based on functional contrasts, such as arterial spin labeling (ASL) perfusion, are scarce, have an inherently low spatial resolution, and are not as widely distributed. Having such tools at one's disposal is desirable, for example, in the case of studies not acquiring structural scans. We here propose an initial development of an ASL adult template based on high-resolution fast spin echo acquisitions. METHODS High-resolution single-delay ASL, low-resolution multi-delay ASL, T1 -weighted magnetization prepared rapid acquisition 2 gradient echoes, and T2 fluid attenuated inversion recovery data were acquired in a cohort of 10 healthy volunteers (6 males and 4 females, 30± 7 years old). After offline reconstruction of high-resolution perfusion arterial transit time (ATT) and T1 maps, we built a multi-contrast template relying on the Advanced Normalization Toolbox multivariate template nonlinear construction framework. We offer examples for the registration of ASL data acquired with different sequences. Finally, we propose an ASL simulator based on our templates and a standard kinetic model that allows generating synthetic ASL contrasts based on user-specified parameters. RESULTS Boston ASL Template and Simulator (BATS) offers high-quality, high-resolution perfusion-weighted and quantitative perfusion templates accompanied by ATT and different anatomical contrasts readily available in the Montreal Neurological Institute space. In addition, examples of use for data registration and as a synthetic contrast generator show various applications in which BATS could be used. CONCLUSIONS We propose a new ASL template collection, named BATS, that also includes a simulator allowing the generation of synthetic ASL contrasts. BATS is available at http://github.com/manueltaso/batsasltemplate.
Collapse
Affiliation(s)
- Manuel Taso
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Fanny Munsch
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - David C Alsop
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
30
|
Pseudocontinuous Arterial Spin Labeling: Clinical Applications and Usefulness in Head and Neck Entities. Cancers (Basel) 2022; 14:cancers14163872. [PMID: 36010866 PMCID: PMC9405982 DOI: 10.3390/cancers14163872] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Conventional imaging methods, such as ultrasonography, computed tomography, and magnetic resonance imaging may be inadequate to accurately diagnose lesions of the head and neck because they vary widely. Recently, the arterial spin labeling technique, especially pseudocontinuous arterial spin labeling (pCASL) with the three-dimensional (3D) readout method, has been dramatically developed to improve diagnostic performance for lesion differentiation, which can show prominent blood flow characteristics. Here, we demonstrate the clinical usefulness of 3D pCASL for diagnosing various entities, including inflammatory lesions, hypervascular lesions, and neoplasms in the head and neck, for evaluating squamous cell carcinoma (SCC) treatment responses, and for predicting SCC prognosis. Abstract As functional magnetic resonance imaging, arterial spin labeling (ASL) techniques have been developed to provide quantitative tissue blood flow measurements, which can improve the performance of lesion diagnosis. ASL does not require contrast agents, thus, it can be applied to a variety of patients regardless of renal impairments and contrast agent allergic reactions. The clinical implementation of head and neck lesions is limited, although, in recent years, ASL has been increasingly utilized in brain lesions. Here, we review the development of the ASL techniques, including pseudocontinuous ASL (pCASL). We compare readout methods between three-dimensional (3D) turbo spin-echo and 2D echo planar pCASL for the clinical applications of pCASL to head and neck lesions. We demonstrate the clinical usefulness of 3D pCASL for diagnosing various entities, including inflammatory lesions, hypervascular lesions, and neoplasms; for evaluating squamous cell carcinoma (SCC) treatment responses, and for predicting SCC prognosis.
Collapse
|
31
|
Daftari Besheli L, Ahmed A, Hamam O, Luna L, Sun LR, Urrutia V, Hillis AE, Tekes-Brady A, Yedavalli V. Arterial Spin Labeling technique and clinical applications of the intracranial compartment in stroke and stroke mimics - A case-based review. Neuroradiol J 2022; 35:437-453. [PMID: 35635512 PMCID: PMC9437493 DOI: 10.1177/19714009221098806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Magnetic resonance imaging perfusion (MRP) techniques can improve the selection of acute ischemic stroke patients for treatment by estimating the salvageable area of decreased perfusion, that is, penumbra. Arterial spin labeling (ASL) is a noncontrast MRP technique that is used to assess cerebral blood flow without the use of intravenous gadolinium contrast. Thus, ASL is of particular interest in stroke imaging. This article will review clinical applications of ASL in stroke such as assessment of the core infarct and penumbra, localization of the vascular occlusion, and collateral status. Given the nonspecific symptoms that patients can present with, differentiating between stroke and a stroke mimic is a diagnostic dilemma. ASL not only helps in differentiating stroke from stroke mimic but also can be used to specify the exact mimic when used in conjunction with the symptomatology and structural imaging. In addition to a case-based overview of clinical applications of the ASL in stroke and stroke mimics in this article, the more commonly used ASL labeling techniques as well as emerging ASL techniques, future developments, and limitations will be reviewed.
