1
|
Boyle BR, Berghella AP, Blanco-Suarez E. Astrocyte Regulation of Neuronal Function and Survival in Stroke Pathophysiology. ADVANCES IN NEUROBIOLOGY 2024; 39:233-267. [PMID: 39190078 DOI: 10.1007/978-3-031-64839-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The interactions between astrocytes and neurons in the context of stroke play crucial roles in the disease's progression and eventual outcomes. After a stroke, astrocytes undergo significant changes in their morphology, molecular profile, and function, together termed reactive astrogliosis. Many of these changes modulate how astrocytes relate to neurons, inducing mechanisms both beneficial and detrimental to stroke recovery. For example, excessive glutamate release and astrocytic malfunction contribute to excitotoxicity in stroke, eventually causing neuronal death. Astrocytes also provide essential metabolic support and neurotrophic signals to neurons after stroke, ensuring homeostatic stability and promoting neuronal survival. Furthermore, several astrocyte-secreted molecules regulate synaptic plasticity in response to stroke, allowing for the rewiring of neural circuits to compensate for damaged areas. In this chapter, we highlight the current understanding of the interactions between astrocytes and neurons in response to stroke, explaining the varied mechanisms contributing to injury progression and the potential implications for future therapeutic interventions.
Collapse
Affiliation(s)
- Bridget R Boyle
- Department of Neuroscience, Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrea P Berghella
- Department of Neuroscience, Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Elena Blanco-Suarez
- Department of Neuroscience, Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
- Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA.
- Department of Neurological Surgery, Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Mihailova V, Stoyanova II, Tonchev AB. Glial Populations in the Human Brain Following Ischemic Injury. Biomedicines 2023; 11:2332. [PMID: 37760773 PMCID: PMC10525766 DOI: 10.3390/biomedicines11092332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
There is a growing interest in glial cells in the central nervous system due to their important role in maintaining brain homeostasis under physiological conditions and after injury. A significant amount of evidence has been accumulated regarding their capacity to exert either pro-inflammatory or anti-inflammatory effects under different pathological conditions. In combination with their proliferative potential, they contribute not only to the limitation of brain damage and tissue remodeling but also to neuronal repair and synaptic recovery. Moreover, reactive glial cells can modulate the processes of neurogenesis, neuronal differentiation, and migration of neurons in the existing neural circuits in the adult brain. By discovering precise signals within specific niches, the regulation of sequential processes in adult neurogenesis holds the potential to unlock strategies that can stimulate the generation of functional neurons, whether in response to injury or as a means of addressing degenerative neurological conditions. Cerebral ischemic stroke, a condition falling within the realm of acute vascular disorders affecting the circulation in the brain, stands as a prominent global cause of disability and mortality. Extensive investigations into glial plasticity and their intricate interactions with other cells in the central nervous system have predominantly relied on studies conducted on experimental animals, including rodents and primates. However, valuable insights have also been gleaned from in vivo studies involving poststroke patients, utilizing highly specialized imaging techniques. Following the attempts to map brain cells, the role of various transcription factors in modulating gene expression in response to cerebral ischemia is gaining increasing popularity. Although the results obtained thus far remain incomplete and occasionally ambiguous, they serve as a solid foundation for the development of strategies aimed at influencing the recovery process after ischemic brain injury.
Collapse
Affiliation(s)
- Victoria Mihailova
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University Varna, 9000 Varna, Bulgaria; (I.I.S.); (A.B.T.)
| | | | | |
Collapse
|
3
|
Beresewicz-Haller M. Hippocampal region-specific endogenous neuroprotection as an approach in the search for new neuroprotective strategies in ischemic stroke. Fiction or fact? Neurochem Int 2023; 162:105455. [PMID: 36410452 DOI: 10.1016/j.neuint.2022.105455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Ischemic stroke is the leading cause of death and long-term disability worldwide, and, while considerable progress has been made in understanding its pathophysiology, the lack of effective treatments remains a major concern. In that context, receiving more and more consideration as a promising therapeutic method is the activation of natural adaptive mechanisms (endogenous neuroprotection) - an approach that seeks to enhance and/or stimulate the endogenous processes of plasticity and protection of the neuronal system that trigger the brain's intrinsic capacity for self-defence. Ischemic preconditioning is a classic example of endogenous neuroprotection, being the process by which one or more brief, non-damaging episodes of ischemia-reperfusion (I/R) induce tissue resistance to subsequent prolonged, damaging ischemia. Another less-known example is resistance to an I/R episode mounted by the hippocampal region consisting of CA2, CA3, CA4 and the dentate gyrus (here abbreviated to CA2-4, DG). This can be contrasted with the ischemia-vulnerable CA1 region. There is not yet a good understanding of these different sensitivities of the hippocampal regions, and hence of the endogenous neuroprotection characteristic of CA2-4, DG. However, this region is widely reported to have properties distinct from CA1, and capable of generating resistance to an I/R episode. These include activation of neurotrophic and neuroprotective factors, greater activation of anti-excitotoxic and anti-oxidant mechanisms, increased plasticity potential, a greater energy reserve and improved mitochondrial function. This review seeks to summarize properties of CA2-4, DG in the context of endogenous neuroprotection, and then to assess the potential utility of these properties to therapeutic approaches. In so doing, it appears to represent the first such addressing of the issue of ischemia resistance attributable to CA2-4, DG.
Collapse
|
4
|
He T, Yang GY, Zhang Z. Crosstalk of Astrocytes and Other Cells during Ischemic Stroke. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060910. [PMID: 35743941 PMCID: PMC9228674 DOI: 10.3390/life12060910] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 12/27/2022]
Abstract
Stroke is a leading cause of death and long-term disability worldwide. Astrocytes structurally compose tripartite synapses, blood–brain barrier, and the neurovascular unit and perform multiple functions through cell-to-cell signaling of neurons, glial cells, and vasculature. The crosstalk of astrocytes and other cells is complicated and incompletely understood. Here we review the role of astrocytes in response to ischemic stroke, both beneficial and detrimental, from a cell–cell interaction perspective. Reactive astrocytes provide neuroprotection through antioxidation and antiexcitatory effects and metabolic support; they also contribute to neurorestoration involving neurogenesis, synaptogenesis, angiogenesis, and oligodendrogenesis by crosstalk with stem cells and cell lineage. In the meantime, reactive astrocytes also play a vital role in neuroinflammation and brain edema. Glial scar formation in the chronic phase hinders functional recovery. We further discuss astrocyte enriched microRNAs and exosomes in the regulation of ischemic stroke. In addition, the latest notion of reactive astrocyte subsets and astrocytic activity revealed by optogenetics is mentioned. This review discusses the current understanding of the intimate molecular conversation between astrocytes and other cells and outlines its potential implications after ischemic stroke. “Neurocentric” strategies may not be sufficient for neurological protection and recovery; future therapeutic strategies could target reactive astrocytes.
Collapse
Affiliation(s)
- Tingting He
- Department of Neurology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai 200072, China;
- Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
- Correspondence: (G.-Y.Y.); (Z.Z.); Tel.: +86-21-62933186 (G.-Y.Y.); Fax: +86-21-62932302 (G.-Y.Y.)
| | - Zhijun Zhang
- Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
- Correspondence: (G.-Y.Y.); (Z.Z.); Tel.: +86-21-62933186 (G.-Y.Y.); Fax: +86-21-62932302 (G.-Y.Y.)
| |
Collapse
|
5
|
Dillon-Carter O, Johnston RE, Borlongan CV, Truckenmiller ME, Coggiano M, Freed WJ. T155g-Immortalized Kidney Cells Produce Growth Factors and Reduce Sequelae of Cerebral Ischemia. Cell Transplant 2017. [DOI: 10.3727/096020198390012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Fetal rat kidney cells produce high levels of glial-derived neurotrophic factor (GDNF) and exert neuroprotective effects when transplanted into the brain in animal models of Parkinson's disease and stroke. The purpose of the present experiment was to produce kidney cell lines that secrete GDNF. Genes encoding two truncated N-terminal fragments of SV40 large T antigen, T155g and T155c, which does not code for small t antigen, were used. T155g was transduced into E17 cultured fetal Sprague-Dawley rat kidney cortex cells using a plasmid vector, and T155c was transduced with a plasmid and a retroviral vector. Sixteen clones were isolated from cultures transfected with the T155g-expressing plasmid. No cell lines were obtained with T155c. Four clones produced GDNF at physiological concentrations ranging from 55 to 93 pg/ml of medium. These four clones were transplanted into the ischemic core or penumbra of rats that had undergone middle cerebral artery occlusion (MCAO). Three of the four clones reduced the volume of infarction and the behavioral abnormalities normally resulting from MCAO. Blocking experiments with antibodies to GDNF and platelet-derived growth factor (PDGF) suggested that these growth factors contributed only minimally to the reduction in infarct volume and behavioral abnormality. These cell lines may be useful for intracerebral transplantation in animal models of brain injury, stroke, or Parkinson's disease.
