1
|
Hui SC, Andescavage N, Limperopoulos C. The Role of Proton Magnetic Resonance Spectroscopy in Neonatal and Fetal Brain Research. J Magn Reson Imaging 2025; 61:2404-2424. [PMID: 39835523 PMCID: PMC12063769 DOI: 10.1002/jmri.29709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/22/2025] Open
Abstract
The biochemical composition and structure of the brain are in a rapid change during the exuberant stage of fetal and neonatal development. 1H-MRS is a noninvasive tool that can evaluate brain metabolites in healthy fetuses and infants as well as those with neurological diseases. This review aims to provide readers with an understanding of 1) the basic principles and technical considerations relevant to 1H-MRS in the fetal-neonatal brain and 2) the role of 1H-MRS in early fetal-neonatal development brain research. We performed a PubMed search to identify original studies using 1H-MRS in neonates and fetuses to establish the clinical applications of 1H-MRS. The eligible studies for this review included original research with 1H-MRS applications to the fetal-neonatal brain in healthy and high-risk conditions. We ran our search between 2000 and 2023, then added in several high-impact landmark publications from the 1990s. A total of 366 results appeared. After, we excluded original studies that did not include fetuses or neonates, non-proton MRS and non-neurological studies. Eventually, 110 studies were included in this literature review. Overall, the function of 1H-MRS in healthy fetal-neonatal brain studies focuses on measuring the change of metabolite concentrations during neurodevelopment and the physical properties of the metabolites such as T1/T2 relaxation times. For high-risk neonates, studies in very low birth weight preterm infants and full-term neonates with hypoxic-ischemic encephalopathy, along with examining the associations between brain biochemistry and cognitive neurodevelopment are most common. Additional high-risk conditions included infants with congenital heart disease or metabolic diseases, as well as fetuses of pregnant women with hypertensive disorders were of specific interest to researchers using 1H-MRS. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Steve C.N. Hui
- Developing Brain Institute, Children's National HospitalWashingtonD.C.USA
- Department of RadiologyThe George Washington University School of Medicine and Health SciencesWashingtonD.C.USA
- Department of PediatricsThe George Washington University School of Medicine and Health SciencesWashingtonD.C.USA
| | - Nickie Andescavage
- Developing Brain Institute, Children's National HospitalWashingtonD.C.USA
- Department of PediatricsThe George Washington University School of Medicine and Health SciencesWashingtonD.C.USA
- Division of NeonatologyChildren's National HospitalWashingtonD.C.USA
| | - Catherine Limperopoulos
- Developing Brain Institute, Children's National HospitalWashingtonD.C.USA
- Department of RadiologyThe George Washington University School of Medicine and Health SciencesWashingtonD.C.USA
- Department of PediatricsThe George Washington University School of Medicine and Health SciencesWashingtonD.C.USA
- Prenatal Pediatric Institute, Children's National HospitalWashingtonD.C.USA
| |
Collapse
|
2
|
Zhang Q, Zhou X. Review on the application of imaging examination for brain injury in premature infants. Front Neurol 2023; 14:1100623. [PMID: 36846145 PMCID: PMC9946993 DOI: 10.3389/fneur.2023.1100623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/10/2023] [Indexed: 02/11/2023] Open
Abstract
Brain injury is the main factor leading to the decline of the quality of life in premature infants. The clinical manifestations of such diseases are often diverse and complex, lacking obvious neurological symptoms and signs, and the disease progresses rapidly. Due to missed diagnosis, it is easy to miss the best treatment opportunity. Brain ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), and other imaging methods can help clinicians diagnose and assess the type and extent of brain injury in premature infants to some extent, but the three methods have their own characteristics. This article briefly reviews the diagnostic value of these three methods for brain injury in premature infants.
Collapse
Affiliation(s)
- Qing Zhang
- First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China,Northwest Women's and Children's Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China,*Correspondence: Qing Zhang ✉
| | - Xihui Zhou
- First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Abstract
Magnetic resonance spectroscopy (MRS), being able to identify and measure some brain components (metabolites) in pathologic lesions and in normal-appearing tissue, offers a valuable additional diagnostic tool to assess several pediatric neurological diseases. In this review we will illustrate the basic principles and clinical applications of brain proton (H1; hydrogen) MRS (H1MRS), by now the only MRS method widely available in clinical practice. Performing H1MRS in the brain is inherently less complicated than in other tissues (e.g., liver, muscle), in which spectra are heavily affected by magnetic field inhomogeneities, respiration artifacts, and dominating signals from the surrounding adipose tissues. H1MRS in pediatric neuroradiology has some advantages over acquisitions in adults (lack of motion due to children sedation and lack of brain iron deposition allow optimal results), but it requires a deep knowledge of pediatric pathologies and familiarity with the developmental changes in spectral patterns, particularly occurring in the first two years of life. Examples from our database, obtained mainly from a 1.5 Tesla clinical scanner in a time span of 15 years, will demonstrate the efficacy of H1MRS in the diagnosis of a wide range of selected pediatric pathologies, like brain tumors, infections, neonatal hypoxic-ischemic encephalopathy, metabolic and white matter disorders.
Collapse
Affiliation(s)
- Roberto Liserre
- Department of Radiology, Neuroradiology Unit, ASST Spedali Civili University Hospital, Brescia, Italy
| | - Lorenzo Pinelli
- Department of Radiology, Neuroradiology Unit, ASST Spedali Civili University Hospital, Brescia, Italy
| | - Roberto Gasparotti
- Neuroradiology Unit, Department of Medical-Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| |
Collapse
|
4
|
Altered brain metabolism contributes to executive function deficits in school-aged children born very preterm. Pediatr Res 2020; 88:739-748. [PMID: 32590836 PMCID: PMC7577839 DOI: 10.1038/s41390-020-1024-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Executive function deficits in children born very preterm (VPT) have been linked to anatomical abnormalities in white matter and subcortical brain structures. This study aimed to investigate how altered brain metabolism contributes to these deficits in VPT children at school-age. METHODS Fifty-four VPT participants aged 8-13 years and 62 term-born peers were assessed with an executive function test battery. Brain metabolites were obtained in the frontal white matter and the basal ganglia/thalami, using proton magnetic resonance spectroscopy (MRS). N-acetylaspartate (NAA)/creatine (Cr), choline (Cho)/Cr, glutamate + glutamine (Glx)/Cr, and myo-Inositol (mI)/Cr were compared between groups and associations with executive functions were explored using linear regression. RESULTS In the frontal white matter, VPT showed lower Glx/Cr (mean difference: -5.91%, 95% CI [-10.50, -1.32]), higher Cho/Cr (7.39%, 95%-CI [2.68, 12.10]), and higher mI/Cr (5.41%, 95%-CI [0.18, 10.64]) while there were no differences in the basal ganglia/thalami. Lower executive functions were associated with lower frontal Glx/Cr ratios in both groups (β = 0.16, p = 0.05) and higher mI/Cr ratios in the VPT group only (interaction: β = -0.17, p = 0.02). CONCLUSION Long-term brain metabolite alterations in the frontal white matter may be related to executive function deficits in VPT children at school-age. IMPACT Very preterm birth is associated with long-term brain metabolite alterations in the frontal white matter. Such alterations may contribute to deficits in executive function abilities. Injury processes in the brain can persist for years after the initial insult. Our findings provide new insights beyond structural and functional imaging, which help to elucidate the processes involved in abnormal brain development following preterm birth. Ultimately, this may lead to earlier identification of children at risk for developing deficits and more effective interventions.
Collapse
|
5
|
Diogo MC, Glatter S, Binder J, Kiss H, Prayer D. The MRI spectrum of congenital cytomegalovirus infection. Prenat Diagn 2020; 40:110-124. [PMID: 31802515 PMCID: PMC7027449 DOI: 10.1002/pd.5591] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/16/2019] [Accepted: 10/07/2019] [Indexed: 01/01/2023]
Abstract
Human cytomegalovirus (CMV) is an ubiquitous pathogen, with a high worldwide seroprevalence. When acquired in the prenatal period, congenital CMV (cCMV) is a major cause of neurodevelopmental sequelae and hearing loss. cCMV remains an underdiagnosed condition, with no systematic screening implemented in pregnancy or in the postnatal period. Therefore, imaging takes a prominent role in prenatal diagnosis of cCMV. With the prospect of new viable therapies, accurate and timely diagnosis becomes paramount, as well as identification of fetuses at risk for neurodevelopmental sequelae. Fetal magnetic resonance imaging (MRI) provides a complementary method to ultrasound (US) in fetal brain and body imaging. Anterior temporal lobe lesions are the most specific finding, and MRI is superior to US in their detection. Other findings such as ventriculomegaly, cortical malformations and calcifications, as well as hepatosplenomegaly, liver signal changes and abnormal effusions are unspecific. However, when seen in combination these should raise the suspicion of fetal infection, highlighting the need for a full fetal assessment. Still, some fetuses deemed normal on prenatal imaging are symptomatic at birth or develop delayed cCMV-associated symptoms, leaving room for improvement of diagnostic tools. Advanced MR sequences may help in this field and in determining prognosis, but further studies are needed.