Collapse
Affiliation(s)
| | - Amara Ahmed
- Florida State University College of
Medicine, Tallahassee, FL, USA
| | - Omar Hamam
- Johns Hopkins School of
Medicine, Baltimore, MD, USA
| | - Licia Luna
- Johns Hopkins School of
Medicine, Baltimore, MD, USA
| | - Lisa R Sun
- Johns Hopkins School of
Medicine, Baltimore, MD, USA
| | | | - Argye E Hillis
- Johns Hopkins University School of
Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
32
|
Diagnostic yield of simultaneous dynamic contrast-enhanced magnetic resonance perfusion measurements and [ 18F]FET PET in patients with suspected recurrent anaplastic astrocytoma and glioblastoma. Eur J Nucl Med Mol Imaging 2022; 49:4677-4691. [PMID: 35907033 PMCID: PMC9605929 DOI: 10.1007/s00259-022-05917-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/16/2022] [Indexed: 11/04/2022]
Abstract
Purpose Both amino acid positron emission tomography (PET) and magnetic resonance imaging (MRI) blood volume (BV) measurements are used in suspected recurrent high-grade gliomas. We compared the separate and combined diagnostic yield of simultaneously acquired dynamic contrast-enhanced (DCE) perfusion MRI and O-(2-[18F]-fluoroethyl)-L-tyrosine ([18F]FET) PET in patients with anaplastic astrocytoma and glioblastoma following standard therapy. Methods A total of 76 lesions in 60 hybrid [18F]FET PET/MRI scans with DCE MRI from patients with suspected recurrence of anaplastic astrocytoma and glioblastoma were included retrospectively. BV was measured from DCE MRI employing a 2-compartment exchange model (2CXM). Diagnostic performances of maximal tumour-to-background [18F]FET uptake (TBRmax), maximal BV (BVmax) and normalised BVmax (nBVmax) were determined by ROC analysis using 6-month histopathological (n = 28) or clinical/radiographical follow-up (n = 48) as reference. Sensitivity and specificity at optimal cut-offs were determined separately for enhancing and non-enhancing lesions. Results In progressive lesions, all BV and [18F]FET metrics were higher than in non-progressive lesions. ROC analyses showed higher overall ROC AUCs for TBRmax than both BVmax and nBVmax in both lesion-wise (all lesions, p = 0.04) and in patient-wise analysis (p < 0.01). Combining TBRmax with BV metrics did not increase ROC AUC. Lesion-wise positive fraction/sensitivity/specificity at optimal cut-offs were 55%/91%/84% for TBRmax, 45%/77%/84% for BVmax and 59%/84%/72% for nBVmax. Combining TBRmax and best-performing BV cut-offs yielded lesion-wise sensitivity/specificity of 75/97%. The fraction of progressive lesions was 11% in concordant negative lesions, 33% in lesions only BV positive, 64% in lesions only [18F]FET positive and 97% in concordant positive lesions. Conclusion The overall diagnostic accuracy of DCE BV imaging is good, but lower than that of [18F]FET PET. Adding DCE BV imaging did not improve the overall diagnostic accuracy of [18F]FET PET, but may improve specificity and allow better lesion-wise risk stratification than [18F]FET PET alone. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-022-05917-3.
Collapse
|
33
|
Golay X, Ho ML. Multidelay ASL of the pediatric brain. Br J Radiol 2022; 95:20220034. [PMID: 35451851 PMCID: PMC10996417 DOI: 10.1259/bjr.20220034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/22/2022] [Indexed: 11/05/2022] Open
Abstract
Arterial spin labeling (ASL) is a powerful noncontrast MRI technique for evaluation of cerebral blood flow (CBF). A key parameter in single-delay ASL is the choice of postlabel delay (PLD), which refers to the timing between the labeling of arterial free water and measurement of flow into the brain. Multidelay ASL (MDASL) utilizes several PLDs to improve the accuracy of CBF calculations using arterial transit time (ATT) correction. This approach is particularly helpful in situations where ATT is unknown, including young subjects and slow-flow conditions. In this article, we discuss the technical considerations for MDASL, including labeling techniques, quantitative metrics, and technical artefacts. We then provide a practical summary of key clinical applications with real-life imaging examples in the pediatric brain, including stroke, vasculopathy, hypoxic-ischemic injury, epilepsy, migraine, tumor, infection, and metabolic disease.
Collapse
Affiliation(s)
- Xavier Golay
- MR Neurophysics and Translational Neuroscience, UCL Queen
Square Institute of Neurology London, London,
England, UK
| | - Mai-Lan Ho
- Radiology, Nationwide Children’s Hospital and The Ohio
State University, Columbus, OH,
USA
| |
Collapse
|
34
|
Tian T, Wu J, Chen T, Li J, Yan S, Zhou Y, Peng X, Li Y, Zheng N, Cai A, Ning Q, Xiang H, Xu F, Qin Y, Zhu W, Wang J. Long-term follow-up of dynamic brain changes in patients recovered from COVID-19 without neurological manifestations. JCI Insight 2022; 7:155827. [PMID: 35191397 PMCID: PMC8876627 DOI: 10.1172/jci.insight.155827] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/19/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND After the initial surge in COVID-19 cases, large numbers of patients were discharged from a hospital without assessment of recovery. Now, an increasing number of patients report postacute neurological sequelae, known as “long COVID” — even those without specific neurological manifestations in the acute phase. METHODS Dynamic brain changes are crucial for a better understanding and early prevention of “long COVID.” Here, we explored the cross-sectional and longitudinal consequences of COVID-19 on the brain in 34 discharged patients without neurological manifestations. Gray matter morphology, cerebral blood flow (CBF), and volumes of white matter tracts were investigated using advanced magnetic resonance imaging techniques to explore dynamic brain changes from 3 to 10 months after discharge. RESULTS Overall, the differences of cortical thickness were dynamic and finally returned to the baseline. For cortical CBF, hypoperfusion in severe cases observed at 3 months tended to recover at 10 months. Subcortical nuclei and white matter differences between groups and within subjects showed various trends, including recoverable and long-term unrecovered differences. After a 10-month recovery period, a reduced volume of nuclei in severe cases was still more extensive and profound than that in mild cases. CONCLUSION Our study provides objective neuroimaging evidence for the coexistence of recoverable and long-term unrecovered changes in 10-month effects of COVID-19 on the brain. The remaining potential abnormalities still deserve public attention, which is critically important for a better understanding of “long COVID” and early clinical guidance toward complete recovery. FUNDING National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Tian Tian
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinfeng Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
| | - Tao Chen
- Institute and Department of Infectious Disease and
| | - Jia Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Su Yan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yiran Zhou
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaolong Peng
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanhao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ning Zheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
