1
|
Garcia AJ, Viemari JC, Khuu MA. Respiratory rhythm generation, hypoxia, and oxidative stress-Implications for development. Respir Physiol Neurobiol 2019; 270:103259. [PMID: 31369874 DOI: 10.1016/j.resp.2019.103259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/15/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
Encountered in a number of clinical conditions, repeated hypoxia/reoxygenation during the neonatal period can pose both a threat to immediate survival as well as a diminished quality of living later in life. This review focuses on our current understanding of central respiratory rhythm generation and the role that hypoxia and reoxygenation play in influencing rhythmogenesis. Here, we examine the stereotypical response of the inspiratory rhythm from the preBötzinger complex (preBötC), basic neuronal mechanisms that support rhythm generation during the peri-hypoxic interval, and the physiological consequences of inspiratory network responsivity to hypoxia and reoxygenation, acute and chronic intermittent hypoxia, and oxidative stress. These topics are examined in the context of Sudden Infant Death Syndrome, apneas of prematurity, and neonatal abstinence syndrome.
Collapse
Affiliation(s)
- Alfredo J Garcia
- Institute for Integrative Physiology, Section of Emergency Medicine, The University of Chicago, Chicago, 60637, IL, United States
| | - Jean Charles Viemari
- Institut de Neurosciences de la Timone, P3M team, UMR7289 CNRS & AMU, Faculté de Médecine de la Timone, 27 Bd Jean Moulin, Marseille, 13005, France
| | - Maggie A Khuu
- Institute for Integrative Physiology, Section of Emergency Medicine, The University of Chicago, Chicago, 60637, IL, United States
| |
Collapse
|
2
|
Peña-Ortega F. Clinical and experimental aspects of breathing modulation by inflammation. Auton Neurosci 2018; 216:72-86. [PMID: 30503161 DOI: 10.1016/j.autneu.2018.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 12/19/2022]
Abstract
Neuroinflammation is produced by local or systemic alterations and mediated mainly by glia, affecting the activity of various neural circuits including those involved in breathing rhythm generation and control. Several pathological conditions, such as sudden infant death syndrome, obstructive sleep apnea and asthma exert an inflammatory influence on breathing-related circuits. Consequently breathing (both resting and ventilatory responses to physiological challenges), is affected; e.g., responses to hypoxia and hypercapnia are compromised. Moreover, inflammation can induce long-lasting changes in breathing and affect adaptive plasticity; e.g., hypoxic acclimatization or long-term facilitation. Mediators of the influences of inflammation on breathing are most likely proinflammatory molecules such as cytokines and prostaglandins. The focus of this review is to summarize the available information concerning the modulation of the breathing function by inflammation and the cellular and molecular aspects of this process. I will consider: 1) some clinical and experimental conditions in which inflammation influences breathing; 2) the variety of experimental approaches used to understand this inflammatory modulation; 3) the likely cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México.
| |
Collapse
|
3
|
Thei L, Imm J, Kaisis E, Dallas ML, Kerrigan TL. Microglia in Alzheimer's Disease: A Role for Ion Channels. Front Neurosci 2018; 12:676. [PMID: 30323735 PMCID: PMC6172337 DOI: 10.3389/fnins.2018.00676] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 09/07/2018] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease is the most common form of dementia, it is estimated to affect over 40 million people worldwide. Classically, the disease has been characterized by the neuropathological hallmarks of aggregated extracellular amyloid-β and intracellular paired helical filaments of hyperphosphorylated tau. A wealth of evidence indicates a pivotal role for the innate immune system, such as microglia, and inflammation in the pathology of Alzheimer's disease. The over production and aggregation of Alzheimer's associated proteins results in chronic inflammation and disrupts microglial clearance of these depositions. Despite being non-excitable, microglia express a diverse array of ion channels which shape their physiological functions. In support of this, there is a growing body of evidence pointing to the involvement of microglial ion channels contributing to neurodegenerative diseases such as Alzheimer's disease. In this review, we discuss the evidence for an array of microglia ion channels and their importance in modulating microglial homeostasis and how this process could be disrupted in Alzheimer's disease. One promising avenue for assessing the role that microglia play in the initiation and progression of Alzheimer's disease is through using induced pluripotent stem cell derived microglia. Here, we examine what is already understood in terms of the molecular underpinnings of inflammation in Alzheimer's disease, and the utility that inducible pluripotent stem cell derived microglia may have to advance this knowledge. We outline the variability that occurs between the use of animal and human models with regards to the importance of microglial ion channels in generating a relevant functional model of brain inflammation. Overcoming these hurdles will be pivotal in order to develop new drug targets and progress our understanding of the pathological mechanisms involved in Alzheimer's disease.
