1
|
Mi Z, Ma J, Zeh DJ, Rose ME, Henchir JJ, Liu H, Ma X, Cao G, Dixon CE, Graham SH. Systemic treatment with ubiquitin carboxy terminal hydrolase L1 TAT protein ameliorates axonal injury and reduces functional deficits after traumatic brain injury in mice. Exp Neurol 2024; 373:114650. [PMID: 38092186 PMCID: PMC10939891 DOI: 10.1016/j.expneurol.2023.114650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/17/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
Traumatic brain injury (TBI) is often associated with axonal injury that leads to significant motor and cognitive deficits. Ubiquitin carboxy terminal hydrolase L1 (UCHL1) is highly expressed in neurons and loss of its activity plays an important role in the pathogenesis of TBI. Fusion protein was constructed containing wild type (WT) UCHL1 and the HIV trans-activator of transcription capsid protein transduction domain (TAT-UCHL1) that facilitates transport of the protein into neurons after systemic administration. Additional mutant proteins bearing cysteine to alanine UCHL1 mutations at cysteine 152 (C152A TAT-UCHL1) that prevents nitric oxide and reactive lipid binding of C152, and at cysteine 220 (C220A TAT-UCHL1) that inhibits farnesylation of the C220 site were also constructed. WT, C152A, and C220A TAT-UCHL1 proteins administered to mice systemically after controlled cortical impact (CCI) were detectable in brain at 1 h, 4 h and 24 h after CCI by immunoblot. Mice treated with C152A or WT TAT-UCHL1 decreased axonal injury detected by NF200 immunohistochemistry 24 h after CCI, but C220A TAT-UCHL1 treatment had no significant effect. Further study indicated that WT TAT-UCHL1 treatment administered 24 h after CCI alleviated axonal injury as detected by SMI32 immunoreactivity 7 d after CCI, improved motor and cognitive deficits, reduced accumulation of total and K48-linked poly-Ub proteins, and attenuated the increase of the autophagy marker Beclin-1. These results suggest that UCHL1 activity contributes to the pathogenesis of white matter injury, and that restoration of UCHL1 activity by systemic treatment with WT TAT-UCHL1 after CCI may improve motor and cognitive deficits. These results also suggest that farnesylation of the C220 site may be required for the protective effects of UCHL1.
Collapse
Affiliation(s)
- Zhiping Mi
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jie Ma
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dennis J Zeh
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marie E Rose
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jeremy J Henchir
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15216, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Hao Liu
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Pathology and Laboratory Medicine, Medical University of South Carolina
| | - Xiecheng Ma
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15216, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Guodong Cao
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - C Edward Dixon
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15216, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Steven H Graham
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Sridharan PS, Miller E, Pieper AA. Application of P7C3 Compounds to Investigating and Treating Acute and Chronic Traumatic Brain Injury. Neurotherapeutics 2023; 20:1616-1628. [PMID: 37651054 PMCID: PMC10684439 DOI: 10.1007/s13311-023-01427-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading worldwide cause of disability, and there are currently no medicines that prevent, reduce, or reverse acute or chronic neurodegeneration in TBI patients. Here, we review the target-agnostic discovery of nicotinamide adenine dinucleotide (NAD+)/NADH-stabilizing P7C3 compounds through a phenotypic screen in mice and describe how P7C3 compounds have been applied to advance understanding of the pathophysiology and potential treatment of TBI. We summarize how P7C3 compounds have been shown across multiple laboratories to mitigate disease progression safely and effectively in a broad range of preclinical models of disease related to impaired NAD+/NADH metabolism, including acute and chronic TBI, and note the reported safety and neuroprotective efficacy of P7C3 compounds in nonhuman primates. We also describe how P7C3 compounds facilitated the recent first demonstration that chronic neurodegeneration 1 year after TBI in mice, the equivalent of many decades in people, can be reversed to restore normal neuropsychiatric function. We additionally review how P7C3 compounds have facilitated discovery of new pathophysiologic mechanisms of neurodegeneration after TBI. This includes the role of rapid TBI-induced tau acetylation that drives axonal degeneration, and the discovery of brain-derived acetylated tau as the first blood-based biomarker of neurodegeneration after TBI that directly correlates with the abundance of a therapeutic target in the brain. We additionally review the identification of TBI-induced tau acetylation as a potential mechanistic link between TBI and increased risk of Alzheimer's disease. Lastly, we summarize historical accounts of other successful phenotypic-based drug discoveries that advanced medical care without prior recognition of the specific molecular target needed to achieve the desired therapeutic effect.
Collapse
Affiliation(s)
- Preethy S Sridharan
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Emiko Miller
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Andrew A Pieper
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA.
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
3
|
Waddell J, Khatoon R, Kristian T. Cellular and Mitochondrial NAD Homeostasis in Health and Disease. Cells 2023; 12:1329. [PMID: 37174729 PMCID: PMC10177113 DOI: 10.3390/cells12091329] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
The mitochondrion has a unique position among other cellular organelles due to its dynamic properties and symbiotic nature, which is reflected in an active exchange of metabolites and cofactors between the rest of the intracellular compartments. The mitochondrial energy metabolism is greatly dependent on nicotinamide adenine dinucleotide (NAD) as a cofactor that is essential for both the activity of respiratory and TCA cycle enzymes. The NAD level is determined by the rate of NAD synthesis, the activity of NAD-consuming enzymes, and the exchange rate between the individual subcellular compartments. In this review, we discuss the NAD synthesis pathways, the NAD degradation enzymes, and NAD subcellular localization, as well as NAD transport mechanisms with a focus on mitochondria. Finally, the effect of the pathologic depletion of mitochondrial NAD pools on mitochondrial proteins' post-translational modifications and its role in neurodegeneration will be reviewed. Understanding the physiological constraints and mechanisms of NAD maintenance and the exchange between subcellular compartments is critical given NAD's broad effects and roles in health and disease.
Collapse
Affiliation(s)
- Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Rehana Khatoon
- Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Tibor Kristian
- Department of Anesthesiology and the Center for Shock, Trauma and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
4
|
Cummings J, Wu YL, Dixon CE, Henchir J, Simard JM, Panigrahy A, Kochanek PM, Jha RM, Aneja RK. Abcc8 (sulfonylurea receptor-1) knockout mice exhibit reduced axonal injury, cytotoxic edema and cognitive dysfunction vs. wild-type in a cecal ligation and puncture model of sepsis. J Neuroinflammation 2023; 20:12. [PMID: 36681815 PMCID: PMC9862964 DOI: 10.1186/s12974-023-02692-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/03/2023] [Indexed: 01/22/2023] Open
Abstract
Sepsis-associated brain injury (SABI) is characterized by an acute deterioration of mental status resulting in cognitive impairment and acquisition of new and persistent functional limitations in sepsis survivors. Previously, we reported that septic mice had evidence of axonal injury, robust microglial activation, and cytotoxic edema in the cerebral cortex, thalamus, and hippocampus in the absence of blood-brain barrier disruption. A key conceptual advance in the field was identification of sulfonylurea receptor 1 (SUR1), a member of the adenosine triphosphate (ATP)-binding cassette protein superfamily, that associates with the transient receptor potential melastatin 4 (TRPM4) cation channel to play a crucial role in cerebral edema development. Therefore, we hypothesized that knockout (KO) of Abcc8 (Sur1 gene) is associated with a decrease in microglial activation, cerebral edema, and improved neurobehavioral outcomes in a murine cecal ligation and puncture (CLP) model of sepsis. Sepsis was induced in 4-6-week-old Abcc8 KO and wild-type (WT) littermate control male mice by CLP. We used immunohistochemistry to define neuropathology and microglial activation along with parallel studies using magnetic resonance imaging, focusing on cerebral edema on days 1 and 4 after CLP. Abcc8 KO mice exhibited a decrease in axonal injury and cytotoxic edema vs. WT on day 1. Abcc8 KO mice also had decreased microglial activation in the cerebral cortex vs. WT. These findings were associated with improved spatial memory on days 7-8 after CLP. Our study challenges a key concept in sepsis and suggests that brain injury may not occur merely as an extension of systemic inflammation. We advance the field further and demonstrate that deletion of the SUR1 gene ameliorates CNS pathobiology in sepsis including edema, axonal injury, neuroinflammation, and behavioral deficits. Benefits conferred by Abcc8 KO in the murine CLP model warrant studies of pharmacological Abcc8 inhibition as a new potential therapeutic strategy for SABI.
Collapse
Affiliation(s)
- Jessica Cummings
- grid.21925.3d0000 0004 1936 9000Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Yijen L. Wu
- grid.21925.3d0000 0004 1936 9000Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA USA
| | - C. Edward Dixon
- grid.21925.3d0000 0004 1936 9000Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Division of Pediatric Critical Care Medicine, Safar Center for Resuscitation Research, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
| | - Jeremy Henchir
- grid.21925.3d0000 0004 1936 9000Division of Pediatric Critical Care Medicine, Safar Center for Resuscitation Research, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
| | - J. Marc Simard
- grid.411024.20000 0001 2175 4264Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD USA
| | - Ashok Panigrahy
- grid.239553.b0000 0000 9753 0008Division of Pediatric Radiology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA USA
| | - Patrick M. Kochanek
- grid.21925.3d0000 0004 1936 9000Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Division of Pediatric Critical Care Medicine, Safar Center for Resuscitation Research, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA
| | - Ruchira M. Jha
- grid.427785.b0000 0001 0664 3531Barrow Neurological Institute, Phoenix, AZ USA
| | - Rajesh K. Aneja
- grid.21925.3d0000 0004 1936 9000Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Division of Pediatric Critical Care Medicine, Safar Center for Resuscitation Research, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Department of Critical Care Medicine and Pediatrics, School of Medicine, Faculty Pavilion Building, University of Pittsburgh, 2nd Floor, Suite 2112, 4401 Penn Ave, Pittsburgh, PA 15224 USA
| |
Collapse
|
5
|
Hakiminia B, Alikiaii B, Khorvash F, Mousavi S. Oxidative stress and mitochondrial dysfunction following traumatic brain injury: From mechanistic view to targeted therapeutic opportunities. Fundam Clin Pharmacol 2022; 36:612-662. [PMID: 35118714 DOI: 10.1111/fcp.12767] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI) is one of the most prevalent causes of permanent physical and cognitive disabilities. TBI pathology results from primary insults and a multi-mechanistic biochemical process, termed as secondary brain injury. Currently, there are no pharmacological agents for definitive treatment of patients with TBI. This article is presented with the purpose of reviewing molecular mechanisms of TBI pathology, as well as potential strategies and agents against pathological pathways. In this review article, materials were obtained by searching PubMed, Scopus, Elsevier, Web of Science, and Google Scholar. This search was considered without time limitation. Evidence indicates that oxidative stress and mitochondrial dysfunction are two key mediators of the secondary injury cascade in TBI pathology. TBI-induced oxidative damage results in the structural and functional impairments of cellular and subcellular components, such as mitochondria. Impairments of mitochondrial electron transfer chain and mitochondrial membrane potential result in a vicious cycle of free radical formation and cell apoptosis. The results of some preclinical and clinical studies, evaluating mitochondria-targeted therapies, such as mitochondria-targeted antioxidants and compounds with pleiotropic effects after TBI, are promising. As a proposed strategy in recent years, mitochondria-targeted multipotential therapy is a new hope, waiting to be confirmed. Moreover, based on the available findings, biologics, such as stem cell-based therapy and transplantation of mitochondria are novel potential strategies for the treatment of TBI; however, more studies are needed to clearly confirm the safety and efficacy of these strategies.
Collapse
Affiliation(s)
- Bahareh Hakiminia
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Babak Alikiaii
- Department of Anesthesiology and Intensive Care, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Department of Neurology, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sarah Mousavi
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Ruan Z, Lu Q, Wang JE, Zhou M, Liu S, Zhang H, Durvasula A, Wang Y, Wang Y, Luo W, Wang Y. MIF promotes neurodegeneration and cell death via its nuclease activity following traumatic brain injury. Cell Mol Life Sci 2021; 79:39. [DOI: 10.1007/s00018-021-04037-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
|
7
|
Mi Z, Liu H, Rose ME, Ma J, Reay DP, Ma X, Henchir JJ, Dixon CE, Graham SH. Mutation of a Ubiquitin Carboxy Terminal Hydrolase L1 Lipid Binding Site Alleviates Cell Death, Axonal Injury, and Behavioral Deficits After Traumatic Brain Injury in Mice. Neuroscience 2021; 475:127-136. [PMID: 34508847 DOI: 10.1016/j.neuroscience.2021.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/19/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022]
Abstract
Ubiquitin carboxy terminal hydrolase L1 (UCHL1) is a protein highly expressed in neurons that may play important roles in the ubiquitin proteasome pathway (UPP) in neurons, axonal integrity, and motor function after traumatic brain injury (TBI). Binding of reactive lipid species to cysteine 152 of UCHL1 results in unfolding, aggregation, and inactivation of the enzyme. To test the role of this mechanism in TBI, mice bearing a cysteine to alanine mutation at site 152 (C152A mice) that renders UCHL1 resistant to inactivation by reactive lipids were subjected to the controlled cortical impact model (CCI) of TBI and compared to wild type (WT) controls. Alterations in protein ubiquitination and activation of autophagy pathway markers in traumatized brain were detected by immunoblotting. Cell death and axonal injury were determined by histological assessment and anti-amyloid precursor protein (APP) immunohistochemistry. Behavioral outcomes were determined using the beam balance and Morris water maze tests. C152A mice had reduced accumulation of ubiquitinated proteins, decreased activation of the autophagy markers Beclin-1 and LC3B, a decreased number of abnormal axons, decreased CA1 cell death, and improved motor and cognitive function compared to WT controls after CCI; no significant change in spared tissue volume was observed. These results suggest that binding of lipid substrates to cysteine 152 of UCHL1 is important in the pathogenesis of injury and recovery after TBI and may be a novel target for future therapeutic approaches.