Collapse
Affiliation(s)
- Ora Dillon-Carter
- Cellular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, MD 21224
| | - Rowena E. Johnston
- Cellular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, MD 21224
| | - Cesario V. Borlongan
- Cellular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, MD 21224
| | - Mary Ellen Truckenmiller
- Cellular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, MD 21224
| | - Mark Coggiano
- Cellular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, MD 21224
| | - William J. Freed
- Cellular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, MD 21224
| |
Collapse
|
6
|
Effects of Pretreatment with Warfarin or Rivaroxaban on Neurovascular Unit Dissociation after Tissue Plasminogen Activator Thrombolysis in Ischemic Rat Brain. J Stroke Cerebrovasc Dis 2016; 25:1997-2003. [DOI: 10.1016/j.jstrokecerebrovasdis.2016.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/20/2016] [Accepted: 04/01/2016] [Indexed: 02/07/2023] Open
|
7
|
Deletion of the hemopexin or heme oxygenase-2 gene aggravates brain injury following stroma-free hemoglobin-induced intracerebral hemorrhage. J Neuroinflammation 2016; 13:26. [PMID: 26831741 PMCID: PMC4736638 DOI: 10.1186/s12974-016-0490-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 01/23/2016] [Indexed: 01/10/2023] Open
Abstract
Background Following intracerebral hemorrhage (ICH), red blood cells release massive amounts of toxic heme that causes local brain injury. Hemopexin (Hpx) has the highest binding affinity to heme and participates in its transport, while heme oxygenase 2 (HO2) is the rate-limiting enzyme for the degradation of heme. Microglia are the resident macrophages in the brain; however, the significance and role of HO2 and Hpx on microglial clearance of the toxic heme (iron-protoporphyrin IX) after ICH still remain understudied. Accordingly, we postulated that global deletion of constitutive HO2 or Hpx would lead to worsening of ICH outcomes. Methods Intracerebral injection of stroma-free hemoglobin (SFHb) was used in our study to induce ICH. Hpx knockout (Hpx−/−) or HO2 knockout (HO2−/−) mice were injected with 10 μL of SFHb in the striatum. After injection, behavioral/functional tests were performed, along with anatomical analyses. Iron deposition and neuronal degeneration were depicted by Perls’ and Fluoro-Jade B staining, respectively. Immunohistochemistry with anti-ionized calcium-binding adapter protein 1 (Iba1) was used to estimate activated microglial cells around the injured site. Results This study shows that deleting Hpx or HO2 aggravated SFHb-induced brain injury. Compared to wild-type littermates, larger lesion volumes were observed in Hpx−/− and HO2−/− mice, which also bear more degenerating neurons in the peri-lesion area 24 h postinjection. Fewer Iba1-positive microglial cells were detected at the peri-lesion area in Hpx−/− and HO2−/− mice, interestingly, which is associated with markedly increased iron-positive microglial cells. Moreover, the Iba1-positive microglial cells increased from 24 to 72 h postinjection and were accompanied with improved neurologic deficits in Hpx−/− and HO2−/− mice. These results suggest that Iba1-positive microglial cells could engulf the extracellular SFHb and provide protective effects after ICH. We then treated cultured primary microglial cells with SFHb at low and high concentrations. The results show that microglial cells actively take up the extracellular SFHb. Of interest, we also found that iron overload in microglia significantly reduces the Iba1 expression level and resultantly inhibits microglial phagocytosis. Conclusions This study suggests that microglial cells contribute to hemoglobin-heme clearance after ICH; however, the resultant iron overloads in microglia appear to decrease Iba1 expression and to further inhibit microglial phagocytosis.
Collapse
|
8
|
Yamashita T, Abe K. Recent Progress in Therapeutic Strategies for Ischemic Stroke. Cell Transplant 2016; 25:893-8. [PMID: 26786838 DOI: 10.3727/096368916x690548] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Possible strategies for treating stroke include neuroprotection in the acute phase of cerebral ischemia and stem cell therapy in the chronic phase of cerebral ischemia. Previously, we have studied the temporal and spatial expression patterns of c-fos, hypoxia inducible factor-1α (HIF-1α), heat shock protein 70 (HSP70), and annexin V after 90 min of transient middle cerebral occlusion in rats and concluded that there is a time window for neuroprotection from 12 to 48 h after ischemia. In addition, we have estimated the neuroprotective effect of glial cell line-derived neurotrophic factor (GDNF) by injecting Sendai viral vector containing the GDNF gene into the postischemic brain. This Sendai virus-mediated gene transfer of GDNF showed a significant neuroprotective effect in the ischemic brain. Additionally, we have administered GDNF and hepatocyte growth factor (HGF) protein into the postischemic rat brain and estimated the infarct size and antiapoptotic and antiautophagic effects. GDNF and HGF significantly reduced infarct size, the number of microtubule-associated protein 1 light chain 3 (LC3)-positive cells, and the number of terminal deoxynucleotidyl transferase-mediated dUTP-biotin in situ nick-end labeling (TUNEL)-positive cells, indicating that GDNF and HGF were greatly associated with not only the antiapoptotic effect but also the antiautophagic effects. Finally, we have previously transplanted undifferentiated iPSCs into the ipsilateral striatum and cortex at 24 h after cerebral ischemia. Histological analysis was performed at 14 and 28 days after cell transplantation, and we found that iPSCs could supply a great number of doublecortin-positive neuroblasts but also formed tridermal teratoma in the ischemic brain. Our results suggest that iPSCs have a potential to provide neural cells after ischemic brain injury if tumorigenesis is properly controlled. In the future, we will combine these strategies to develop more effective therapies for the treatment of strokes.
Collapse
Affiliation(s)
- Toru Yamashita
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | |
Collapse
|
9
|
Jablonska A, Drela K, Wojcik-Stanaszek L, Janowski M, Zalewska T, Lukomska B. Short-Lived Human Umbilical Cord-Blood-Derived Neural Stem Cells Influence the Endogenous Secretome and Increase the Number of Endogenous Neural Progenitors in a Rat Model of Lacunar Stroke. Mol Neurobiol 2015; 53:6413-6425. [PMID: 26607630 PMCID: PMC5085993 DOI: 10.1007/s12035-015-9530-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 11/08/2015] [Indexed: 12/12/2022]
Abstract
Stroke is the leading cause of severe disability, and lacunar stroke is related to cognitive decline and hemiparesis. There is no effective treatment for the majority of patients with stroke. Thus, stem cell-based regenerative medicine has drawn a growing body of attention due to the capabilities for trophic factor expression and neurogenesis enhancement. Moreover, it was shown in an experimental autoimmune encephalomyelitis (EAE) model that even short-lived stem cells can be therapeutic, and we have previously observed that phenomenon indirectly. Here, in a rat model of lacunar stroke, we investigated the molecular mechanisms underlying the positive therapeutic effects of short-lived human umbilical cord-blood-derived neural stem cells (HUCB-NSCs) through the distinct measurement of exogenous human and endogenous rat trophic factors. We have also evaluated neurogenesis and metalloproteinase activity as cellular components of therapeutic activity. As expected, we observed an increased proliferation and migration of progenitors, as well as metalloproteinase activity up to 14 days post transplantation. These changes were most prominent at the 7-day time point when we observed 30 % increases in the number of bromodeoxyuridine (BrdU)-positive cells in HUCB-NSC transplanted animals. The expression of human trophic factors was present until 7 days post transplantation, which correlated well with the survival of the human graft. For these 7 days, the level of messenger RNA (mRNA) in the analyzed trophic factors was from 300-fold for CNTF to 10,000-fold for IGF, much higher compared to constitutive expression in HUCB-NSCs in vitro. What is interesting is that there was no increase in the expression of rat trophic factors during the human graft survival, compared to that in non-transplanted animals. However, there was a prolongation of a period of increased trophic expression until 14 days post transplantation, while, in non-transplanted animals, there was a significant drop in rat trophic expression at that time point. We conclude that the positive therapeutic effect of short-lived stem cells may be related to the net increase in the amount of trophic factors (rat + human) until graft death and to the prolonged increase in rat trophic factor expression subsequently.
Collapse
Affiliation(s)
- Anna Jablonska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Drela
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Luiza Wojcik-Stanaszek
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Miroslaw Janowski
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.,Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.,Cellular Imaging Section, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Teresa Zalewska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
10
|
Abstract
Brain injury continues to be one of the leading causes of disability worldwide. Despite decades of research, there is currently no pharmacologically effective treatment for preventing neuronal loss and repairing the brain. As a result, novel therapeutic approaches, such as cell-based therapies, are being actively pursued to repair tissue damage and restore neurological function after injury. In this study, we examined the neuroprotective potential of amniotic fluid (AF) single cell clones, engineered to secrete glial cell derived neurotrophic factor (AF-GDNF), both in vitro and in a surgically induced model of brain injury. Our results show that pre-treatment with GDNF significantly increases cell survival in cultures of AF cells or cortical neurons exposed to hydrogen peroxide. Since improving the efficacy of cell transplantation depends on enhanced graft cell survival, we investigated whether AF-GDNF cells seeded on polyglycolic acid (PGA) scaffolds could enhance graft survival following implantation into the lesion cavity. Encouragingly, the AF-GDNF cells survived longer than control AF cells in serum-free conditions and continued to secrete GDNF both in vitro and following implantation into the injured motor cortex. AF-GDNF implantation in the acute period following injury was sufficient to activate the MAPK/ERK signaling pathway in host neural cells in the peri-lesion area, potentially boosting endogenous neuroprotective pathways. These results were complemented with promising trends in beam walk tasks in AF-GDNF/PGA animals during the 7 day timeframe. Further investigation is required to determine whether significant behavioural improvement can be achieved at a longer timeframe.
Collapse
|
11
|
Kono S, Yamashita T, Deguchi K, Omote Y, Yunoki T, Sato K, Kurata T, Hishikawa N, Abe K. Rivaroxaban and Apixaban Reduce Hemorrhagic Transformation After Thrombolysis by Protection of Neurovascular Unit in Rat. Stroke 2014; 45:2404-10. [DOI: 10.1161/strokeaha.114.005316] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Syoichiro Kono
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kentaro Deguchi
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yoshio Omote
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Taijun Yunoki
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kota Sato
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tomoko Kurata
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Nozomi Hishikawa
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Koji Abe
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
12
|
Deguchi K, Liu N, Liu W, Omote Y, Kono S, Yunoki T, Deguchi S, Yamashita T, Ikeda Y, Abe K. Pericyte protection by edaravone after tissue plasminogen activator treatment in rat cerebral ischemia. J Neurosci Res 2014; 92:1509-19. [PMID: 24938625 PMCID: PMC4263311 DOI: 10.1002/jnr.23420] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 04/16/2014] [Accepted: 04/27/2014] [Indexed: 12/31/2022]
Abstract
Pericytes play a pivotal role in contraction, mediating inflammation and regulation of blood flow in the brain. In this study, changes of pericytes in the neurovascular unit (NVU) were examined in relation to the effects of exogenous tissue plasminogen activator (tPA) and a free radical scavenger, edaravone. Immunohistochemistry and Western blot analyses showed that the overlap between platelet-derived growth factor receptor β-positive pericytes and N-acetylglucosamine oligomers (NAGO)-positive endothelial cells increased significantly at 4 days after 90 min of transient middle cerebral artery occlusion (tMCAO). The number of pericytes and the overlap with NAGO decreased with tPA but recovered with edaravone 4 days after tMCAO with proliferation. Thus, tPA treatment damaged pericytes, resulting in the detachment from astrocytes and a decrease in glial cell line-derived neurotrophic factor secretion. However, treatment with edaravone greatly improved tPA-induced damage to pericytes. The present study demonstrates that exogenous tPA strongly damages pericytes and destroys the integrity of the NVU, but edaravone treatment can greatly ameliorate such damage after acute cerebral ischemia in rats.