Collapse
Affiliation(s)
- Laura Thei
- Reading School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Jennifer Imm
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Eleni Kaisis
- Reading School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Mark L Dallas
- Reading School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Talitha L Kerrigan
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
4
|
Kiernan EA, Smith SMC, Mitchell GS, Watters JJ. Mechanisms of microglial activation in models of inflammation and hypoxia: Implications for chronic intermittent hypoxia. J Physiol 2017; 594:1563-77. [PMID: 26890698 DOI: 10.1113/jp271502] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 01/16/2016] [Indexed: 12/12/2022] Open
Abstract
Chronic intermittent hypoxia (CIH) is a hallmark of sleep apnoea, a condition associated with diverse clinical disorders. CIH and sleep apnoea are characterized by increased reactive oxygen species formation, peripheral and CNS inflammation, neuronal death and neurocognitive deficits. Few studies have examined the role of microglia, the resident CNS immune cells, in models of CIH. Thus, little is known concerning their direct contributions to neuropathology or the cellular mechanisms regulating their activities during or following pathological CIH. In this review, we identify gaps in knowledge regarding CIH-induced microglial activation, and propose mechanisms based on data from related models of hypoxia and/or hypoxia-reoxygenation. CIH may directly affect microglia, or may have indirect effects via the periphery or other CNS cells. Peripheral inflammation may indirectly activate microglia via entry of pro-inflammatory molecules into the CNS, and/or activation of vagal afferents that trigger CNS inflammation. CIH-induced release of damage-associated molecular patterns from injured CNS cells may also activate microglia via interactions with pattern recognition receptors expressed on microglia. For example, Toll-like receptors activate mitogen-activated protein kinase/transcription factor pathways required for microglial inflammatory gene expression. Although epigenetic effects from CIH have not yet been studied in microglia, potential epigenetic mechanisms in microglial regulation are discussed, including microRNAs, histone modifications and DNA methylation. Epigenetic effects can occur during CIH, or long after it has ended. A better understanding of CIH effects on microglial activities may be important to reverse CIH-induced neuropathology in patients with sleep disordered breathing.
Collapse
Affiliation(s)
- Elizabeth A Kiernan
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Stephanie M C Smith
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gordon S Mitchell
- Department of Physical Therapy, University of Florida, Gainesville, FL, 32610, USA
| | - Jyoti J Watters
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
5
|
Baumgartner W, Baumgartner A. Rationale for an experimental treatment of retinitis pigmentosa: 140-Month test of hypothesis with one patient. Med Hypotheses 2013; 81:720-8. [DOI: 10.1016/j.mehy.2013.07.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 03/05/2013] [Accepted: 07/20/2013] [Indexed: 10/26/2022]
|
6
|
McCann SK, Roulston CL. NADPH Oxidase as a Therapeutic Target for Neuroprotection against Ischaemic Stroke: Future Perspectives. Brain Sci 2013; 3:561-98. [PMID: 24961415 PMCID: PMC4061864 DOI: 10.3390/brainsci3020561] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/14/2013] [Accepted: 03/20/2013] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress caused by an excess of reactive oxygen species (ROS) is known to contribute to stroke injury, particularly during reperfusion, and antioxidants targeting this process have resulted in improved outcomes experimentally. Unfortunately these improvements have not been successfully translated to the clinical setting. Targeting the source of oxidative stress may provide a superior therapeutic approach. The NADPH oxidases are a family of enzymes dedicated solely to ROS production and pre-clinical animal studies targeting NADPH oxidases have shown promising results. However there are multiple factors that need to be considered for future drug development: There are several homologues of the catalytic subunit of NADPH oxidase. All have differing physiological roles and may contribute differentially to oxidative damage after stroke. Additionally, the role of ROS in brain repair is largely unexplored, which should be taken into consideration when developing drugs that inhibit specific NADPH oxidases after injury. This article focuses on the current knowledge regarding NADPH oxidase after stroke including in vivo genetic and inhibitor studies. The caution required when interpreting reports of positive outcomes after NADPH oxidase inhibition is also discussed, as effects on long term recovery are yet to be investigated and are likely to affect successful clinical translation.
Collapse
Affiliation(s)
- Sarah K McCann
- Stroke Injury and Repair Team, O'Brien Institute, St Vincent's Hospital, 42 Fitzroy St, Fitzroy, Melbourne 3065, Australia.
| | - Carli L Roulston
- Stroke Injury and Repair Team, O'Brien Institute, St Vincent's Hospital, 42 Fitzroy St, Fitzroy, Melbourne 3065, Australia.
| |
Collapse
|
7
|
Sierra A, Abiega O, Shahraz A, Neumann H. Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci 2013. [PMID: 23386811 DOI: 10.3389/fncel.2013.00006/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Microglia are the resident brain macrophages and they have been traditionally studied as orchestrators of the brain inflammatory response during infections and disease. In addition, microglia has a more benign, less explored role as the brain professional phagocytes. Phagocytosis is a term coined from the Greek to describe the receptor-mediated engulfment and degradation of dead cells and microbes. In addition, microglia phagocytoses brain-specific cargo, such as axonal and myelin debris in spinal cord injury or multiple sclerosis, amyloid-β deposits in Alzheimer's disease, and supernumerary synapses in postnatal development. Common mechanisms of recognition, engulfment, and degradation of the different types of cargo are assumed, but very little is known about the shared and specific molecules involved in the phagocytosis of each target by microglia. More importantly, the functional consequences of microglial phagocytosis remain largely unexplored. Overall, phagocytosis is considered a beneficial phenomenon, since it eliminates dead cells and induces an anti-inflammatory response. However, phagocytosis can also activate the respiratory burst, which produces toxic reactive oxygen species (ROS). Phagocytosis has been traditionally studied in pathological conditions, leading to the assumption that microglia have to be activated in order to become efficient phagocytes. Recent data, however, has shown that unchallenged microglia phagocytose apoptotic cells during development and in adult neurogenic niches, suggesting an overlooked role in brain remodeling throughout the normal lifespan. The present review will summarize the current state of the literature regarding the role of microglial phagocytosis in maintaining tissue homeostasis in health as in disease.