| | - Aoling Cai
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China
| | - Qin Ning
- Institute and Department of Infectious Disease and
| | - Hongbing Xiang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fuqiang Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Qin
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Luciw NJ, Shirzadi Z, Black SE, Goubran M, MacIntosh BJ. Automated generation of cerebral blood flow and arterial transit time maps from multiple delay arterial spin-labeled MRI. Magn Reson Med 2022; 88:406-417. [PMID: 35181925 DOI: 10.1002/mrm.29193] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/05/2022] [Accepted: 01/21/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Develop and evaluate a deep learning approach to estimate cerebral blood flow (CBF) and arterial transit time (ATT) from multiple post-labeling delay (PLD) ASL MRI. METHODS ASL MRI were acquired with 6 PLDs on a 1.5T or 3T GE system in adults with and without cognitive impairment (N = 99). Voxel-level CBF and ATT maps were quantified by training models with distinct convolutional neural network architectures: (1) convolutional neural network (CNN) and (2) U-Net. Models were trained and compared via 5-fold cross validation. Performance was evaluated using mean absolute error (MAE). Model outputs were trained on and compared against a reference ASL model fitting after data cleaning. Minimally processed ASL data served as another benchmark. Model output uncertainty was estimated using Monte Carlo dropout. The better-performing neural network was subsequently re-trained on inputs with missing PLDs to investigate generalizability to different PLD schedules. RESULTS Relative to the CNN, the U-Net yielded lower MAE on training data. On test data, the U-Net MAE was 8.4 ± 1.4 mL/100 g/min for CBF and 0.22 ± 0.09 s for ATT. A significant association was observed between MAE and Monte Carlo dropout-based uncertainty estimates. Neural network performance remained stable despite systematically reducing the number of input images (i.e., up to 3 missing PLD images). Mean processing time was 10.77 s for the U-Net neural network compared to 10 min 41 s for the reference pipeline. CONCLUSION It is feasible to generate CBF and ATT maps from 1.5T and 3T multi-PLD ASL MRI with a fast deep learning image-generation approach.
Collapse
Affiliation(s)
- Nicholas J Luciw
- Hurvitz Brain Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Zahra Shirzadi
- Hurvitz Brain Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Heart and Stroke Foundation, Canadian Partnership for Stroke Recovery, Toronto, Ontario, Canada
| | - Sandra E Black
- Hurvitz Brain Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Heart and Stroke Foundation, Canadian Partnership for Stroke Recovery, Toronto, Ontario, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Maged Goubran
- Hurvitz Brain Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Heart and Stroke Foundation, Canadian Partnership for Stroke Recovery, Toronto, Ontario, Canada
| | - Bradley J MacIntosh
- Hurvitz Brain Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Heart and Stroke Foundation, Canadian Partnership for Stroke Recovery, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Multiphase arterial spin labeling imaging to predict early recurrent ischemic lesion in acute ischemic stroke. Sci Rep 2022; 12:1456. [PMID: 35087157 PMCID: PMC8795409 DOI: 10.1038/s41598-022-05465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/03/2021] [Indexed: 11/21/2022] Open
Abstract
In acute ischemic stroke (AIS), the hemodynamics around the lesion are important because they determine the recurrence or prognosis of the disease. This study evaluated the effects of perfusion deficits in multiphase arterial spin labeling (ASL) and related radiological parameters on the occurrence of early recurrent ischemic lesions (ERILs) in AIS. We assessed AIS patients who underwent multiphase ASL within 24 h of symptom onset and follow-up diffusion-weighted imaging within 7 days. ASL perfusion deficit, arterial transit artifact (ATA), and intra-arterial high-intensity signal (IAS) were manually rated as ASL parameters. A total of 134 patients were evaluated. In the multivariable analyses, ASL perfusion deficit [adjusted odds ratio (aOR) = 2.82, 95% confidence interval = 1.27–6.27] was positively associated with ERIL. Furthermore, when ATA was accompanied, the ASL perfusion deficit was not associated with ERIL occurrence. Meanwhile, IAS showed a synergistic effect with ASL perfusion deficit on the occurrence of ERIL. In conclusion, we demonstrated the association between perfusion deficits in multiphase ASL with ERIL in patients with AIS. This close association was attenuated by ATA and was enhanced by IAS. ASL parameters may help identify high-risk patients of ERIL occurrence during the acute period.
Collapse
|
37
|
Perfusion measurement in brain gliomas using velocity-selective arterial spin labeling: comparison with pseudo-continuous arterial spin labeling and dynamic susceptibility contrast MRI. Eur Radiol 2022; 32:2976-2987. [DOI: 10.1007/s00330-021-08406-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/27/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022]
|
38
|
Woods JG, Wong EC, Boyd EC, Bolar DS. VESPA ASL: VElocity and SPAtially Selective Arterial Spin Labeling. Magn Reson Med 2022; 87:2667-2684. [PMID: 35061920 DOI: 10.1002/mrm.29159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/25/2021] [Accepted: 12/22/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE Spatially selective arterial spin labeling (ASL) perfusion MRI is sensitive to arterial transit times (ATT) that can result in inaccurate perfusion quantification when ATTs are long. Velocity-selective ASL is robust to this effect because blood is labeled within the imaging region, allowing immediate label delivery. However, velocity-selective ASL cannot characterize ATTs, which can provide important clinical information. Here, we introduce a novel pulse sequence, called VESPA ASL, that combines velocity-selective and pseudo-continuous ASL to simultaneously label different pools of arterial blood for robust cerebral blood flow (CBF) and ATT measurement. METHODS The VESPA ASL sequence is similar to velocity-selective ASL, but the velocity-selective labeling is made spatially selective, and pseudo-continuous ASL is added to fill the inflow time. The choice of inflow time and other sequence settings were explored. VESPA ASL was compared to multi-delay pseudo-continuous ASL and velocity-selective ASL through simulations and test-retest experiments in healthy volunteers. RESULTS VESPA ASL is shown to accurately measure CBF in the presence of long ATTs, and ATTs < TI can also be measured. Measurements were similar to established ASL techniques when ATT was short. When ATT was long, VESPA ASL measured CBF more accurately than multi-delay pseudo-continuous ASL, which tended to underestimate CBF. CONCLUSION VESPA ASL is a novel and robust approach to simultaneously measure CBF and ATT and offers important advantages over existing methods. It fills an important clinical need for noninvasive perfusion and transit time imaging in vascular diseases with delayed arterial transit.