Collapse
Affiliation(s)
- Zhiping Mi
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA; Department of Neurology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15213, USA.
| | - Hao Liu
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA; Department of Neurology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15213, USA
| | - Marie E Rose
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA; Department of Neurology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15213, USA.
| | - Jie Ma
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA; Department of Neurology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15213, USA.
| | - Daniel P Reay
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA; Department of Neurology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15213, USA.
| | - Xiecheng Ma
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA; Department of Neurosurgery, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Department of Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Jeremy J Henchir
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA; Department of Neurosurgery, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Department of Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA.
| | - C Edward Dixon
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA; Department of Neurosurgery, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA; Department of Critical Care Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA.
| | - Steven H Graham
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA; Department of Neurology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
8
|
Trivedi A, Tercovich KG, Casbon AJ, Raber J, Lowell C, Noble-Haeusslein LJ. Neutrophil-specific deletion of Syk results in recruitment-independent stabilization of the barrier and a long-term improvement in cognitive function after traumatic injury to the developing brain. Neurobiol Dis 2021; 157:105430. [PMID: 34153467 PMCID: PMC11302380 DOI: 10.1016/j.nbd.2021.105430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/14/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
While traumatic brain injury (TBI) is the leading cause of death and disability in children, we have yet to identify those pathogenic events that determine the extent of recovery. Neutrophils are best known as "first responders" to sites of infection and trauma where they become fully activated, killing pathogens via proteases that are released during degranulation. However, this activational state may generate substantial toxicity in the young brain after TBI that is partially due to developmentally regulated inadequate antioxidant reserves. Neutrophil degranulation is triggered via a downstream signaling pathway that is dependent on spleen tyrosine kinase (Syk). To test the hypothesis that the activational state of neutrophils is a determinant of early pathogenesis and long-term recovery, we compared young, brain-injured conditional knockouts of Syk (sykf/fMRP8-cre+) to congenic littermates (sykf/f). Based upon flow cytometry, there was an extended recruitment of distinct leukocyte subsets, including Ly6G+/Ly6C- and Ly6G+/Ly6Cint, over the first several weeks post-injury which was similar between genotypes. Subsequent assessment of the acutely injured brain revealed a reduction in blood-brain barrier disruption to both high and low molecular weight dextrans and reactive oxygen species in sykf/fMRP8-cre+ mice compared to congenic littermates, and this was associated with greater preservation of claudin 5 and neuronal integrity, as determined by Western blot analyses. At adulthood, motor learning was less affected in brain-injured sykf/fMRP8-cre+ mice as compared to sykf/f mice. Performance in the Morris Water Maze revealed a robust improvement in hippocampal-dependent acquisition and short and long-term spatial memory retention in sykf/fMRP8-cre+ mice. Subsequent analyses of swim path lengths during hidden platform training and probe trials showed greater thigmotaxis in brain-injured sykf/f mice than sham sykf/f mice and injured sykf/fMRP8-cre+ mice. Our results establish the first mechanistic link between the activation state of neutrophils and long-term functional recovery after traumatic injury to the developing brain. These results also highlight Syk kinase as a novel therapeutic target that could be further developed for the brain-injured child.
Collapse
Affiliation(s)
- Alpa Trivedi
- Departments of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA; Departments of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Kayleen G Tercovich
- Departments of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Amy Jo Casbon
- Departments of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jacob Raber
- Departments of Behavioral Neuroscience, Neurology, and Radiation Medicine, ONPRC, Oregon Health & Science University, Portland, OR 97239, USA; Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Clifford Lowell
- Departments of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Linda J Noble-Haeusslein
- Departments of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA; Departments of Neurology and Psychology, The Dell Medical School and the College of Liberal Arts, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
9
|
Inampudi C, Ciccotosto GD, Cappai R, Crack PJ. Genetic Modulators of Traumatic Brain Injury in Animal Models and the Impact of Sex-Dependent Effects. J Neurotrauma 2021; 37:706-723. [PMID: 32027210 DOI: 10.1089/neu.2019.6955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) is a major health problem causing disability and death worldwide. There is no effective treatment, due in part to the complexity of the injury pathology and factors affecting its outcome. The extent of brain injury depends on the type of insult, age, sex, lifestyle, genetic risk factors, socioeconomic status, other co-injuries, and underlying health problems. This review discusses the genes that have been directly tested in TBI models, and whether their effects are known to be sex-dependent. Sex differences can affect the incidence, symptom onset, pathology, and clinical outcomes following injury. Adult males are more susceptible at the acute phase and females show greater injury in the chronic phase. TBI is not restricted to a single sex; despite variations in the degree of symptom onset and severity, it is important to consider both female and male animals in TBI pre-clinical research studies.
Collapse
Affiliation(s)
- Chaitanya Inampudi
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Giuseppe D Ciccotosto
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Roberto Cappai
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Peter J Crack
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
10
|
Li C, Wu LE. Risks and rewards of targeting NAD + homeostasis in the brain. Mech Ageing Dev 2021; 198:111545. [PMID: 34302821 DOI: 10.1016/j.mad.2021.111545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 01/29/2023]
Abstract
Strategies to correct declining nicotinamide adenine dinucleotide (NAD+) levels in neurological disease and biological ageing are promising therapeutic candidates. These strategies include supplementing with NAD+ precursors, small molecule activation of NAD+ biosynthetic enzymes, and treatment with small molecule inhibitors of NAD+ consuming enzymes such as CD38, SARM1 or members of the PARP family. While these strategies have shown efficacy in animal models of neurological disease, each of these has the mechanistic potential for adverse events that could preclude their preclinical use. Here, we discuss the implications of these strategies for treating neurological diseases, including potential off-target effects that may be unique to the brain.
Collapse
Affiliation(s)
- Catherine Li
- School of Medical Sciences, UNSW Sydney, NSW, 2052, Australia
| | - Lindsay E Wu
- School of Medical Sciences, UNSW Sydney, NSW, 2052, Australia.
| |
Collapse
|
11
|
Sinha A, Katyal S, Kauppinen TM. PARP-DNA trapping ability of PARP inhibitors jeopardizes astrocyte viability: Implications for CNS disease therapeutics. Neuropharmacology 2021; 187:108502. [PMID: 33631119 DOI: 10.1016/j.neuropharm.2021.108502] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/29/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022]
Abstract
There is emerging interest in the role of poly(ADP-ribose) polymerase-1 (PARP-1) in neurodegeneration and potential of its therapeutic targeting in neurodegenerative disorders. New generations of PARP inhibitors exhibit polypharmacological properties; they do not only block enzymatic activity with lower doses, but also alter how PARP-1 interacts with DNA. While these new inhibitors have proven useful in cancer therapy due to their ability to kill cancer cell, their use in neurodegenerative disorders has an opposite goal: cell protection. We hypothesize that newer generation PARP-1 inhibitors jeopardize the viability of dividing CNS cells by promoting DNA damage upon the PARP-DNA interaction. Using enriched murine astrocyte cultures, our study evaluates the effects of a variety of drugs known to inhibit PARP; talazoparib, olaparib, PJ34 and minocycline. Despite similar PARP enzymatic inhibiting activities, we show here that these drugs result in varied cell viability. Talazoparib and olaparib reduce astrocyte growth in a dose-dependent manner, while astrocytes remain unaffected by PJ34 and minocycline. Similarly, PJ34 and minocycline do not jeopardize DNA integrity, while treatment with talazoparib and olaparib promote DNA damage. These two drugs impact astrocytes similarly in basal conditions and upon nitrosative stress, a pathological condition typical for neurodegeneration. Mechanistic assessment revealed that talazoparib and olaparib promote PARP trapping onto DNA in a dose-dependent manner, while PJ34 and minocycline do not induce PARP-DNA trapping. This study provides unique insight into the selective use of PARP inhibitors to treat neurodegenerative disorders whereby inhibition of PARP enzymatic activity must occur without deleteriously trapping PARP onto DNA.
Collapse
Affiliation(s)
- Asha Sinha
- Department of Pharmacology & Therapeutics, Max Rady College of Medicine, University of Manitoba, 753 McDermot Avenue, Winnipeg, Manitoba, R3E 0T6, Canada; Research Institute in Oncology and Hematology, CancerCare Manitoba, 675 McDermot Ave, RM ON5010, Winnipeg, Manitoba, R3E0V9, Canada; Kleysen Institute for Advance Medicine, Health Sciences Centre, 710 William Avenue, Winnipeg, Manitoba, R3E 0Z3, Canada.
| | - Sachin Katyal
- Department of Pharmacology & Therapeutics, Max Rady College of Medicine, University of Manitoba, 753 McDermot Avenue, Winnipeg, Manitoba, R3E 0T6, Canada; Research Institute in Oncology and Hematology, CancerCare Manitoba, 675 McDermot Ave, RM ON5010, Winnipeg, Manitoba, R3E0V9, Canada.
| | - Tiina M Kauppinen
- Department of Pharmacology & Therapeutics, Max Rady College of Medicine, University of Manitoba, 753 McDermot Avenue, Winnipeg, Manitoba, R3E 0T6, Canada; Kleysen Institute for Advance Medicine, Health Sciences Centre, 710 William Avenue, Winnipeg, Manitoba, R3E 0Z3, Canada.
| |
Collapse
|
12
|
McCarty MF, Lerner A. Nutraceutical induction and mimicry of heme oxygenase activity as a strategy for controlling excitotoxicity in brain trauma and ischemic stroke: focus on oxidative stress. Expert Rev Neurother 2020; 21:157-168. [PMID: 33287596 DOI: 10.1080/14737175.2021.1861940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: Ischemic stroke and traumatic brain injury are leading causes of acute mortality, and in the longer run, major causes of significant mental and physical impairment. Most of the brain neuronal cell death in the minutes and hours following an ischemic stroke or brain trauma is mediated by the process of excitotoxicity, in which sustained elevations of extracellular glutamate, reflecting a failure of ATP-dependent mechanism which sequester glutamate in neurons and astrocytes, drive excessive activation of NMDA receptors. Areas covered: A literature search was undertaken to clarify the molecular mechanisms whereby excessive NMDA activation leads to excitotoxic neuronal death, and to determine what safe nutraceutical agents might have practical potential for rescuing at-risk neurons by intervening in these mechanisms. Expert opinion: Activation of both NADPH oxidase and neuronal nitric oxide synthase in the microenvironment of activated NMDA receptors drives production of superoxide and highly toxic peroxynitrite. This leads to excessive activation of PARP and p38 MAP kinase, mitochondrial dysfunction, and subsequent neuronal death. Heme oxygenase-1 (HO-1) induction offers protection via inhibition of NADPH oxidase and promotion of cGMP generation. Phase 2-inductive nutraceuticals can induce HO-1, and other nutraceuticals can mimic the effects of its products biliverdin and carbon monoxide.
Collapse
Affiliation(s)
| | - Aaron Lerner
- Technion Israel Institute of Technology Ruth and Bruce Rappaport Faculty of Medicine- Research, Haifa, Israel (Retired)
| |
Collapse
|
13
|
Kochanek PM, Jackson TC, Jha RM, Clark RS, Okonkwo DO, Bayır H, Poloyac SM, Wagner AK, Empey PE, Conley YP, Bell MJ, Kline AE, Bondi CO, Simon DW, Carlson SW, Puccio AM, Horvat CM, Au AK, Elmer J, Treble-Barna A, Ikonomovic MD, Shutter LA, Taylor DL, Stern AM, Graham SH, Kagan VE, Jackson EK, Wisniewski SR, Dixon CE. Paths to Successful Translation of New Therapies for Severe Traumatic Brain Injury in the Golden Age of Traumatic Brain Injury Research: A Pittsburgh Vision. J Neurotrauma 2020; 37:2353-2371. [PMID: 30520681 PMCID: PMC7698994 DOI: 10.1089/neu.2018.6203] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
New neuroprotective therapies for severe traumatic brain injury (TBI) have not translated from pre-clinical to clinical success. Numerous explanations have been suggested in both the pre-clinical and clinical arenas. Coverage of TBI in the lay press has reinvigorated interest, creating a golden age of TBI research with innovative strategies to circumvent roadblocks. We discuss the need for more robust therapies. We present concepts for traditional and novel approaches to defining therapeutic targets. We review lessons learned from the ongoing work of the pre-clinical drug and biomarker screening consortium Operation Brain Trauma Therapy and suggest ways to further enhance pre-clinical consortia. Biomarkers have emerged that empower choice and assessment of target engagement by candidate therapies. Drug combinations may be needed, and it may require moving beyond conventional drug therapies. Precision medicine may also link the right therapy to the right patient, including new approaches to TBI classification beyond the Glasgow Coma Scale or anatomical phenotyping-incorporating new genetic and physiologic approaches. Therapeutic breakthroughs may also come from alternative approaches in clinical investigation (comparative effectiveness, adaptive trial design, use of the electronic medical record, and big data). The full continuum of care must also be represented in translational studies, given the important clinical role of pre-hospital events, extracerebral insults in the intensive care unit, and rehabilitation. TBI research from concussion to coma can cross-pollinate and further advancement of new therapies. Misconceptions can stifle/misdirect TBI research and deserve special attention. Finally, we synthesize an approach to deliver therapeutic breakthroughs in this golden age of TBI research.