Collapse
Affiliation(s)
- Amanda Sierra
- Achucarro-Basque Center for Neuroscience Zamudio, Spain ; Department of Neuroscience, University of the Basque Country EHU/UPV Leioa, Spain ; Ikerbasque-Basque Foundation for Science Bilbao, Spain
| | | | | | | |
Collapse
|
8
|
Sierra A, Abiega O, Shahraz A, Neumann H. Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci 2013; 7:6. [PMID: 23386811 PMCID: PMC3558702 DOI: 10.3389/fncel.2013.00006] [Citation(s) in RCA: 440] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/09/2013] [Indexed: 02/04/2023] Open
Abstract
Microglia are the resident brain macrophages and they have been traditionally studied as orchestrators of the brain inflammatory response during infections and disease. In addition, microglia has a more benign, less explored role as the brain professional phagocytes. Phagocytosis is a term coined from the Greek to describe the receptor-mediated engulfment and degradation of dead cells and microbes. In addition, microglia phagocytoses brain-specific cargo, such as axonal and myelin debris in spinal cord injury or multiple sclerosis, amyloid-β deposits in Alzheimer's disease, and supernumerary synapses in postnatal development. Common mechanisms of recognition, engulfment, and degradation of the different types of cargo are assumed, but very little is known about the shared and specific molecules involved in the phagocytosis of each target by microglia. More importantly, the functional consequences of microglial phagocytosis remain largely unexplored. Overall, phagocytosis is considered a beneficial phenomenon, since it eliminates dead cells and induces an anti-inflammatory response. However, phagocytosis can also activate the respiratory burst, which produces toxic reactive oxygen species (ROS). Phagocytosis has been traditionally studied in pathological conditions, leading to the assumption that microglia have to be activated in order to become efficient phagocytes. Recent data, however, has shown that unchallenged microglia phagocytose apoptotic cells during development and in adult neurogenic niches, suggesting an overlooked role in brain remodeling throughout the normal lifespan. The present review will summarize the current state of the literature regarding the role of microglial phagocytosis in maintaining tissue homeostasis in health as in disease.
Collapse
Affiliation(s)
- Amanda Sierra
- Achucarro-Basque Center for Neuroscience Zamudio, Spain ; Department of Neuroscience, University of the Basque Country EHU/UPV Leioa, Spain ; Ikerbasque-Basque Foundation for Science Bilbao, Spain
| | | | | | | |
Collapse
|
9
|
Xia W, Han J, Huang G, Ying W. Inflammation in ischaemic brain injury: current advances and future perspectives. Clin Exp Pharmacol Physiol 2009; 37:253-8. [PMID: 19719754 DOI: 10.1111/j.1440-1681.2009.05279.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
1. Numerous studies have indicated that inflammation plays a key role in ischaemic brain injury. Brain ischaemia-reperfusion-induced inflammatory responses include increased microglial and astrocyte activity, increased production of cytokines, chemokines, adhesion molecules and metalloproteinases and the infiltration of monocytes and leucocytes into injured brain regions. 2. Although a significant proportion of the inflammatory response appears to exacerbate ischaemic brain injury, certain inflammatory responses are beneficial to ischaemic brains. It is necessary to further identify the detrimental and beneficial inflammatory responses so that therapeutic strategies can be designed for stroke patients to selectively inhibit detrimental responses while enhancing beneficial responses. 3. Increasing evidence also indicates significant changes in the peripheral immune system of stroke patients and animals that undergo cerebral ischaemia. It is worth elucidating the effects of these changes in ischaemic brain damage. 4. There are complex interactions in the ischaemic brain between microglia and other cell types, including neurons, astrocytes, endothelial cells and stem cells. It is of particular interest to determine the mechanisms underlying the roles of high-mobility group box-1, advanced glycation end-products receptors (RAGE), S100B and NADPH oxidase in these interactions. 5. Because brain ischaemia-induced inflammation is a relatively long-lasting event with profound effects on brain injury, it is of considerable importance to further investigate the mechanisms underlying inflammation in ischaemic brains.
Collapse
Affiliation(s)
- Weiliang Xia
- Medical-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | |
Collapse
|
10
|
Widmer R, Engels M, Voss P, Grune T. Postanoxic damage of microglial cells is mediated by xanthine oxidase and cyclooxygenase. Free Radic Res 2007; 41:145-52. [PMID: 17364940 DOI: 10.1080/10715760600978807] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Brain ischemia and the following reperfusion are important causes for brain damage and leading causes of brain morbidity and human mortality. Numerous observations exist describing the neuronal damage during ischemia/reperfusion, but the outcome of such conditions towards glial cells still remains to be elucidated. Microglia are resident macrophages in the brain. In this study, we investigated the anoxia/reoxygenation caused damage to a microglial cell line via determination of energy metabolism, free radical production by dichlorofluorescein fluorescence and nitric oxide production by Griess reagent. Consequences of oxidant production were determined by measurements of protein oxidation and lipid peroxidation, as well. By using site-specific antioxidants and inhibitors of various oxidant-producing pathways, we identified major sources of free radical production in the postanoxic microglial cells. The protective influences of these compounds were tested by measurements of cell viability and apoptosis. Although, numerous free radical generating systems may contribute to the postanoxic microglial cell damage, the xanthine oxidase- and the cyclooxygenase-mediated oxidant production seems to be of major importance.