Collapse
Affiliation(s)
- Mariana C. Diogo
- Department of Image Guided TherapyUniversity Clinic for Neuroradiology and Musculoskeletal Radiology, Medical University of ViennaViennaAustria
| | - Sarah Glatter
- Department of Image Guided TherapyUniversity Clinic for Neuroradiology and Musculoskeletal Radiology, Medical University of ViennaViennaAustria
- Department of Pediatrics and Adolescent MedicineMedical University of ViennaViennaAustria
| | - Julia Binder
- Department of Obstetrics and GynecologyMedical University of ViennaViennaAustria
| | - Herbert Kiss
- Department of Obstetrics and GynecologyMedical University of ViennaViennaAustria
| | - Daniela Prayer
- Department of Image Guided TherapyUniversity Clinic for Neuroradiology and Musculoskeletal Radiology, Medical University of ViennaViennaAustria
| |
Collapse
|
6
|
Counsell SJ, Arichi T, Arulkumaran S, Rutherford MA. Fetal and neonatal neuroimaging. HANDBOOK OF CLINICAL NEUROLOGY 2019; 162:67-103. [PMID: 31324329 DOI: 10.1016/b978-0-444-64029-1.00004-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Magnetic resonance imaging (MRI) can provide detail of the soft tissues of the fetal and neonatal brain that cannot be obtained by any other imaging modality. Conventional T1 and T2 weighted sequences provide anatomic detail of the normally developing brain and can demonstrate lesions, including those associated with preterm birth, hypoxic ischemic encephalopathy, perinatal arterial stroke, infections, and congenital malformations. Specialized imaging techniques can be used to assess cerebral vasculature (magnetic resonance angiography and venography), cerebral metabolism (magnetic resonance spectroscopy), cerebral perfusion (arterial spin labeling), and function (functional MRI). A wealth of quantitative tools, most of which were originally developed for the adult brain, can be applied to study the developing brain in utero and postnatally including measures of tissue microstructure obtained from diffusion MRI, morphometric studies to measure whole brain and regional tissue volumes, and automated approaches to study cortical folding. In this chapter, we aim to describe different imaging approaches for the fetal and neonatal brain, and to discuss their use in a range of clinical applications.
Collapse
Affiliation(s)
- Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Sophie Arulkumaran
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
7
|
Jisa KA, Clarey DD, Peeples ES. Magnetic Resonance Imaging Findings of Term and Preterm Hypoxic-Ischemic Encephalopathy: A Review of Relevant Animal Models and Correlation to Human Imaging. Open Neuroimag J 2018; 12:55-65. [PMID: 30450146 PMCID: PMC6198416 DOI: 10.2174/1874440001812010055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/07/2018] [Accepted: 09/16/2018] [Indexed: 11/22/2022] Open
Abstract
Background: Neonatal hypoxic-ischemic encephalopathy is brain injury caused by decreased perfusion and oxygen delivery that most commonly occurs in the context of delivery complications such as umbilical cord compression or placental abruption. Imaging is a key component for guiding treatment and prediction of prognosis, and the most sensitive clinical imaging modality for the brain injury patterns seen in hypoxic-ischemic encephalopathy is magnetic resonance imaging. Objective: The goal of this review is to compare magnetic resonance imaging findings demonstrated in the available animal models of hypoxic-ischemic encephalopathy to those found in preterm (≤ 36 weeks) and term (>36 weeks) human neonates with hypoxic-ischemic encephalopathy, with special attention to the strengths and weaknesses of each model. Methods: A structured literature search was performed independently by two authors and the results of the searches were compiled. Animal model, human brain age equivalency, mechanism of injury, and area of brain injury were recorded for comparison to imaging findings in preterm and term human neonates with hypoxic-ischemic encephalopathy. Conclusion: Numerous animal models have been developed to better elicit the expected findings that occur after HIE by allowing investigators to control many of the clinical variables that result in injury. Although modeling the same disease process, magnetic resonance imaging findings in the animal models vary with the species and methods used to induce hypoxia and ischemia. The further development of animal models of HIE should include a focus on comparing imaging findings, and not just pathologic findings, to human studies.
Collapse
Affiliation(s)
- Kyle A Jisa
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, United States
| | - Dillon D Clarey
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, United States
| | - Eric S Peeples
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
8
|
Hyodo R, Sato Y, Ito M, Sugiyama Y, Ogawa C, Kawai H, Nakane T, Saito A, Hirakawa A, Kidokoro H, Natsume J, Hayakawa M. Magnetic resonance spectroscopy in preterm infants: association with neurodevelopmental outcomes. Arch Dis Child Fetal Neonatal Ed 2018; 103:F238-F244. [PMID: 28724545 DOI: 10.1136/archdischild-2016-311403] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 05/30/2017] [Accepted: 06/07/2017] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To compare magnetic resonance spectroscopy (MRS) metabolite ratios in preterm infants at term-equivalent age with those in term infants and to evaluate the association between MRS metabolites and neurodevelopmental outcomes at 18 months corrected age in preterm infants. DESIGN We studied infants born at a gestational age <37 weeks and weighing <1500 g during 2009-2013 using MRS at term-equivalent age. Infants with major brain abnormalities were excluded. The ratios of N-acetylaspartate (NAA) to creatine (Cre), NAA to choline-containing compounds (Cho) and Cho to Cre in the frontal white matter and thalamus were measured using multivoxel point-resolved proton spectroscopy sequence. Neurodevelopmental outcomes were assessed at 18 months corrected age. RESULTS Thirty-three preterm infants and 16 term infants were enrolled in this study. Preterm infants with normal development at 18 months showed significantly lower NAA/Cho ratios in the frontal white matter than term infants. There were no differences in the Cre/Cho ratios between preterm and term infants. At 18 months corrected age, 9 preterm infants with a mild developmental delay showed significantly lower NAA/Cho ratios in the thalamus than 24 preterm infants with normal development. CONCLUSIONS Preterm infants at term-equivalent age showed reduced MRS metabolites (NAA/Cho) compared with term infants. Decreased NAA/Cho ratios in the thalamus were associated with neurodevelopmental delay at 18 months corrected age in preterm infants.
Collapse
Affiliation(s)
- Reina Hyodo
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Yoshiaki Sato
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Miharu Ito
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Yuichiro Sugiyama
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Chikako Ogawa
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hisashi Kawai
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshiki Nakane
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akiko Saito
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Akihiro Hirakawa
- Department of Biostatistics and Bioinformatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Kidokoro
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Jun Natsume
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Masahiro Hayakawa
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
9
|
Gasparovic C, Caprihan A, Yeo RA, Phillips J, Lowe JR, Campbell R, Ohls RK. The long-term effect of erythropoiesis stimulating agents given to preterm infants: a proton magnetic resonance spectroscopy study on neurometabolites in early childhood. Pediatr Radiol 2018; 48:374-382. [PMID: 29335880 PMCID: PMC5823776 DOI: 10.1007/s00247-017-4052-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/17/2017] [Accepted: 12/05/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Erythropoiesis stimulating agents (ESAs) are neuroprotective in cell and animal models of preterm birth. Prematurity has been shown to alter neurometabolite levels in children in studies using proton magnetic resonance spectroscopy (1H-MRS). OBJECTIVE We hypothesized that ESA treatment in premature infants would tend to normalize neurometabolites by 4-6 years of age. MATERIALS AND METHODS Children in a longitudinal study of neurodevelopment underwent MRI and 1H-MRS at approximately 4 years and 6 years of age. Prematurely born children (500-1,250 g birth weight) received ESAs (erythropoietin or darbepoetin) or placebo during their neonatal hospitalization, and these groups were compared to healthy term controls. 1H-MRS spectra were obtained from the anterior cingulate (gray matter) and frontal lobe white matter, assessing combined N-acetylaspartate and N-acetylaspartylglutamate (tNAA), myo-inositol, choline compounds (Cho), combined creatine and phosphocreatine, and combined glutamate and glutamine. RESULTS No significant (P≤0.5) group differences were observed for any metabolite level. Significant age-related increases in white-matter tNAA and Cho were observed, as well as a trend for increased gray-matter tNAA. CONCLUSION Neither prematurity nor neonatal ESA treatment was associated with differences in brain metabolite levels in the children of this study at a significance level of 0.05. These findings suggest that earlier differences that might have existed had normalized by 4-6 years of age or were too small to be statistically significant in the current sample.
Collapse
Affiliation(s)
| | | | - Ronald A. Yeo
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - John Phillips
- Mind Research Network, Albuquerque, NM,Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Jean R. Lowe
- Department of Pediatrics, University of New Mexico, Albuquerque, NM, USA
| | - Richard Campbell
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Robin K. Ohls
- Department of Pediatrics, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
10
|
Simões RV, Muñoz-Moreno E, Cruz-Lemini M, Eixarch E, Bargalló N, Sanz-Cortés M, Gratacós E. Brain metabolite alterations in infants born preterm with intrauterine growth restriction: association with structural changes and neurodevelopmental outcome. Am J Obstet Gynecol 2017; 216:62.e1-62.e14. [PMID: 27667762 DOI: 10.1016/j.ajog.2016.09.089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/02/2016] [Accepted: 09/14/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Intrauterine growth restriction and premature birth represent 2 independent problems that may occur simultaneously and contribute to impaired neurodevelopment. OBJECTIVE The objective of the study was to assess changes in the frontal lobe metabolic profiles of 1 year old intrauterine growth restriction infants born prematurely and adequate-for-gestational-age controls, both premature and term adequate for gestational age and their association with brain structural and biophysical parameters and neurodevelopmental outcome at 2 years. STUDY DESIGN A total of 26 prematurely born intrauterine growth restriction infants (birthweight <10th centile for gestational age), 22 prematurely born but adequate for gestational age controls, and 26 term adequate-for-gestational-age infants underwent brain magnetic resonance imaging and magnetic resonance spectroscopy at 1 year of age during natural sleep, on a 3 Tesla scanner. All brain T1-weighted and diffusion-weighted images were acquired along with short echo time single-voxel proton spectra from the frontal lobe. Magnetic resonance imaging/magnetic resonance spectroscopy data were processed to derive structural, biophysical, and metabolic information, respectively. Neurodevelopment was evaluated at 2 years of age using the Bayley Scales 3rd edition, assessing cognitive, language, motor, socioemotional, and adaptive behavior. RESULTS Prematurely born intrauterine growth restriction infants had slightly smaller brain volumes and increased frontal lobe white matter mean diffusivity compared with both prematurely born but adequate for gestational age and term adequate for gestational age controls. Frontal lobe N-acetylaspartate levels were significantly lower in prematurely born intrauterine growth restriction than in prematurely born but adequate for gestational age infants but increased in prematurely born but adequate for gestational age compared with term adequate-for-gestational-age infants. The prematurely born intrauterine growth restriction group also showed slightly lower choline compounds, borderline decrements of estimated glutathione levels, and increased myoinositol to choline ratios, compared with prematurely born but adequate for gestational age controls. These specific metabolite changes were locally correlated to lower gray matter content and increased mean diffusivity and reduced white matter fraction and fractional anisotropy. Prematurely born intrauterine growth restriction infants also showed a tendency for poorer neurodevelopmental outcome at 2 years, associated with lower levels of frontal lobe N-acetylaspartate at 1 year within the preterm subset. CONCLUSIONS Preterm intrauterine growth restriction infants showed altered brain metabolite profiles during a critical stage of brain maturation, which correlate with brain structural and biophysical parameters and neurodevelopmental outcome. Our results suggest altered neurodevelopmental trajectories in preterm intrauterine growth restriction and adequate-for-gestational-age infants, compared with term adequate-for-gestational-age infants, which require further characterization.