Collapse
Affiliation(s)
- Patrick M. Kochanek
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Travis C. Jackson
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ruchira M. Jha
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Robert S.B. Clark
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - David O. Okonkwo
- Department of Neurological Surgery, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania, USA
| | - Hülya Bayır
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Samuel M. Poloyac
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Amy K. Wagner
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Philip E. Empey
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Yvette P. Conley
- Health Promotion and Development, University of Pittsburgh School of Nursing, Pittsburgh, Pennsylvania, USA
| | - Michael J. Bell
- Department of Critical Care Medicine, Children's National Medical Center, Washington, DC, USA
| | - Anthony E. Kline
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Corina O. Bondi
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dennis W. Simon
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shaun W. Carlson
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ava M. Puccio
- Department of Neurological Surgery, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania, USA
| | - Christopher M. Horvat
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alicia K. Au
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jonathan Elmer
- Departments of Emergency Medicine and Critical Care Medicine, University of Pittsburgh School of Medicine, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania, USA
| | - Amery Treble-Barna
- Safar Center for Resuscitation Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Milos D. Ikonomovic
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lori A. Shutter
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - D. Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrew M. Stern
- Drug Discovery Institute, Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven H. Graham
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Valerian E. Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Edwin K. Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephen R. Wisniewski
- University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - C. Edward Dixon
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
Revisiting Traumatic Brain Injury: From Molecular Mechanisms to Therapeutic Interventions. Biomedicines 2020; 8:biomedicines8100389. [PMID: 33003373 PMCID: PMC7601301 DOI: 10.3390/biomedicines8100389] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/15/2022] Open
Abstract
Studying the complex molecular mechanisms involved in traumatic brain injury (TBI) is crucial for developing new therapies for TBI. Current treatments for TBI are primarily focused on patient stabilization and symptom mitigation. However, the field lacks defined therapies to prevent cell death, oxidative stress, and inflammatory cascades which lead to chronic pathology. Little can be done to treat the mechanical damage that occurs during the primary insult of a TBI; however, secondary injury mechanisms, such as inflammation, blood-brain barrier (BBB) breakdown, edema formation, excitotoxicity, oxidative stress, and cell death, can be targeted by therapeutic interventions. Elucidating the many mechanisms underlying secondary injury and studying targets of neuroprotective therapeutic agents is critical for developing new treatments. Therefore, we present a review on the molecular events following TBI from inflammation to programmed cell death and discuss current research and the latest therapeutic strategies to help understand TBI-mediated secondary injury.
Collapse
|
15
|
Abstract
Traumatic brain injury (TBI) is the leading cause of morbidity and mortality worldwide. Although TBI leads to mechanical damage during initial impact, secondary damage also occurs as results from delayed neurochemical process and intracellular signaling pathways. Accumulated animal and human studies demonstrated that apoptotic mechanism contributes to overall pathology of TBI. Apoptotic cell death has been identified within contusional brain lesion at acute phase of TBI and in region remote from the site directly injured in days to weeks after trauma. TBI is also dynamic conditions that cause neuronal decline overtime and is likely due to neurodegenerative mechanisms years after trauma. Current studies have even suggested association of neuronal damage through apoptotic pathway with mild TBI, which contributes chronic persistent neurological symptoms and cognitive deficits. Thus, a better understanding of the acute and chronic consequences of apoptosis following TBI is required. The purpose of this review is to describe (1) neuronal apoptotic pathway following TBI, (2) contribution of apoptosis to acute and chronic phase of TBI, and (3) current treatment targeting on apoptotic pathway.
Collapse
Affiliation(s)
- Yosuke Akamatsu
- Division of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Iwate Medical University, Morioka, Japan
| | - Khalid A Hanafy
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
- Division of Neurointensive Care, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle Rm 639, Boston, MA, 02115, USA.
| |
Collapse
|
16
|
Glotfelty EJ, Delgado TE, Tovar-y-Romo LB, Luo Y, Hoffer BJ, Olson L, Karlsson TE, Mattson MP, Harvey BK, Tweedie D, Li Y, Greig NH. Incretin Mimetics as Rational Candidates for the Treatment of Traumatic Brain Injury. ACS Pharmacol Transl Sci 2019; 2:66-91. [PMID: 31396586 PMCID: PMC6687335 DOI: 10.1021/acsptsci.9b00003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Indexed: 12/17/2022]
Abstract
Traumatic brain injury (TBI) is becoming an increasing public health issue. With an annually estimated 1.7 million TBIs in the United States (U.S) and nearly 70 million worldwide, the injury, isolated or compounded with others, is a major cause of short- and long-term disability and mortality. This, along with no specific treatment, has made exploration of TBI therapies a priority of the health system. Age and sex differences create a spectrum of vulnerability to TBI, with highest prevalence among younger and older populations. Increased public interest in the long-term effects and prevention of TBI have recently reached peaks, with media attention bringing heightened awareness to sport and war related head injuries. Along with short-term issues, TBI can increase the likelihood for development of long-term neurodegenerative disorders. A growing body of literature supports the use of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP), and glucagon (Gcg) receptor (R) agonists, along with unimolecular combinations of these therapies, for their potent neurotrophic/neuroprotective activities across a variety of cellular and animal models of chronic neurodegenerative diseases (Alzheimer's and Parkinson's diseases) and acute cerebrovascular disorders (stroke). Mild or moderate TBI shares many of the hallmarks of these conditions; recent work provides evidence that use of these compounds is an effective strategy for its treatment. Safety and efficacy of many incretin-based therapies (GLP-1 and GIP) have been demonstrated in humans for the treatment of type 2 diabetes mellitus (T2DM), making these compounds ideal for rapid evaluation in clinical trials of mild and moderate TBI.
Collapse
Affiliation(s)
- Elliot J. Glotfelty
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
- Department
of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Thomas E. Delgado
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Luis B. Tovar-y-Romo
- Division
of Neuroscience, Institute of Cellular Physiology, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yu Luo
- Department
of Molecular Genetics, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Barry J. Hoffer
- Department
of Neurosurgery, Case Western Reserve University
School of Medicine, Cleveland, Ohio 44106, United States
| | - Lars Olson
- Department
of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Mark P. Mattson
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Brandon K. Harvey
- Molecular
Mechanisms of Cellular Stress and Inflammation Unit, Integrative Neuroscience
Department, National Institute on Drug Abuse,
National Institutes of Health, Baltimore, Maryland 21224, United States
| | - David Tweedie
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Yazhou Li
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Nigel H. Greig
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| |
Collapse
|
17
|
Kenny EM, Fidan E, Yang Q, Anthonymuthu TS, New LA, Meyer EA, Wang H, Kochanek PM, Dixon CE, Kagan VE, Bayır H. Ferroptosis Contributes to Neuronal Death and Functional Outcome After Traumatic Brain Injury. Crit Care Med 2019; 47:410-418. [PMID: 30531185 PMCID: PMC6449247 DOI: 10.1097/ccm.0000000000003555] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Traumatic brain injury triggers multiple cell death pathways, possibly including ferroptosis-a recently described cell death pathway that results from accumulation of 15-lipoxygenase-mediated lipid oxidation products, specifically oxidized phosphatidylethanolamine containing arachidonic or adrenic acid. This study aimed to investigate whether ferroptosis contributed to the pathogenesis of in vitro and in vivo traumatic brain injury, and whether inhibition of 15-lipoxygenase provided neuroprotection. DESIGN Cell culture study and randomized controlled animal study. SETTING University research laboratory. SUBJECTS HT22 neuronal cell line and adult male C57BL/6 mice. INTERVENTIONS HT22 cells were subjected to pharmacologic induction of ferroptosis or mechanical stretch injury with and without administration of inhibitors of ferroptosis. Mice were subjected to sham or controlled cortical impact injury. Injured mice were randomized to receive vehicle or baicalein (12/15-lipoxygenase inhibitor) at 10-15 minutes postinjury. MEASUREMENTS AND MAIN RESULTS Pharmacologic inducers of ferroptosis and mechanical stretch injury resulted in cell death that was rescued by prototypical antiferroptotic agents including baicalein. Liquid chromatography tandem-mass spectrometry revealed the abundance of arachidonic/adrenic-phosphatidylethanolamine compared with other arachidonic/adrenic acid-containing phospholipids in the brain. Controlled cortical impact resulted in accumulation of oxidized phosphatidylethanolamine, increased expression of 15-lipoxygenase and acyl-CoA synthetase long-chain family member 4 (enzyme that generates substrate for the esterification of arachidonic/adrenic acid into phosphatidylethanolamine), and depletion of glutathione in the ipsilateral cortex. Postinjury administration of baicalein attenuated oxidation of arachidonic/adrenic acid-containing-phosphatidylethanolamine, decreased the number of terminal deoxynucleotidyl transferase dUTP nick-end labeling positive cells in the hippocampus, and improved spatial memory acquisition versus vehicle. CONCLUSIONS Biomarkers of ferroptotic death were increased after traumatic brain injury. Baicalein decreased ferroptotic phosphatidylethanolamine oxidation and improved outcome after controlled cortical impact, suggesting that 15-lipoxygenase pathway might be a valuable therapeutic target after traumatic brain injury.
Collapse
Affiliation(s)
- Elizabeth M. Kenny
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, 15213
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, 15213
| | - Emin Fidan
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, 15213
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, 15213
| | - Qin Yang
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, 15213
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, 15213
| | - Tamil S. Anthonymuthu
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, 15213
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, 15213
| | - Lee Ann New
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, 15213
| | - Elizabeth A. Meyer
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, 15213
| | - Hong Wang
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15213
| | - Patrick M. Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, 15213
| | - C. Edward Dixon
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, 15213
- Department of Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213
| | - Valerian E. Kagan
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, 15213
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15213
| | - Hülya Bayır
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, 15213
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, 15213
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15213
- Children’s Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA, 15213
| |
Collapse
|
18
|
Zhang M, Ying W. NAD + Deficiency Is a Common Central Pathological Factor of a Number of Diseases and Aging: Mechanisms and Therapeutic Implications. Antioxid Redox Signal 2019; 30:890-905. [PMID: 29295624 DOI: 10.1089/ars.2017.7445] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Increasing evidence has indicated critical roles of nicotinamide adenine dinucleotide, oxidized form (NAD+) in various biological functions. NAD+ deficiency has been found in models of a number of diseases such as cerebral ischemia, myocardial ischemia, and diabetes, and in models of aging. Applications of NAD+ or other approaches that can restore NAD+ levels are highly protective in these models of diseases and aging. NAD+ produces its beneficial effects by targeting at multiple pathological pathways, including attenuating mitochondrial alterations, DNA damage, and oxidative stress, by modulating such enzymes as sirtuins, glyceraldehyde-3-phosphate dehydrogenase, and AP endonuclease. These findings have suggested great therapeutic and nutritional potential of NAD+ for diseases and senescence. Recent Advances: Approaches that can restore NAD+ levels are highly protective in the models of such diseases as glaucoma. The NAD+ deficiency in the diseases and aging results from not only poly(ADP-ribose) polymerase-1 (PARP-1) activation but also decreased nicotinamide phosphoribosyltransferase (Nampt) activity and increased CD38 activity. Significant biological effects of extracellular NAD+ have been found. Increasing evidence has suggested that NAD+ deficiency is a common central pathological factor in a number of diseases and aging. Critical Issues and Future Directions: Future studies are required for solidly establishing the concept that "NAD+ deficiency is a common central pathological factor in a number of disease and aging." It is also necessary to further investigate the mechanisms underlying the NAD+ deficiency in the diseases and aging. Preclinical and clinical studies should be conducted to determine the therapeutic potential of NAD+ for the diseases and aging.
Collapse
Affiliation(s)
- Mingchao Zhang
- 1 Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,2 Collaborative Innovation Center for Genetics and Development, Shanghai, China
| | - Weihai Ying
- 1 Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,2 Collaborative Innovation Center for Genetics and Development, Shanghai, China
| |
Collapse
|
19
|
Multi-targeted Effect of Nicotinamide Mononucleotide on Brain Bioenergetic Metabolism. Neurochem Res 2019; 44:2280-2287. [PMID: 30661231 DOI: 10.1007/s11064-019-02729-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/11/2019] [Indexed: 01/04/2023]
Abstract
Dysfunctions in NAD+ metabolism are associated with neurodegenerative diseases, acute brain injury, diabetes, and aging. Loss of NAD+ levels results in impairment of mitochondria function, which leads to failure of essential metabolic processes. Strategies to replenish depleted NAD+ pools can offer significant improvements of pathologic states. NAD+ levels are maintained by two opposing enzymatic reactions, one is the consumption of NAD+ while the other is the re-synthesis of NAD+. Inhibition of NAD+ degrading enzymes, poly-ADP-ribose polymerase 1 (PARP1) and ectoenzyme CD38, following brain ischemic insult can provide neuroprotection. Preservation of NAD+ pools by administration of NAD+ precursors, such as nicotinamide (Nam) or nicotinamide mononucleotide (NMN), also offers neuroprotection. However, NMN treatment demonstrates to be a promising candidate as a therapeutic approach due to its multi-targeted effect acting as PARP1 and CD38 inhibitor, sirtuins activator, mitochondrial fission inhibitor, and NAD+ supplement. Many neurodegenerative diseases or acute brain injury activate several cellular death pathways requiring a treatment strategy that will target these mechanisms. Since NMN demonstrated the ability to exert its effect on several cellular metabolic pathways involved in brain pathophysiology it seems to be one of the most promising candidates to be used for successful neuroprotection.