Collapse
Affiliation(s)
- Rebecca Widmer
- Research Institute of Environmental Medicine, Heinrich Heine University, Düsseldorf, Germany
| | | | | | | |
Collapse
|
11
|
Thomas MP, Chartrand K, Reynolds A, Vitvitsky V, Banerjee R, Gendelman HE. Ion channel blockade attenuates aggregated alpha synuclein induction of microglial reactive oxygen species: relevance for the pathogenesis of Parkinson's disease. J Neurochem 2007; 100:503-19. [PMID: 17241161 DOI: 10.1111/j.1471-4159.2006.04315.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Brain mononuclear phagocyte (perivascular macrophage and microglia, MG) inflammatory neurotoxins play a principal role in the pathogenesis of Parkinson's disease; chief among these are reactive oxygen species (ROS). We posit that aggregated, misfolded and oxidized alpha-synuclein (a major constituent of Lewy bodies), released or secreted from dying dopaminergic neurons, induces microglial ROS production that is regulated by ion channels and as such affects disease progression. To address this hypothesis, we performed patch clamp recordings of outward ionic currents in murine microglia and characterized their links to ROS production during alpha-synuclein stimulation. Aggregated nitrated alpha-synuclein induced ROS production in a dose-dependent manner that was inhibited by voltage-gated potassium current blockade, and to a more limited degree, by chloride current blockade. Interestingly, ROS produced in MG primed with tumor necrosis factor alpha and activated with phorbol myristate acetate was attenuated by voltage-gated potassium current blockade and more completely by chloride current blockade. In contrast, amyloid beta or cell membrane extract failed to induce microglial ROS production. Similar results were obtained using bone marrow-derived macrophages. The association of ROS production with specific plasma membrane ion currents provides a link between regulation of microglial ion transport and oxygen free radical production. Understanding these linkages may lead to novel therapeutics for Parkinson's disease where modulation of redox-related stress may slow disease progression.
Collapse
Affiliation(s)
- Mark P Thomas
- Laboratory of Neuroregeneration, Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska 68198-5880, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Niimura M, Takagi N, Takagi K, Mizutani R, Tanonaka K, Funakoshi H, Matsumoto K, Nakamura T, Takeo S. The protective effect of hepatocyte growth factor against cell death in the hippocampus after transient forebrain ischemia is related to the improvement of apurinic/apyrimidinic endonuclease/redox factor-1 level and inhibition of NADPH oxidase activity. Neurosci Lett 2006; 407:136-40. [PMID: 16973282 DOI: 10.1016/j.neulet.2006.08.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 08/03/2006] [Accepted: 08/11/2006] [Indexed: 10/24/2022]
Abstract
Early oxidative DNA damage is regarded to be an initiator of neuronal apoptotic cell death after cerebral ischemia. Although evidence suggests that HGF has the ability to protect cells from oxidative stress, it remains unclear as to how HGF suppresses oxidative DNA damage after cerebral ischemia. Apurinic/apyrimidinic endonuclease/redox factor-1 (APE/Ref-1) is a multifunctional protein in the DNA base repair pathway that is responsible for repairing apurinic/apyrimidinic sites in DNA after oxidation. We demonstrated that both the immunoreactivity and the number of APE/Ref-1-positive cells in the hippocampal CA1 region were decreased after transient forebrain ischemia and that treatment with HGF suppressed this reduction. The expression of Cu/ZnSOD and MnSOD in the hippocampal CA1 region did not change after ischemia, regardless of treatment with or not with HGF. The activity of NADPH oxidase was increased mainly in glia-like cells in the hippocampal CA1 region after ischemia, and this increase was attenuated by HGF treatment. These results suggest that the protective effects of HGF against cerebral ischemia-induced cell death in the hippocampal CA1 region are related to the improvement of neuronal APE/Ref-1 expression and the inhibition of NADPH oxidase activity in glia-like cells.
Collapse
Affiliation(s)
- Makiko Niimura
- Department of Molecular and Cellular Pharmacology, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Fordyce CB, Jagasia R, Zhu X, Schlichter LC. Microglia Kv1.3 channels contribute to their ability to kill neurons. J Neurosci 2006; 25:7139-49. [PMID: 16079396 PMCID: PMC6725234 DOI: 10.1523/jneurosci.1251-05.2005] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many CNS disorders involve an inflammatory response that is orchestrated by cells of the innate immune system: macrophages, neutrophils, and microglia (the endogenous CNS immune cell). Hence, there is considerable interest in anti-inflammatory strategies that target these cells. Microglia express Kv1.3 (KCNA3) channels, which we showed previously are important for their proliferation and the NADPH-mediated respiratory burst. Here, we demonstrate the potential for targeting Kv1.3 channels to control CNS inflammation. Rat microglia express Kv1.2, Kv1.3, and Kv1.5 transcripts and protein, but only a Kv1.3 current was detected. When microglia were activated with lipopolysaccharide or a phorbol ester, only the Kv1.3 transcript (but not protein) expression changed. Using a Transwell cell-culture system that allows separate drug treatment of microglia or neurons, we found that activated microglia killed postnatal hippocampal neurons through a process that requires Kv1.3 channel activity in microglia but not in neurons. A major neurotoxic molecule in this model was peroxynitrite, which is formed from superoxide and nitric oxide; thus, it is significant that Kv1.3 channel blockers reduced the respiratory burst, but not nitric oxide production, by the activated microglia. In addressing the biochemical pathway affected by Kv1.3 channel activity, we found that Kv1.3 acts via a different cellular mechanism from the broad-spectrum drug minocycline, which is often used in animal models of neuroinflammation. That is, the dose-dependent reduction in neuron killing by minocycline corresponded with a reduction in p38 mitogen-activated protein kinase activation in microglia; however, none of the Kv1.3 blockers affected p38 activation.