Collapse
|
11
|
Shehee L, Coker-Bolt P, Barbour A, Moss H, Brown T, Jenkins D. Predicting motor outcomes with 3 month prone hip angles in premature infants. J Pediatr Rehabil Med 2016; 9:231-6. [PMID: 27612083 DOI: 10.3233/prm-160384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
PURPOSE This study used kinematic analysis to identify a reliable and rapid assessment method for abnormal patterns of motor development in preterm infants. METHODS In a retrospective analysis, we examined video of n= 35 preterm infants at 3mo corrected age (CA) who had concurrent Test of Infant Motor Performance (TIMP) scores. Hyperflexion at the hip produces common gait anomalies seen in children with CP, therefore we analyzed hip angle in the prone head lift position at 3 months CA. Magnetic Resonance Spectroscopy (MRS) was performed at term equivalent (n= 23) and Bayley-III neurodevelopmental tests were performed at 1 year (n= 28). We correlated hip angles with TIMP and Bayley-III scores, and MRS neuronal metabolites. RESULTS Hip angle positively correlated with TIMP at 3 months (r= 0.642, p≤ 0.001), but not with Bayley-III at 1 year (r= 0.122, p= 0.529). Hip angle correlated negatively with myo-inositol (mI) ratios in frontal white matter tracts (mI/Cr r= -0.520, p= 0.011). CONCLUSIONS These results suggest prone hip angle may be a quantitative proxy for the 42-item TIMP at 3 months, and that hypertonicity in the hip flexor musculature is a manifestation of white matter metabolic abnormalities (elevated mI ratios) that may indicate occult white matter injury.
Collapse
Affiliation(s)
| | - Patty Coker-Bolt
- Division of Occupational Therapy, College of Health Professions, Charleston, SC, USA
| | - Andrew Barbour
- Division of Occupational Therapy, College of Health Professions, Charleston, SC, USA
| | - Hunter Moss
- Department of Radiology and Radiological Sciences and the Center for Advanced Imaging Research, MUSC, Charleston, SC, USA
| | - Truman Brown
- Department of Radiology and Radiological Sciences and the Center for Advanced Imaging Research, MUSC, Charleston, SC, USA
| | | |
Collapse
|
12
|
Proton magnetic resonance spectroscopy and outcome in term neonates with chorioamnionitis. J Perinatol 2015; 35:1030-6. [PMID: 26426253 PMCID: PMC4660057 DOI: 10.1038/jp.2015.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 08/18/2015] [Accepted: 08/24/2015] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Evaluate brain metabolites, which reflect neuroinflammation, and relate to neurodevelopmental outcomes in healthy term neonates exposed to chorioamnionitis. STUDY DESIGN Thirty-one healthy term neonates with documented fetal inflammatory response after maternal chorioamnionitis underwent magnetic resonance spectroscopy (MRS), with voxels placed in basal ganglia (BG) and frontal white matter. Bayley III examinations were performed at 12 months of age. RESULT Infants with below average outcomes did not show the same increase in NAA/Cho ratios postnatally as the group with normal outcomes. Decreased NAA/Cho and increased Lac/Cr in BG correlated with lower motor and cognitive composite scores, respectively, controlling for postnatal age. In males, increased lactate/NAA in BG were associated with lower motor scores. Funisitis severity was associated with decreased NAA/Cho and increased mI/NAA in males. CONCLUSION In healthy term newborns with chorioamnionitis, MRS ratios shortly after birth may provide evidence of occult neuroinflammation, which may be associated with worse performance on 1-year neurodevelopmental tests.
Collapse
|
13
|
Akasaka M, Kamei A, Araya N, Matsumoto A, Konishi Y, Sotodate G, Shirasawa S, Toya Y, Kasai T, Chida S, Sasaki M. Assessing Temporal Brain Metabolite Changes in Preterm Infants Using Multivoxel Magnetic Resonance Spectroscopy. Magn Reson Med Sci 2015; 15:187-92. [PMID: 26567757 PMCID: PMC5600055 DOI: 10.2463/mrms.mp.2015-0041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To investigate temporal changes in brain metabolites during the first year of life in preterm infants using multivoxel proton magnetic resonance spectroscopy ((1)H-MRS). METHODS Seventeen infants born at 29 (25-33) gestational week (median, range) weighing 1104 (628-1836) g underwent 1.5-T multivoxel (1)H-MRS at 42 postconceptional week (PCW) and at 3, 6, 9, and 12 months after. We measured N-acetyl aspartate (NAA)/creatine (Cr), choline (Cho)/Cr, myo-inositol (Ins)/Cr, NAA/Cho, and Ins/Cho ratios in the frontal lobe (FL) and basal ganglia and thalamus (BG + Th). Linear regression analyses were performed to identify longitudinal changes in infants showing normal imaging findings and normal development. We also evaluated ratios of subjects with abnormal imaging findings and/or development using the 95% confidence intervals (CIs) of regression equations in normal subjects. RESULTS In the 13 infants with normal development, NAA/Cr and NAA/Cho ratios showed significant positive correlations with PCWs in the FL (r = 0.64 and 0.83, respectively, both P < 0.01) and BG + Th (r = 0.79 and 0.87, respectively, both P < 0.01), while Cho/Cr and Ins/Cr ratios revealed significant negative correlations with PCWs in the FL (r =-0.69 and -0.58, respectively, both P < 0.01) and BG + Th (r =-0.74 and -0.72, respectively, both P < 0.01). Ins/Cho ratios in the FL did not significantly correlate with PCWs (r =-0.19, P = 0.18), while those in the BG + Th showed significant negative correlation with PCWs (r =-0.44, P < 0.01). The metrics in the abnormal group were within the normal group 95% CIs in all periods except a few exceptions. CONCLUSIONS Longitudinal multivoxel MRS is able to detect temporal changes in major brain metabolites during the first year of life in preterm infants.
Collapse
|
14
|
van de Looij Y, Dean JM, Gunn AJ, Hüppi PS, Sizonenko SV. Advanced magnetic resonance spectroscopy and imaging techniques applied to brain development and animal models of perinatal injury. Int J Dev Neurosci 2015; 45:29-38. [PMID: 25818582 DOI: 10.1016/j.ijdevneu.2015.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/25/2015] [Accepted: 03/25/2015] [Indexed: 11/16/2022] Open
Abstract
Magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) are widely used in the field of brain development and perinatal brain injury. Due to technical progress the magnetic field strength (B0) of MR systems has continuously increased, favoring (1)H-MRS with quantification of up to 18 metabolites in the brain and short echo time (TE) MRI sequences including phase and susceptibility imaging. For longer TE techniques including diffusion imaging modalities, the benefits of higher B0 have not been clearly established. Nevertheless, progress has also been made in new advanced diffusion models that have been developed to enhance the accuracy and specificity of the derived diffusion parameters. In this review, we will describe the latest developments in MRS and MRI techniques, including high-field (1)H-MRS, phase and susceptibility imaging, and diffusion imaging, and discuss their application in the study of cerebral development and perinatal brain injury.
Collapse
Affiliation(s)
- Yohan van de Looij
- Division of Child Development & Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland; Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Justin M Dean
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Petra S Hüppi
- Division of Child Development & Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - Stéphane V Sizonenko
- Division of Child Development & Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| |
Collapse
|
15
|
Anderson PJ, Cheong JLY, Thompson DK. The predictive validity of neonatal MRI for neurodevelopmental outcome in very preterm children. Semin Perinatol 2015; 39:147-58. [PMID: 25724792 DOI: 10.1053/j.semperi.2015.01.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Very preterm children are at a high risk for neurodevelopmental impairments, but there is variability in the pattern and severity of outcome. Neonatal magnetic resonance imaging (MRI) enhances the capacity to detect brain injury and altered brain development and assists in the prediction of high-risk children who warrant surveillance and early intervention. This review describes the application of conventional and advanced MRI with very preterm neonates, specifically focusing on the relationship between neonatal MRI findings and later neurodevelopmental outcome. Research demonstrates that conventional MRI is strongly associated with neurodevelopmental outcome in childhood. Further studies are needed to examine the role of advanced MRI techniques in predicting outcome in very preterm children, but early research findings are promising. In conclusion, neonatal MRI is predictive of later neurodevelopment but is dependent on appropriately trained specialists and should be interpreted in conjunction with other clinical and social information.