Collapse
Affiliation(s)
- Kentaro Deguchi
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hamakawa Y, Omori N, Ouchida M, Nagase M, Sato K, Nagano I, Shoji M, Fujita T, Abe K. Severity dependent up-regulations of LOX-1 and MCP-1 in early sclerotic changes of common carotid arteries in spontaneously hypertensive rats. Neurol Res 2013; 26:767-73. [PMID: 15494120 DOI: 10.1179/016164104225016074] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Lectin-like oxidized low-density lipoprotein receptor (LOX-1) and monocyte chemoattractant protein-1 (MCP-1) are molecules involving in the initiation and progression of atherosclerosis. In order to examine a possible difference in LOX-1 and MCP-1 expressions depending on the severity of early stage of atherosclerosis, we investigated atherosclerotic changes by exposure to hypertension and hyperlipidemia in common carotid arteries (CCAs) of stroke-prone spontaneously hypertensive rat (SHR-SP). Three rat model groups such as control [Wistar Kyoto rat (WKY) group], hypertension (SHR-SP group) and hypertension + hyperlipidemia [SHR-SP + high fat and cholesterol (HFC) group] were used. Body weights, brain weights, systolic blood pressures and serum levels of total cholesterol, low-density lipoprotein and triglyceride were measured at 0, 5, 10 and 15 days after appropriate diet. Immunohistochemistry showed that the positive area and the strength of LOX-1 and MCP-1 were larger in the SHR-SP + HFC group than in the SHR-SP group, while no immunoreactivities were found in the WKY group. Conventional RT-PCR and real-time PCR analyses showed that mRNAs of those in the SHR-SP group were higher with greater up-regulation in the SHR-SP + HFC group. LOX-1 and MCP-1 expressions were coordinately up-regulated at mRNA and protein levels in an early stage of sclerosis depending on the severity of atherosclerotic stress. Activations of LOX-1 and MCP-1 are collectively involved in the early stage of atherosclerosis.
Collapse
Affiliation(s)
- Y Hamakawa
- Department of Neurology, Graduate School of Medicine and Dentistry, Okayama University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yan BC, Park JH, Kim SK, Choi JH, Lee CH, Yoo KY, Kwon YG, Kim YM, Kim JD, Won MH. Comparison of trophic factors changes in the hippocampal CA1 region between the young and adult gerbil induced by transient cerebral ischemia. Cell Mol Neurobiol 2012; 32:1231-42. [PMID: 22552890 PMCID: PMC11498505 DOI: 10.1007/s10571-012-9848-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 04/16/2012] [Indexed: 10/28/2022]
Abstract
In the present study, we investigated neuronal death/damage in the gerbil hippocampal CA1 region (CA1) and compared changes in some trophic factors, such as brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF) and vascular endothelial growth factor (VEGF), in the CA1 between the adult and young gerbils after 5 min of transient cerebral ischemia. Most of pyramidal neurons (89%) were damaged 4 days after ischemia-reperfusion (I-R) in the adult; however, in the young, about 59% of pyramidal neurons were damaged 7 days after I-R. The immunoreactivity and levels of BDNF and VEGF, not GDNF, in the CA1 of the normal young were lower than those in the normal adult. Four days after I-R in the adult group, the immunoreactivity and levels of BDNF and VEGF were distinctively decreased, and the immunoreactivity and level of GDNF were increased. However, in the young group, all of their immunoreactivities and levels were much higher than those in the normal young group. From 7 days after I-R, all the immunoreactivities and levels were apparently decreased compared to those of the normal adult and young. In brief, we confirmed our recent finding: more delayed and less neuronal death occurred in the young following I-R, and we newly found that the immunoreactivities of trophic factors, such as BDNF, GDNF, and VEGF, in the stratum pyramidale of the CA1 in the young gerbil were much higher than those in the adult gerbil 4 days after transient cerebral ischemia.
Collapse
Affiliation(s)
- Bing Chun Yan
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Sung Koo Kim
- Department of Pediatrics, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, 150-950 South Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Choong Hyun Lee
- Department of Anatomy and Physiology, College of Pharmacy, Dankook University, Cheonan, 330-714 South Korea
| | - Ki-Yeon Yoo
- Department of Oral Anatomy, College of Dentistry and Research Institute of Oral Biology, Gangneung-Wonju National University, Gangneung, 210-702 South Korea
| | - Young-Geun Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Young-Myeong Kim
- Vascular System Research Center and Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Jong-Dai Kim
- Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon, 200-701 South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, 200-701 South Korea
| |
Collapse
|
15
|
Abstract
The glial cell line-derived neurotrophic factor (GDNF) was first identified as a survival factor for midbrain dopaminergic neurons, but additional studies provided evidences for a role as a trophic factor for other neurons of the central and peripheral nervous systems. GDNF regulates cellular activity through interaction with glycosyl-phosphatidylinositol-anchored cell surface receptors, GDNF family receptor-α1, which might signal through the transmembrane Ret tyrosine receptors or the neural cell adhesion molecule, to promote cell survival, neurite outgrowth, and synaptogenesis. The neuroprotective effect of exogenous GDNF has been shown in different experimental models of focal and global brain ischemia, by local administration of the trophic factor, using viral vectors carrying the GDNF gene and by transplantation of GDNF-expressing cells. These different strategies and the mechanisms contributing to neuroprotection by GDNF are discussed in this review. Importantly, neuroprotection by GDNF was observed even when administered after the ischemic injury.
Collapse
Affiliation(s)
- Emília P Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, Coimbra, Portugal
| | | | | | | |
Collapse
|
16
|
Abstract
Diseases of the human brain are almost universally attributed to malfunction or loss of nerve cells. However, a considerable amount of work has, during the last decade, expanded our view on the role of astrocytes in CNS (central nervous system), and this analysis suggests that astrocytes contribute to both initiation and propagation of many (if not all) neurological diseases. Astrocytes provide metabolic and trophic support to neurons and oligodendrocytes. Here, we shall endeavour a broad overviewing of the progress in the field and forward the idea that loss of homoeostatic astroglial function leads to an acute loss of neurons in the setting of acute insults such as ischaemia, whereas more subtle dysfunction of astrocytes over periods of months to years contributes to epilepsy and to progressive loss of neurons in neurodegenerative diseases. The majority of therapeutic drugs currently in clinical use target neuronal receptors, channels or transporters. Future therapeutic efforts may benefit by a stronger focus on the supportive homoeostatic functions of astrocytes.
Collapse
|
17
|
Wang E, Gao J, Yang Q, Parsley MO, Dunn TJ, Zhang L, DeWitt DS, Denner L, Prough DS, Wu P. Molecular mechanisms underlying effects of neural stem cells against traumatic axonal injury. J Neurotrauma 2011; 29:295-312. [PMID: 22077363 DOI: 10.1089/neu.2011.2043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
Transplantation of neural stem cells (NSCs) improves functional outcomes following traumatic brain injury (TBI). Previously we demonstrated that human NSCs (hNSCs) via releasing glial cell line-derived neurotrophic factor (GDNF), preserved cognitive function in rats following parasagittal fluid percussion. However, the underlying mechanisms remain elusive. In this study, we report that NSC grafts significantly reduce TBI-induced axonal injury in the fimbria and other brain regions by blocking abnormal accumulation of amyloid precursor protein (APP). A preliminary mass spectrometry proteomics study revealed the opposite effects of TBI and NSCs on many of the cytoskeletal proteins in the CA3 region of the hippocampus, including α-smooth muscle actin (α-SMA), the main stress fiber component. Further, Western blot and immunostaining studies confirmed that TBI significantly increased the expression of α-SMA in hippocampal neurons, whereas NSC grafts counteracted the effect of TBI. In an in vitro model, rapid stretch injury significantly shortened lengths of axons and dendrites, increased the expression of both APP and α-SMA, and induced actin aggregation, effects offset by GDNF treatment. These GDNF protective effects were reversed by a GDNF-neutralizing antibody or a specific calcineurin inhibitor, and were mimicked by a specific Rho inhibitor. In summary, we demonstrate for the first time that hNSC grafts and treatment with GDNF acutely reduce traumatic axonal injury and promote neurite outgrowth. Possible mechanisms underlying GDNF-mediated neurite protection include balancing the activity of calcineurin, whereas GDNF-induced neurite outgrowth may result from the reduction of the abnormal α-SMA expression and actin aggregation via blocking Rho signals. Our study also suggests the necessity of further exploring the roles of α-SMA in the central nervous system (CNS), which may lead to a new avenue to facilitate recovery after TBI and other injuries.