Collapse
Affiliation(s)
- Christopher B Fordyce
- Division of Cellular and Molecular Biology, Toronto Western Research Institute, University Health Network, Toronto, Ontario, M5T 2S8, Canada
| | | | | | | |
Collapse
|
14
|
Newell EW, Schlichter LC. Integration of K+ and Cl- currents regulate steady-state and dynamic membrane potentials in cultured rat microglia. J Physiol 2005; 567:869-90. [PMID: 16020460 PMCID: PMC1474215 DOI: 10.1113/jphysiol.2005.092056] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The role of ion channels and membrane potential (V(m)) in non-excitable cells has recently come under increased scrutiny. Microglia, the brain's resident immune cells, express voltage-gated Kv1.3 channels, a Kir2.1-like inward rectifier, a swelling-activated Cl(-) current and several other channels. We previously showed that Kv1.3 and Cl(-) currents are needed for microglial cell proliferation and that Kv1.3 is important for the respiratory burst. Although their mechanisms of action are unknown, one general role for these channels is to maintain a negative V(m). An impediment to measuring V(m) in non-excitable cells is that many have a very high electrical resistance, which makes them extremely susceptible to leak-induced depolarization. Using non-invasive V(m)-sensitive dyes, we show for the first time that the membrane resistance of microglial cells is several gigaohms; much higher than the seal resistance during patch-clamp recordings. Surprisingly, we observed that small current injections can evoke large V(m) oscillations in some microglial cells, and that injection of sinusoidal currents of varying frequency exposes a strong intrinsic electrical resonance in the 5- to 20-Hz frequency range in all microglial cells tested. Using a dynamic current clamp that we developed to actively compensate for the damage done by the patch-clamp electrode, we found that the V(m) oscillations and resonance were more prevalent and larger. Both types of electrical behaviour required Kv1.3 channels, as they were eliminated by the Kv1.3 blocker, agitoxin-2. To further determine how the ion currents integrate in these cells, voltage-clamp recordings from microglial cells displaying these behaviours were used to analyse the biophysical properties of the Kv1.3, Kir and Cl(-) currents. A mathematical model that incorporated only these three currents reproduced the observed V(m) oscillations and electrical resonance. Thus, the electrical behaviour of this 'non-excitable' cell type is much more complex than previously suspected, and might reflect a more common oversight in high resistance cells.
Collapse
Affiliation(s)
- Evan W Newell
- Division of Cellular and Molecular Biology, Toronto Western Research Institute, Ontario, Canada
| | | |
Collapse
|
15
|
Cui XL, Brockman D, Campos B, Myatt L. Expression of NADPH oxidase isoform 1 (Nox1) in human placenta: involvement in preeclampsia. Placenta 2005; 27:422-31. [PMID: 15993942 PMCID: PMC2891430 DOI: 10.1016/j.placenta.2005.04.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Revised: 04/12/2005] [Accepted: 04/13/2005] [Indexed: 02/04/2023]
Abstract
Increased oxidative stress in the placenta has been associated with preeclampsia (PE), a clinical syndrome involving placental pathology. The enzymatic sources of reactive oxygen species in the human placenta are as yet unidentified. We hypothesized that NADPH oxidase is a main source of reactive oxygen species in the placenta and its expression may change in PE. Employing RT-PCR, we have amplified a novel NADPH oxidase isoform Nox1 from human choriocarcinoma BeWo cells. Using polyclonal anti-peptide antiserum recognizing unique Nox1 peptide sequences, we identified by immunohistochemistry and cell fractionation that Nox1 protein localizes in the BeWo cell membrane structures. Immunohistochemistry of normal placental tissues showed that Nox1 was localized in syncytiotrophoblasts, in villous vascular endothelium, and in some stromal cells. At the immunohistochemical level Nox1 expression was significantly increased in syncytiotrophoblast and endothelial cells in placentas from patients with preeclampsia as compared to gestational age-matched controls. Western blot analysis of whole placental homogenate confirmed this increase. Our data suggests that increased Nox1 expression is associated with the increased oxidative stress found in these placentas.