Collapse
Affiliation(s)
- Peter J Anderson
- Clinical Sciences, Murdoch Childrens Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia.
| | - Jeanie L Y Cheong
- Clinical Sciences, Murdoch Childrens Research Institute, Melbourne, Australia; Neonatal Services, Royal Women׳s Hospital, Melbourne, Australia; Department of Obstetrics & Gynaecology, University of Melbourne, Melbourne, Australia
| | - Deanne K Thompson
- Clinical Sciences, Murdoch Childrens Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
16
|
Bentzley JP, Coker-Bolt P, Moreau NG, Hope K, Ramakrishnan V, Brown T, Mulvihill D, Jenkins D. Kinematic measurement of 12-week head control correlates with 12-month neurodevelopment in preterm infants. Early Hum Dev 2015; 91:159-64. [PMID: 25621433 PMCID: PMC4324091 DOI: 10.1016/j.earlhumdev.2015.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/31/2014] [Accepted: 01/04/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Although new interventions treating neonatal brain injury show great promise, our current ability to predict clinical functional outcomes is poor. Quantitative biomarkers of long-term neurodevelopmental outcome are critically needed to gauge treatment efficacy. Kinematic measures derived from commonly used developmental tasks may serve as early objective markers of future motor outcomes. AIM To develop reliable kinematic markers of head control at 12week corrected gestational age (CGA) from two motor tasks: head lifting in prone and pull-to-sit. STUDY DESIGN AND SUBJECTS Prospective observational study of 22 preterm infants born between 24 and 34weeks of gestation. OUTCOME MEASURES Bayley Scales of Infant Development III (Bayley) motor scores. RESULTS Intrarater and interrater reliability of prone head lift angles and pull-to-sit head angles were excellent. Prone head lift angles at 12week CGA correlated with white matter NAA/Cho, concurrent Test of Infant Motor Performance (TIMP) scores, and 12-month Bayley motor scores. Head angles during pull-to-sit at 12-week CGA correlated with TIMP scores. CONCLUSIONS Poor ability to lift the head in prone and an inability to align the head with the trunk during the pull-to-sit task were associated with poorer future motor outcome scores. Kinematic measurements of head control in early infancy may serve as reliable objective quantitative markers of future motor impairment and neurodevelopmental outcome.
Collapse
Affiliation(s)
- Jessica P Bentzley
- Department of Pediatrics, Medical University of South Carolina, SC, United States
| | - Patty Coker-Bolt
- Division of Occupation Therapy, College of Health Professions, Medical University of South Carolina, SC, United States.
| | - Noelle G Moreau
- Department of Physical Therapy, School of Allied Health, Louisiana State University Health Sciences Center - New Orleans, United States
| | - Kathryn Hope
- Division of Occupation Therapy, College of Health Professions, Medical University of South Carolina, SC, United States
| | | | - Truman Brown
- Department of Radiology and Radiological Sciences, Medical University of South Carolina, SC, United States
| | - Denise Mulvihill
- Department of Pediatrics, Medical University of South Carolina, SC, United States
| | - Dorothea Jenkins
- Department of Pediatrics, Medical University of South Carolina, SC, United States
| |
Collapse
|
17
|
Hart AR, Smith MF, Whitby EH, Alladi S, Wilkinson S, Paley MN, Griffiths PD. Diffusion-weighted imaging and magnetic resonance proton spectroscopy following preterm birth. Clin Radiol 2014; 69:870-9. [PMID: 24935906 DOI: 10.1016/j.crad.2014.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 04/03/2014] [Indexed: 10/25/2022]
Abstract
AIM To study the associations between magnetic resonance proton spectroscopy (MRS) data and apparent diffusion coefficients (ADC) from the preterm brain with developmental outcome at 18 months corrected age and clinical variables. MATERIALS AND METHODS A prospective observational cohort study of 67 infants born before 35 weeks gestational age who received both magnetic resonance imaging of the brain between 37 and 44 weeks corrected gestational age and developmental assessment around 18 months corrected age. RESULTS No relationships were found between ADC values and MRS results or outcome. MRS ratios involving N-acetyl aspartate (NAA) from the posterior white matter were associated with "severe" and "moderate to severe" difficulties, and fine motor scores were significantly lower in participants with a visible lactate doublet in the posterior white matter. The presence of a patent ductus arteriosus (PDA) was the only clinical factor related to NAA ratios. CONCLUSION Altered NAA levels in the posterior white matter may reflect subtle white matter injury associated with neuro-developmental difficulties, which may be related to a PDA. Further work is needed to assess the longer-term neuro-developmental implications of these findings, and to study the effect of PDAs on developmental outcome in later childhood/adolescence.
Collapse
Affiliation(s)
- A R Hart
- Department of Paediatric Neurology and Child Development, Ryegate Children's Centre, Sheffield Children's Hospital NHS Foundation Trust, Tapton Crescent Road, Sheffield S10 5DD, UK.
| | - M F Smith
- Department of Neonatology, Jessop Wing, Sheffield Teaching Hospitals NHS, Foundation Trust, Tree Root Walk, Sheffield S10 2SF, UK
| | - E H Whitby
- Academic Unit of Radiology, University of Sheffield, Floor C, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2JF, UK
| | - S Alladi
- Department of Paediatric Neurology and Child Development, Ryegate Children's Centre, Sheffield Children's Hospital NHS Foundation Trust, Tapton Crescent Road, Sheffield S10 5DD, UK
| | - S Wilkinson
- Department of Neonatology, Jessop Wing, Sheffield Teaching Hospitals NHS, Foundation Trust, Tree Root Walk, Sheffield S10 2SF, UK
| | - M N Paley
- Academic Unit of Radiology, University of Sheffield, Floor C, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2JF, UK
| | - P D Griffiths
- Academic Unit of Radiology, University of Sheffield, Floor C, Royal Hallamshire Hospital, Glossop Road, Sheffield S10 2JF, UK
| |
Collapse
|
18
|
Magnetic resonance spectroscopy markers of axons and astrogliosis in relation to specific features of white matter injury in preterm infants. Neuroradiology 2014; 56:771-9. [DOI: 10.1007/s00234-014-1380-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/08/2014] [Indexed: 01/13/2023]
|
19
|
Skiöld B, Wu Q, Hooper SB, Davis PG, McIntyre R, Tolcos M, Pearson J, Vreys R, Egan GF, Barton SK, Cheong JLY, Polglase GR. Early detection of ventilation-induced brain injury using magnetic resonance spectroscopy and diffusion tensor imaging: an in vivo study in preterm lambs. PLoS One 2014; 9:e95804. [PMID: 24759765 PMCID: PMC3997476 DOI: 10.1371/journal.pone.0095804] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/31/2014] [Indexed: 11/18/2022] Open
Abstract
Background and Aim High tidal volume (VT) ventilation during resuscitation of preterm lambs results in brain injury evident histologically within hours after birth. We aimed to investigate whether magnetic resonance spectroscopy (MRS) and/or diffusion tensor imaging (DTI) can be used for early in vivo detection of ventilation-induced brain injury in preterm lambs. Methods Newborn lambs (0.85 gestation) were stabilized with a “protective ventilation” strategy (PROT, n = 7: prophylactic Curosurf, sustained inflation, VT 7 mL/kg, positive end expiratory pressure (PEEP) 5 cmH2O) or an initial 15 minutes of “injurious ventilation” (INJ, n = 10: VT 12 mL/kg, no PEEP, late Curosurf) followed by PROT ventilation for the remainder of the experiment. At 1 hour, lambs underwent structural magnetic resonance imaging (Siemens, 3 Tesla). For measures of mean/axial/radial diffusivity (MD, AD, RD) and fractional anisotropy (FA), 30 direction DTI was performed. Regions of interests encompassed the thalamus, internal capsule, periventricular white matter and the cerebellar vermis. MRS was performed using a localized single-voxel (15×15×20 mm3, echo time 270 ms) encompassing suptratentorial deep nuclear grey matter and central white matter. Peak-area ratios for lactate (Lac) relative to N-acetylaspartate (NAA), choline (Cho) and creatine (Cr) were calculated. Groups were compared using 2-way RM-ANOVA, Mann-Whitney U-test and Spearman's correlations. Results No cerebral injury was seen on structural MR images. Lambs in the INJ group had higher mean FA and lower mean RD in the thalamus compared to PROT lambs, but not in the other regions of interest. Peak-area lactate ratios >1.0 was only seen in INJ lambs. A trend of higher mean peak-area ratios for Lac/Cr and Lac/Cho was seen, which correlated with lower pH in both groups. Conclusion Acute changes in brain diffusion measures and metabolite peak-area ratios were observed after injurious ventilation. Early MRS/DTI is able to detect the initiation of ventilation-induced brain injury.