Collapse
Affiliation(s)
- Enyin Wang
- Department of Neuroscience and Cell Biology, University Of Texas Medical Branch, Galveston, Texas, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Modifying neurorepair and neuroregenerative factors with tPA and edaravone after transient middle cerebral artery occlusion in rat brain. Brain Res 2011; 1436:168-77. [PMID: 22221736 DOI: 10.1016/j.brainres.2011.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 12/05/2011] [Accepted: 12/09/2011] [Indexed: 11/20/2022]
Abstract
Changes in expression of neurorepair and neuroregenerative factors were examined after transient cerebral ischemia in relation to the effects of tissue plasminogen activator (tPA) and the free radical scavenger edaravone. Physiological saline or edaravone was injected twice during 90 min of transient middle cerebral artery occlusion (tMCAO) in rats, followed by the same saline or tPA at reperfusion. Sizes of the infarct and protein factors relating to neurorepair and neuroregeneration were examined at 4d after tMCAO. The protein factors examined were: a chondroitin sulfate proteoglycan neurocan, semaphorin type 3A (Sema3A), a myelin-associated glycoprotein receptor (Nogo receptor, Nogo-R), a synaptic regenerative factor (growth associated protein-43, GAP43), and a chemotropic factor netrin receptor (deleted in colorectal cancer, DCC). Two groups treated by edaravone only or edaravone plus tPA showed a reduction in infarct volume compared to the two groups treated by vehicle only or vehicle plus tPA. Immunohistochemistry and western blot analyses indicated that protein expression of neurocan, Sema3A, Nogo-R, GAP43, and DCC was decreased with tPA, but recovered with edaravone. Additive edaravone prevented the reductions of these five proteins induced by tPA. The present study demonstrates for the first time that exogenous tPA reduced protein factors involved in inhibiting and promoting axonal growth, but that edaravone ameliorated such damage in brain repair after acute ischemia.
Collapse
|
19
|
Degeorge ML, Marlowe D, Werner E, Soderstrom KE, Stock M, Mueller A, Bohn MC, Kozlowski DA. Combining glial cell line-derived neurotrophic factor gene delivery (AdGDNF) with L-arginine decreases contusion size but not behavioral deficits after traumatic brain injury. Brain Res 2011; 1403:45-56. [PMID: 21672665 DOI: 10.1016/j.brainres.2011.05.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/20/2011] [Accepted: 05/25/2011] [Indexed: 01/09/2023]
Abstract
Our laboratory has previously demonstrated that viral administration of glial cell line-derived neurotrophic factor (AdGDNF), one week prior to a controlled cortical impact (CCI) over the forelimb sensorimotor cortex of the rat (FL-SMC) is neuroprotective, but does not significantly enhance recovery of sensorimotor function. One possible explanation for this discrepancy is that although protected, neurons may not have been functional due to enduring metabolic deficiencies. Additionally, metabolic events following TBI may interfere with expression of therapeutic proteins administered to the injured brain via gene therapy. The current study focused on enhancing the metabolic function of the brain by increasing cerebral blood flow (CBF) with l-arginine in conjunction with administration of AdGDNF immediately following CCI. An adenoviral vector harboring human GDNF was injected unilaterally into FL-SMC of the rat immediately following a unilateral CCI over the FL-SMC. Within 30min of the CCI and AdGDNF injections, some animals were injected with l-arginine (i.v.). Tests of forelimb function and asymmetry were administered for 4weeks post-injury. Animals were sacrificed and contusion size and GDNF protein expression measured. This study demonstrated that rats treated with AdGDNF and l-arginine post-CCI had a significantly smaller contusion than injured rats who did not receive any treatment, or injured rats treated with either AdGDNF or l-arginine alone. Nevertheless, no amelioration of behavioral deficits was seen. These findings suggest that AdGDNF alone following a CCI was not therapeutic and although combining it with l-arginine decreased contusion size, it did not enhance behavioral recovery.
Collapse
Affiliation(s)
- M L Degeorge
- DePaul University, Department of Biological Sciences, Chicago, IL 60614, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Wang T, Wang J, Yin C, Liu R, Zhang JH, Qin X. Down-regulation of Nogo receptor promotes functional recovery by enhancing axonal connectivity after experimental stroke in rats. Brain Res 2010; 1360:147-58. [DOI: 10.1016/j.brainres.2010.08.101] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/30/2010] [Accepted: 08/30/2010] [Indexed: 11/16/2022]
|
21
|
Zhao Y, Rempe DA. Targeting astrocytes for stroke therapy. Neurotherapeutics 2010; 7:439-51. [PMID: 20880507 PMCID: PMC5084305 DOI: 10.1016/j.nurt.2010.07.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 07/01/2010] [Accepted: 07/26/2010] [Indexed: 12/12/2022] Open
Abstract
Stroke remains a major health problem and is a leading cause of death and disability. Past research and neurotherapeutic clinical trials have targeted the molecular mechanisms of neuronal cell death during stroke, but this approach has uniformly failed to reduce stroke-induced damage or to improve functional recovery. Beyond the intrinsic molecular mechanisms inducing neuronal death during ischemia, survival and function of astrocytes is absolutely required for neuronal survival and for functional recovery after stroke. Many functions of astrocytes likely improve neuronal viability during stroke. For example, uptake of glutamate and release of neurotrophins enhances neuronal viability during ischemia. Under certain conditions, however, astrocyte function may compromise neuronal viability. For example, astrocytes may produce inflammatory cytokines or toxic mediators, or may release glutamate. The only clinical neurotherapeutic trial for stroke that specifically targeted astrocyte function focused on reducing release of S-100β from astrocytes, which becomes a neurotoxin when present at high levels. Recent work also suggests that astrocytes, beyond their influence on cell survival, also contribute to angiogenesis, neuronal plasticity, and functional recovery in the several days to weeks after stroke. If these delayed functions of astrocytes could be targeted for enhancing stroke recovery, it could contribute importantly to improving stroke recovery. This review focuses on both the positive and the negative influences of astrocytes during stroke, especially as they may be targeted for translation to human trials.
Collapse
Affiliation(s)
- Yanxin Zhao
- grid.16416.340000000419369174Department of Neurology in the Center for Neural Development and Disease, University of Rochester School of Medicine and Dentistry, 14642 Rochester, New York
| | - David A. Rempe
- grid.16416.340000000419369174Department of Neurology in the Center for Neural Development and Disease, University of Rochester School of Medicine and Dentistry, 14642 Rochester, New York
| |
Collapse
|
22
|
Lucini C, Carla L, Facello B, Bruna F, Maruccio L, Lucianna M, Langellotto F, Fernanda L, Sordino P, Paolo S, Castaldo L, Luciana C. Distribution of glial cell line-derived neurotrophic factor receptor alpha-1 in the brain of adult zebrafish. J Anat 2010; 217:174-85. [PMID: 20572899 DOI: 10.1111/j.1469-7580.2010.01254.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is a potent trophic factor for several types of neurons in the central and peripheral nervous systems. The biological activity of GDNF is mediated by a multicomponent receptor complex that includes a common transmembrane signaling component (the rearranged during transfection (RET) proto-oncogene product, a tyrosine kinase receptor) as well as a GDNF family receptor alpha (GFRalpha) subunit, a high-affinity glycosyl phosphatidylinositol (GPI)-linked binding element. Among the four known GFRalpha subunits, GFRalpha1 preferentially binds to GDNF. In zebrafish (Danio rerio) embryos, the expression of the GFRalpha1a and GFRalpha1b genes has been shown in primary motor neurons, the kidney, and the enteric nervous system. To examine the activity of GFRalpha in the adult brain of a lower vertebrate, we have investigated the localization of GFRalpha1a and GFRalpha1b mRNA and the GFRalpha1 protein in zebrafish. GFRalpha1a and GFRalpha1b transcripts were observed in brain extracts by reverse transcription-polymerase chain reaction. Whole-mount in-situ hybridization experiments revealed a wide distribution of GFRalpha1a and GFRalpha1b mRNAs in various regions of the adult zebrafish brain. These included the olfactory bulbs, dorsal and ventral telencephalic area (telencephalon), preoptic area, dorsal and ventral thalamus, posterior tuberculum and hypothalamus (diencephalon), optic tectum (mesencephalon), cerebellum, and medulla oblongata (rhombencephalon). Finally, expression patterns of the GFRalpha1 protein, detected immunohistochemically, correlated well with the mRNA expression and provided further insights into translational activity at the neuroanatomical level. In conclusion, the current study demonstrated that the presence of GFRalpha1 persists beyond the embryonic development of the zebrafish brain and, together with the GDNF ligand, is probably implicated in the brain physiology of an adult teleost fish.
Collapse
Affiliation(s)
- Carla Lucini
- Department of Biological Structures, Functions and Technology, University of Naples 'Federico II', Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Williams-Karnesky RL, Stenzel-Poore MP. Adenosine and stroke: maximizing the therapeutic potential of adenosine as a prophylactic and acute neuroprotectant. Curr Neuropharmacol 2010; 7:217-27. [PMID: 20190963 PMCID: PMC2769005 DOI: 10.2174/157015909789152209] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/15/2009] [Accepted: 05/18/2009] [Indexed: 12/12/2022] Open
Abstract
Stroke is a leading cause of morbidity and mortality in the United States. Despite intensive research into the development of treatments that lessen the severity of cerebrovascular injury, no major therapies exist. Though the potential use of adenosine as a neuroprotective agent in the context of stroke has long been realized, there are currently no adenosine-based therapies for the treatment of cerebral ischemia and reperfusion. One of the major obstacles to developing adenosine-based therapies for the treatment of stroke is the prevalence of functional adenosine receptors outside the central nervous system. The activities of peripheral immune and vascular endothelial cells are particularly vulnerable to modulation via adenosine receptors. Many of the pathophysiological processes in stroke are a direct result of peripheral immune infiltration into the brain. Ischemic preconditioning, which can be induced by a number of stimuli, has emerged as a promising area of focus in the development of stroke therapeutics. Reprogramming of the brain and immune responses to adenosine signaling may be an underlying principle of tolerance to cerebral ischemia. Insight into the role of adenosine in various preconditioning paradigms may lead to new uses for adenosine as both an acute and prophylactic neuroprotectant.