Collapse
Affiliation(s)
- Joseph G Woods
- Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Eric C Wong
- Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California San Diego, La Jolla, California, USA.,Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Emma C Boyd
- Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California San Diego, La Jolla, California, USA.,Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Divya S Bolar
- Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
39
|
Ueda Y, Tanaka Y, Hara S, Inaji M, Ishii K, Maehara T, Nariai T. Differences in cerebral blood flow measurement using arterial spin labeling MRI between patients with moyamoya disease and patients with arteriosclerotic cerebrovascular disease. Acta Radiol 2022; 64:311-319. [PMID: 35037475 DOI: 10.1177/02841851211069245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND It is unclear whether the accuracy of arterial spin labeling (ASL) magnetic resonance imaging (MRI) is the same between moyamoya disease (MMD), which is known to have markedly elevated cerebral blood volume (CBV), and atherosclerotic intracranial arterial stenosis (AS), which has relatively less elevated CBV. PURPOSE To investigate how the differences in hemodynamics affect measurement of ASL-cerebral blood flow (CBF) using ASL for patients with MMD and AS. MATERIAL AND METHODS Fourteen MMD and ten AS patients were evaluated with ASL-MRI, magnetic resonance angiography (MRA), and 15O-gas positron emission computed tomography (PET). The regional CBF values of ASL using two post-labeling delays (PLDs; 1525 ms and 2525 ms) were compared with the PET-derived CBF, CBV, and mean transit time (MTT). Corresponding anterior circulation results were evaluated by flow territory map-based analysis. RESULTS The correlation between the ASL-CBF values (2525 ms) and PET-CBF declined in the MMD group (r = 0.28; P < 0.01), while the AS group showed good correlation (r = 0.77; P < 0.01). In the MMD group, the ASL-CBF values (2525 ms) overestimated the PET-CBF values as the regional CBV values increased (r = 0.35; P < 0.01). When the regions of interest were divided into two subgroups according to the degree of arterial stenosis by MRA, the correlation coefficient between the ASL-CBF (2525 ms) and PET-CBF values improved (mild stenosis: r = 0.36; P = 0.06; severe stenosis: r = 0.51; P < 0.01). CONCLUSION The accuracy of CBF measurements using ASL-MRI differed between patients with MMD and AS. The prominent increase of CBV and the degree of arterial stenosis may have affected the accuracy of ASL-CBF in patients with MMD.
Collapse
Affiliation(s)
- Yasuhiro Ueda
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoji Tanaka
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shoko Hara
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Motoki Inaji
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Taketoshi Maehara
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tadashi Nariai
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
40
|
Mahroo A, Buck MA, Huber J, Breutigam NJ, Mutsaerts HJMM, Craig M, Chappell M, Günther M. Robust Multi-TE ASL-Based Blood-Brain Barrier Integrity Measurements. Front Neurosci 2021; 15:719676. [PMID: 34924924 PMCID: PMC8678075 DOI: 10.3389/fnins.2021.719676] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/25/2021] [Indexed: 12/30/2022] Open
Abstract
Multiple echo-time arterial spin labelling (multi-TE ASL) offers estimation of blood–tissue exchange dynamics by probing the T2 relaxation of the labelled spins. In this study, we provide a recipe for robust assessment of exchange time (Texch) as a proxy measure of blood–brain barrier (BBB) integrity based on a test-retest analysis. This includes a novel scan protocol and an extension of the two-compartment model with an “intra-voxel transit time” (ITT) to address tissue transit effects. With the extended model, we intend to separate the underlying two distinct mechanisms of tissue transit and exchange. The performance of the extended model in comparison with the two-compartment model was evaluated in simulations. Multi-TE ASL sequence with two different bolus durations was used to acquire in vivo data (n = 10). Cerebral blood flow (CBF), arterial transit time (ATT) and Texch were fitted with the two models, and mean grey matter values were compared. Additionally, the extended model also extracted ITT parameter. The test-retest reliability of Texch was assessed for intra-session, inter-session and inter-visit pairs of measurements. Intra-class correlation coefficient (ICC) and within-subject coefficient of variance (CoV) for grey matter were computed to assess the precision of the method. Mean grey matter Texch and ITT values were found to be 227.9 ± 37.9 ms and 310.3 ± 52.9 ms, respectively. Texch estimated by the extended model was 32.6 ± 5.9% lower than the two-compartment model. A significant ICC was observed for all three measures of Texch reliability (P < 0.05). Texch intra-session CoV, inter-session CoV and inter-visit CoV were found to be 6.6%, 7.9%, and 8.4%, respectively. With the described improvements addressing intra-voxel transit effects, multi-TE ASL shows good reproducibility as a non-invasive measure of BBB permeability. These findings offer an encouraging step forward to apply this potential BBB permeability biomarker in clinical research.