Collapse
Affiliation(s)
- X-L Cui
- Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, PO Box 670526, 231 Albert Sabin Way, Cincinnati, OH 45267-0526, USA.
| | | | | | | |
Collapse
|
16
|
Abstract
Iron is one of the trace elements playing a key role in the normal brain metabolism. An excess of free iron on the other hand is catalyzing the iron-mediated oxygen radical production. Such a condition might be a harmful event leading perhaps to serious tissue damage and degeneration. Therefore, during evolution a complex iron sequestering apparatus developed, minimizing the amount of redox-reactive free iron. However, this system might be severely disturbed under pathophysiological conditions including hypoxia or anoxia. Since little is known about the non-transferrin-mediated iron metabolism of the brain during anoxia/reoxygenation, we tested the ability of the microglial cell line RAW 264.7 to take up iron independently of transferrin under various oxygen concentrations. Microglial cells are thought to be the major player in the maintenance of the extracellular homeostasis in the brain. Therefore, we investigated the iron metabolism of microglial cells employing radiolabeled ferric chloride. We tested the uptake of iron under normoxic, anoxic and postanoxic conditions. Furthermore, the amount of ferritin was measured by immunoblotting. We were able to show that iron enters the microglial cell line in the absence of extracellular transferrin under normoxic, anoxic and postanoxic conditions. Interestingly, the amount of ferritin is decreasing in the early reoxygenation phase. Therefore, we concluded that microglia is able to contribute to the brain iron homeostasis under anoxic and postanoxic conditions.
Collapse
Affiliation(s)
- Rebecca Widmer
- Neuroscience Research Center, Medical Faculty (Charité), Humboldt University Berlin, Germany
| | | |
Collapse
|
17
|
Abstract
Pregnancy is a state of oxidative stress arising from increased placental mitochondrial activity and production of reactive oxygen species (ROS), mainly superoxide anion. The placenta also produces other ROS including nitric oxide, carbon monoxide, and peroxynitrite which have pronounced effects on placental function including trophoblast proliferation and differentiation and vascular reactivity. Excessive production of ROS may occur at certain windows in placental development and in pathologic pregnancies, such as those complicated by preeclampsia and/or IUGR, overpowering antioxidant defenses with deleterious outcome. In the first trimester, establishment of blood flow into the intervillous space is associated with a burst of oxidative stress. The inability to mount an effective antioxidant defense against this results in early pregnancy loss. In late gestation increased oxidative stress is seen in pregnancies complicated by diabetes, IUGR, and preeclampsia in association with increased trophoblast apoptosis and deportation and altered placental vascular reactivity. Evidence for this oxidative stress includes increased lipid peroxides and isoprostanes and decreased expression and activity of antioxidants. The interaction of nitric oxide and superoxide produces peroxynitrite, a powerful prooxidant with diverse deleterious effects including nitration of tyrosine residues on proteins thus altering function. Nitrative stress, subsequent to oxidative stress is seen in the placenta in preeclampsia and diabetes in association with altered placental function.
Collapse
Affiliation(s)
- Leslie Myatt
- Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, PO Box 670526, Cincinnati, OH 45267-0526, USA.
| | | |
Collapse
|
18
|
Pocock JM, Liddle AC, Hooper C, Taylor DL, Davenport CM, Morgan SC. Activated microglia in Alzheimer's disease and stroke. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2002:105-32. [PMID: 12066408 DOI: 10.1007/978-3-662-05073-6_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- J M Pocock
- Cell Signalling Laboratory, Institute of Neurology, University College, 1 Wakefield Street, London WC1NPJ, UK.
| | | | | | | | | | | |
Collapse
|
19
|
Stafford JL, Galvez F, Goss GG, Belosevic M. Induction of nitric oxide and respiratory burst response in activated goldfish macrophages requires potassium channel activity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2002; 26:445-459. [PMID: 11906724 DOI: 10.1016/s0145-305x(01)00087-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Potassium channel activity is important for modulating mammalian macrophage antimicrobial functions. The involvement of potassium channels in mediation of immune cell function in lower vertebrates, such as teleost, has not been explored. Since relatively little is known about the types of potassium channels present in fish macrophages, pharmacological blockers with broad ranges of activity were tested: 4-aminopyridine (4-AP), quinine, and tetraethylammonium chloride (TEA). The potassium channel blockers inhibited reactive nitrogen intermediates (RNI) and reactive oxygen intermediates (ROI) production by goldfish macrophages activated with bacterial lipopolysaccharide (LPS) and/or macrophage activating factor (MAF)-containing supernatants. Quinine was the most potent inhibitor with an IC(50) of 50 microM, while the other blockers, 4-AP and TEA, had IC(50) of 1.2 and 0.6mM, respectively. A reversible depolarization of the goldfish macrophage plasma membrane potential (Vm) was observed following treatments with potassium channel blockers, and was related to transcriptional changes in the inducible nitric oxide synthase gene (iNOS). Down-regulation of antimicrobial activities and depolarization of the goldfish macrophage plasma membrane were not a consequence of reduced cell number or viability, suggesting that potassium channels are required for generation of appropriate goldfish macrophage antimicrobial functions.
Collapse
Affiliation(s)
- James L Stafford
- Department of Biological Sciences, University of Alberta, CW-405 Biological Sciences Building, Edmonton, Alta., Canada T6G 2E9
| | | | | | | |
Collapse
|
20
|
Sharp FR, Bernaudin M, Bartels M, Wagner KR. Glial expression of heat shock proteins (HSPs) and oxygen-regulated proteins (ORPs). PROGRESS IN BRAIN RESEARCH 2001; 132:427-40. [PMID: 11545009 DOI: 10.1016/s0079-6123(01)32093-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- F R Sharp
- Department of Neurology, University of Cincinnati, Vontz Center for Molecular Studies, Room 2327, 3125 Eden Avenue, Cincinnati, OH 45267-0536, USA.