Collapse
Affiliation(s)
- Rebecca L Williams-Karnesky
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, 3181 Sam Jackson Park Road, Portland, OR 97239, USA.
| | | |
Collapse
|
24
|
Smirkin A, Matsumoto H, Takahashi H, Inoue A, Tagawa M, Ohue S, Watanabe H, Yano H, Kumon Y, Ohnishi T, Tanaka J. Iba1(+)/NG2(+) macrophage-like cells expressing a variety of neuroprotective factors ameliorate ischemic damage of the brain. J Cereb Blood Flow Metab 2010; 30:603-15. [PMID: 19861972 PMCID: PMC2949149 DOI: 10.1038/jcbfm.2009.233] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In a transient 90-min middle cerebral artery occlusion (MCAO) model of rats, a large ischemic lesion is formed where macrophage-like cells massively accumulate, many of which express a macrophage marker, Iba1, and an oligodendrocyte progenitor cell marker, NG2 chondroitin sulfate proteoglycan (NG2); therefore, the cells were termed BINCs (Brain Iba1(+)/NG2(+) Cells). A bone marrow transplantation experiment using green-fluorescent protein-transgenic rats showed that BINCs were derived from bone marrow. 5-Fluorouracil (5FU) injection at 2 days post reperfusion (2 dpr) markedly reduced the number of BINCs at 7 dpr, causing enlargement of necrotic volumes and frequent death of the rats. When isolated BINCs were transplanted into 5FU-aggravated ischemic lesion, the volume of the lesion was much reduced. Quantitative real-time RT-PCR showed that BINCs expressed mRNAs encoding bFGF, BMP2, BMP4, BMP7, GDNF, HGF, IGF-1, PDGF-A, and VEGF. In particular, BINCs expressed IGF-1 mRNA at a very high level. Immunohistochemical staining showed that IGF-1-expressing BINCs were found not only in rat but also human ischemic brain lesions. These results suggest that bone marrow-derived BINCs play a beneficial role in ischemic brain lesions, at least in part, through secretion of neuroprotective factors.
Collapse
Affiliation(s)
- Anna Smirkin
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Toon, Ehime 791-0295, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yamashita T, Deguchi K, Nagotani S, Kamiya T, Abe K. Gene and Stem Cell Therapy in Ischemic Stroke. Cell Transplant 2009; 18:999-1002. [DOI: 10.3727/096368909x471233] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Possible strategies for treating ischemic stroke include neuroprotection (preventing injured neurons from undergoing apoptosis in the acute phase of cerebral ischemia) and stem cell therapy (the repair of disrupted neuronal networks with newly born neurons in the chronic phase of cerebral ischemia). First, we estimated the neuroprotective effect of glial cell line-derived neurotrophic factor (GDNF) by administration of GFNF protein. GDNF protein showed a direct protective effect against ischemic brain damage. Pretreatment of animals with adenoviral vector containing GDNF gene (Ad-GDNF) 24 h before the subsequent transient middle cerebral artery occlusion (MCAO) effectively reduced infarcted volume. Secondly, we studied the neuroprotective effect of a calcium channel blocker, azelnidipine, or a by-product of heme degradation, biliverdin. Both azelnidipine and biliverdin had a neuroprotective effect in the ischemic brain through their antioxidative property. Lastly, we developed a restorative stroke therapy with a bioaffinitive scaffold, which is able to provide an appropriate platform for newly born neurons. In the future, we will combine these strategies to develop more effective therapies for treatment of strokes.
Collapse
Affiliation(s)
- Toru Yamashita
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kentaro Deguchi
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shoko Nagotani
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tatsushi Kamiya
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Koji Abe
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
26
|
Human neural stem cells overexpressing glial cell line-derived neurotrophic factor in experimental cerebral hemorrhage. Gene Ther 2009; 16:1066-76. [PMID: 19554035 DOI: 10.1038/gt.2009.51] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recent studies have reported that glial cell line-derived growth factor (GDNF) has neurotrophic effects on the central nervous system, and the neural stem cells (NSCs) engrafted in animal models of stroke survive and ameliorate the neurological deficits. In this study, a stable human NSC line overexpressing GDNF (F3.GDNF) was transplanted next to the intracerebral hemorrhage (ICH) lesion site and a possible therapeutic effect was investigated. F3.GDNF human NSC line was transplanted into the cortex overlying the striatal ICH lesion. ICH was induced in adult mice by the unilateral injection of bacterial collagenase into the striatum. The animals were evaluated for 8 weeks with rotarod and limb placement tests. Transplanted NSCs were detected by beta-gal immunostaining with double labeling of neurofilament, microtubule associated protein-2, glial fibrillary acidic protein or human nuclear matrix antigen (HuNuMA). F3.GDNF human NSCs produced a four times higher amount of GDNF over parental F3 cells in vitro, induced behavioral improvement in ICH mice after brain transplantation and two- to threefold increase in cell survival of transplanted NSCs at 2 and 8 weeks post-transplantation. In F3.GDNF-grafted ICH brain, a significant increase in the antiapoptotic protein and cell survival signal molecules, and a marked reduction in proapoptotic proteins were found as compared with control group. Brain transplantation of human NSCs overexpressing GDNF in ICH animals provided functional recovery in ICH animals, and survival and differentiation of grafted human NSCs. These results indicate that the F3.GDNF human NSCs should be of a great value as a cellular source for the cellular therapy in animal models of human neurological disorders including ICH.
Collapse
|
27
|
Jin G, Inoue M, Hayashi T, Deguchi K, Nagotani S, Zhang H, Wang X, Shoji M, Hasegawa M, Abe K. Sendai virus-mediated gene transfer of GDNF reduces AIF translocation and ameliorates ischemic cerebral injury. Neurol Res 2008; 30:731-9. [PMID: 18593521 DOI: 10.1179/174313208x305418] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The therapeutic effect of a novel RNA viral vector, Sendai virus (SeV)-mediated glial cell line-derived neurotrophic factor (GDNF) gene (SeV/GDNF), on the infarct volume, was investigated after 90 minutes of transient middle cerebral artery occlusion (tMCAO) in rats with relation to nuclear translocation of apoptosis inducing factor (AIF). The topical administration of SeV/GDNF induced high level expression of GDNF protein, which effectively reduced the infarct volume when administrated 0 and 1 hours as well after the reperfusion. Twenty-four hours after ischemia, the obvious nuclear translocation of AIF was found in neurons of peri-infarct area, which significantly reduced with administration of SeV/GDNF 0 or 1 hour after reperfusion, as well as the number of TUNEL positive cells. These results demonstrate that SeV vector-mediated gene transfer of GDNF effectively reduced ischemic infarct volume after tMCAO and extended the therapeutic time window compared with previous viral vectors, and that promoting neuronal survival of GDNF might be related to the reduction of AIF nuclear translocation, indicating the high therapeutic potency of SeV/GDNF for cerebral ischemia.
Collapse
Affiliation(s)
- Guang Jin
- Department of Neurology, Graduate School of Medicine and Dentistry, Okayama University, Okayama, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kameda M, Shingo T, Takahashi K, Muraoka K, Kurozumi K, Yasuhara T, Maruo T, Tsuboi T, Uozumi T, Matsui T, Miyoshi Y, Hamada H, Date I. Adult neural stem and progenitor cells modified to secrete GDNF can protect, migrate and integrate after intracerebral transplantation in rats with transient forebrain ischemia. Eur J Neurosci 2007; 26:1462-78. [PMID: 17880388 DOI: 10.1111/j.1460-9568.2007.05776.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adult neural stem and progenitor cells (NSPCs) are important autologous transplantation tools in regenerative medicine, as they can secrete factors that protect the ischemic brain. We investigated whether adult NSPCs genetically modified to secrete more glial cell line-derived neurotrophic factor (GDNF) could protect against transient ischemia in rats. NSPCs were harvested from the subventricular zone of adult Wistar rats and cultured for 3 weeks in the presence of epidermal growth factor. The NSPCs were treated with fibre-mutant Arg-Gly-Asp adenovirus containing the GDNF gene (NSPC-GDNF) or enhanced green fluorescent protein (EGFP) gene (NSPC-EGFP; control group). In one experiment, cultured cells were transplanted into the right ischemic boundary zone of Wistar rat brains. One week later, animals underwent 90 min of intraluminal right middle cerebral artery occlusion followed by magnetic resonance imaging and behavioural tests. The NSPC-GDNF group had higher behavioural scores and lesser infarct volume than did controls at 1, 7 and 28 days postocclusion. In the second experiment, we transplanted NSPCs 3 h after ischemic insult. Compared to controls, rats receiving NSPC-GDNF had decreased infarct volume and better behavioural assessments at 7 days post-transplant. Animals were killed on day 7 and brains were collected for GDNF ELISA and morphological assessment. Compared to controls, more GDNF was secreted, more NSPC-GDNF cells migrated toward the ischemic core and more NSPC-GDNF cells expressed immature neuronal marker. Moreover, the NSPC-GDNF group showed more effective inhibition of microglial invasion and apoptosis. These findings suggest that NSPC-GDNF may be useful in treatment of cerebral ischemia.
Collapse
Affiliation(s)
- M Kameda
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho Okayama, Okayama, 700-8558, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Reduction of cerebral infarction in rats by biliverdin associated with amelioration of oxidative stress. Brain Res 2007; 1188:1-8. [PMID: 18035335 DOI: 10.1016/j.brainres.2007.07.104] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 07/18/2007] [Accepted: 07/20/2007] [Indexed: 11/23/2022]
Abstract
Biliverdin (BV), one of the byproducts of heme catalysis through heme oxygenase (HO) system, is a scavenger of reactive oxygen species (ROS). We hypothesized that BV treatment could protect rat brain cells from oxidative injuries via its anti-oxidant efficacies. Cerebral infarction was induced by transient middle cerebral artery occlusion (tMCAO) for 90 min, followed by reperfusion. BV or vehicle was administered intraperitoneally immediately after reperfusion. The size of the cerebral infarction 2 days after tMCAO was evaluated by 2,3,5-triphenyltetrazolium chloride (TTC) stain. Superoxide generation 4 h after tMCAO was determined by detection of oxidized hydroethidine. In addition, the oxidative impairment of neurons were immunohistochemically assessed by stain for lipid peroxidation with 4-hydroxy-2-nonenal (4-HNE) and damaged DNA with 8-hydroxy-2'-deoxyguanosine (8-OHdG). BV treatment significantly reduced infarct volume of the cerebral cortices associated with less superoxide production and decreased oxidative injuries of brain cells. The present study demonstrated that treatment with BV ameliorated the oxidative injuries on neurons and decreased brain infarct size in rat tMCAO model.