Collapse
Affiliation(s)
- Amnah Mahroo
- MR Physics, Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Mareike Alicja Buck
- MR Physics, Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany.,MR-Imaging and Spectroscopy, University of Bremen, Bremen, Germany
| | - Jörn Huber
- MR Physics, Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | | | - Henk J M M Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Martin Craig
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Michael Chappell
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Nottingham Biomedical Research Centre, Queens Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Matthias Günther
- MR Physics, Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany.,MR-Imaging and Spectroscopy, University of Bremen, Bremen, Germany.,mediri GmbH, Heidelberg, Germany
| |
Collapse
|
41
|
Shao X, Guo F, Shou Q, Wang K, Jann K, Yan L, Toga AW, Zhang P, Wang DJJ. Laminar perfusion imaging with zoomed arterial spin labeling at 7 Tesla. Neuroimage 2021; 245:118724. [PMID: 34780918 PMCID: PMC8727512 DOI: 10.1016/j.neuroimage.2021.118724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/23/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022] Open
Abstract
Laminar fMRI based on BOLD and CBV contrast at ultrahigh magnetic fields has been applied for studying the dynamics of mesoscopic brain networks. However, the quantitative interpretations of BOLD/CBV fMRI results are confounded by different baseline physiology across cortical layers. Here we introduce a novel 3D zoomed pseudo-continuous arterial spin labeling (pCASL) technique at 7T that offers the capability for quantitative measurements of laminar cerebral blood flow (CBF) both at rest and during task activation with high spatial specificity and sensitivity. We found arterial transit time in superficial layers is ∼100 ms shorter than in middle/deep layers revealing the time course of labeled blood flowing from pial arteries to downstream microvasculature. Resting state CBF peaked in the middle layers which is highly consistent with microvascular density measured from human cortex specimens. Finger tapping induced a robust two-peak laminar profile of CBF increases in the superficial (somatosensory and premotor input) and deep (spinal output) layers of M1, while finger brushing task induced a weaker CBF increase in superficial layers (somatosensory input). This observation is highly consistent with reported laminar profiles of CBV activation on M1. We further demonstrated that visuospatial attention induced a predominant CBF increase in deep layers and a smaller CBF increase on top of the lower baseline CBF in superficial layers of V1 (feedback cortical input), while stimulus driven activity peaked in the middle layers (feedforward thalamic input). With the capability for quantitative CBF measurements both at baseline and during task activation, high-resolution ASL perfusion fMRI at 7T provides an important tool for in vivo assessment of neurovascular function and metabolic activities of neural circuits across cortical layers.
Collapse
Affiliation(s)
- Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA
| | - Fanhua Guo
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qinyang Shou
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA
| | - Kai Wang
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA
| | - Kay Jann
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Lirong Yan
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Arthur W Toga
- Laboratory of Neuroimaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Peng Zhang
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
42
|
Reliability of arterial spin labeling derived cerebral blood flow in periventricular white matter. NEUROIMAGE. REPORTS 2021; 1. [PMID: 35419550 PMCID: PMC9004331 DOI: 10.1016/j.ynirp.2021.100063] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We aimed to assess the reliability of cerebral blood flow (CBF) measured using arterial spin labeled (ASL) perfusion magnetic resonance imaging (MRI) from the periventricular white matter (PVWM) by computing its repeatability and comparing to [15O]-water Positron Emission Tomography (PET) as a reference. Simultaneous PET/MRI perfusion data were acquired twice in the same session, about 15 min apart, from 16 subjects (age: 41.4 ± 12.0 years, 9 female). ASL protocols used pseudocontinuous labeling (pCASL) with background-suppressed 3-dimensional readouts, and included both single and multiple post labeling delay (PLD) acquisitions, each acquired twice, with the latter providing both CBF and arterial transit time (ATT) maps. The reliability of ASL derived PVWM CBF was evaluated using intra-session repeatability assessed by the within-subject coefficient of variation (wsCV) of the PVWM CBF values obtained from the two scans, correlation with concurrently-acquired PET CBF values, and by comparing them with that measured in other commonly used regions of interest (ROIs) such as whole brain (WB), gray matter (GM) and white matter (WM). The wsCVs for PVWM CBF with single and multi-PLD acquisitions were 5.7 (95% CI: (3.4,7.7)) % and 6.1 (95% CI: (3.8,8.3))%, which were similar to those obtained from WB, GM and WM CBF even though the PVWM region is the most weakly perfused region of brain parenchyma. Correlations between relative PVWM CBF derived from ASL and from [15O]-water PET were also comparable to the other ROIs. Finally, the ATT of the PVWM region was found to be 1.27 ± 0.27s, which was not an outlier for the arterial circulation of the brain. These findings suggest that PVWM CBF can be reliably measured with the current state-of-the-art ASL methods.
Collapse
|
43
|
Saïb G, Koretsky AP, Talagala SL. Optimization of pseudo-continuous arterial spin labeling using off-resonance compensation strategies at 7T. Magn Reson Med 2021; 87:1720-1730. [PMID: 34775619 DOI: 10.1002/mrm.29070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/12/2022]
Abstract
PURPOSE The sensitivity of pseudo-continuous arterial spin labeling (PCASL) to off-resonance effects (ΔB0 ) is a major limitation at ultra-high field (≥7T). The aim of this study was to assess the effectiveness of different PCASL ΔB0 compensation methods at 7T and measure the labeling efficiency with off-resonance correction. THEORY AND METHODS Phase offset errors induced by ΔB0 at the feeding arteries can be compensated by adding an extra radiofrequency (RF) phase increment and transverse gradient blips into the PCASL RF pulse train. The effectiveness of an average field correction (AVGcor), a vessel-specific field-map-based correction (FMcor) and a vessel-specific prescan-based correction (PScor) were compared at 7T. After correction, the PCASL labeling efficiency was directly measured in feeding arteries downstream from the labeling location. RESULTS The perfusion signal was more uniform throughout the brain after off-resonance correction. Whole-brain average perfusion signal increased by a factor of 2.4, 2.5, and 2.1, respectively, with AVGcor, FMcor and PScor compared to acquisitions without correction. With off-resonance correction, the maximum labeling efficiency was ~0.68 at mean B1 (B1mean ) of 0.70 µT when using a mean gradient (Gmean ) of 0.25 mT/m. CONCLUSION Either a prescan or a field map can be used to correct for off-resonance effects and retrieve a good brain perfusion signal at 7T. Although the three methods performed well in this study, FMcor may be better suited for patient studies because it accounted for vessel-specific ΔB0 variations. Further improvements in image quality will be possible by optimizing the labeling efficiency with advanced hardware and software while satisfying specific absorption rate constraints.