Collapse
Affiliation(s)
- Béatrice Skiöld
- Neonatal Services, The Royal Women's Hospital, Melbourne, Victoria, Australia
- * E-mail:
| | - Qizhu Wu
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
- CSIRO Materials Science and Engineering, Clayton, Victoria, Australia
| | - Stuart B. Hooper
- The Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Peter G. Davis
- Neonatal Services, The Royal Women's Hospital, Melbourne, Victoria, Australia
| | - Richard McIntyre
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Mary Tolcos
- The Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - James Pearson
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Ruth Vreys
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Gary F. Egan
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Samantha K. Barton
- The Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Jeanie L. Y. Cheong
- Neonatal Services, The Royal Women's Hospital, Melbourne, Victoria, Australia
- Victorian Infant Brain Studies, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Victoria, Australia
| | - Graeme R. Polglase
- The Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
20
|
Definition and quantification of acute inflammatory white matter injury in the immature brain by MRI/MRS at high magnetic field. Pediatr Res 2014; 75:415-23. [PMID: 24346113 DOI: 10.1038/pr.2013.242] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/07/2013] [Indexed: 11/08/2022]
Abstract
BACKGROUND Lipopolysaccharide (LPS) injection in the corpus callosum (CC) of rat pups results in diffuse white matter injury similar to the main neuropathology of preterm infants. The aim of this study was to characterize the structural and metabolic markers of acute inflammatory injury by high-field magnetic resonance imaging (MRI) magnetic resonance spectroscopy (MRS) in vivo. METHODS Twenty-four hours after a 1-mg/kg injection of LPS in postnatal day 3 rat pups, diffusion tensor imaging and proton nuclear magnetic spectroscopy ((1)H NMR) were analyzed in conjunction to determine markers of cell death and inflammation using immunohistochemistry and gene expression. RESULTS MRI and MRS in the CC revealed an increase in lactate and free lipids and a decrease of the apparent diffusion coefficient. Detailed evaluation of the CC showed a marked apoptotic response assessed by fractin expression. Interestingly, the degree of reduction in the apparent diffusion coefficient correlated strongly with the natural logarithm of fractin expression, in the same region of interest. LPS injection further resulted in increased activated microglia clustered in the cingulum, widespread astrogliosis, and increased expression of genes for interleukin (IL)-1, IL-6, and tumor necrosis factor. CONCLUSION This model was able to reproduce the typical MRI hallmarks of acute diffuse white matter injury seen in preterm infants and allowed the evaluation of in vivo biomarkers of acute neuropathology after inflammatory challenge.
Collapse
|
21
|
Abstract
The present review describes brain imaging technologies that can be used to assess the effects of nutritional interventions in human subjects. Specifically, we summarise the biological relevance of their outcome measures, practical use and feasibility, and recommended use in short- and long-term nutritional studies. The brain imaging technologies described consist of MRI, including diffusion tensor imaging, magnetic resonance spectroscopy and functional MRI, as well as electroencephalography/magnetoencephalography, near-IR spectroscopy, positron emission tomography and single-photon emission computerised tomography. In nutritional interventions and across the lifespan, brain imaging can detect macro- and microstructural, functional, electrophysiological and metabolic changes linked to broader functional outcomes, such as cognition. Imaging markers can be considered as specific for one or several brain processes and as surrogate instrumental endpoints that may provide sensitive measures of short- and long-term effects. For the majority of imaging measures, little information is available regarding their correlation with functional endpoints in healthy subjects; therefore, imaging markers generally cannot replace clinical endpoints that reflect the overall capacity of the brain to behaviourally respond to specific situations and stimuli. The principal added value of brain imaging measures for human nutritional intervention studies is their ability to provide unique in vivo information on the working mechanism of an intervention in hypothesis-driven research. Selection of brain imaging techniques and target markers within a given technique should mainly depend on the hypothesis regarding the mechanism of action of the intervention, level (structural, metabolic or functional) and anticipated timescale of the intervention's effects, target population, availability and costs of the techniques.
Collapse
|
22
|
Duerden EG, Brown-Lum M, Chau V, Poskitt KJ, Grunau RE, Synnes A, Miller SP. Resuscitation intensity at birth is associated with changes in brain metabolic development in preterm neonates. Neuroradiology 2013; 55 Suppl 2:47-54. [PMID: 23921419 DOI: 10.1007/s00234-013-1243-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/10/2013] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Intensive resuscitation at birth has been linked to intraventricular haemorrhage (IVH) in the preterm neonate. However, the impact of less intensive resuscitation on more subtle alterations in brain metabolic development is largely unknown. Our objective was to determine the relationship between the intensity of neonatal resuscitation following preterm birth on brain metabolic development. METHODS One hundred thirty-three very preterm-born neonates (median gestational age [GA] 27 ± 2 weeks) underwent MR spectroscopic imaging early in life (median postmenstrual age 32 weeks) and again at term-equivalent age (median 40 weeks). Severity of white matter injury, IVH and cerebellar haemorrhage on magnetic resonance imaging were scored. Ratios of N-acetylaspartate (NAA) and lactate to choline (Cho) were calculated in eight regions of interest and were assessed in relation to intensiveness of resuscitation strategy (bag and mask, continuous positive airway pressure [CPAP], intubation, cardiopulmonary resuscitation [CPR]). RESULTS Within the first hour of life, 14 newborns had no intervention, 3 received bag and mask, 30 had CPAP, 79 were intubated and 7 had CPR. Resuscitated infants were more likely to have IVH (p = 0.02). More intensive resuscitation was associated with decreased NAA/Cho maturation (p < 0.001, adjusting for birth GA). Metabolic development was similar in neonates requiring CPAP in comparison to those receiving no intervention. The change in lactate/Cho did not differ across resuscitation categories (p = 0.8). CONCLUSIONS Intensity of resuscitation at birth is related to changes in metabolic brain development from early in life to term-equivalent age. Results suggest that preventing the need for intensive neonatal resuscitation may provide an opportunity to improve brain development in preterm neonates.
Collapse
Affiliation(s)
- Emma G Duerden
- Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
23
|
Brain metabolite concentrations are associated with illness severity scores and white matter abnormalities in very preterm infants. Pediatr Res 2013; 74:75-81. [PMID: 23575877 PMCID: PMC4965266 DOI: 10.1038/pr.2013.62] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 12/29/2012] [Indexed: 11/16/2022]
Abstract
BACKGROUND Magnetic resonance spectroscopy allows for the noninvasive study of brain metabolism and therefore may provide useful information about brain injuries. We examined the associations of brain metabolite ratios in very preterm infants with white matter lesions and overall health status at birth. METHODS Spectroscopy data were obtained from 99 very preterm infants (born ≤32 wk gestation) imaged shortly after birth and from 67 of these infants at term-equivalent age. These data were processed using LCModel. Multiple regression was used to examine the association of metabolite ratios with focal noncystic white matter lesions visible on conventional magnetic resonance imaging (MRI) and with at-birth illness severity scores. RESULTS Within 2 wk of birth, the ratio of N-acetylaspartate + N-acetylaspartylglutamate to creatine + phosphocreatine was significantly lower in those infants showing white matter abnormalities on conventional MRI. Increased lactate to creatine + phosphocreatine and lactate to glycerophosphocholine + phosphocholine ratios were significantly associated with increasing severity of Clinical Risk Index for Babies II and Apgar scores taken at 1 and 5 min after birth. CONCLUSION Both overall health status at birth and white matter injury in preterm neonates are reflected in metabolite ratios measured shortly after birth. Long-term follow-up will provide additional insight into the prognostic value of these measures.
Collapse
|
24
|
Myo-inositol metabolism in appropriately grown and growth-restricted fetuses: a proton magnetic resonance spectroscopy study. Eur J Obstet Gynecol Reprod Biol 2013; 170:77-81. [PMID: 23810059 DOI: 10.1016/j.ejogrb.2013.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 04/22/2013] [Accepted: 05/20/2013] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Myo-inositol (Myo-ins) is a marker of neuroglial cells, being present in the astrocytes of brain tissue, but also functions as an osmolyte. Numbers of astrocytes are known to increase following injury to the brain. Growth-restricted fetuses are at increased risk of later neurodevelopmental impairments even in the absence of overt lesions and despite preserved/increased cerebral blood flow. This study aims to investigate brain Myo-ins metabolism in fetuses with intrauterine growth restriction (IUGR) and evidence of cerebral redistribution using magnetic resonance spectroscopy (MRS) at a short echo time. STUDY DESIGN Biometry and Doppler assessment of blood flow was assessed using ultrasound in 28 fetuses with IUGR and 47 appropriately grown control subjects. MRI was used to exclude overt brain injury. Proton magnetic resonance spectroscopy of the fetal brain was then performed at an echo time of 42 ms to examine the Myo-ins:Choline (Cho), Myo-ins:Creatine (Cr) and Cho:Cr ratios. RESULTS No alterations in brain Myo-ins:Cho, Myo-ins:Cr or Cho:Cr ratios were detected between appropriately grown and growth restricted fetuses. CONCLUSIONS IUGR is not associated with a measureable difference in brain myo-inositol ratios. This may be due to the protective effects of preserved cerebral blood flow in growth restriction and comparable astrocyte numbers when compared to controls.
Collapse
|
25
|
Duerden EG, Taylor MJ, Miller SP. Brain development in infants born preterm: looking beyond injury. Semin Pediatr Neurol 2013; 20:65-74. [PMID: 23948681 DOI: 10.1016/j.spen.2013.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Infants born very preterm are high risk for acquired brain injury and disturbances in brain maturation. Although survival rates for preterm infants have increased in the last decades owing to improved neonatal intensive care, motor disabilities including cerebral palsy persist, and impairments in cognitive, language, social, and executive functions have not decreased. Evidence from neuroimaging studies exploring brain structure, function, and metabolism has indicated abnormalities in the brain development trajectory of very preterm-born infants that persist through to adulthood. In this chapter, we review neuroimaging approaches for the identification of brain injury in the preterm neonate. Advances in medical imaging and availability of specialized equipment necessary to scan infants have facilitated the feasibility of conducting longitudinal studies to provide greater understanding of early brain injury and atypical brain development and their effects on neurodevelopmental outcome. Improved understanding of the risk factors for acquired brain injury and associated factors that affect brain development in this population is setting the stage for improving the brain health of children born preterm.