Collapse
|
30
|
McColl BW, McGregor AL, Wong A, Harris JD, Amalfitano A, Magnoni S, Baker AH, Dickson G, Horsburgh K. APOE epsilon3 gene transfer attenuates brain damage after experimental stroke. J Cereb Blood Flow Metab 2007; 27:477-87. [PMID: 16804548 DOI: 10.1038/sj.jcbfm.9600361] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Apolipoprotein E (apoE, protein; APOE, gene) is the major lipid-transport protein in the brain and plays an important role in modulating the outcome and regenerative processes after acute brain injury. The aim of the present study was to determine if gene transfer of the epsilon3 form of APOE improves outcome in a murine model of transient focal cerebral ischaemia. Mice received an intrastriatal injection of vehicle, a second-generation adenoviral vector containing the green fluorescent protein gene (Ad-GFP) or a vector containing the APOE epsilon3 gene (Ad-APOE) 3 days before 60 mins focal ischaemia. Green fluorescent protein expression was observed in cells throughout the striatum and subcortical white matter indicating successful gene transfer and expression. ApoE levels in the brain were significantly increased after Ad-APOE compared with Ad-GFP or vehicle treatment. Ad-APOE treatment reduced the volume of ischaemic damage by 50% compared with Ad-GFP or vehicle treatment (13+/-3 versus 29+/-4 versus 27+/-5 mm(3)). The extent of postischaemic apoE immunoreactivity was enhanced in Ad-APOE compared with Ad-GFP or vehicle treated mice. These results show the ability of APOE gene transfer to markedly improve outcome after cerebral ischaemia and suggest that modulating apoE levels may be a potential strategy in human stroke therapy.
Collapse
Affiliation(s)
- Barry W McColl
- Wellcome Surgical Institute, Division of Clinical Neuroscience, University of Glasgow, Garscube Estate, Glasgow, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Golembewski EK, Wales SQ, Aurelian L, Yarowsky PJ. The HSV-2 protein ICP10PK prevents neuronal apoptosis and loss of function in an in vivo model of neurodegeneration associated with glutamate excitotoxicity. Exp Neurol 2006; 203:381-93. [PMID: 17046754 PMCID: PMC1994904 DOI: 10.1016/j.expneurol.2006.08.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 08/16/2006] [Accepted: 08/22/2006] [Indexed: 12/13/2022]
Abstract
Excessive glutamate receptor activation results in neuronal death, a process known as excitotoxicity. Intrastriatal injection of N-methyl-d-aspartate (NMDA) is a model of excitotoxicity. We used this model to examine whether excitotoxic injury is inhibited by the anti-apoptotic herpes simplex virus type 2 (HSV-2) protein, ICP10PK, delivered by the replication incompetent HSV-2 vector, DeltaRR. Intrastriatal DeltaRR administration (2500 plaque forming units) was nontoxic and did not induce microglial activation 5 days after injection. Intrastriatal injection of DeltaRR with NMDA or 4 h after NMDA injection showed increased neuronal survival and decreased mitochondrial damage compared to injection of NMDA alone. Neuroprotection was due to the inhibition of NMDA-induced apoptosis through ERK activation. DeltaRR-treated mice did not develop NMDA-associated behavioral deficits. The data suggest that DeltaRR is a promising platform for treatment of acute neuronal injury.
Collapse
Affiliation(s)
- Erin K Golembewski
- Department of Pharmacology and Experimental Therapeutics, University of Maryland, Baltimore, MD 20742, USA
| | | | | | | |
Collapse
|
32
|
Abstract
The delivery of proteins across the blood-brain barrier is severely limited by their size and biochemical properties. Numerous peptides have been characterized in recent years that prevent neuronal death in vitro, but cannot be used therapeutically, since they do not cross cell membrane barriers. It has been shown in the 1990s that the HIV TAT protein is able to cross cell membranes even when coupled with larger peptides. It appears, therefore, that TAT fusion proteins may enter the brain, even when used systemically. Indeed, the systemic delivery of a TAT protein linked with glial-derived neurotrophic factor (GDNF) successfully transduced central nervous system (CNS) neurons in mice. When administered after optic nerve transection and focal cerebral ischemia, TAT-GDNF protected retinal ganglion cells and brain neurons from cell death, elevated tissue Bcl-XL levels and attenuated the activity of the executioner caspase-3. These findings demonstrate the in vivo efficacy of fusion proteins in clinically relevant disease models, raising hopes that neuroprotection may become eventually feasible in human patients.
Collapse
Affiliation(s)
- Ertugrul Kilic
- Department of Neurology, University Hospital Zürich, Frauenklinikstr. 26, CH-8091 Zürich, Switzerland.
| | | | | |
Collapse
|
33
|
Abstract
Focal permanent or transient cerebral artery occlusion produces massive cell death in the central core of the infarction, whereas in the peripheral zone (penumbra) nerve cells are subjected to various determining survival and death signals. Cell death in the core of the infarction and in the adult brain is usually considered a passive phenomenon, although events largely depend on the partial or complete disruption of crucial metabolic pathways. Cell death in the penumbra is currently considered an active process largely dependent on the activation of cell death programs leading to apoptosis. Yet cell death in the penumbra includes apoptosis, necrosis, intermediate and other forms of cell death. A rather simplistic view implies poor prospects regarding cell survival in the core of the infarction and therapeutic expectations in the control of cell death and cell survival in the penumbra. However, the capacity for neuroprotection depends on multiple factors, primarily the use of the appropriate agent, at the appropriate time and during the appropriate interval. Understanding the mechanisms commanding cell death and survival area is as important as delimiting the therapeutic time window and the facility of a drug to effectively impact on specific targets. Moreover, the detrimental effects of homeostasis and the activation of multiple pathways with opposing signals following ischemic stroke indicate that better outcome probably does not depend on a single compound but on several drugs acting in combination at the optimal time in a particular patient.
Collapse
Affiliation(s)
- Isidro Ferrer
- Institut de Neuropatologia, Servei Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, Hospitalet de Llobregat, Spain.
| |
Collapse
|
34
|
Kamada H, Hayashi T, Sato K, Iwai M, Nagano I, Shoji M, Abe K. Up-regulation of low-density lipoprotein receptor expression in the ischemic core and the peri-ischemic area after transient MCA occlusion in rats. ACTA ACUST UNITED AC 2005; 134:181-8. [PMID: 15836915 DOI: 10.1016/j.molbrainres.2004.10.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 09/05/2004] [Accepted: 10/17/2004] [Indexed: 10/25/2022]
Abstract
Low-density lipoprotein (LDL) receptor is involved in cholesterol metabolism of CNS as a receptor of apolipoprotein E (ApoE), which plays an important role in regenerative process after brain ischemia. Temporal and spatial changes of LDL receptor were investigated after 90 min of transient middle cerebral artery occlusion (MCAO) in relation to those of microtubule-associated protein 2 (MAP2) and ApoE. In the ischemic core, LDL receptor became positive at 1 d after transient MCAO, which was not double positive for MAP2 or ApoE, and disappeared in 7 and 56 d. In the peri-ischemic area, LDL receptor became observed at 7 d, which peaked at 21 d, most of which were double positive for MAP2. The number of LDL receptor and ApoE double-positive cells increased at 7 d and decreased at 21 d with the shift of LDL receptor immunoreactivity from cytoplasm at 7 d to dendrites at 21 d in the peri-ischemic area. These results suggest that LDL receptor, interacting with ApoE, is profoundly involved in lipid transport of CNS for tissue repair in the peri-ischemic area after brain ischemia.
Collapse
Affiliation(s)
- Hiroshi Kamada
- Department of Neurology, Graduate School of Medicine and Dentistry, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Kitagawa K, Hori M, Matsumoto M. Therapeutic strategy for acute stroke--prologue for an epoch of brain attack--. Future aspects of gene therapy in acute ischemic stroke. Intern Med 2005; 44:371-4. [PMID: 15897659 DOI: 10.2169/internalmedicine.44.371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Kazuo Kitagawa
- Department of Internal Medicine and Therapeutics, Osaka University Graduate School of Medicine, Osaka
| | | | | |
Collapse
|
36
|
Deguchi K, Takaishi M, Hayashi T, Oohira A, Nagotani S, Li F, Jin G, Nagano I, Shoji M, Miyazaki M, Abe K, Huh NH. Expression of neurocan after transient middle cerebral artery occlusion in adult rat brain. Brain Res 2005; 1037:194-9. [PMID: 15777769 DOI: 10.1016/j.brainres.2004.12.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 12/06/2004] [Accepted: 12/08/2004] [Indexed: 11/29/2022]
Abstract
Neurocan is one of the major chondroitin sulfate proteoglycans in the nervous tissues. The expression and proteolytic cleavage of neurocan are developmentally regulated in the normal rat brain, and the full-length neurocan is detected in juvenile brains but not in normal adult brains. Recently, some studies showed that the full-length neurocan was detectable even in the adult brain when it was exposed to mechanical incision or epileptic stimulation. In the present study, we demonstrated by Western blot analysis that the full-length neurocan transiently appeared in the peri-ischemic region of transient middle cerebral artery occlusion (tMCAO) in adult rat with a peak level at 4 days after tMCAO. Immunohistochemical analysis showed that a clear positive signal of neurocan was observed 4 days after tMCAO in the peri-ischemic region of cerebral cortex and caudate, where cells strongly positive in GFAP expression were also distributed. These results indicate that accumulation of the full-length neurocan produced by reactive astrocytes may be one of the processes for tissue repair and reconstruction of neural networks after focal brain ischemia as well.