Collapse
Affiliation(s)
- Gaël Saïb
- NINDS/LFMI, National Institutes of Health, Bethesda, Maryland, USA
| | - Alan P Koretsky
- NINDS/LFMI, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
44
|
Ishida S, Kimura H, Takei N, Fujiwara Y, Matsuda T, Kanamoto M, Matta Y, Kosaka N, Kidoya E. Separating spin compartments in arterial spin labeling using delays alternating with nutation for tailored excitation (DANTE) pulse: A validation study using T 2 -relaxometry and application to arterial cerebral blood volume imaging. Magn Reson Med 2021; 87:1329-1345. [PMID: 34687085 DOI: 10.1002/mrm.29052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/31/2021] [Accepted: 09/30/2021] [Indexed: 11/07/2022]
Abstract
PURPOSE To clarify the type of spin compartment in arterial spin labeling (ASL) that is eliminated by delays alternating with nutation for tailored excitation (DANTE) pulse using T2 -relaxometry, and to demonstrate the feasibility of arterial cerebral blood volume (CBVa ) imaging using DANTE-ASL in combination with a simplified two-compartment model. METHOD The DANTE and T2 -preparation modules were combined into a single ASL sequence. T2 values under the application of DANTE were determined to evaluate changes in T2 , along with the post-labeling delay (PLD) and the relationship between transit time without DANTE (TTnoVS ) and T2 . The reference tissue T2 (T2_ref ) was also obtained. Subsequently, the DANTE module was embedded into the Hadamard-encoded ASL. Cerebral blood flow (CBF) and CBVa were computed using two Hadamard-encoding datasets (with and without DANTE) in a rest and breath-holding (BH) task. RESULTS While T2 without DANTE (T2_noVS ) decreased as the PLD increased, T2 with DANTE (T2_DANTE ) was equivalent to T2_ref and did not change with the PLD. Although there was a significant positive correlation between TTnoVS and T2_noVS with short PLD, T2_DANTE was not correlated with TTnoVS nor PLD. Baseline CBVa values obtained at rest were 0.64 ± 0.12, 0.64 ± 0.11, and 0.58 ± 0.15 mL/100 g for anterior, middle, and posterior cerebral arteries, respectively. Significant CBF and CBVa elevations were observed in the BH task. CONCLUSION Microvascular compartment signals were eliminated from the total ASL signals by DANTE. CBVa can be measured using Hadamard-encoded DANTE-ASL in combination with a simplified two-compartment model.
Collapse
Affiliation(s)
- Shota Ishida
- Radiological Center, University of Fukui Hospital, Eiheiji, Fukui, Japan
| | - Hirohiko Kimura
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan
| | - Naoyuki Takei
- Global MR Applications and Workflow, GE Healthcare Japan, Hino, Tokyo, Japan
| | - Yasuhiro Fujiwara
- Department of Medical Image Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsuyoshi Matsuda
- Division of Ultra-high Field MRI, Institute for Biomedical Science, Iwate Medical University, Iwate, Japan
| | - Masayuki Kanamoto
- Radiological Center, University of Fukui Hospital, Eiheiji, Fukui, Japan
| | - Yuki Matta
- Radiological Center, University of Fukui Hospital, Eiheiji, Fukui, Japan
| | - Nobuyuki Kosaka
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan
| | - Eiji Kidoya
- Radiological Center, University of Fukui Hospital, Eiheiji, Fukui, Japan
| |
Collapse
|
45
|
Ritter C, Buchmann A, Müller ST, Hersberger M, Haynes M, Ghisleni C, Tuura R, Hasler G. Cerebral perfusion in depression: Relationship to sex, dehydroepiandrosterone sulfate and depression severity. Neuroimage Clin 2021; 32:102840. [PMID: 34628302 PMCID: PMC8515484 DOI: 10.1016/j.nicl.2021.102840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a leading cause of disease burden and shows a marked sexual dimorphism. Previous studies reported changes in cerebral perfusion in MDD, an association between perfusion and dehydroepiandrosterone sulfate (DHEAS) levels, and large sex differences in perfusion. This study examines whether perfusion and DHEAS might mediate the link between sex and depressive symptoms in a large, unmedicated community sample. METHODS The sample included 203 healthy volunteers and 79 individuals with past or current MDD. Depression severity was assessed with the Hamilton Depression Scale (HAM-D) and Montgomery-Asberg Depression Rating Scale (MADRS). 3 T MRI perfusion data were collected with a pseudocontinuous arterial spin labelling sequence and DHEAS was measured in serum by LC-MS/MS. RESULTS Large sex differences in perfusion were observed (p < 0.001). Perfusion was negatively correlated with DHEAS (r = -0.23, p < 0.01, n = 250) and with depression severity (HAM-D: r = -0.17, p = 0.01, n = 242; partial Spearman correlation, controlling for age and sex), but not with anxiety. A significant sex*perfusion interaction on depression severity was observed. In women, perfusion showed more pronounced negative correlations with depressive symptoms, with absent or, in the case of the MADRS, opposite effects observed in men. A mediation analysis identified DHEAS and perfusion as mediating variables influencing the link between sex and the HAM-D score. CONCLUSION Perfusion was linked to depression severity, with the strongest effects observed in women. Perfusion and the neurosteroid DHEAS appear to mediate the link between sex and HAM-D scores, suggesting that inter-individual differences in perfusion and DHEAS levels may contribute to the sexual dimorphism in depression.