Collapse
Affiliation(s)
- Emma G Duerden
- Neurosciences & Mental Health, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
26
|
Bainbridge A, Kendall GS, De Vita E, Hagmann C, Kapetanakis A, Cady EB, Robertson NJ. Regional neonatal brain absolute thermometry by 1H MRS. NMR IN BIOMEDICINE 2013; 26:416-423. [PMID: 23074155 DOI: 10.1002/nbm.2879] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/28/2012] [Accepted: 09/04/2012] [Indexed: 06/01/2023]
Abstract
Therapeutic hypothermia is standard care for infants with moderate to severe encephalopathy. (1) H MRS thermometry (MRSt) measures regional brain absolute temperature using the temperature-dependent water chemical shift. This study evaluates the clinical feasibility of MRSt in human neonates, and correlates white matter (WM) and thalamus (Thal) MRSt with conventional rectal temperature (Trectal ) measurement. Fifty-six infants born at term underwent perinatal MRSt for suspected hypoxic-ischaemic brain injury and 33 infants born preterm had MRSt at a term-equivalent age; 56 of the 89 had Trectal measured after MRSt of either a Thal or posterior WM voxel, or both. MRSt used point-resolved spectroscopy (no water suppression; TR = 1370 ms; TE = 288 ms; 1.5 × 1.5 × 1.5 cm(3) Thal and 1.1 × 1.3 × 1.4 cm(3) WM voxels). Time domain data were phase and frequency corrected before summation and motion-corrupted data were excluded from further analysis using simple criteria [preprocessing + quality assurance (QA)]. Two published water temperature-dependence calibrations [both using cerebral creatine (Cr), choline (Cho) and N-acetylaspartate (Naa) as independent reference peaks] were compared. The temperature measurements derived from Cr, Cho and Naa were combined to give a single amplitude-weighted combination temperature (TAWC ). WM and Thal TAWC correlated linearly with Trectal (Thal slope, 0.82 ± 0.04, R(2) = 0.85, p < 0.05; WM slope, 0.95 ± 0.04, R(2) = 0.78, p < 0.05). Preprocessing + QA improved the correlation between WM TAWC and Trectal (R(2) increased from 0.27 to 0.78, p < 0.001). Both calibration datasets showed specific inconsistencies between the temperatures calculated using Cr, Cho and Naa reference peaks when applied to this neonatal dataset. Neonatal MRSt is clinically feasible. Preprocessing + QA improved MRSt reliability in WM. The consideration of MRSt calibration internal biases is necessary before combining MRSt temperatures from multiple reference peaks to obtain TAWC.
Collapse
Affiliation(s)
- Alan Bainbridge
- Medical Physics and Bioengineering, University College London Hospitals NHS Foundation Trust, London, UK
| | | | | | | | | | | | | |
Collapse
|
27
|
Wisnowski JL, Blüml S, Paquette L, Zelinski E, Nelson MD, Painter MJ, Damasio H, Gilles F, Panigrahy A. Altered glutamatergic metabolism associated with punctate white matter lesions in preterm infants. PLoS One 2013; 8:e56880. [PMID: 23468888 PMCID: PMC3582631 DOI: 10.1371/journal.pone.0056880] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/15/2013] [Indexed: 12/21/2022] Open
Abstract
Preterm infants (∼10% of all births) are at high-risk for long-term neurodevelopmental disabilities, most often resulting from white matter injury sustained during the neonatal period. Glutamate excitotoxicity is hypothesized to be a key mechanism in the pathogenesis of white matter injury; however, there has been no in vivo demonstration of glutamate excitotoxicity in preterm infants. Using magnetic resonance spectroscopy (MRS), we tested the hypothesis that glutamate and glutamine, i.e., markers of glutamatergic metabolism, are altered in association with punctate white matter lesions and "diffuse excessive high signal intensity" (DEHSI), the predominant patterns of preterm white matter injury. We reviewed all clinically-indicated MRS studies conducted on preterm infants at a single institution during a six-year period and determined the absolute concentration of glutamate, glutamine, and four other key metabolites in the parietal white matter in 108 of those infants after two investigators independently evaluated the studies for punctate white matter lesions and DEHSI. Punctate white matter lesions were associated with a 29% increase in glutamine concentration (p = 0.002). In contrast, there were no differences in glutamatergic metabolism in association with DEHSI. Severe DEHSI, however, was associated with increased lactate concentration (p = 0.001), a marker of tissue acidosis. Findings from this study support glutamate excitotoxicity in the pathogenesis of punctate white matter lesions, but not necessarily in DEHSI, and suggest that MRS provides a useful biomarker for determining the pathogenesis of white matter injury in preterm infants during a period when neuroprotective agents may be especially effective.
Collapse
Affiliation(s)
- Jessica L. Wisnowski
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, California, United States of America
- Brain and Creativity Institute, University of Southern California, Los Angeles, California, United States of America
| | - Stefan Blüml
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, California, United States of America
| | - Lisa Paquette
- Department of Pediatrics, Division of Neonatology, Children's Hospital Los Angeles, Los Angeles, California, United States of America
| | - Elizabeth Zelinski
- Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
| | - Marvin D. Nelson
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, California, United States of America
| | - Michael J. Painter
- Department of Pediatrics, Division of Neurology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
| | - Hanna Damasio
- Brain and Creativity Institute, University of Southern California, Los Angeles, California, United States of America
| | - Floyd Gilles
- Department of Pathology and Laboratory Medicine, Neuropathology Section, Children's Hospital Los Angeles, Los Angeles, California, United States of America
| | - Ashok Panigrahy
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, California, United States of America
- Department of Radiology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
28
|
Phillips JP, Ruhl D, Montague E, Gasparovic C, Caprihan A, Ohls RK, Schrader R, Lowe JR. Anterior cingulate and frontal lobe white matter spectroscopy in early childhood of former very LBW premature infants. Pediatr Res 2011; 69:224-9. [PMID: 21135758 PMCID: PMC3107034 DOI: 10.1203/pdr.0b013e3182091d52] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neurometabolic sequelae of children born at very LBW (VLBW) are not well characterized in early childhood. Proton magnetic resonance spectroscopy (1H-MRS) and developmental assessments were acquired from children age 18-22 mo (16 VLBW/7 term) and 3-4 y (12 VLBW/8 term) from the anterior cingulate and left frontal periventricular white matter. Metabolites obtained included combined N-acetylaspartylglutamate and N-acetylaspartate (NAA), total choline-containing compounds (Cho), combined glutamate and glutamine (Glx), combined creatine and phosphocreatine (Cr), myoinositol (mI), and the following ratios: NAA/Cr, Cho/Cr, Glx/Cr, mI/Cr, and NAA/Cho. Significant differences were present only in white matter: at 18-22 mo, NAA was decreased in VLBW children (p < 0.04), and at 3-4 y, VLBW children showed lower Cr (p < 0.01), lower NAA/Cho (p < 0.005), higher Glx/Cr (p < 0.02), and higher Cho/Cr (p < 0.005). On developmental testing, VLBW children scored lower on language expression (p < 0.05) and on the A-not-B test of early executive function (p < 0.01) at 18-22 mo and had lower verbal intelligence quotient (IQ) (p < 0.005), performance IQ (p < 0.04), and several measures of early executive function including the bear-dragon test (p < 0.004), gift delay (p < 0.07), and summary categorization score (p < 0.03) at 3-4 y. VLBW children may have neurometabolic and developmental abnormalities that persist at least through early childhood.
Collapse
Affiliation(s)
- John P Phillips
- Department of Neurology, University of New Mexico Health Science Center, Albuquerque, New Mexico 87106, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Magnetic resonance spectroscopy in pediatric neuroradiology: clinical and research applications. Pediatr Radiol 2010; 40:3-30. [PMID: 19937238 DOI: 10.1007/s00247-009-1450-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 10/01/2009] [Accepted: 10/19/2009] [Indexed: 10/20/2022]
Abstract
Magnetic resonance spectroscopy (MRS) offers a unique, noninvasive approach to assess pediatric neurological abnormalities at microscopic levels by quantifying cellular metabolites. The most widely available MRS method, proton ((1)H; hydrogen) spectroscopy, is FDA approved for general use and can be ordered by clinicians for pediatric neuroimaging studies if indicated. There are a multitude of both acquisition and post-processing methods that can be used in the implementation of MR spectroscopy. MRS in pediatric neuroimaging is challenging to interpret because of dramatic normal developmental changes that occur in metabolites, particularly in the first year of life. Still, MRS has been proven to provide additional clinically relevant information for several pediatric neurological disease processes such as brain tumors, infectious processes, white matter disorders, and neonatal injury. MRS can also be used as a powerful quantitative research tool. In this article, specific research applications using MRS will be demonstrated in relation to neonatal brain injury and pediatric brain tumor imaging.
Collapse
|
30
|
Chau V, Poskitt KJ, McFadden DE, Bowen-Roberts T, Synnes A, Brant R, Sargent MA, Soulikias W, Miller SP. Effect of chorioamnionitis on brain development and injury in premature newborns. Ann Neurol 2009; 66:155-64. [PMID: 19743455 DOI: 10.1002/ana.21713] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The association of chorioamnionitis and noncystic white matter injury, a common brain injury in premature newborns, remains controversial. Our objectives were to determine the association of chorioamnionitis and postnatal risk factors with white matter injury, and the effects of chorioamnionitis on early brain development, using advanced magnetic resonance imaging. METHODS Ninety-two preterm newborns (24-32 weeks gestation) were studied at a median age of 31.9 weeks and again at 40.3 weeks gestation. Histopathological chorioamnionitis and white matter injury were scored using validated systems. Measures of brain metabolism (N-acetylaspartate/choline and lactate/choline) on magnetic resonance spectroscopy, and microstructure (average diffusivity and fractional anisotropy) on diffusion tensor imaging were calculated from predefined brain regions. RESULTS Thirty-one (34%) newborns were exposed to histopathological chorioamnionitis, and 26 (28%) had white matter injury. Histopathological chorioamnionitis was not associated with an increased risk of white matter injury (relative risk: 1.2; p = 0.6). Newborns with postnatal infections and hypotension requiring therapy were at higher risk of white matter injury (p < 0.03). Adjusting for gestational age at scan and regions of interest, histopathological chorioamnionitis did not significantly affect brain metabolic and microstructural development (p > 0.1). In contrast, white matter injury was associated with lower N-acetylaspartate/choline (-8.9%; p = 0.009) and lower white matter fractional anisotropy (-11.9%; p = 0.01). INTERPRETATION Histopathological chorioamnionitis does not appear to be associated with an increased risk of white matter injury on magnetic resonance imaging or with abnormalities of brain development. In contrast, postnatal infections and hypotension are associated with an increased risk of white matter injury in the premature newborn.