Collapse
Affiliation(s)
- Kentaro Deguchi
- Department of Neurology, Graduate School of Medicine and Dentistry, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wong LF, Ralph GS, Walmsley LE, Bienemann AS, Parham S, Kingsman SM, Uney JB, Mazarakis ND. Lentiviral-Mediated Delivery of Bcl-2 or GDNF Protects against Excitotoxicity in the Rat Hippocampus. Mol Ther 2005; 11:89-95. [PMID: 15585409 DOI: 10.1016/j.ymthe.2004.08.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Accepted: 08/31/2004] [Indexed: 11/25/2022] Open
Abstract
Nutrient deprivation during ischemia leads to severe insult to neurons causing widespread excitotoxic damage in specific brain regions such as the hippocampus. One possible strategy for preventing neurodegeneration is to express therapeutic proteins in the brain to protect against excitotoxicity. We investigated the utility of equine infectious anemia virus (EIAV)-based vectors as genetic tools for delivery of therapeutic proteins in an in vivo excitotoxicity model. The efficacy of these vectors at preventing cellular loss in target brain areas following excitotoxic insult was also assessed. EIAV vectors generated to overexpress the human antiapoptotic Bcl-2 or growth factor glial-derived neurotrophic factor (GDNF) genes protected against glutamate-induced toxicity in cultured hippocampal neurons. In an in vivo excitotoxicity model, adult Wistar rats received a unilateral dose of the glutamate receptor agonist N-methyl-D-aspartate to the hippocampus that induced a large lesion in the CA1 region. Neuronal loss could not be protected by prior transduction of a control vector expressing beta-galactosidase. In contrast, EIAV-mediated expression of Bcl-2 and GDNF significantly reduced lesion size thus protecting the hippocampus from excitotoxic damage. These results demonstrate that EIAV vectors can be effectively used to deliver putative neuroprotective genes to target brain areas and prevent cellular loss in the event of a neurological insult. Therefore these lentiviral vectors provide potential therapeutic tools for use in cases of acute neurotrauma such as cerebral ischemia.
Collapse
Affiliation(s)
- Liang-Fong Wong
- Oxford BioMedica (UK) Ltd., Medawar Centre, Robert Robinson Avenue, The Oxford Science Park, Oxford OX4 4GA, UK.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Harvey BK, Hoffer BJ, Wang Y. Stroke and TGF-beta proteins: glial cell line-derived neurotrophic factor and bone morphogenetic protein. Pharmacol Ther 2004; 105:113-25. [PMID: 15670622 DOI: 10.1016/j.pharmthera.2004.09.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Accepted: 09/24/2004] [Indexed: 10/26/2022]
Abstract
Recent studies have indicated that proteins in the transforming growth factor-beta superfamily alter damage induced by various neuronal injuries. Of these proteins, glial cell line-derived neurotrophic factor (GDNF) and bone morphogenetic protein-7 (BMP-7) have unique protective and regenerative effects in stroke animals. Delivery of GDNF or BMP-7 to brain tissue reduced cerebral infarction and improved motor functions in stroke animals. Pretreatment with these factors reduced caspase-3 activity and DNA fragmentation in the ischemic brain region, suggesting that antiapoptotic effects are involved. Beside the protective effects, BMP-7 given after stroke improves locomotor function. These regenerative effects of BMP-7 may involve the enhancement of dendritic growth and remodeling. In this review, we illustrate the neuroprotective and neuroregenerative properties of GDNF and BMP-7 and emphasize their therapeutic potential for stroke.
Collapse
Affiliation(s)
- Brandon K Harvey
- Neural Protection and Regeneration Section, Molecular Neuropsychiatry Branch, National Institute on Drug Abuse, NIH, Baltimore, MD 21124, USA
| | | | | |
Collapse
|
39
|
Tanaka S, Kitagawa K, Sugiura S, Matsuoka-Omura E, Sasaki T, Yagita Y, Hori M. Infiltrating Macrophages as In Vivo Targets for Intravenous Gene Delivery in Cerebral Infarction. Stroke 2004; 35:1968-73. [PMID: 15192242 DOI: 10.1161/01.str.0000133685.59556.a7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE Gene therapy may show promise for stroke patients, but invasive techniques such as intraventricular or intracerebral injection of therapeutic genes may have limited applicability. The purpose of this study is to develop systemic gene therapy using macrophages infiltrating the infarct to deliver and express the gene. METHODS After permanent middle cerebral artery occlusion in rats, an enhanced green fluorescent protein (EGFP) plasmid conjugate in liposomes was injected via the femoral vein. We also constructed a bicistronic plasmid vector for fibroblast growth factor-2 (FGF-2) as well as EGFP, administering it in other rats with middle cerebral artery occlusion. RESULTS EGFP expression in normal brain was absent but was strong in macrophages accumulating along the infarct border. FGF-2 protein production was induced in macrophages along the infarct border after injection of bicistronic FGF-2 and EGFP plasmid vector; this stimulated proliferation of neural progenitors in the subventricular zone in the ischemic hemisphere compared with control plasmid vectors (61.7+/-5.2 versus 42.2+/-5.5 cells per mm2, n=4 each, P<0.01). CONCLUSIONS Systemic gene transfer by liposome to macrophages infiltrating an infarct may prove useful for gene therapy in stroke.
Collapse
Affiliation(s)
- Shigeru Tanaka
- Division of Strokology, Department of Internal Medicine and Therapeutics, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Shirakura M, Inoue M, Fujikawa S, Washizawa K, Komaba S, Maeda M, Watabe K, Yoshikawa Y, Hasegawa M. Postischemic administration of Sendai virus vector carrying neurotrophic factor genes prevents delayed neuronal death in gerbils. Gene Ther 2004; 11:784-90. [PMID: 14961067 DOI: 10.1038/sj.gt.3302224] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Sendai virus (SeV) vector-mediated gene delivery of glial cell line-derived neurotrophic factor (GDNF) and nerve growth factor (NGF) prevented the delayed neuronal death induced by transient global ischemia in gerbils, even when the vector was administered several hours after ischemia. Intraventricular administration of SeV vector directed high-level expression of the vector-encoded neurotrophic factor genes, which are potent candidates for the treatment of neurodegenerative diseases. After occlusion of the bilateral carotid arteries of gerbils, SeV vector carrying GDNF (SeV/GDNF), NGF (SeV/NGF), brain-derived neurotrophic factor (SeV/BDNF), insulin-like growth factor-1 (SeV/IGF-1) or vascular endothelial growth factor (SeV/VEGF) was injected into the lateral ventricle. Administration of SeV/GDNF, SeV/NGF or SeV/BDNF 30 min after the ischemic insult effectively prevented the delayed neuronal death of the hippocampal CA1 pyramidal neurons. Furthermore, the administration of SeV/GDNF or SeV/NGF as late as 4 or 6 h after the ischemic insult also prevented the death of these neurons. These results indicate that SeV vector-mediated gene transfer of neurotrophic factors has high therapeutic potency for preventing the delayed neuronal death induced by transient global ischemia, and provides an approach for gene therapy of stroke.
Collapse
|
41
|
Tokumine J, Sugahara K, Kakinohana O, Marsala M. The spinal GDNF level is increased after transient spinal cord ischemia in the rat. ACTA NEUROCHIRURGICA. SUPPLEMENT 2004; 86:231-4. [PMID: 14753442 DOI: 10.1007/978-3-7091-0651-8_50] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is known as the most potent neurotrophic factor against injury. We have characterized spinal GDNF changes after ischemia to clarify its possible physiological role against ischemic damage. Spinal ischemia in the rat was produced by cross-clamping of the thoracic aorta together with systemic hypotension. The spinal tissue GDNF level was measured by enzyme-linked immunoabsorbent assay (ELISA) and the localization of GDNF in the tissue was examined by immunohistochemistry. GDNF was increased reaching two peaks after ischemia. The first peak was at 2 hrs after onset of recirculation derived from alpha motor neurons. The second GDNF peak was at 72 hrs provided by astrocytes. These data suggest a necessity of GDNF to increase to protect against ischemic damage, and that activated astrocytes may have an important role in maintaining the GDNF level.
Collapse
Affiliation(s)
- J Tokumine
- Department of Anesthesiology, Faculty of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan.
| | | | | | | |
Collapse
|
42
|
Kamada H, Sato K, Iwai M, Ohta K, Nagano I, Shoji M, Abe K. Changes of free cholesterol and neutral lipids after transient focal brain ischemia in rats. ACTA NEUROCHIRURGICA. SUPPLEMENT 2004; 86:177-80. [PMID: 14753430 DOI: 10.1007/978-3-7091-0651-8_38] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
We investigated temporal and spatial changes of free cholesterol (FC) and neutral lipids (NLs) after brain ischemia with filipin complex staining to detect mainly FC and Nile Red staining for NLs such as cholesteryl ester (CE) and triacylglyceride (TAG). Filipin stainining decreased during 1 to 7 d and lost at 21 d after transient middle cerebral artery (MCA) occlusion in the ischemic core, but did not change in the penumbra. Nile Red positive droplets reached the maximum at 7 d after transient MCA occlusion (MCAO) and gradually decreased in the core, while the peak time delayed in the penumbra. Most Nile Red positive droplets were double positive for ED1 in the core, and were localized within GFAP positive cells in the penumbra. The present study suggests that changes of FC and NLs are different temporally and spatially between the ischemic core and the penumbra in relation to degenerative and regenerative neural processes following brain ischemia. Macrophages and astrocytes are presumed to play important roles in lipid metabolism for neural reorganization of the ischemic brain injury in the ischemic core and the penumbra, respectively.
Collapse
Affiliation(s)
- H Kamada
- Department of Neurology, Graduate School of Medicine and Dentistry, Okayama University, Japan.
| | | | | | | | | | | | | |
Collapse
|
43
|
Vascular Biology and Atherosclerosis of Cerebral Arteries. Stroke 2004. [DOI: 10.1016/b0-44-306600-0/50044-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
44
|
Fujiwara K, Date I, Shingo T, Yoshida H, Kobayashi K, Takeuchi A, Yano A, Tamiya T, Ohmoto T. Reduction of infarct volume and apoptosis by grafting of encapsulated basic fibroblast growth factor—secreting cells in a model of middle cerebral artery occlusion in rats. J Neurosurg 2003; 99:1053-62. [PMID: 14705734 DOI: 10.3171/jns.2003.99.6.1053] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object. This study was conducted to evaluate the effects of grafting encapsulated basic fibroblast growth factor (bFGF)—secreting cells in rat brains subjected to ischemic injury.