Collapse
|
20
|
Krainz T, Lamade AM, Du L, Maskrey TS, Calderon MJ, Watkins SC, Epperly MW, Greenberger JS, Bayır H, Wipf P, Clark RSB. Synthesis and Evaluation of a Mitochondria-Targeting Poly(ADP-ribose) Polymerase-1 Inhibitor. ACS Chem Biol 2018; 13:2868-2879. [PMID: 30184433 DOI: 10.1021/acschembio.8b00423] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The poly(ADP-ribose) polymerase (PARP) family of enzymes plays a crucial role in cellular and molecular processes including DNA damage detection and repair and transcription; indeed, PARP inhibitors are under clinical evaluation as chemotherapeutic adjuncts given their capacity to impede genomic DNA repair in tumor cells. Conversely, overactivation of PARP can lead to NAD+ depletion, mitochondrial energy failure, and cell death. Since PARP activation facilitates genomic but impedes mitochondrial DNA repair, nonselective PARP inhibitors are likely to have opposing effects in these cellular compartments. Herein, we describe the synthesis and evaluation of the mitochondria-targeting PARP inhibitor, XJB-veliparib. Attachment of the hemigramicidin S pentapeptide isostere for mitochondrial targeting using a flexible linker at the primary amide site of veliparib did not disrupt PARP affinity or inhibition. XJB-veliparib was effective at low nanomolar concentrations (10-100 nM) and more potent than veliparib in protection from oxygen-glucose deprivation (OGD) in primary cortical neurons. Both XJB-veliparib and veliparib (10 nM) preserved mitochondrial NAD+ after OGD; however, only XJB-veliparib prevented release of NAD+ into cytosol. XJB-veliparib (10 nM) appeared to inhibit poly(ADP-ribose) polymer formation in mitochondria and preserve mitochondrial cytoarchitecture after OGD in primary cortical neurons. After 10 nM exposure, XJB-veliparib was detected by LC-MS in mitochondria but not nuclear-enriched fractions in neurons and was observed in mitoplasts stripped of the outer mitochondrial membrane obtained from HT22 cells. XJB-veliparib was also effective at preventing glutamate-induced HT22 cell death at micromolar concentrations. Importantly, in HT22 cells exposed to H2O2 to produce DNA damage, XJB-veliparib (10 μM) had no effect on nuclear DNA repair, in contrast to veliparib (10 μM) where DNA repair was retarded. XJB-veliparib and analogous mitochondria-targeting PARP inhibitors warrant further evaluation in vitro and in vivo, particularly in conditions where PARP overactivation leads to mitochondrial energy failure and maintenance of genomic DNA integrity is desirable, e.g., ischemia, oxidative stress, and radiation exposure.
Collapse
Affiliation(s)
- Tanja Krainz
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Andrew M. Lamade
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, United States
| | - Lina Du
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, United States
| | - Taber S. Maskrey
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael J. Calderon
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Simon C. Watkins
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael W. Epperly
- Department of Radiation Oncology, Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15232, United States
| | - Joel S. Greenberger
- Department of Radiation Oncology, Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15232, United States
| | - Hülya Bayır
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, United States
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15224, United States
- Children’s Neuroscience Institute, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224, United States
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Robert S. B. Clark
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, United States
- Children’s Neuroscience Institute, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224, United States
| |
Collapse
|
21
|
Meng D, He W, Huang P, Liu D, Zhong L, Yu R, Li J. Polymorphism of PARP-1 indicates an increased risk and a worse initial severity of ischemic stroke. Per Med 2018; 15:355-360. [PMID: 30260276 DOI: 10.2217/pme-2018-0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AIM Polymorphisms of DNA repair enzyme gene may alter the ability to repair damage and in turn may contribute to ischemic stroke susceptibility and outcome. METHODS We selected 316 ischemic stroke patients and 302 healthy controls. Then we genotyped SNPs of PARP-1 rs3219119, rs2271347 and APE1 rs1130409 in patient and control groups. RESULTS Polymorphism in PARP-1 rs2271347 was significantly associated with increased ischemic stroke risk (additive model: OR: 1.74; 95% CI: 1.03-2.93; p = 0.037). Patients harboring the PARP-1 rs2271347 GA/AA genotype had a worse initial stroke (additive model: OR: 1.85; 95% CI: 1.10-3.11; p = 0.021). CONCLUSION Our study suggests that genetic variant of rs2271347 may contribute to the etiology of ischemic stroke.
Collapse
Affiliation(s)
- Dianhuai Meng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Wei He
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, PR China.,Department of Neurology, The Affiliated Jiangyin People's Hospital of Southeast University Medical College, Wuxi, PR China
| | - Peng Huang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, PR China.,Key Laboratory of Infectious Diseases, School of Public Health, Nanjing Medical University, Nanjing, PR China
| | - Dinghua Liu
- Department of Neurology, The Affiliated Jiangyin People's Hospital of Southeast University Medical College, Wuxi, PR China
| | - Lingling Zhong
- Department of Neurology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, PR China
| | - Rongbin Yu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, PR China.,Key Laboratory of Infectious Diseases, School of Public Health, Nanjing Medical University, Nanjing, PR China
| | - Jianan Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
22
|
Aneja RK, Alcamo AM, Cummings J, Vagni V, Feldman K, Wang Q, Dixon CE, Billiar TR, Kochanek PM. Lack of Benefit on Brain Edema, Blood-Brain Barrier Permeability, or Cognitive Outcome in Global Inducible High Mobility Group Box 1 Knockout Mice Despite Tissue Sparing after Experimental Traumatic Brain Injury. J Neurotrauma 2018; 36:360-369. [PMID: 30045665 DOI: 10.1089/neu.2018.5664] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
High mobility group box 1 (HMGB1) is a prototypical danger-associated molecular pattern molecule that is considered a late mediator of neuro-inflammation after traumatic brain injury (TBI). Prior studies have suggested that targeting HMGB1 may lead to neuroprotective effects, but none of these studies have reported cognitive outcomes. We hypothesized that loss of HMGB1 before and after TBI would markedly attenuate post-traumatic brain edema, blood-brain barrier (BBB) permeability, improve functional deficits and long-term neuropathology versus control mice. Using the controlled cortical impact model and conditional global HMGB1 knockout (HMGB1 KO) mice, we demonstrate that there was a neuroprotective effect seen in the HMGB1 KO versus wild-type control evidenced by a significant reduction in contusion volume. However, two surprising findings were 1) the lack of benefit on either post-traumatic brain edema or BBB permeability, and 2) that spatial memory performance was impaired in HMGB1 KO naïve mice such that the behavioral effects of HMGB1 deletion in uninjured naïve mice were similar to those observed after TBI. Our data suggest the possibility that the role of HMGB1 in TBI is a "double-edged sword"; that is, despite the benefits on selected aspects of secondary injury, the sustained absence of HMGB1 may impair cognitive function, even in naïve mice. Given the pleiotropic actions of extracellular and intracellular HMGB1, when evaluating the potential use of therapies targeting HMGB1, effects on long-term cognitive outcome should be carefully evaluated. It also may be prudent in future studies to examine cell-specific effects of manipulating the HMGB1 pathway.
Collapse
Affiliation(s)
- Rajesh K Aneja
- 1 Department of Critical Care Medicine, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania.,2 Department of Pediatrics, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | - Alicia M Alcamo
- 1 Department of Critical Care Medicine, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania.,2 Department of Pediatrics, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | - Jessica Cummings
- 1 Department of Critical Care Medicine, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania.,2 Department of Pediatrics, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | - Vincent Vagni
- 1 Department of Critical Care Medicine, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | - Keri Feldman
- 1 Department of Critical Care Medicine, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | - Qingde Wang
- 3 Department of Surgery, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | - C Edward Dixon
- 4 Department of Neurological Surgery, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | - Timothy R Billiar
- 3 Department of Surgery, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | - Patrick M Kochanek
- 1 Department of Critical Care Medicine, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| |
Collapse
|
23
|
Jang S, Kim EW, Zhang Y, Lee J, Cho SY, Ha J, Kim H, Kim E. Particulate matter increases beta-amyloid and activated glial cells in hippocampal tissues of transgenic Alzheimer's mouse: Involvement of PARP-1. Biochem Biophys Res Commun 2018; 500:333-338. [DOI: 10.1016/j.bbrc.2018.04.068] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/10/2018] [Indexed: 11/29/2022]
|
24
|
Irvine KA, Bishop RK, Won SJ, Xu J, Hamel KA, Coppes V, Singh P, Sondag A, Rome E, Basu J, Cittolin-Santos GF, Panter SS, Swanson RA. Effects of Veliparib on Microglial Activation and Functional Outcomes after Traumatic Brain Injury in the Rat and Pig. J Neurotrauma 2018; 35:918-929. [PMID: 29285982 DOI: 10.1089/neu.2017.5044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The inflammation response induced by brain trauma can impair recovery. This response requires several hours to develop fully and thus provides a clinically relevant therapeutic window of opportunity. Poly(ADP-ribose) polymerase inhibitors suppress inflammatory responses, including brain microglial activation. We evaluated delayed treatment with veliparib, a poly(ADP-ribose) polymerase inhibitor, currently in clinical trials as a cancer therapeutic, in rats and pigs subjected to controlled cortical impact (CCI). In rats, CCI induced a robust inflammatory response at the lesion margins, scattered cell death in the dentate gyrus, and a delayed, progressive loss of corpus callosum axons. Pre-determined measures of cognitive and motor function showed evidence of attentional deficits that resolved after three weeks and motor deficits that recovered only partially over eight weeks. Veliparib was administered beginning 2 or 24 h after CCI and continued for up to 12 days. Veliparib suppressed CCI-induced microglial activation at doses of 3 mg/kg or higher and reduced reactive astrocytosis and cell death in the dentate gyrus, but had no significant effect on delayed axonal loss or functional recovery. In pigs, CCI similarly induced a perilesional microglial activation that was attenuated by veliparib. CCI in the pig did not, however, induce detectable persisting cognitive or motor impairment. Our results showed veliparib suppression of CCI-induced microglial activation with a delay-to-treatment interval of at least 24 h in both rats and pigs, but with no associated functional improvement. The lack of improvement in long-term recovery underscores the complexities in translating anti-inflammatory effects to clinically relevant outcomes.