| | | | | | | |
Collapse
|
21
|
Abstract
Microglial activation following central nervous system damage or disease often culminates in a respiratory burst that is necessary for antimicrobial function, but, paradoxically, can damage bystander cells. We show that several K+ channels are expressed and play a role in the respiratory burst of cultured rat microglia. Three pharmacologically separable K+ currents had properties of Kv1.3 and the Ca2+/calmodulin-gated channels, SK2, SK3, and SK4. mRNA was detected for Kv1.3, Kv1.5, SK2, and/or SK3, and SK4. Protein was detected for Kv1.3, Kv1.5, and SK3 (selective SK2 and SK4 antibodies not available). No Kv1.5-like current was detected, and confocal immunofluorescence showed the protein to be subcellular, in contrast to the robust membrane localization of Kv1.3. To determine whether any of these channels play a role in microglial activation, a respiratory burst was stimulated with phorbol 12-myristate 13-acetate and measured using a single cell, fluorescence-based dihydrorhodamine 123 assay. The respiratory burst was markedly inhibited by blockers of SK2 (apamin) and SK4 channels (clotrimazole and charybdotoxin), and to a lesser extent, by the potent Kv1.3 blocker agitoxin-2.
Collapse
Affiliation(s)
- R Khanna
- Division of Cellular and Molecular Biology, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
22
|
Green SP, Cairns B, Rae J, Errett-Baroncini C, Hongo JA, Erickson RW, Curnutte JT. Induction of gp91-phox, a component of the phagocyte NADPH oxidase, in microglial cells during central nervous system inflammation. J Cereb Blood Flow Metab 2001; 21:374-84. [PMID: 11323523 DOI: 10.1097/00004647-200104000-00006] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Gp91-phox is an integral component of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex that generates reactive oxygen species (ROS) in activated circulating phagocytes. The authors previously demonstrated that gp91-phox knockout (KO) mice show significant protection from neuronal injury after cerebral ischemia--reperfusion injury, suggesting a pivotal role for this enzyme. Moreover, results from chimeric mice suggested that elimination of gp91-phox from both circulating phagocytes and a putative central nervous system (CNS) source were required to confer neuroprotection. In the current study, the authors demonstrated gp91-phox-specific immunostaining of perivascular cells in the CNS of control rats. However, after transient cerebral ischemia, gp91-phox-positive phagocytes were observed within the core ischemic region and activated microglial cells were positive in the penumbra. Such activated microglial cells were also gp91-phox-positive in the CNS of a chimpanzee with mild meningitis. Finally, in humans, both normal adult CNS tissues and isolated fetal microglial cells expressed gp91-phox mRNA. These microglia also expressed mRNA for the five other known components that comprise the NADPH oxidase complex. These data strongly suggest that microglial cells may contain a functionally active NADPH oxidase capable of generating ROS during CNS inflammation.
Collapse
Affiliation(s)
- S P Green
- Department of Immunology, Genentech, South San Francisco, California 94080, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Lavigne MC, Malech HL, Holland SM, Leto TL. Genetic requirement of p47phox for superoxide production by murine microglia. FASEB J 2001; 15:285-7. [PMID: 11156938 DOI: 10.1096/fj.00-0608fje] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An NADPH oxidase is thought to function in microglial cells of the central nervous system. These conclusions are based on pharmacological and immunochemical evidence, although these approaches are indirect and raise issues of specificity. For example, diphenyleneiodonium inhibits a variety of flavoenzymes, including xanthine oxidase, NADH dehydrogenase, and NADPH oxidase. Here, we provide genetic evidence that p47phox, an essential component of the phagocyte NADPH oxidase, is required for superoxide anion release from microglia. Microglia derived from newborn wild-type mice, but not from newborn p47phox-deficient (knockout; -/-) mice, produced superoxide after stimulation by opsonized zymosan or phorbol myristate acetate. Endogenous p47phox was detected only in wild-type microglia, consistent with selective superoxide production in these cells. Superoxide release was restored in p47phox-deficient microglia that were retrovirally transduced with human p47phox cDNA. Similar kinetics of superoxide generation were observed, consistent with the same enzyme functioning in wild-type and restored microglia. Immuno-detection of p47phox in transduced cells confirmed that restoration of superoxide release correlated with production of recombinant protein. These data provide genetic proof that p47phox is necessary for superoxide release by microglial cells and indicate that a system related to the phagocyte oxidase is active in these cells.
Collapse
Affiliation(s)
- M C Lavigne
- Laboratory of Host Defenses, NIAID, NIH, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
24
|
Abstract
Microglia are known to secrete neurotoxic substances and have been implicated in potentiating injury in a variety of neuropathological settings including stroke. However, little is known about the susceptibility of microglia to ischemia. Here we characterize microglial vulnerabilities to ischemia-like insults. Microglia were remarkably resistant to hypoxia, but a majority of cells were killed after 30 h of aglycemia and 24 h continuous exposure to combined oxygen and glucose deprivation. Serum deprivation also resulted in significant cell death after 24 h. Interestingly, microglia activated by lipopolysaccharide were protected against death by serum deprivation, but not aglycemia. We conclude that microglia display susceptibility to ischemia-like insults that most resembles astrocytes, and that activation in some settings renders them capable of generating factors that enhance their own survival.