Methods. Two cell lines were used for encapsulated grafting in this experiment, namely, a bFGF-secreting cell line established by genetic manipulation of baby hamster kidney (BHK) cells, and a naive BHK cell line. Forty-seven Sprague—Dawley rats were used in this experiment. The animals were divided into the following three groups: those receiving grafts of encapsulated bFGF-secreting cells (BHK-bFGF group); those with grafts of encapsulated naive BHK cells (naive BHK group); and those with no grafts (control group). The authors implanted encapsulated cells into the right striatum of host rats in the BHK-bFGF and naive BHK groups. Six days after grafting, the host and control animals underwent permanent right middle cerebral artery occlusion (MCAO) with an intraluminal suture procedure. The infarct volume was evaluated using 2,3,5-triphenyltetrazolium chloride staining and computerized image analysis 24 hours after MCAO. Fragmentations of DNA in the host brains were analyzed using terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling 12 hours after MCAO.
The authors found that the infarct volume in the BHK-bFGF group was reduced by approximately 30% compared with that in the naive BHK and control groups. In the ischemic penumbral area, the number of apoptotic cells in the BHK-bFGF group was significantly decreased compared with that in the other groups.
Conclusions. The grafting of encapsulated BHK bFGF-secreting cells protected the brain from ischemic injury. Encapsulation and grafting of genetically engineered cells such as bFGF-secreting cells is thus thought to be a useful method for protection against cerebral ischemia.
Collapse
Affiliation(s)
- Kenjiro Fujiwara
- Department of Neurological Surgery, Okayama University Medical School, Okayama City, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Arvidsson A, Kirik D, Lundberg C, Mandel RJ, Andsberg G, Kokaia Z, Lindvall O. Elevated GDNF levels following viral vector-mediated gene transfer can increase neuronal death after stroke in rats. Neurobiol Dis 2003; 14:542-56. [PMID: 14678770 DOI: 10.1016/j.nbd.2003.08.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Previous studies have indicated that administration of glial cell line-derived neurotrophic factor (GDNF) counteracts neuronal death after stroke. However, in these studies damage was evaluated at most a few days after the insult. Here, we have explored the long-term consequences of two routes of GDNF delivery to the rat striatum prior to stroke induced by 30 min of middle cerebral artery occlusion (MCAO): striatal transduction with a recombinant lentiviral vector or transduction of the substantia nigra with a recombinant adeno-associated viral vector and subsequent anterograde transport of GDNF to striatum. Despite high GDNF levels, stereological quantification of striatal neuron numbers revealed no protection at 5 or 8 weeks after MCAO. In fact, anterograde GDNF delivery exacerbated neuronal loss. Moreover, supply of GDNF did not alleviate the striatum-related behavioral deficits. Thus, we demonstrate that the actions of GDNF after stroke are more complex than previously believed and that high levels of this factor, which are neuroprotective in models of Parkinson's disease, can increase ischemic damage. Our findings also underscore the need for quantitative assessment of long-term neuronal survival and behavioral changes to evaluate the therapeutic potential of factors such as GDNF.
Collapse
Affiliation(s)
- Andreas Arvidsson
- Section of Restorative Neurology, Wallenberg Neuroscience Center, BMC A11 SE-221 84, Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- K Abe
- Department of Neurology, Graduate School of Medicine and Dentistry, Okayama University, Okayama 700-8558, Japan
| | | |
Collapse
|
47
|
Harvey BK, Chang CF, Chiang YH, Bowers WJ, Morales M, Hoffer BJ, Wang Y, Federoff HJ. HSV amplicon delivery of glial cell line-derived neurotrophic factor is neuroprotective against ischemic injury. Exp Neurol 2003; 183:47-55. [PMID: 12957487 DOI: 10.1016/s0014-4886(03)00080-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Direct intracerebral administration of glial cell line-derived neurotrophic factor (GDNF) is neuroprotective against ischemia-induced cerebral injury. Utilizing viral vectors to deliver and express therapeutic genes presents an opportunity to produce GDNF within localized regions of an evolving infarct. We investigated whether a herpes simplex virus (HSV) amplicon-based vector encoding GDNF (HSVgdnf) would protect neurons against ischemic injury. In primary cortical cultures HSVgdnf reduced oxidant-induced injury compared to the control vector HSVlac. To test protective effects in vivo, HSVgdnf or HSVlac was injected into the cerebral cortex 4 days prior to, or 3 days, after a 60-min unilateral occlusion of the middle cerebral artery. Control stroke animals developed bradykinesia and motor asymmetry; pretreatment with HSVgdnf significantly reduced such motor deficits. Animals receiving HSVlac or HSVgdnf after the ischemic insult did not exhibit any behavioral improvement. Histological analyses performed 1 month after stroke revealed a reduction in ischemic tissue loss in rats pretreated with HSVgdnf. Similarly, these animals exhibited less immunostaining for glial fibrillary acidic protein and the apoptotic marker caspase-3. Taken together, our data indicate that HSVgdnf pretreatment provides protection against cerebral ischemia and supports the utilization of the HSV amplicon for therapeutic delivery of trophic factors to the CNS.
Collapse
Affiliation(s)
- B K Harvey
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Kamada H, Sato K, Zhang WR, Omori N, Nagano I, Shoji M, Abe K. Spatiotemporal changes of apolipoprotein E immunoreactivity and apolipoprotein E mRNA expression after transient middle cerebral artery occlusion in rat brain. J Neurosci Res 2003; 73:545-56. [PMID: 12898539 DOI: 10.1002/jnr.10658] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Apolipoprotein E (ApoE) is a constituent of lipoprotein and plays an important role in the maintenance of neural networks. However, spatiotemporal differences in ApoE expression and its long-term role in neural process after brain ischemia have not been studied. We investigated changes of ApoE immunoreactivity and ApoE mRNA expression both in the core and in the periischemic area at 1, 7, 21, or 56 days after 90 min of transient middle cerebral artery occlusion. Double stainings for ApoE plus NeuN or plus ED1 were performed in order to identify cell type of ApoE-positive stainings. The maximal increase of ApoE expression was observed at 7 days in the core and at 7 and 21 days in the periischemic area. In the core, ApoE plus NeuN double-positive cells increased at 1 and 7 days, without ApoE mRNA expression, whereas they increased in the periischemic area, with a peak at 21 days, with ApoE mRNA expression in glial cells but not in neurons. On the other hand, ApoE plus ED1 double-positive cells increased only in the core, with a peak in number at 7 and 21 days and marked ApoE mRNA expression in macrophages. The present study suggests that ApoE plays various important roles in different type of cells, reflecting spatiotemporal dissociation between degenerative and regenerative processes after brain ischemia, and that ApoE is profoundly involved in pathological conditions, such as brain ischemia.
Collapse
Affiliation(s)
- Hiroshi Kamada
- Department of Neurology, Graduate School of Medicine and Dentistry, Okayama University, Okayama, Japan.
| | | | | | | | | | | | | |
Collapse
|
49
|
Pardridge WM. Blood-brain barrier drug targeting enables neuroprotection in brain ischemia following delayed intravenous administration of neurotrophins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 513:397-430. [PMID: 12575830 DOI: 10.1007/978-1-4615-0123-7_15] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The blood-brain barrier (BBB) is the rate-limiting step in the translation of neurotrophin neuroscience into clinically effective neurotherapeutics. Since neurotrophins do not cross the BBB, these proteins cannot be used for neuroprotection following intravenous administration, and it is not feasible to administer these molecules by intra-cerebral injection in human stroke. The present studies describe the development of the chimeric peptide brain drug targeting technology and the use of brain-derived neurotrophic factor (BDNF) chimeric peptides in either global or regional brain ischemia. The BDNF chimeric peptide is formed by conjugation of BDNF to a monoclonal antibody (MAb) to the BBB transferrin receptor, and the MAb acts as a molecular Trojan Horse to ferry the BDNF across the BBB via transport on the endogenous BBB transferrin receptor. High degrees of neuroprotection in transient forebrain ischemia, permanent middle cerebral artery occlusion, or reversible middle cerebral artery occlusion are achieved with the delayed intravenous administration of BDNF chimeric peptides. In contrast, no neuroprotection is observed following the intravenous administration of unconjugated BDNF, because the neurotrophin does not cross the BBB in vivo.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, UCLA School of Medicine, Los Angeles, CA 90095-1682, USA
| |
Collapse
|
50
|
Abstract
Gene therapy is a promising strategy for cerebrovascular diseases. Several genes that encode vasoactive products have been transferred via cerebrospinal fluid for the prevention of vasospasm after subarachnoid hemorrhage. Transfer of neuroprotective genes, including targeting of proinflammatory mediators, is a current strategy of gene therapy for ischemic stroke. Stimulation of growth of collateral vessels, stabilization of atherosclerotic plaques, inhibition of thrombosis, and prevention of restenosis are important objectives of gene therapy for coronary and limb arteries, but application of these approaches to carotid and intracranial arteries has received little attention. Several fundamental advances, including development of safer vectors, are needed before gene therapy achieves an important role in the treatment of cerebrovascular disease and stroke.
Collapse
Affiliation(s)
- Kazunori Toyoda
- Department of Cerebrovascular Disease and Clinical Research Institute, National Kyushu Medical Center, Fukuoka 810-8563, Japan
| | - Yi Chu
- Departments of Internal Medicine and Pharmacology, and Cardiovascular Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, IA, U.S.A
| | - Donald D Heistad
- Veterans Affairs Medical Center, Iowa City, IA 52242, U.S.A
- Author for correspondence:
| |
Collapse
|