Collapse
Affiliation(s)
- Karen-Amanda Irvine
- Department of Neurology University of California San Francisco, and San Francisco Veterans Affairs Medical Center; San Francisco, California
| | - Robin K Bishop
- Department of Neurology University of California San Francisco, and San Francisco Veterans Affairs Medical Center; San Francisco, California
| | - Seok Joon Won
- Department of Neurology University of California San Francisco, and San Francisco Veterans Affairs Medical Center; San Francisco, California
| | - Jianguo Xu
- Department of Neurology University of California San Francisco, and San Francisco Veterans Affairs Medical Center; San Francisco, California.,Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, People's Republic of China
| | - Katherine A Hamel
- Department of Neurological Surgery University of California San Francisco, and San Francisco Veterans Affairs Medical Center; San Francisco, California
| | - Valerie Coppes
- Department of Neurological Surgery University of California San Francisco, and San Francisco Veterans Affairs Medical Center; San Francisco, California
| | - Pardeep Singh
- Department of Neurology University of California San Francisco, and San Francisco Veterans Affairs Medical Center; San Francisco, California
| | - Andrew Sondag
- Department of Neurology University of California San Francisco, and San Francisco Veterans Affairs Medical Center; San Francisco, California
| | - Eric Rome
- Department of Neurology University of California San Francisco, and San Francisco Veterans Affairs Medical Center; San Francisco, California
| | - Jayinee Basu
- Department of Neurology University of California San Francisco, and San Francisco Veterans Affairs Medical Center; San Francisco, California
| | - Giordano Fabricio Cittolin-Santos
- Department of Neurology University of California San Francisco, and San Francisco Veterans Affairs Medical Center; San Francisco, California.,Programa de Pós Graduação em Ciências Biológicas: Bioquímica, UFRGS, Porto Alegre, Brazil; and Science Without Borders, CNPq, Brasilia, Brazil
| | - S Scott Panter
- Department of Neurological Surgery University of California San Francisco, and San Francisco Veterans Affairs Medical Center; San Francisco, California
| | - Raymond A Swanson
- Department of Neurology University of California San Francisco, and San Francisco Veterans Affairs Medical Center; San Francisco, California
| |
Collapse
|
25
|
El Husseini N, Hoffman BM, Bennett ER, Li YW, Williamson Taylor RA, Hailey CE, Richardson K, Li YJ, Laskowitz DT, James ML. Association of IL6ST (gp130) Polymorphism with Functional Outcome Following Spontaneous Intracerebral Hemorrhage. J Stroke Cerebrovasc Dis 2017; 27:125-131. [PMID: 28964648 DOI: 10.1016/j.jstrokecerebrovasdis.2017.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/12/2017] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Genes associated with the inflammatory response and cytostructural integrity may influence recovery following a brain injury. To examine this in the setting of spontaneous intracerebral hemorrhage (ICH), selected single nucleotide polymorphisms (SNPs) were assessed for associations with patient outcome. METHODS A cohort of 54 patients with supratentorial ICH were enrolled. Based on known involvement with neuroinflammation and cytostructural integrity, 10 preselected SNPs from 6 candidate genes were tested for associations with 6-month functional outcome (modified Rankin Scale [mRS] ≥ 3), mortality, and in-hospital deterioration (Glasgow Coma Scale decrease by >2 within 7 days of admission) following ICH. Fisher's exact test and logistic regression with adjustment for race and ICH score were performed. RESULTS SNP rs10940495 (gp130 G/A) within the gp130 gene was the only SNP significantly associated with lower odds of an unfavorable 6-month functional outcome (odds ratio = .16 for mRS ≥ 3; 95% confidence interval, .03-.87, P = .03). Compared with major allele (A) homozygotes, minor allele (G) carriers in the IL6 signal transducer gene (gp130) locus were 84% less likely to have a poor outcome (mRS ≥ 3) at 6 months following spontaneous ICH. The SNP rs10940495 (gp130 G/A) and SNP rs3219119 (PARP-1 A/T) were associated with 6-month mortality (P = .02 and .04, respectively) only on univariate analysis. None of the SNPs examined were associated with in-hospital deterioration. CONCLUSION In this exploratory study, SNP rs10940495 in the gp130 locus was associated with functional outcome at 6 months following spontaneous ICH. These findings, which should be validated through a larger study, suggest that inflammation plays an important role in mediating outcomes after ICH.
Collapse
Affiliation(s)
- Nada El Husseini
- Department of Neurology, Duke University, Durham, North Carolina; Department of Neurology, Wake Forest Baptist Medical Center, Winston Salem, North Carolina.
| | - Benjamin M Hoffman
- Department of Neurology, Wake Forest Baptist Medical Center, Winston Salem, North Carolina
| | - Ellen R Bennett
- Department of Neurology, Duke University, Durham, North Carolina; Brain Injury Translational Research Center, Duke University, Durham, North Carolina
| | - Yen-Wei Li
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
| | | | - Claire E Hailey
- Department of Anesthesiology, Duke University, Durham, North Carolina
| | - Kara Richardson
- Department of Neurology, Duke University, Durham, North Carolina; Brain Injury Translational Research Center, Duke University, Durham, North Carolina
| | - Yi-Ju Li
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
| | - Daniel T Laskowitz
- Department of Neurology, Duke University, Durham, North Carolina; Department of Anesthesiology, Duke University, Durham, North Carolina; Brain Injury Translational Research Center, Duke University, Durham, North Carolina
| | - Michael L James
- Department of Neurology, Duke University, Durham, North Carolina; Department of Anesthesiology, Duke University, Durham, North Carolina; Brain Injury Translational Research Center, Duke University, Durham, North Carolina
| |
Collapse
|
26
|
Protective Functions of PJ34, a Poly(ADP-ribose) Polymerase Inhibitor, Are Related to Down-Regulation of Calpain and Nuclear Factor-κB in a Mouse Model of Traumatic Brain Injury. World Neurosurg 2017. [PMID: 28642177 DOI: 10.1016/j.wneu.2017.06.076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES Poly(ADP-ribose) polymerase (PARP), calpain, and nuclear factor-κB (NF-κB) are reported to participate in inflammatory reactions in pathologic conditions and are involved in traumatic brain injury. The objective of this study was to investigate whether PARP participates in inflammation related to calpain and NF-κB in a mouse model of controlled cortical impact (CCI). METHODS PJ34 (10 mg/kg), a selective PARP inhibitor, was administered intraperitoneally 5 minutes and 8 hours after experimental CCI. We then performed a histopathologic analysis, and we measured calpain activity and protein levels in all animals. The cytosolic, mitochondria, and nuclear fractions were prepared and used to determine the levels of PARP, calpastatin, NF-κB p65, inhibitory-κB-α, tumor necrosis factor-α, interleukin-1β, intracellular adhesion molecule-1, inducible nitric oxide synthase, and cyclooxygenase-2. We then measured blood-brain barrier disruption using electron microscopy at 6 and 24 hours after CCI. RESULTS Treatment with PJ34 markedly reduced the extent of both cerebral contusion and edema, improved neurologic scores, and attenuated blood-brain barrier damage resulting from CCI. Our data showed that the cytosolic and nuclear fractions of calpain and NF-κB were up-regulated in the injured cortex and that these changes were reversed by PJ34. Moreover, PJ34 significantly enhanced the calpastatin and inhibitory-κB levels and decreased the levels of inflammatory mediators. CONCLUSIONS PARP inhibition by PJ34 suppresses the overactivation of calpain and the production of inflammatory factors that are caused by NF-κB activation and attenuates neuronal cell death in a mouse model of CCI.
Collapse
|
27
|
Kozlov AV, Bahrami S, Redl H, Szabo C. Alterations in nitric oxide homeostasis during traumatic brain injury. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2627-2632. [PMID: 28064018 DOI: 10.1016/j.bbadis.2016.12.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/20/2016] [Accepted: 12/27/2016] [Indexed: 12/17/2022]
Abstract
Changes in nitric oxide (NO) levels have been often associated with various forms of trauma, including secondary damage after traumatic brain injury (TBI). Several studies demonstrate the upregulation of NO synthase (NOS) enzymes, and concomitant increases in brain NO levels, which contribute to the TBI-associated glutamate cytotoxicity, including the pathogenesis of mitochondrial dysfunction. TBI is also associated with elevated NO levels in remote organs, indicating that TBI can induce systemic changes in NO regulation, which can be either beneficial or detrimental. Here we review the possible mechanisms responsible for changes in NO metabolism during TBI. Better understanding of the changes in NO homeostasis in TBI will be necessary to design rational therapeutic approaches for TBI. This article is part of a Special Issue entitled: Immune and Metabolic Alterations in Trauma and Sepsis edited by Dr. Raghavan Raju.
Collapse
Affiliation(s)
- Andrey V Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
28
|
Abstract
This article reviews possible ways that traumatic brain injury (TBI) can induce migraine-type post-traumatic headaches (PTHs) in children, adults, civilians, and military personnel. Several cerebral alterations resulting from TBI can foster the development of PTH, including neuroinflammation that can activate neural systems associated with migraine. TBI can also compromise the intrinsic pain modulation system and this would increase the level of perceived pain associated with PTH. Depression and anxiety disorders, especially post-traumatic stress disorder (PTSD), are associated with TBI and these psychological conditions can directly intensify PTH. Additionally, depression and PTSD alter sleep and this will increase headache severity and foster the genesis of PTH. This article also reviews the anatomic loci of injury associated with TBI and notes the overlap between areas of injury associated with TBI and PTSD.
Collapse
|
29
|
Osier ND, Dixon CE. The Controlled Cortical Impact Model: Applications, Considerations for Researchers, and Future Directions. Front Neurol 2016; 7:134. [PMID: 27582726 PMCID: PMC4987613 DOI: 10.3389/fneur.2016.00134] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/02/2016] [Indexed: 12/26/2022] Open
Abstract
Controlled cortical impact (CCI) is a mechanical model of traumatic brain injury (TBI) that was developed nearly 30 years ago with the goal of creating a testing platform to determine the biomechanical properties of brain tissue exposed to direct mechanical deformation. Initially used to model TBIs produced by automotive crashes, the CCI model rapidly transformed into a standardized technique to study TBI mechanisms and evaluate therapies. CCI is most commonly produced using a device that rapidly accelerates a rod to impact the surgically exposed cortical dural surface. The tip of the rod can be varied in size and geometry to accommodate scalability to difference species. Typically, the rod is actuated by a pneumatic piston or electromagnetic actuator. With some limits, CCI devices can control the velocity, depth, duration, and site of impact. The CCI model produces morphologic and cerebrovascular injury responses that resemble certain aspects of human TBI. Commonly observed are graded histologic and axonal derangements, disruption of the blood-brain barrier, subdural and intra-parenchymal hematoma, edema, inflammation, and alterations in cerebral blood flow. The CCI model also produces neurobehavioral and cognitive impairments similar to those observed clinically. In contrast to other TBI models, the CCI device induces a significantly pronounced cortical contusion, but is limited in the extent to which it models the diffuse effects of TBI; a related limitation is that not all clinical TBI cases are characterized by a contusion. Another perceived limitation is that a non-clinically relevant craniotomy is performed. Biomechanically, this is irrelevant at the tissue level. However, craniotomies are not atraumatic and the effects of surgery should be controlled by including surgical sham control groups. CCI devices have also been successfully used to impact closed skulls to study mild and repetitive TBI. Future directions for CCI research surround continued refinements to the model through technical improvements in the devices (e.g., minimizing mechanical sources of variation). Like all TBI models, publications should report key injury parameters as outlined in the NIH common data elements (CDEs) for pre-clinical TBI.
Collapse
Affiliation(s)
- Nicole D. Osier
- Department of Acute and Tertiary Care, University of Pittsburgh School of Nursing, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, Pittsburgh, PA, USA
| | - C. Edward Dixon
- Safar Center for Resuscitation Research, Pittsburgh, PA, USA
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| |
Collapse
|
30
|
Tao X, Chen X, Mao X, Hou Z, Hao S, Tian R, Zhu Z, Sun M, Liu B. Protective effects of PARP inhibitor, PJ34, is related to down-regulation of calpain and NF-κB in a mouse model of TBI. Brain Inj 2016:1-11. [PMID: 27119554 DOI: 10.3109/02699052.2016.1160151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Poly(ADP-ribose) polymerase (PARP), calpain and nuclear factor-κB (NF-κB) are reported to participate in inflammatory reactions in pathological conditions and are involved in traumatic brain injury. The objective of this study was to investigate whether PARP participated in inflammation related to calpain and NF-κB in a mouse model of controlled cortical impact (CCI). MATERIALS AND METHODS PJ34 (10 mg kg-1), a selective PARP inhibitor, was administered intraperitoneally 5 minutes and 8 hours after experimental CCI. A neurobehavioural evaluation and a histopathological analysis were then performed and the contusion volume, calpain activity and protein levels were measured in all animals. RESULTS Treatment with PJ34 markedly reduced neurological deficits, decreased contusion volume and attenuated necrotic and apoptotic neuronal cell death 24 hours after CCI. The data showed that the cytosolic and nuclear fractions of calpain and NF-κB were up-regulated in the injured cortex and that these changes were reversed by PJ34. Moreover, PJ34 significantly enhanced the calpastatin and IκB levels and decreased the levels of inflammatory mediators. CONCLUSIONS PARP inhibition by PJ34 suppresses the over-activation of calpain and the production of inflammatory factors that are caused by NF-κB activation and it improves neurological functioning, decreases the contusion volume and attenuates neuronal cell death in a mouse model of CCI.
Collapse
Affiliation(s)
- Xiaogang Tao
- a Department of Neurosurgery, Beijing Tiantan Hospital , Capital Medical University , Beijing , PR China
| | - Xuetao Chen
- a Department of Neurosurgery, Beijing Tiantan Hospital , Capital Medical University , Beijing , PR China
| | - Xiang Mao
- a Department of Neurosurgery, Beijing Tiantan Hospital , Capital Medical University , Beijing , PR China
| | - Zonggang Hou
- a Department of Neurosurgery, Beijing Tiantan Hospital , Capital Medical University , Beijing , PR China
| | - Shuyu Hao
- a Department of Neurosurgery, Beijing Tiantan Hospital , Capital Medical University , Beijing , PR China
| | - Runfa Tian
- a Department of Neurosurgery, Beijing Tiantan Hospital , Capital Medical University , Beijing , PR China
| | - Zhendan Zhu
- b Department of Neurotrauma, General Hospital of the Armed Police Force , Beijing , PR China
| | - Ming Sun
- c Department of Neuropharmacology
| | - Baiyun Liu
- a Department of Neurosurgery, Beijing Tiantan Hospital , Capital Medical University , Beijing , PR China
- b Department of Neurotrauma, General Hospital of the Armed Police Force , Beijing , PR China
- d Department of Neurotrauma , Beijing Neurosurgical Institute, Capital Medical University , Beijing , PR China
- e Nerve Injury and Repair Center of Beijing Institute for Brain Disorders , Beijing , PR China
- f China National Clinical Research Center for Neurological Diseases , Beijing , PR China
- g Beijing Key Laboratory of Central Nervous System Injury , Beijing , PR China
| |
Collapse
|
31
|
Rozas NS, Redell JB, Hill JL, McKenna J, Moore AN, Gambello MJ, Dash PK. Genetic activation of mTORC1 signaling worsens neurocognitive outcome after traumatic brain injury. J Neurotrauma 2014; 32:149-58. [PMID: 25025304 DOI: 10.1089/neu.2014.3469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Although the mechanisms that contribute to the development of traumatic brain injury (TBI)-related deficits are not fully understood, it has been proposed that altered energy utilization may be a contributing factor. The tuberous sclerosis complex, a heterodimer composed of hamartin/Tsc-1 and tuberin/Tsc-2, is a critical regulatory node that integrates nutritional and growth signals to govern energy using processes by regulating the activity of mechanistic Target of Rapamycin complex 1 (mTORC1). mTORC1 activation results in enhanced protein synthesis, an energy consuming process. We show that mice that have a heterozygous deletion of Tsc2 exhibit elevated basal mTORC1 activity in the cortex and the hippocampus while still exhibiting normal motor and neurocognitive functions. In addition, a mild closed head injury (mCHI) that did not activate mTORC1 in wild-type mice resulted in a further increase in mTORC1 activity in Tsc2(+/KO) mice above the level of activity observed in uninjured Tsc2(+/KO) mice. This enhanced level of increased mTORC1 activity was associated with worsened cognitive function as assessed using the Morris water maze and context discrimination tasks. These results suggest that there is a threshold of increased mTORC1 activity after a TBI that is detrimental to neurobehavioral performance, and interventions to inhibit excessive mTORC1 activation may be beneficial to neurocognitive outcome.