Collapse
Affiliation(s)
- Christopher Ritter
- Psychiatric University Hospital, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Switzerland; Unit of Psychiatry Research, University of Fribourg, Chemin du Cardinal-Journet 3, 1752 Villars-sur-Glâne, Fribourg, Switzerland; Center of MR-Research, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland.
| | - Andreas Buchmann
- Psychiatric University Hospital, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Switzerland; Unit of Psychiatry Research, University of Fribourg, Chemin du Cardinal-Journet 3, 1752 Villars-sur-Glâne, Fribourg, Switzerland; Center of MR-Research, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | - Sabrina Theresia Müller
- Psychiatric University Hospital, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Switzerland
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | - Melanie Haynes
- Psychiatric University Hospital, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Switzerland
| | - Carmen Ghisleni
- Center of MR-Research, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | - Ruth Tuura
- Center of MR-Research, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | - Gregor Hasler
- Unit of Psychiatry Research, University of Fribourg, Chemin du Cardinal-Journet 3, 1752 Villars-sur-Glâne, Fribourg, Switzerland
| |
Collapse
|
46
|
The Longitudinal Effect of Meditation on Resting-State Functional Connectivity Using Dynamic Arterial Spin Labeling: A Feasibility Study. Brain Sci 2021; 11:brainsci11101263. [PMID: 34679328 PMCID: PMC8533789 DOI: 10.3390/brainsci11101263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 11/24/2022] Open
Abstract
We aimed to assess whether dynamic arterial spin labeling (dASL), a novel quantitative MRI technique with minimal contamination of subject motion and physiological noises, could detect the longitudinal effect of focused attention meditation (FAM) on resting-state functional connectivity (rsFC). A total of 10 novice meditators who recorded their FAM practice time were scanned at baseline and at the 2-month follow-up. Two-month meditation practice caused significantly increased rsFC between the left medial temporal (LMT) seed and precuneus area and between the right frontal eye (RFE) seed and medial prefrontal cortex. Meditation practice time was found to be positively associated with longitudinal changes of rsFC between the default mode network (DMN) and dorsal attention network (DAN), between DMN and insula, and between DAN and the frontoparietal control network (FPN) but negatively associated with changes of rsFC between DMN and FPN, and between DAN and visual regions. These findings demonstrate the capability of dASL in identifying the FAM-induced rsFC changes and suggest that the practice of FAM can strengthen the efficient control of FPN on fast switching between DMN and DAN and enhance the utilization of attentional resources with reduced focus on visual processing.
Collapse
|
47
|
Wu D, Zhou Y, Cho J, Shen N, Li S, Qin Y, Zhang G, Yan S, Xie Y, Zhang S, Zhu W, Wang Y. The Spatiotemporal Evolution of MRI-Derived Oxygen Extraction Fraction and Perfusion in Ischemic Stroke. Front Neurosci 2021; 15:716031. [PMID: 34483830 PMCID: PMC8415351 DOI: 10.3389/fnins.2021.716031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose This study aimed to assess the spatiotemporal evolution of oxygen extraction fraction (OEF) in ischemic stroke with a newly developed cluster analysis of time evolution (CAT) for a combined quantitative susceptibility mapping and quantitative blood oxygen level-dependent model (QSM + qBOLD, QQ). Method One hundred and fifteen patients in different ischemic stroke phases were retrospectively collected for measurement of OEF of the infarcted area defined on diffusion-weighted imaging (DWI). Clinical severity was assessed using the National Institutes of Health Stroke Scale (NIHSS). Of the 115 patients, 11 underwent two longitudinal MRI scans, namely, three-dimensional (3D) multi-echo gradient recalled echo (mGRE) and 3D pseudo-continuous arterial spin labeling (pCASL), to evaluate the reversal region (RR) of the initial diffusion lesion (IDL) that did not overlap with the final infarct (FI). The temporal evolution of OEF and the cerebral blood flow (CBF) in the IDL, the RR, and the FI were assessed. Results Compared to the contralateral mirror area, the OEF of the infarcted region was decreased regardless of stroke phases (p < 0.05) and showed a declining tendency from the acute to the chronic phase (p = 0.022). Five of the 11 patients with longitudinal scans showed reversal of the IDL. Relative oxygen extraction fraction (rOEF, compared to the contralateral mirror area) of the RR increased from the first to the second MRI (p = 0.044). CBF was about 1.5-fold higher in the IDL than in the contralateral mirror area in the first MRI. Two patients showed penumbra according to the enlarged FI volume. The rOEF of the penumbra fluctuated around 1.0 at earlier scan times and then decreased, while the CBF decreased continuously. Conclusion The spatiotemporal evolution of OEF and perfusion in ischemic lesions is heterogeneous, and the CAT-based QQ method is feasible to capture cerebral oxygen metabolic information.