Collapse
Affiliation(s)
- Vann Chau
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bathen TF, Christensen Løhaugen GC, Brubakk AM, Gribbestad IS, Axelson DE, Skranes J. Combining clinical assessment scores and in vivo MR spectroscopy neurometabolites in very low birth weight adolescents. Artif Intell Med 2009; 47:135-46. [PMID: 19411169 DOI: 10.1016/j.artmed.2009.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 12/04/2008] [Accepted: 04/05/2009] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Very low birth weight (VLBW) survivors are at increased risk of neurological impairments that may persist into adolescence and adulthood. The aims of this study were to identify the most important clinical assessments that characterize differences between VLBW and control adolescents, and to look at the relationship between clinical assessments and the metabolites in in vivo MR spectra. METHODS At 14-15 years of age, 54 VLBW survivors and 64 term controls were examined clinically. Several neuropsychological and motor assessments were performed. The magnetic resonance (MR) brain spectra were acquired from volumes localized in the left frontal lobe and contained mainly white matter. RESULTS Probabilistic neural networks and support vector machines demonstrated that clinical assessments rendered a possibility of the classification of VLBW versus control adolescents. The most important clinical assessments in this classification were visual-motor integration, motor coordination, stroop test, full scale IQ, and grooved pegboard. Through the use of outer product analysis-partial least squares discriminant analysis on a subset of adolescents (n=36), the clinical assessments found to most strongly correlate with the spectral data were the global assessment scale, Wisconsin card sorting test, full scale IQ, grooved pegboard test, and motor coordination test. Clinical assessments that relate to spectral data may be especially dependent on an intact microstructure in frontal white matter.
Collapse
Affiliation(s)
- Tone F Bathen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), 7489 Trondheim, Norway.
| | | | | | | | | | | |
Collapse
|
32
|
Pugash D, Krssak M, Kulemann V, Prayer D. Magnetic resonance spectroscopy of the fetal brain. Prenat Diagn 2009; 29:434-41. [DOI: 10.1002/pd.2248] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
Can magnetic resonance spectroscopy predict neurodevelopmental outcome in very low birth weight preterm infants? J Perinatol 2008; 28:611-8. [PMID: 18615089 PMCID: PMC2844764 DOI: 10.1038/jp.2008.66] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To determine if metabolite ratios at near-term age predict outcome in very low birth weight preterm infants at 18 to 24 months adjusted age. STUDY DESIGN Thirty-six infants (birth weight <or=1510 g, gestational age <or=32 weeks) were scanned at a postmenstrual age (PMA) of 35 to 43 weeks from July 2001 to September 2003. Multivoxel proton spectroscopic data were acquired and metabolite ratios were calculated in regions of the thalamus and basal ganglia. Bayley Scales of Infant Development were assessed between 18 and 24 months corrected age. RESULT Metabolic ratios showed no significant correlation with developmental outcome. A correlation was seen between N-acetylaspartate (NAA)/choline (Ch) and PMA in thalamus and basal ganglia. CONCLUSION Metabolite ratios from near-term proton magnetic resonance spectroscopy (MRS) were not predictive of Bayley scores at 18 to 24 months adjusted age. There was a positive correlation between NAA/Ch and PMA, which supports previous work by others for the importance of developmental changes in the MRS with age.
Collapse
|
34
|
Brissaud O, Chateil JF, Bordessoules M, Brun M. Chemical shift imaging and localised magnetic resonance spectroscopy in full-term asphyxiated neonates. Pediatr Radiol 2005; 35:998-1005. [PMID: 15965677 DOI: 10.1007/s00247-005-1524-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 05/02/2005] [Accepted: 05/10/2005] [Indexed: 11/26/2022]
Abstract
BACKGROUND Diagnosis of brain lesions after birth anoxia-ischemia is essential for appropriate management. Clinical evaluation is not sufficient. MRI has been proven to provide useful information. OBJECTIVE To compare abnormalities observed with MRI, including diffusion-weighted imaging (DWI), localised magnetic resonance spectroscopy (MRS) and chemical shift imaging (CSI) and correlate these findings with the clinical outcome. MATERIALS AND METHODS Fourteen full-term neonates with birth asphyxia were studied. MRI, MRS and CSI were performed within the first 4 days of life. RESULTS Lesions observed with DWI were correlated with outcome, but the apparent diffusion coefficient (ADC) did improve diagnostic confidence. The mean value of Lac/Cr for the neonates with a favourable outcome was statically lower than for those who died (0.22 vs 1.04; P = 0.01). The same results were observed for the Lac/NAA ratio (0.21 vs 1.23; P = 0.01). Data obtained with localised MRS and CSI were correlated for the ratio N-acetyl-aspartate/choline, but not for the other metabolites. No correlation was found between the ADC values and the metabolite ratios. CONCLUSIONS Combination of these techniques could be helpful in our understanding of the physiopathological events occurring in neonates with asphyxia.
Collapse
Affiliation(s)
- Olivier Brissaud
- Paediatric Intensive Care Unit, Children's Hospital, Place Amélie Raba Léon, Bordeaux 33076, France.
| | | | | | | |
Collapse
|
35
|
Robertson NJ, Bhakoo K, Puri BK, Edwards AD, Cox IJ. Hypothermia and amiloride preserve energetics in a neonatal brain slice model. Pediatr Res 2005; 58:288-96. [PMID: 16006423 DOI: 10.1203/01.pdr.0000170899.90479.1e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A period of secondary energy failure consisting of a decline in phosphocreatine/inorganic phosphate (PCr/Pi), a rise in brain lactate, and alkaline intracellular pH (pH(i)) has been described in infants with neonatal encephalopathy. Strategies that ameliorate this energy failure may be neuroprotective. We hypothesized that a neonatal rat brain slice model undergoes a progressive decline in energetics, which can be ameliorated with hypothermia or amiloride. Interleaved phosphorus ((31)P) and proton ((1)H) magnetic resonance (MR) spectra were obtained from 350 microm neonatal rat brain slices over 8 h in a bicarbonate buffer at 37 degrees C and at 32 degrees C in 7- and 14-d models. (31)P MR spectra were obtained with amiloride in a bicarbonate-free buffer at 37 degrees C in the 14-d model. Findings were similar in 7- and 14-d models. In the 14-d model, there was a Pi doublet structure corresponding to alkaline pH(i) values of 7.50 +/- 0.02 and 7.21 +/- 0.04. Compared with the stabilized baseline of 100, at 5 h PCr/Pi was 65 +/- 6.3 and lactate/NAA was 187 +/- 3 at 37 degrees C, but PCr/Pi and lactate/NAA were not significantly different from baseline at 32 degrees C. Nucleotide triphosphate (NTP)/phosphomonoester (PME) was 0.93 +/- 0.23 at 37 degrees C and 1.81 +/- 0.21 at 32 degrees C at 5 h. With amiloride exposure in the 14-d model, baseline pH(i) values were 7.25 +/- 0.09 and 6.98 +/- 0.02 and NTP/PME was 1.81 +/- 0.05; these parameters were not significantly different at 5 h. Our interpretation of these findings is that the brain slice model underwent secondary energy failure, which was delayed with hypothermia or amiloride.
Collapse
Affiliation(s)
- Nicola J Robertson
- Department of Paediatrics, Division of Paediatrics, Obstetrics and Gynaecology, Division of Clinical Sciences, Hammersmith Hospital, Imperial College London, London W12 ONN, UK.
| | | | | | | | | |
Collapse
|
36
|
Felderhoff-Mueser U, Bittigau P, Sifringer M, Jarosz B, Korobowicz E, Mahler L, Piening T, Moysich A, Grune T, Thor F, Heumann R, Bührer C, Ikonomidou C. Oxygen causes cell death in the developing brain. Neurobiol Dis 2004; 17:273-82. [PMID: 15474364 DOI: 10.1016/j.nbd.2004.07.019] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Revised: 07/05/2004] [Accepted: 07/30/2004] [Indexed: 01/19/2023] Open
Abstract
Substantial neurologic morbidity occurs in survivors of premature birth. Premature infants are exposed to partial oxygen pressures that are fourfold higher compared to intrauterine conditions, even if no supplemental oxygen is administered. Here we report that short exposures to nonphysiologic oxygen levels can trigger apoptotic neurodegeneration in the brains of infant rodents. Vulnerability to oxygen neurotoxicity is confined to the first 2 weeks of life, a period characterized by rapid growth, which in humans expands from the sixth month of pregnancy to the third year of life. Oxygen caused oxidative stress, decreased expression of neurotrophins, and inactivation of survival signaling proteins Ras, extracellular signal-regulated kinase (ERK 1/2), and protein kinase B (Akt). The synRas-transgenic mice overexpressing constitutively activated Ras and phosphorylated kinases ERK1/2 in the brain were protected against oxygen neurotoxicity. Our findings reveal a mechanism that could potentially damage the developing brain of human premature neonates.