Collapse
Affiliation(s)
- Natalia S Rozas
- 1 Department of Neurobiology and Anatomy, the University of Texas Medical School , Houston, Texas
| | | | | | | | | | | | | |
Collapse
|
32
|
Semple BD, Trivedi A, Gimlin K, Noble-Haeusslein LJ. Neutrophil elastase mediates acute pathogenesis and is a determinant of long-term behavioral recovery after traumatic injury to the immature brain. Neurobiol Dis 2014; 74:263-80. [PMID: 25497734 DOI: 10.1016/j.nbd.2014.12.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 11/19/2014] [Accepted: 12/01/2014] [Indexed: 12/21/2022] Open
Abstract
While neutrophil elastase (NE), released by activated neutrophils, is a key mediator of secondary pathogenesis in adult models of brain ischemia and spinal cord injury, no studies to date have examined this protease in the context of the injured immature brain, where there is notable vulnerability resulting from inadequate antioxidant reserves and prolonged exposure to infiltrating neutrophils. We thus reasoned that NE may be a key determinant of secondary pathogenesis, and as such, adversely influence long-term neurological recovery. To address this hypothesis, wild-type (WT) and NE knockout (KO) mice were subjected to a controlled cortical impact at post-natal day 21, approximating a toddler-aged child. To determine if NE is required for neutrophil infiltration into the injured brain, and whether this protease contributes to vasogenic edema, we quantified neutrophil numbers and measured water content in the brains of each of these genotypes. While leukocyte trafficking was indistinguishable between genotypes, vasogenic edema was markedly attenuated in the NE KO. To determine if early pathogenesis is dependent on NE, indices of cell death (TUNEL and activated caspase-3) were quantified across genotypes. NE KO mice showed a reduction in these markers of cell death in the injured hippocampus, which corresponded to greater preservation of neuronal integrity as well as reduced expression of heme oxygenase-1, a marker of oxidative stress. WT mice, treated with a competitive inhibitor of NE at 2, 6 and 12h post-injury, likewise showed a reduction in cell death and oxidative stress compared to vehicle-treated controls. We next examined the long-term behavioral and structural consequences of NE deficiency. NE KO mice showed an improvement in long-term spatial memory retention and amelioration of injury-induced hyperactivity. However, volumetric and stereological analyses found comparable tissue loss in the injured cortex and hippocampus independent of genotype. Further, WT mice treated acutely with the NE inhibitor showed no long-term behavioral or structural improvements. Together, these findings validate the central role of NE in both acute pathogenesis and chronic functional recovery, and support future exploration of the therapeutic window, taking into account the prolonged period of neutrophil trafficking into the injured immature brain.
Collapse
Affiliation(s)
- Bridgette D Semple
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA; Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, VIC 3000, Australia.
| | - Alpa Trivedi
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Kayleen Gimlin
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Linda J Noble-Haeusslein
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA; Department of Physical Therapy and Rehabilitation Sciences, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
33
|
Permeability transition pore-dependent and PARP-mediated depletion of neuronal pyridine nucleotides during anoxia and glucose deprivation. J Bioenerg Biomembr 2014; 47:53-61. [PMID: 25341378 DOI: 10.1007/s10863-014-9588-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/09/2014] [Indexed: 10/24/2022]
Abstract
Exposure of rat cortical neurons to combined oxygen and glucose deprivation results in loss of NAD(P)H autofluorescence that is only partially reversible following restoration of oxygen and glucose, suggesting catabolism of pyridine nucleotides. This study tested the hypothesis that metabolic inhibition caused by cyanide-induced chemical anoxia plus glucose deprivation promotes both release of mitochondrial NAD(H) in response to opening of the permeability transition pore (PTP) and NAD(P)(H) degradation through activation of poly (ADP-ribose) polymerase (PARP). The NAD(P)H autofluorescence of rat neonatal cortical neurons was monitored during and following acute (10-30 min) exposure to the respiratory inhibitor, cyanide, in the absence and presence of glucose. Because nitric oxide-derived peroxynitrite is a known activator of PARP, we additionally assessed the effect of a nitric oxide generating agent on the NAD(P)H autofluorescence response to chemical anoxia plus glucose deprivation. Cyanide induced a rapid increase in autofluorescence, followed by a steady decline promoted by the presence of nitric oxide. This decline was primarily due to NAD(H) catabolism, as verified by measurements of total NAD(H) present in cellular extracts. Catabolism was partially blocked by an inhibitor of PARP, by a PTP inhibitor, and by either glucose or pyruvate as a source of reducing power. Overall, data suggest that metabolic, oxidative, and nitrosative stress during in vitro neuronal anoxia and glucose deprivation result in release of mitochondrial pyridine nucleotides in response to PTP opening and rapid, extensive NAD(H) degradation mediated by PARP activation. These events may contribute to the metabolic dysfunction that occurs in vivo during cerebral ischemia and reperfusion and therefore represent prime targets for neuroprotection.
Collapse
|
34
|
Higashi Y, Hoshijima M, Yawata T, Nobumoto A, Tsuda M, Shimizu T, Saito M, Ueba T. Suppression of oxidative stress and 5-lipoxygenase activation by edaravone improves depressive-like behavior after concussion. J Neurotrauma 2014; 31:1689-99. [PMID: 24849726 DOI: 10.1089/neu.2014.3331] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Brain concussions are a serious public concern and are associated with neuropsychiatric disorders, such as depression. Patients with concussion who suffer from depression often experience distress. Nevertheless, few pre-clinical studies have examined concussion-induced depression, and there is little information regarding its pharmacological management. Edaravone, a free radical scavenger, can exert neuroprotective effects in several animal models of neurological disorders. However, the effectiveness of edaravone in animal models of concussion-induced depression remains unclear. In this study, we examined whether edaravone could prevent concussion-induced depression. Mice were subjected to a weight-drop injury and intravenously administered edaravone (3.0 mg/kg) or vehicle immediately after impact. Serial magnetic resonance imaging showed no abnormalities of the cerebrum on diffusion T1- and T2-weighted images. We found that edaravone suppressed concussion-induced depressive-like behavior in the forced swim test, which was accompanied by inhibition of increased hippocampal and cortical oxidative stress (OS) and suppression of 5-lipoxygenase (5-LOX) translocation to the nuclear envelope in hippocampal astrocytes. Hippocampal OS in concussed mice was also prevented by the nicotinamide adenine dinucleotide phosphate oxidase inhibitor, apocynin, and administration of BWB70C, a 5-LOX inhibitor, immediately and 24 h after injury prevented depressive-like behaviors in concussed mice. Further, antidepressant effects of edaravone were observed in mice receiving 1.0 or 3.0 mg/kg of edaravone immediately after impact, but not at a lower dose of 0.1 mg/kg. This antidepressant effect persisted up to 1 h after impact, whereas edaravone treatment at 3 h after impact had no effect on concussion-induced depressive-like behavior. These results suggest that edaravone protects against concussion-induced depression, and this protection is mediated by suppression of OS and 5-LOX translocation.
Collapse
Affiliation(s)
- Youichirou Higashi
- 1 Department of Neurosurgery, Kochi Medical School, Kochi University , Kochi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Sriram CS, Jangra A, Kasala ER, Bodduluru LN, Bezbaruah BK. Targeting poly(ADP-ribose)polymerase1 in neurological diseases: A promising trove for new pharmacological interventions to enter clinical translation. Neurochem Int 2014; 76:70-81. [PMID: 25049175 DOI: 10.1016/j.neuint.2014.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 07/02/2014] [Accepted: 07/04/2014] [Indexed: 12/22/2022]
Abstract
The highly conserved abundant nuclear protein poly(ADP-ribose)polymerase1 (PARP1) functions at the center of cellular stress response and is mainly implied in DNA damage repair mechanism. Apart from its involvement in DNA damage repair, it does sway multiple vital cellular processes such as cell death pathways, cell aging, insulator function, chromatin modification, transcription and mitotic apparatus function. Since brain is the principal organ vulnerable to oxidative stress and inflammatory responses, upon stress encounters robust DNA damage can occur and intense PARP1 activation may result that will lead to various CNS diseases. In the context of soaring interest towards PARP1 as a therapeutic target for newer pharmacological interventions, here in the present review, we are attempting to give a silhouette of the role of PARP1 in the neurological diseases and the potential of its inhibitors to enter clinical translation, along with its structural and functional aspects.
Collapse
Affiliation(s)
- Chandra Shekhar Sriram
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), III Floor, Guwahati Medical College, Narkachal Hilltop, Bhangagarh, Guwahati, Assam 781032, India.
| | - Ashok Jangra
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), III Floor, Guwahati Medical College, Narkachal Hilltop, Bhangagarh, Guwahati, Assam 781032, India
| | - Eshvendar Reddy Kasala
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), III Floor, Guwahati Medical College, Narkachal Hilltop, Bhangagarh, Guwahati, Assam 781032, India
| | - Lakshmi Narendra Bodduluru
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), III Floor, Guwahati Medical College, Narkachal Hilltop, Bhangagarh, Guwahati, Assam 781032, India
| | - Babul Kumar Bezbaruah
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), III Floor, Guwahati Medical College, Narkachal Hilltop, Bhangagarh, Guwahati, Assam 781032, India; Department of Pharmacology, III Floor, Guwahati Medical College, Narkachal Hilltop, Bhangagarh, Guwahati, Assam 781032, India
| |
Collapse
|
36
|
Stoica BA, Loane DJ, Zhao Z, Kabadi SV, Hanscom M, Byrnes KR, Faden AI. PARP-1 inhibition attenuates neuronal loss, microglia activation and neurological deficits after traumatic brain injury. J Neurotrauma 2014; 31:758-72. [PMID: 24476502 DOI: 10.1089/neu.2013.3194] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Traumatic brain injury (TBI) causes neuronal cell death as well as microglial activation and related neurotoxicity that contribute to subsequent neurological dysfunction. Poly (ADP-ribose) polymerase (PARP-1) induces neuronal cell death through activation of caspase-independent mechanisms, including release of apoptosis inducing factor (AIF), and microglial activation. Administration of PJ34, a selective PARP-1 inhibitor, reduced cell death of primary cortical neurons exposed to N-Methyl-N'-Nitro-N-Nitrosoguanidine (MNNG), a potent inducer of AIF-dependent cell death. PJ34 also attenuated lipopolysaccharide and interferon-γ-induced activation of BV2 or primary microglia, limiting NF-κB activity and iNOS expression as well as decreasing generation of reactive oxygen species and TNFα. Systemic administration of PJ34 starting as late as 24 h after controlled cortical impact resulted in improved motor function recovery in mice with TBI. Stereological analysis demonstrated that PJ34 treatment reduced the lesion volume, attenuated neuronal cell loss in the cortex and thalamus, and reduced microglial activation in the TBI cortex. PJ34 treatment did not improve cognitive performance in a Morris water maze test or reduce neuronal cell loss in the hippocampus. Overall, our data indicate that PJ34 has a significant, albeit selective, neuroprotective effect after experimental TBI, and its therapeutic effect may be from multipotential actions on neuronal cell death and neuroinflammatory pathways.