Collapse
Affiliation(s)
- Di Wu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiran Zhou
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junghun Cho
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States.,Department of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Nanxi Shen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shihui Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Qin
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guiling Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Su Yan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Xie
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States.,Department of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
48
|
Sherwood MS, McIntire L, Madaris AT, Kim K, Ranganath C, McKinley RA. Intensity-Dependent Changes in Quantified Resting Cerebral Perfusion With Multiple Sessions of Transcranial DC Stimulation. Front Hum Neurosci 2021; 15:679977. [PMID: 34456695 PMCID: PMC8397582 DOI: 10.3389/fnhum.2021.679977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) to the left prefrontal cortex has been shown to produce broad behavioral effects including enhanced learning and vigilance. Still, the neural mechanisms underlying such effects are not fully understood. Furthermore, the neural underpinnings of repeated stimulation remain understudied. In this work, we evaluated the effects of the repetition and intensity of tDCS on cerebral perfusion [cerebral blood flow (CBF)]. A cohort of 47 subjects was randomly assigned to one of the three groups. tDCS of 1- or 2-mA was applied to the left prefrontal cortex on three consecutive days, and resting CBF was quantified before and after stimulation using the arterial spin labeling MRI and then compared with a group that received sham stimulation. A widespread decreased CBF was found in a group receiving sham stimulation across the three post-stimulation measures when compared with baseline. In contrast, only slight decreases were observed in the group receiving 2-mA stimulation in the second and third post-stimulation measurements, but more prominent increased CBF was observed across several brain regions including the locus coeruleus (LC). The LC is an integral region in the production of norepinephrine and the noradrenergic system, and an increased norepinephrine/noradrenergic activity could explain the various behavioral findings from the anodal prefrontal tDCS. A decreased CBF was observed in the 1-mA group across the first two post-stimulation measurements, similar to the sham group. This decreased CBF was apparent in only a few small clusters in the third post-stimulation scan but was accompanied by an increased CBF, indicating that the neural effects of stimulation may persist for at least 24 h and that the repeated stimulation may produce cumulative effects.
Collapse
Affiliation(s)
| | | | - Aaron T. Madaris
- Infoscitex, Inc., Beavercreek, OH, United States
- Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH, United States
| | - Kamin Kim
- Department of Psychology, University of California, Davis, Davis, CA, United States
| | - Charan Ranganath
- Department of Psychology, University of California, Davis, Davis, CA, United States
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - R. Andy McKinley
- Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, United States
| |
Collapse
|
49
|
Taso M, Munsch F, Zhao L, Alsop DC. Regional and depth-dependence of cortical blood-flow assessed with high-resolution Arterial Spin Labeling (ASL). J Cereb Blood Flow Metab 2021; 41:1899-1911. [PMID: 33444098 PMCID: PMC8327107 DOI: 10.1177/0271678x20982382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Methods for imaging of cerebral blood flow do not typically resolve the cortex and thus underestimate flow. However, recent work with high-resolution MRI has emphasized the regional and depth-dependent structural, functional and relaxation times variations within the cortex. Using high-resolution Arterial Spin Labeling (ASL) and T1 mapping acquisitions, we sought to probe the effects of spatial resolution and tissue heterogeneity on cortical cerebral blood flow (CBF) measurements with ASL. We acquired high-resolution (1.6mm)3 whole brain ASL data in a cohort of 10 volunteers at 3T, along with T1 and transit-time (ATT) mapping, followed by group cortical surface-based analysis using FreeSurfer of the different measured parameters. Fully resolved regional analysis showed higher than average mid-thickness CBF in primary motor areas (+15%,p<0.002), frontal regions (+17%,p<0.01) and auditory cortex, while occipital regions had lower average CBF (-20%,p<10-5). ASL signal was higher towards the pial surface but correction for the shorter T1 near the white matter surface reverses this gradient, at least when using the low-resolution ATT map. Similar to structural measures, fully-resolved ASL CBF measures show significant differences across cortical regions. Depth-dependent variation of T1 in the cortex complicates interpretation of depth-dependent ASL signal and may have implications for the accurate CBF quantification at lower resolutions.
Collapse
Affiliation(s)
- Manuel Taso
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Fanny Munsch
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Li Zhao
- Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, USA
| | - David C Alsop
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
50
|
Meyer BP, Hirschler L, Lee S, Kurpad SN, Warnking JM, Barbier EL, Budde MD. Optimized cervical spinal cord perfusion MRI after traumatic injury in the rat. J Cereb Blood Flow Metab 2021; 41:2010-2025. [PMID: 33509036 PMCID: PMC8327111 DOI: 10.1177/0271678x20982396] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/11/2020] [Accepted: 11/22/2020] [Indexed: 11/17/2022]
Abstract
Despite the potential to guide clinical management of spinal cord injury and disease, noninvasive methods of monitoring perfusion status of the spinal cord clinically remain an unmet need. In this study, we optimized pseudo-continuous arterial spin labeling (pCASL) for the rodent cervical spinal cord and demonstrate its utility in identifying perfusion deficits in an acute contusion injury model. High-resolution perfusion sagittal images with reduced imaging artifacts were obtained with optimized background suppression and imaging readout. Following moderate contusion injury, perfusion was clearly and reliably decreased at the site of injury. Implementation of time-encoded pCASL confirmed injury site perfusion deficits with blood flow measurements corrected for variability in arterial transit times. The noninvasive protocol of pCASL in the spinal cord can be utilized in future applications to examine perfusion changes after therapeutic interventions in the rat and translation to patients may offer critical implications for patient management.
Collapse
Affiliation(s)
- Briana P Meyer
- Department of Neurosurgery, Medical College of Wisconsin,
Milwaukee, WI, USA
- Biophysics Graduate Program, Medical College of Wisconsin,
Milwaukee, WI, USA
- Neuroscience Doctoral Program, Medical College of Wisconsin,
Milwaukee, WI, USA
| | - Lydiane Hirschler
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut des
Neurosciences, Grenoble, France
- Department of Radiology, C.J. Gorter Center for High Field MRI,
Leiden University Medical Center, Leiden, the Netherlands
| | - Seongtaek Lee
- Department of Neurosurgery, Medical College of Wisconsin,
Milwaukee, WI, USA
- Biomedical Engineering Graduate Program, Marquette University
& Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shekar N Kurpad
- Department of Neurosurgery, Medical College of Wisconsin,
Milwaukee, WI, USA
| | - Jan M Warnking
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut des
Neurosciences, Grenoble, France
| | - Emmanuel L Barbier
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut des
Neurosciences, Grenoble, France
| | - Matthew D Budde
- Department of Neurosurgery, Medical College of Wisconsin,
Milwaukee, WI, USA
- Clement J Zablocki Veteran's Affairs Medical Center, Milwaukee,
WI, USA
| |
Collapse
|