Collapse
Affiliation(s)
- Ursula Felderhoff-Mueser
- Department of Neonatology, Humboldt University Berlin, Charité, Campus Virchow Klinikum, 13353 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kreis R, Hofmann L, Kuhlmann B, Boesch C, Bossi E, Hüppi PS. Brain metabolite composition during early human brain development as measured by quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 2002; 48:949-58. [PMID: 12465103 DOI: 10.1002/mrm.10304] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Biochemical maturation of the brain can be studied noninvasively by (1)H magnetic resonance spectroscopy (MRS) in human infants. Detailed time courses of cerebral tissue contents are known for the most abundant metabolites only, and whether or not premature birth affects biochemical maturation of the brain is disputed. Hence, the last trimester of gestation was observed in infants born prematurely, and their cerebral metabolite contents at birth and at expected term were compared with those of fullterm infants. Successful quantitative short-TE (1)H MRS was performed in three cerebral locations in 21 infants in 28 sessions (gestational age 32-43 weeks). The spectra were analyzed with linear combination model fitting, considerably extending the range of observable metabolites to include acetate, alanine, aspartate, cholines, creatines, gamma-aminobutyrate, glucose, glutamine, glutamate, glutathione, glycine, lactate, myo-inositol, macromolecular contributions, N-acetylaspartate, N-acetylaspartylglutamate, o-phosphoethanolamine, scyllo-inositol, taurine, and threonine. Significant effects of age and location were found for many metabolites, including the previously observed neuronal maturation reflected by an increase in N-acetylaspartate. Absolute brain metabolite content in premature infants at term was not considerably different from that in fullterm infants, indicating that prematurity did not affect biochemical brain maturation substantially in the studied population, which did not include infants of extremely low birthweight.
Collapse
Affiliation(s)
- R Kreis
- MR Spectroscopy and Methodology Unit, Department of Clinical Research, University Berne, Berne, Switzerland.
| | | | | | | | | | | |
Collapse
|
38
|
Robertson NJ, Cowan FM, Cox IJ, Edwards AD. Brain alkaline intracellular pH after neonatal encephalopathy. Ann Neurol 2002; 52:732-42. [PMID: 12447926 DOI: 10.1002/ana.10365] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Experimental studies demonstrate an alkaline shift in brain intracellular pH (pH(i)) after hypoxia-ischemia (HI). In infants with neonatal encephalopathy after HI, our aims were to assess (1) brain pH(i) during the first 2 weeks after birth in infants categorized according to magnetic resonance imaging (MRI) during the first 2 weeks after birth and at more than 3 months of age, and neurodevelopmental outcome at 1 year; (2) the relationship between brain pH(i) and lactate/creatine; and (3) duration of alkaline brain pH(i). Seventy-eight term infants with neonatal encephalopathy were studied using MR techniques. One hundred and fifty-one studies were performed throughout the first year including 56 studies of 50 infants during the first 2 weeks after birth. pH(i) was calculated using phosphorus-31 MR spectroscopy and lactate/creatine was measured using proton MRS. The mean (standard deviation [SD]) brain pH(i) during the first 2 weeks after birth in infants with severely abnormal versus normal MRI was 7.24 (SD, 0.17) versus 7.04 (SD, 0.05; p < 0.001); in infants who subsequently developed cerebral atrophy versus those who did not: 7.23 (SD, 0.17) versus 7.06 (SD, 0.06; p < 0.05); in infants who died or had a severe neurodevelopmental impairment versus normal outcome: 7.28 (SD, 0.15) versus 7.11 (SD, 0.09; p < 0.05). Brain alkalosis was associated with increased brain lactate/creatine (p < 0.001). pH(i) remained more alkaline in the severe outcome group up to 20 weeks after birth (p < 0.05).
Collapse
Affiliation(s)
- Nicola J Robertson
- Department of Paediatrics, Division of Paediatrics, Obstetrics and Gynaecology, Imperial College School of Science, Technology and Medicine, Hammersmith Hospital Campus, DuCane Road, LondonW12 0NN, UK.
| | | | | | | |
Collapse
|
39
|
Hüppi PS. Advances in postnatal neuroimaging: relevance to pathogenesis and treatment of brain injury. Clin Perinatol 2002; 29:827-56. [PMID: 12516748 DOI: 10.1016/s0095-5108(02)00049-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The human brain is susceptible to a wide variety of insults. The permanent residua of these abnormalities are represented in dysfunction of one or more areas of neurodevelopment. A full understanding of normal brain development, mechanisms of brain injury, and consequences for subsequent brain development is required to determine which infants are at risk for neurodevelopmental handicap, and to monitor the effects of new treatments and management regimens designed to prevent these disabilities. Advanced magnetic resonance techniques, such as quantitative morphometric magnetic resonance techniques, diffusion-weighted magnetic resonance techniques, and magnetic resonance spectroscopy applied to the study of early human brain development have given us a better understanding of the pathophysiologic mechanisms of brain injury and its effects on subsequent brain development. Magnetic resonance imaging has provided an invaluable tool for the study of the fetal and newborn brain in vivo.
Collapse
Affiliation(s)
- Petra S Hüppi
- Child Development Unit, Department of Pediatrics, Childrens Hospital, 6 rue Willy-Donze, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
40
|
Robertson NJ, Lewis RH, Cowan FM, Allsop JM, Counsell SJ, Edwards AD, Cox IJ. Early increases in brain myo-inositol measured by proton magnetic resonance spectroscopy in term infants with neonatal encephalopathy. Pediatr Res 2001; 50:692-700. [PMID: 11726726 DOI: 10.1203/00006450-200112000-00011] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Our aim was to assess brain myo-inositol/creatine plus phosphocreatine (Cr) in the first week in term infants with neonatal encephalopathy using localized short echo time proton magnetic resonance spectroscopy and to relate this to measures of brain injury, specifically lactate/Cr in the first week, basal ganglia changes on magnetic resonance imaging (MRI), and neurodevelopmental outcome at 1 y. Fourteen term infants with neonatal encephalopathy of gestational age (mean +/- SD) 39.6 +/- 1.6 wk, birth weight 3270 +/- 490 g, underwent MRI and magnetic resonance spectroscopy at 3.5 +/- 2.1 d. Five infants were entered in a pilot study of treatment with moderate whole-body hypothermia for neonatal encephalopathy; two were being cooled at the time of the scan. T(1)- and T(2)-weighted transverse magnetic resonance images were graded as normal or abnormal according to the presence or absence of the normal signal intensity of the posterior limb of the internal capsule and signal intensity changes in the basal ganglia. Localized proton magnetic resonance spectroscopy data were obtained from an 8-cm(3) voxel in the basal ganglia using echo times of 40 and 270 ms, and the peak area ratios of myo-inositol/Cr and lactate/Cr were measured. Outcome was scored using Griffith's development scales and neurodevelopmental examination at 1 y. MRI and outcome were normal in six infants and abnormal in eight. myo-Inositol/Cr and lactate/Cr were higher in infants with abnormal MRI and outcome (p < 0.01, p < 0.01, respectively). myo-Inositol/Cr and lactate/Cr were correlated (p < 0.01) and were both correlated to the Griffith's developmental scales (p < 0.01, p < 0.01, respectively). In conclusion, these preliminary data suggest that early increases in brain basal ganglia myo-inositol/Cr in infants with neonatal encephalopathy are associated with increased lactate/Cr, MRI changes of severe injury, and a poor neurodevelopmental outcome at 1 y.
Collapse
Affiliation(s)
- N J Robertson
- Department of Paediatrics, Faculty of Medicine, Imperial College of Science, Technology and Medicine, Hammersmith Hospital Campus, London W12 0HS, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
41
|
Huppi PS, Inder TE. Magnetic resonance techniques in the evaluation of the perinatal brain: recent advances and future directions. SEMINARS IN NEONATOLOGY : SN 2001; 6:195-210. [PMID: 11483024 DOI: 10.1053/siny.2001.0039] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Magnetic resonance (MR) techniques are attractive for use in the developing brain because of their resolving power and their relative noninvasiveness. Their ability to provide detailed structural as well as metabolic and functional information without the use of ionizing radiation is unique. Conventional MR Imaging has widely proven its potential for identifying normal and pathologic brain morphology. Functional MR imaging such as diffusion-weighted imaging (DWI) and perfusion and blood-oxygenation-dependent BOLD imaging are newer imaging methods providing insights into brain physiology. This review will focus on the application of different MR techniques including the conventional structural MR imaging techniques and the more advanced MR techniques, such as the quantitative morphometric MR methods, the diffusion weighted MR techniques, the functional MR techniques and MR spectroscopy in the study of the fetal and newborn brain.
Collapse
Affiliation(s)
- P S Huppi
- Department of Paediatrics, Childrens Hospital, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
42
|
Wennerberg AB, Jonsson T, Forssberg H, Li TQ. Current awareness in NMR in biomedicine. NMR IN BIOMEDICINE 2001; 14:48-53. [PMID: 11252040 DOI: 10.1002/nbm.667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In order to keep subscribers up-to-date with the latest developments in their field, John Wiley & Sons are providing a current awareness service in each issue of the journal. The bibliography contains newly published material in the field of NMR in biomedicine. Each bibliography is divided into 9 sections: 1 Books, Reviews ' Symposia; 2 General; 3 Technology; 4 Brain and Nerves; 5 Neuropathology; 6 Cancer; 7 Cardiac, Vascular and Respiratory Systems; 8 Liver, Kidney and Other Organs; 9 Muscle and Orthopaedic. Within each section, articles are listed in alphabetical order with respect to author. If, in the preceding period, no publications are located relevant to any one of these headings, that section will be omitted.
Collapse
Affiliation(s)
- A B Wennerberg
- Department of KARO, Division of Diagnostic Radiology, Karolinska Institutet, Huddinge University Hospital, SE-141 86 Stockholm, Sweden
| | | | | | | |
Collapse
|