Collapse
Affiliation(s)
- M A Yenari
- Department of Neurosurgery, Stanford University Medical Center, CA 94305, USA.
| | | |
Collapse
|
25
|
Cayabyab FS, Khanna R, Jones OT, Schlichter LC. Suppression of the rat microglia Kv1.3 current by src-family tyrosine kinases and oxygen/glucose deprivation. Eur J Neurosci 2000; 12:1949-60. [PMID: 10886336 DOI: 10.1046/j.1460-9568.2000.00083.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Microglia activate following numerous acute insults to the brain, including oxygen/glucose deprivation (OGD), and both protein tyrosine kinases (PTKs) and K+ channels have been implicated in their activation. We identified Kv1.3 (voltage-gated potassium channel) protein in cultured rat microglia and confirmed that the native current is biophysically and pharmacologically similar to Kv1. 3. To explore whether src-family PTKs regulate the microglial Kv current, we first heterologously expressed Kv1.3 in a microglia-like cell line derived from neonatal rat brain (MLS-9). The resulting large Kv1.3 current was eliminated by co-transfecting the constitutively active PTK, v-src, then rapidly restored by the PTK inhibitor, lavendustin A. Acute activation of endogenous src kinases by a peptide activator significantly reduced the current, an effect that was mimicked by OGD. Similarly, in primary cultures of rat microglia, the endogenous Kv1.3-like current was inhibited by activating endogenous src-family PTKs and by OGD. Biochemical analysis showed that OGD increased the tyrosine phosphorylation of native Kv1.3 protein, which was alleviated by PTK inhibitors or reactive oxygen species (ROS) scavengers. Conversely, the basal level of Kv1.3 phosphorylation was decreased by PTK inhibitors or scavengers of ROS. Together, our results point to a post-insertional downregulation of the microglial Kv1.3-like current by oxidative stress and tyrosine phosphorylation. This interaction may be facilitated by a multiprotein complex because, in cultured microglia, the endogenous Kv1.3 and src proteins both bind to the scaffolding protein, post-synaptic density protein 95 (PSD-95). By associating with, and phosphorylating Kv1.3, src is well positioned to regulate microglial responses to oxidative stress.
Collapse
Affiliation(s)
- F S Cayabyab
- Division of Cellular and Molecular Biology, Toronto Western Research Institute, University Health Network, Toronto, Canada
| | | | | | | |
Collapse
|
26
|
Tohgi H, Utsugisawa K, Nagane Y. Protective effect of nicotine through nicotinic acetylcholine receptor alpha 7 on hypoxia-induced membrane disintegration and DNA fragmentation of cultured PC12 cells. Neurosci Lett 2000; 285:91-4. [PMID: 10793234 DOI: 10.1016/s0304-3940(00)01026-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To investigate the effect of nicotine on hypoxic neuronal damage, cultured PC12 cells were exposed to hypoxia for 9 h and then reoxygenated for 72 h. The cells were stained by propidium iodide (PI), a marker of cell membrane disintegration and the TUNEL method, which indicates DNA fragmentation. In control cultures, the ratio of PI-positive cells to total cells progressively increased during and after exposure to hypoxia, constituting 39% of total cells at 72 h posthypoxia. This increase in PI-positive cells was completely inhibited by nicotine until 12 h posthypoxia, and was partially and dose-dependently inhibited thereafter. The ratio of TUNEL-positive cells to total cells started to increase at 24 h posthypoxia and reached 36% at 72 h in control cultures. This ratio was also dose-dependently inhibited by nicotine. These inhibitory effects of nicotine on the increase in PI-positive and TUNEL-positive cells were abolished by the addition to the medium of alpha-bungarotoxin, an antagonistic ligand for nicotinic acetylcholine receptor (AChR) alpha7. These findings suggest that nicotine inhibits, through AChR alpha7, hypoxia-induced cell membrane disintegration and DNA fragmentation of cultured PC12 cells exposed to hypoxia.
Collapse
Affiliation(s)
- H Tohgi
- Department of Neurology, Iwate Medical University, Uchimaru 19-1, Morioka, Iwate, Japan
| | | | | |
Collapse
|
27
|
Huang T, Cheng AG, Stupak H, Liu W, Kim A, Staecker H, Lefebvre PP, Malgrange B, Kopke R, Moonen G, Van De Water TR. Oxidative stress-induced apoptosis of cochlear sensory cells: otoprotective strategies. Int J Dev Neurosci 2000; 18:259-70. [PMID: 10715580 DOI: 10.1016/s0736-5748(99)00094-5] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Apoptosis is an important process, both for normal development of the inner ear and for removal of oxidative-stress damaged sensory cells from the cochlea. Oxidative-stressors of auditory sensory cells include: loss of trophic factor support, ischemia-reperfusion, and ototoxins. Loss of trophic factor support and cisplatin ototoxicity, both initiate the intracellular production of reactive oxygen species and free radicals. The interaction of reactive oxygen species and free radicals with membrane phospholipids of auditory sensory cells creates aldehydic lipid peroxidation products. One of these aldehydes, 4-hydroxynonenal, functions as a mediator of apoptosis for both auditory neurons and hair cells. We present several approaches for the prevention of auditory sensory loss from reactive oxygen species-induced apoptosis: 1) preventing the formation of reactive oxygen species; (2) neutralizing the toxic products of membrane lipid peroxidation; and 3) blocking the damaged sensory cells' apoptotic pathway.
Collapse
Affiliation(s)
- T Huang
- Department of Otolaryngology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|