Collapse
Affiliation(s)
- Bogdan A Stoica
- 1 Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research (STAR), National Study Center for Trauma and EMS, University of Maryland , School of Medicine, Baltimore, Maryland
| | | | | | | | | | | | | |
Collapse
|
37
|
Curtin N, Szabo C. Therapeutic applications of PARP inhibitors: anticancer therapy and beyond. Mol Aspects Med 2013; 34:1217-56. [PMID: 23370117 PMCID: PMC3657315 DOI: 10.1016/j.mam.2013.01.006] [Citation(s) in RCA: 287] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/12/2013] [Accepted: 01/18/2013] [Indexed: 12/21/2022]
Abstract
The aim of this article is to describe the current and potential clinical translation of pharmacological inhibitors of poly(ADP-ribose) polymerase (PARP) for the therapy of various diseases. The first section of the present review summarizes the available preclinical and clinical data with PARP inhibitors in various forms of cancer. In this context, the role of PARP in single-strand DNA break repair is relevant, leading to replication-associated lesions that cannot be repaired if homologous recombination repair (HRR) is defective, and the synthetic lethality of PARP inhibitors in HRR-defective cancer. HRR defects are classically associated with BRCA1 and 2 mutations associated with familial breast and ovarian cancer, but there may be many other causes of HRR defects. Thus, PARP inhibitors may be the drugs of choice for BRCA mutant breast and ovarian cancers, and extend beyond these tumors if appropriate biomarkers can be developed to identify HRR defects. Multiple lines of preclinical data demonstrate that PARP inhibition increases cytotoxicity and tumor growth delay in combination with temozolomide, topoisomerase inhibitors and ionizing radiation. Both single agent and combination clinical trials are underway. The final part of the first section of the present review summarizes the current status of the various PARP inhibitors that are in various stages of clinical development. The second section of the present review summarizes the role of PARP in selected non-oncologic indications. In a number of severe, acute diseases (such as stroke, neurotrauma, circulatory shock and acute myocardial infarction) the clinical translatability of PARP inhibition is supported by multiple lines of preclinical data, as well as observational data demonstrating PARP activation in human tissue samples. In these disease indications, PARP overactivation due to oxidative and nitrative stress drives cell necrosis and pro-inflammatory gene expression, which contributes to disease pathology. Accordingly, multiple lines of preclinical data indicate the efficacy of PARP inhibitors to preserve viable tissue and to down-regulate inflammatory responses. As the clinical trials with PARP inhibitors in various forms of cancer progress, it is hoped that a second line of clinical investigations, aimed at testing of PARP inhibitors for various non-oncologic indications, will be initiated, as well.
Collapse
Affiliation(s)
- Nicola Curtin
- Department of Experimental Cancer Therapy, Northern Institute for Cancer Research, Newcastle University, University of Newcastle Upon Tyne, UK
| | - Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
38
|
Cornelius C, Crupi R, Calabrese V, Graziano A, Milone P, Pennisi G, Radak Z, Calabrese EJ, Cuzzocrea S. Traumatic brain injury: oxidative stress and neuroprotection. Antioxid Redox Signal 2013; 19:836-53. [PMID: 23547621 DOI: 10.1089/ars.2012.4981] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
SIGNIFICANCE A vast amount of circumstantial evidence implicates high energy oxidants and oxidative stress as mediators of secondary damage associated with traumatic brain injury. The excessive production of reactive oxygen species due to excitotoxicity and exhaustion of the endogenous antioxidant system induces peroxidation of cellular and vascular structures, protein oxidation, cleavage of DNA, and inhibition of the mitochondrial electron transport chain. RECENT ADVANCES Different integrated responses exist in the brain to detect oxidative stress, which is controlled by several genes termed vitagens. Vitagens encode for cytoprotective heat shock proteins, and thioredoxin and sirtuins. CRITICAL ISSUES AND FUTURE DIRECTIONS This article discusses selected aspects of secondary brain injury after trauma and outlines key mechanisms associated with toxicity, oxidative stress, inflammation, and necrosis. Finally, this review discusses the role of different oxidants and presents potential clinically relevant molecular targets that could be harnessed to treat secondary injury associated with brain trauma.
Collapse
Affiliation(s)
- Carolin Cornelius
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Messina, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Owens K, Park JH, Schuh R, Kristian T. Mitochondrial dysfunction and NAD(+) metabolism alterations in the pathophysiology of acute brain injury. Transl Stroke Res 2013; 4:618-34. [PMID: 24323416 DOI: 10.1007/s12975-013-0278-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 07/24/2013] [Indexed: 12/17/2022]
Abstract
Mitochondrial dysfunction is commonly believed to be one of the major players in mechanisms of brain injury. For several decades, pathologic mitochondrial calcium overload and associated opening of the mitochondrial permeability transition (MPT) pore were considered a detrimental factor causing mitochondrial damage and bioenergetics failure. Mitochondrial and cellular bioenergetic metabolism depends on the enzymatic reactions that require NAD(+) or its reduced form NADH as cofactors. Recently, it was shown that NAD(+) also has an important function as a substrate for several NAD(+) glycohydrolases whose overactivation can contribute to cell death mechanisms. Furthermore, downstream metabolites of NAD(+) catabolism can also adversely affect cell viability. In contrast to the negative effects of NAD(+)-catabolizing enzymes, enzymes that constitute the NAD(+) biosynthesis pathway possess neuroprotective properties. In the first part of this review, we discuss the role of MPT in acute brain injury and its role in mitochondrial NAD(+) metabolism. Next, we focus on individual NAD(+) glycohydrolases, both cytosolic and mitochondrial, and their role in NAD(+) catabolism and brain damage. Finally, we discuss the potential effects of downstream products of NAD(+) degradation and associated enzymes as well as the role of NAD(+) resynthesis enzymes as potential therapeutic targets.
Collapse
Affiliation(s)
- Katrina Owens
- Veterans Affairs Maryland Health Care System, 10 North Greene Street, Baltimore, MD, 21201, USA
| | | | | | | |
Collapse
|
40
|
Hemerka JN, Wu X, Dixon CE, Garman RH, Exo JL, Shellington DK, Blasiole B, Vagni VA, Janesko-Feldman K, Xu M, Wisniewski SR, Bayır H, Jenkins LW, Clark RSB, Tisherman SA, Kochanek PM. Severe brief pressure-controlled hemorrhagic shock after traumatic brain injury exacerbates functional deficits and long-term neuropathological damage in mice. J Neurotrauma 2012; 29:2192-208. [PMID: 22738159 DOI: 10.1089/neu.2011.2303] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hypotension after traumatic brain injury (TBI) worsens outcome. We published the first report of TBI plus hemorrhagic shock (HS) in mice using a volume-controlled approach and noted increased neuronal death. To rigorously control blood pressure during HS, a pressure-controlled HS model is required. Our hypothesis was that a brief, severe period of pressure-controlled HS after TBI in mice will exacerbate functional deficits and neuropathology versus TBI or HS alone. C57BL6 male mice were randomized into four groups (n=10/group): sham, HS, controlled cortical impact (CCI), and CCI+HS. We used a pressure-controlled shock phase (mean arterial pressure [MAP]=25-27 mm Hg for 35 min) and its treatment after mild to moderate CCI including, a 90 min pre-hospital phase, during which lactated Ringer's solution was given to maintain MAP >70 mm Hg, and a hospital phase, when the shed blood was re-infused. On days 14-20, the mice were evaluated in the Morris water maze (MWM, hidden platform paradigm). On day 21, the lesion and hemispheric volumes were quantified. Neuropathology and hippocampal neuron counts (hematoxylin and eosin [H&E], Fluoro-Jade B, and NeuN) were evaluated in the mice (n=60) at 24 h, 7 days, or 21 days (n=5/group/time point). HS reduced MAP during the shock phase in the HS and CCI+HS groups (p<0.05). Fluid requirements during the pre-hospital phase were greatest in the CCI+HS group (p<0.05), and were increased in HS versus sham and CCI animals (p<0.05). MWM latency was increased on days 14 and 15 after CCI+HS (p<0.05). Swim speed and visible platform latency were impaired in the CCI+HS group (p<0.05). CCI+HS animals had increased contusion volume versus the CCI group (p<0.05). Hemispheric volume loss was increased 33.3% in the CCI+HS versus CCI group (p<0.05). CA1 cell loss was seen in CCI+HS and CCI animals at 24 h and 7 days (p<0.05). CA3 cell loss was seen after CCI+HS (p<0.05 at 24 h and 7 days). CA1 cell loss at 21 days was seen only in CCI+HS animals (p<0.05). Brief, severe, pressure-controlled HS after CCI produces robust functional deficits and exacerbates neuropathology versus CCI or HS alone.
Collapse
Affiliation(s)
- Joseph N Hemerka
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Das M, Mohapatra S, Mohapatra SS. New perspectives on central and peripheral immune responses to acute traumatic brain injury. J Neuroinflammation 2012; 9:236. [PMID: 23061919 PMCID: PMC3526406 DOI: 10.1186/1742-2094-9-236] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/04/2012] [Indexed: 01/14/2023] Open
Abstract
Traumatic injury to the brain (TBI) results in a complex set of responses involving various symptoms and long-term consequences. TBI of any form can cause cognitive, behavioral and immunologic changes in later life, which underscores the problem of underdiagnosis of mild TBI that can cause long-term neurological deficits. TBI disrupts the blood–brain barrier (BBB) leading to infiltration of immune cells into the brain and subsequent inflammation and neurodegeneration. TBI-induced peripheral immune responses can also result in multiorgan damage. Despite worldwide research efforts, the methods of diagnosis, monitoring and treatment for TBI are still relatively ineffective. In this review, we delve into the mechanism of how TBI-induced central and peripheral immune responses affect the disease outcome and discuss recent developments in the continuing effort to combat the consequences of TBI and new ways to enhance repair of the damaged brain.
Collapse
Affiliation(s)
- Mahasweta Das
- Nanomedicine Research Center, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | | | | |
Collapse
|
42
|
Schoch KM, Madathil SK, Saatman KE. Genetic manipulation of cell death and neuroplasticity pathways in traumatic brain injury. Neurotherapeutics 2012; 9:323-37. [PMID: 22362424 PMCID: PMC3337028 DOI: 10.1007/s13311-012-0107-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Traumatic brain injury (TBI) initiates a complex cascade of secondary neurodegenerative mechanisms contributing to cell dysfunction and necrotic and apoptotic cell death. The injured brain responds by activating endogenous reparative processes to counter the neurodegeneration or remodel the brain to enhance functional recovery. A vast array of genetically altered mice provide a unique opportunity to target single genes or proteins to better understand their role in cell death and endogenous repair after TBI. Among the earliest targets for transgenic and knockout studies in TBI have been programmed cell death mediators, such as the Bcl-2 family of proteins, caspases, and caspase-independent pathways. In addition, the role of cell cycle regulatory elements in the posttraumatic cell death pathway has been explored in mouse models. As interest grows in neuroplasticity in TBI, the use of transgenic and knockout mice in studies focused on gliogenesis, neurogenesis, and the balance of growth-promoting and growth-inhibiting molecules has increased in recent years. With proper consideration of potential effects of constitutive gene alteration, traditional transgenic and knockout models can provide valuable insights into TBI pathobiology. Through increasing sophistication of conditional and cell-type specific genetic manipulations, TBI studies in genetically altered mice will be increasingly useful for identification and validation of novel therapeutic targets.
Collapse
Affiliation(s)
- Kathleen M. Schoch
- Spinal Cord and Brain Injury Research Center and Department of Physiology, University of Kentucky College of Medicine, B473 Biomedical and Biological Sciences Research Building (BBSRB), 741 South Limestone Street, Lexington, KY 40536 USA
| | - Sindhu K. Madathil
- Spinal Cord and Brain Injury Research Center and Department of Physiology, University of Kentucky College of Medicine, B473 Biomedical and Biological Sciences Research Building (BBSRB), 741 South Limestone Street, Lexington, KY 40536 USA
| | - Kathryn E. Saatman
- Spinal Cord and Brain Injury Research Center and Department of Physiology, University of Kentucky College of Medicine, B473 Biomedical and Biological Sciences Research Building (BBSRB), 741 South Limestone Street, Lexington, KY 40536 USA
| |
Collapse
|
43
|
Tomasevic G, Laurer HL, Mattiasson G, van Steeg H, Wieloch T, McIntosh TK. Delayed neuromotor recovery and increased memory acquisition dysfunction following experimental brain trauma in mice lacking the DNA repair gene XPA. J Neurosurg 2012; 116:1368-78. [PMID: 22462511 DOI: 10.3171/2012.2.jns11888] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT This study investigates the outcome after traumatic brain injury (TBI) in mice lacking the essential DNA repair gene xeroderma pigmentosum group A (XPA). As damage to DNA has been implicated in neuronal cell death in various models, the authors sought to elucidate whether the absence of an essential DNA repair factor would affect the outcome of TBI in an experimental setting. METHODS Thirty-seven adult mice of either wild-type (n = 18) or XPA-deficient ("knock-out" [n = 19]) genotype were subjected to controlled cortical impact experimental brain trauma, which produced a focal brain injury. Sham-injured mice of both genotypes were used as controls (9 in each group). The mice were subjected to neurobehavoral tests evaluating learning/acquisition (Morris water maze) and motor dysfunction (Rotarod and composite neuroscore test), pre- and postinjury up to 4 weeks. The mice were killed after 1 or 4 weeks, and cortical lesion volume, as well as hippocampal and thalamic cell loss, was evaluated. Hippocampal staining with doublecortin antibody was used to evaluate neurogenesis after the insult. RESULTS Brain-injured XPA(-/-) mice exhibited delayed recovery from impairment in neurological motor function, as well as pronounced cognitive dysfunction in a spatial learning task (Morris water maze), compared with injured XPA(+/+) mice (p < 0.05). No differences in cortical lesion volume, hippocampal damage, or thalamic cell loss were detected between XPA(+/+) and XPA(-/-) mice after brain injury. Also, no difference in the number of cells stained with doublecortin in the hippocampus was detected. CONCLUSIONS The authors' results suggest that lack of the DNA repair factor XPA may delay neurobehavioral recovery after TBI, although they do not support the notion that this DNA repair deficiency results in increased cell or tissue death in the posttraumatic brain.
Collapse
Affiliation(s)
- Gregor Tomasevic
- Laboratory for Experimental Brain Research, Wallenberg Neuroscience Center, Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
44
|
Di Paola R, Impellizzeri D, Salinaro AT, Mazzon E, Bellia F, Cavallaro M, Cornelius C, Vecchio G, Calabrese V, Rizzarelli E, Cuzzocrea S. Administration of carnosine in the treatment of acute spinal cord injury. Biochem Pharmacol 2011; 82:1478-89. [DOI: 10.1016/j.bcp.2011.07.074] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 07/02/2011] [Accepted: 07/06/2011] [Indexed: 01/10/2023]
|
45
|
Ekmark-Lewén S, Lewén A, Meyerson BJ, Hillered L. The multivariate concentric square field test reveals behavioral profiles of risk taking, exploration, and cognitive impairment in mice subjected to traumatic brain injury. J Neurotrauma 2011; 27:1643-55. [PMID: 20578827 DOI: 10.1089/neu.2009.0953] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
There is a need for more efficient tests to evaluate functional outcome following experimental traumatic brain injury (TBI), reflecting deficits in cognitive, sensory, and motor functions that are seen in TBI patients. The Multivariate Concentric Square Field (MCSF) test is a relatively new behavioral model that measures exploration, risk taking, risk assessment, and shelter seeking, all of which are evolutionarily-conserved strategies for survival. The multivariate design enables scoring of different functional domains in a single test situation, with a free choice of optional environmental settings. Furthermore, repeated trials permits cognitive effects to be measured. In the present study, 11 anesthetized C57BL6 mice received controlled cortical injury (CCI) (0.5 mm and 3.3 m/sec) over the right parietal cerebral cortex or sham surgery (n = 12). Naïve mice (n = 12) not subjected to any surgical procedure were also included. The animals were evaluated in the MCSF test at 2 and 7 days post-surgery, and behavioral profiles were analyzed. The results revealed differences in risk taking and explorative behavior between the sham animals and the animals subjected to trauma. Animals subjected to trauma were characterized by taking more risks and had a higher level of exploration activity, but they sought less shelter. Repeated exposure to the MCSF caused a general decrease in activity in the naïve and sham group, while a more specific behavioral impairment was seen in injured mice, suggesting cognitive dysfunction. We submit that the MCSF test is a useful complementary tool for functional outcome evaluation in experimental TBI.
Collapse
Affiliation(s)
- Sara Ekmark-Lewén
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala University Hospital, Uppsala, Sweden.
| | | | | | | |
Collapse
|
46
|
Tomasevic G, Raghupathi R, Scherbel U, Wieloch T, McIntosh TK. Deletion of the p53 tumor suppressor gene improves neuromotor function but does not attenuate regional neuronal cell loss following experimental brain trauma in mice. J Neurosci Res 2011; 88:3414-23. [PMID: 20890990 DOI: 10.1002/jnr.22491] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Deletion of the tumor suppressor gene p53 has been shown to improve the outcome in experimental models of focal cerebral ischemia and kainate-induced seizures. To evaluate the potential role of p53 in traumatic brain injury, genetically modified mice lacking a functional p53 gene (p53(-/-), n = 9) and their wild-type littermates (p53(+/+), n = 9) were anesthetized and subjected to controlled cortical impact (CCI) experimental brain trauma. After brain injury, neuromotor function was assessed by using composite neuroscore and rotarod tests. By 7 days posttrauma, p53(-/-) mice exhibited significantly improved neuromotor function, in the composite neuroscore (P = 0.002) as well as in two of three individual tests, when compared with brain-injured p53(+/+) animals. CCI resulted in the formation of a cortical cavity (mean volume = 6.1 mm(3)) 7 days postinjury in p53(+/+) as well as p53(-/-) mice. No difference in lesion volume was detected between the two genotypes (P = 0.95). Although significant cell loss was detected in the ipsilateral hippocampus and thalamus of brain-injured animals, no differences between p53(+/+) and p53(-/-) mice were detected. Although our results suggest that lack of the p53 gene results in augmented recovery of neuromotor function following experimental brain trauma, they do not support a role for p53 acting as a mediator of neuronal death in this context, underscoring the complexity of its role in the injured brain.
Collapse
Affiliation(s)
- Gregor Tomasevic
- Division of Experimental Brain Research, Wallenberg Neuroscience Center, Lund University Hospital, Lund, Sweden.
| | | | | | | | | |
Collapse
|
47
|
Hill J, Zhao J, Dash PK. High blood glucose does not adversely affect outcome in moderately brain-injured rodents. J Neurotrauma 2010; 27:1439-48. [PMID: 20504157 DOI: 10.1089/neu.2010.1328] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In a number of clinical studies researchers have reported that acute hyperglycemia is associated with increased mortality and worsened neurological outcome in patients with traumatic brain injury (TBI). In contrast, it has been demonstrated that intensive insulin therapy to lower blood glucose can lead to an increased frequency of hypoglycemic episodes and poor outcome. Consistent with this, experimental and clinical studies have shown that TBI causes a "metabolic crisis" in the injured brain, suggesting that a reduction in glucose availability may exacerbate brain damage. We therefore examined the consequences of hyperglycemia on cognitive and pathological measures. Using a rodent model of TBI, we find that when acute hyperglycemia is induced in animals prior to injury, there is little to no change in motor and cognitive performance, contusion volume, or cerebral edema. To examine the consequences of persistent hyperglycemia (as seen in diabetic patients), animals were treated with streptozotocin (STZ) to induce type 1 diabetes. We find that the presence of persistent STZ-induced hyperglycemia results in a reduction of brain edema. Insulin therapy to reduce blood glucose reverses this beneficial effect of hyperglycemia. Taken together, our results indicate that an acute increase in blood glucose levels may not be harmful, and that intervention with insulin therapy to lower blood glucose levels in TBI patients may increase secondary brain damage.
Collapse
Affiliation(s)
- Julia Hill
- Department of Neurobiology and Anatomy, The University of Texas Medical School, Houston, Texas 77225, USA
| | | | | |
Collapse
|
48
|
Loane DJ, Faden AI. Neuroprotection for traumatic brain injury: translational challenges and emerging therapeutic strategies. Trends Pharmacol Sci 2010; 31:596-604. [PMID: 21035878 DOI: 10.1016/j.tips.2010.09.005] [Citation(s) in RCA: 434] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 09/25/2010] [Accepted: 09/27/2010] [Indexed: 11/30/2022]
Abstract
Traumatic brain injury (TBI) causes secondary biochemical changes that contribute to subsequent tissue damage and associated neuronal cell death. Neuroprotective treatments that limit secondary tissue loss and/or improve behavioral outcome have been well established in multiple animal models of TBI. However, translation of such neuroprotective strategies to human injury have been disappointing, with the failure of more than thirty controlled clinical trials. Both conceptual issues and methodological differences between preclinical and clinical injury have undoubtedly contributed to these translational difficulties. More recently, changes in experimental approach, as well as altered clinical trial methodologies, have raised cautious optimism regarding the outcomes of future clinical trials. Here we critically review developing experimental neuroprotective strategies that show promise, and we propose criteria for improving the probability of successful clinical translation.
Collapse
Affiliation(s)
- David J Loane
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), National Study Center for Trauma and Emergency Medical Systems, University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
49
|
Lescot T, Fulla-Oller L, Palmier B, Po C, Beziaud T, Puybasset L, Plotkine M, Gillet B, Meric P, Marchand-Leroux C. Effect of Acute Poly(ADP-Ribose) Polymerase Inhibition by 3-AB on Blood–Brain Barrier Permeability and Edema Formation after Focal Traumatic Brain Injury in Rats. J Neurotrauma 2010; 27:1069-79. [DOI: 10.1089/neu.2009.1188] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Thomas Lescot
- Equipe de recherche “Pharmacologie de la Circulation Cérébrale” (EA 2510), Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
- Réanimation neurochirurgicale–Département d'Anesthésie Réanimation, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP) et Université Pierre et Marie Curie, Paris, France
| | - Laurence Fulla-Oller
- Réanimation neurochirurgicale–Département d'Anesthésie Réanimation, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP) et Université Pierre et Marie Curie, Paris, France
- Laboratoire de Résonance Magnétique Nucléaire Biologique, Institut de Chimie des Substances Naturelles (ICSN) et Centre National de la Recherche Scientifique (CNRS), Gif sur Yvette, France
| | - Bruno Palmier
- Equipe de recherche “Pharmacologie de la Circulation Cérébrale” (EA 2510), Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
| | - Christelle Po
- Laboratoire de Résonance Magnétique Nucléaire Biologique, Institut de Chimie des Substances Naturelles (ICSN) et Centre National de la Recherche Scientifique (CNRS), Gif sur Yvette, France
| | - Tiphaine Beziaud
- Equipe de recherche “Pharmacologie de la Circulation Cérébrale” (EA 2510), Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
| | - Louis Puybasset
- Réanimation neurochirurgicale–Département d'Anesthésie Réanimation, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP) et Université Pierre et Marie Curie, Paris, France
| | - Michel Plotkine
- Equipe de recherche “Pharmacologie de la Circulation Cérébrale” (EA 2510), Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
| | - Brigitte Gillet
- Laboratoire de Résonance Magnétique Nucléaire Biologique, Institut de Chimie des Substances Naturelles (ICSN) et Centre National de la Recherche Scientifique (CNRS), Gif sur Yvette, France
| | - Philippe Meric
- Laboratoire de Résonance Magnétique Nucléaire Biologique, Institut de Chimie des Substances Naturelles (ICSN) et Centre National de la Recherche Scientifique (CNRS), Gif sur Yvette, France
| | - Catherine Marchand-Leroux
- Equipe de recherche “Pharmacologie de la Circulation Cérébrale” (EA 2510), Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
| |
Collapse
|
50
|
Sarnaik AA, Conley YP, Okonkwo DO, Barr TL, Fink EL, Szabo C, Kochanek PM, Clark RS. Influence of PARP-1 polymorphisms in patients after traumatic brain injury. J Neurotrauma 2010; 27:465-71. [PMID: 19925161 PMCID: PMC2867630 DOI: 10.1089/neu.2009.1171] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) plays an important role in the cellular response to stress and DNA damage. However, excessive activity of PARP-1 exacerbates brain injury via NAD+ depletion and energy failure. The purpose of this study was to determine if tagging single nucleotide polymorphisms (tSNPs) covering multiple regions of the PARP-1 gene are related to outcome after traumatic brain injury (TBI) in humans. DNA from 191 adult patients with severe TBI was assayed for four tSNPs corresponding to haplotype blocks spanning the PARP-1 gene. Categorization as favorable or poor outcome was based on Glasgow Outcome Scale (GOS) score assigned at 6 months. PARP-1 enzyme activity was indirectly evaluated by quantifying poly-ADP-ribose (PAR)-modified proteins in cerebrospinal fluid (CSF) using an enzyme-linked immunosorbent assay. In multiple logistic regression analysis controlling for age, initial Glasgow Coma Scale score, and gender, the AA genotype of SNP rs3219119 was an independent predictor of favorable neurologic outcome. This SNP tags a haplotype block spanning the automodification and catalytic domains of the PARP-1 gene. SNP rs2271347 correlated with CSF PAR-modified protein level. This SNP, which did not correlate with outcome, tags a haplotype block spanning the promoter region of the PARP-1 gene. We conclude that after severe TBI in humans, a PARP-1 polymorphism within the automodification-catalytic domain is associated with neurological outcome, while a polymorphism within the promoter region was associated with CSF PAR-modified protein level. These findings must be replicated in a prospective study before the relevance of PARP-1 polymorphisms after TBI can be established.
Collapse
Affiliation(s)
- Ajit A. Sarnaik
- Safar Center for Resuscitation Research and Department of Critical Care
Medicine, University of Pittsburgh School of
Medicine, Pittsburgh, Pennsylvania
- Critical Care Medicine, Children's Hospital of Michigan, Detroit,
Michigan
| | - Yvette P. Conley
- Departments of Health Promotion and Development and Genetics,
University of Pittsburgh, Pittsburgh,
Pennsylvania
| | - David O. Okonkwo
- Department of Neurological Surgery, University of
Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Taura L. Barr
- Departments of Health Promotion and Development and Genetics,
University of Pittsburgh, Pittsburgh,
Pennsylvania
- Tissue Injury Unit, National Institute of Nursing Research, Bethesda,
Maryland
| | - Ericka L. Fink
- Safar Center for Resuscitation Research and Department of Critical Care
Medicine, University of Pittsburgh School of
Medicine, Pittsburgh, Pennsylvania
| | - Csaba Szabo
- Department of Anesthesiology, The University of Texas
Medical Branch, Galveston, Texas
| | - Patrick M. Kochanek
- Safar Center for Resuscitation Research and Department of Critical Care
Medicine, University of Pittsburgh School of
Medicine, Pittsburgh, Pennsylvania
| | - Robert S.B. Clark
- Safar Center for Resuscitation Research and Department of Critical Care
Medicine, University of Pittsburgh School of
Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|