1
|
Sun PZ. Demonstration of magnetization transfer and relaxation normalized pH-specific pulse-amide proton transfer imaging in an animal model of acute stroke. Magn Reson Med 2020; 84:1526-1533. [PMID: 32080897 DOI: 10.1002/mrm.28223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/12/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE pH-weighted amide proton transfer (APT) MRI is promising to serve as a new surrogate metabolic imaging biomarker for refined ischemic tissue demarcation. APT MRI with pulse-RF irradiation (pulse-APT) is an alternative to the routine continuous wave (CW-) APT MRI that overcomes the RF duty cycle limit. Our study aimed to generalize the recently developed pH-specific magnetization transfer and relaxation-normalized APT (MRAPT) analysis to pulse-APT MRI in acute stroke imaging. METHODS Multiparametric MRI, including CW- and pulse-APT MRI scans, were performed following middle cerebral artery occlusion in rats. We calculated pH-sensitive MTRasym and pH-specific MRAPT contrast between the ipsilateral diffusion lesion and contralateral normal area. RESULTS An inversion pulse of 10 to 15 ms maximizes the pH-sensitive MRI contrast for pulse-APT MRI. The contrast-to-noise ratio of pH-specific MRAPT effect between the contralateral normal area and ischemic lesion from both methods are comparable (3.25 ± 0.65 vs. 3.59 ± 0.40, P > .05). pH determined from both methods were in good agreement, with their difference within 0.1. CONCLUSIONS Pulse-APT MRI provides highly pH-specific mapping for acute stroke imaging.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA.,Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
2
|
Zhu Y, Liu Y, Ying L, Liu X, Zheng H, Liang D. Bio-SCOPE: fast biexponential T 1ρ mapping of the brain using signal-compensated low-rank plus sparse matrix decomposition. Magn Reson Med 2019; 83:2092-2106. [PMID: 31762102 DOI: 10.1002/mrm.28067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/28/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE To develop and evaluate a fast imaging method based on signal-compensated low-rank plus sparse matrix decomposition to accelerate data acquisition for biexponential brain T1ρ mapping (Bio-SCOPE). METHODS Two novel strategies were proposed to improve reconstruction performance. A variable-rate undersampling scheme was used with a varied acceleration factor for each k-space along the spin-lock time direction, and a modified nonlinear thresholding scheme combined with a feature descriptor was used for Bio-SCOPE reconstruction. In vivo brain T1ρ mappings were acquired from 4 volunteers. The fully sampled k-space data acquired from 3 volunteers were retrospectively undersampled by net acceleration rates (R) of 4.6 and 6.1. Reference values were obtained from the fully sampled data. The agreement between the accelerated T1ρ measurements and reference values was assessed with Bland-Altman analyses. Prospectively undersampled data with R = 4.6 and R = 6.1 were acquired from 1 volunteer. RESULTS T1ρ -weighted images were successfully reconstructed using Bio-SCOPE for R = 4.6 and 6.1 with signal-to-noise ratio variations <1 dB and normalized root mean square errors <4%. Accelerated and reference T1ρ measurements were in good agreement for R = 4.6 (T1ρ s : 18.6651 ± 1.7786 ms; T1ρ l : 88.9603 ± 1.7331 ms) and R = 6.1 (T1ρ s : 17.8403 ± 3.3302 ms; T1ρ l : 88.0275 ± 4.9606 ms) in the Bland-Altman analyses. T1ρ parameter maps from prospectively undersampled data also show reasonable image quality using the Bio-SCOPE method. CONCLUSION Bio-SCOPE achieves a high net acceleration rate for biexponential T1ρ mapping and improves reconstruction quality by using a variable-rate undersampling data acquisition scheme and a modified soft-thresholding algorithm in image reconstruction.
Collapse
Affiliation(s)
- Yanjie Zhu
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuanyuan Liu
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Leslie Ying
- Department of Biomedical Engineering and Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, New York
| | - Xin Liu
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dong Liang
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
3
|
Lin G, Zhuang C, Shen Z, Xiao G, Chen Y, Shen Y, Zong X, Wu R. APT Weighted MRI as an Effective Imaging Protocol to Predict Clinical Outcome After Acute Ischemic Stroke. Front Neurol 2018; 9:901. [PMID: 30405523 PMCID: PMC6205981 DOI: 10.3389/fneur.2018.00901] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/05/2018] [Indexed: 11/13/2022] Open
Abstract
To explore the capability of the amide-proton-transfer weighted (APTW) magnetic resonance imaging (MRI) in the evaluation of clinical neurological deficit at the time of hospitalization and assessment of long-term daily functional outcome for patients with acute ischemic stroke (AIS). We recruited 55 AIS patients with brain MRI acquired within 24-48 h of symptom onset and followed up with their 90-day modified Rankin Scale (mRS) score. APT weighted MRI was performed for all the study subjects to measure APTW signal quantitatively in the acute ischemic area (APTWipsi) and the contralateral side (APTWcont). Change of the APT signal between the acute ischemic region and the contralateral side (ΔAPTW) was calculated. Maximum APTW signal (APTWmax) and minimal APTW signal (APTWmin) were also acquired to demonstrate APTW signals heterogeneity (APTWmax-min). In addition, all the patients were divided into 2 groups according to their 90-day mRS score (good prognosis group with mRS score <2 and poor prognosis group with mRS score ≥2). In the meantime, ΔAPTW of these groups was compared. We found that ΔAPTW was in good correlation with National Institutes of Health Stroke Scale (NIHSS) score (R 2 = 0.578, p < 0.001) and 90-day mRS score (R 2 = 0.55, p < 0.001). There was significant difference of ΔAPTW between patients with good prognosis and patients with poor prognosis. Plus, APTWmax-min was significantly different between two groups. These results suggested that APT weighted MRI could be used as an effective tool to assess the stroke severity and prognosis for patients with AIS, with APTW signal heterogeneity as a possible biomarker.
Collapse
Affiliation(s)
- Guisen Lin
- Department of Medical Imaging, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - Caiyu Zhuang
- Department of Medical Imaging, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - Zhiwei Shen
- Department of Medical Imaging, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - Gang Xiao
- Department of Mathematics and Statistics, Hanshan Normal University, Chaozhou, China
| | - Yanzi Chen
- Department of Medical Imaging, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - Yuanyu Shen
- Department of Medical Imaging, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - Xiaodan Zong
- Department of Medical Imaging, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - Renhua Wu
- Department of Medical Imaging, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China.,Provincial Key Laboratory of Medical Molecular Imaging, Shantou, China
| |
Collapse
|
4
|
Khodanovich MY, Kisel AA, Akulov AE, Atochin DN, Kudabaeva MS, Glazacheva VY, Svetlik MV, Medvednikova YA, Mustafina LR, Yarnykh VL. Quantitative assessment of demyelination in ischemic stroke in vivo using macromolecular proton fraction mapping. J Cereb Blood Flow Metab 2018; 38:919-931. [PMID: 29372644 PMCID: PMC5987939 DOI: 10.1177/0271678x18755203] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A recent MRI method, fast macromolecular proton fraction (MPF) mapping, was used to quantify demyelination in the transient middle cerebral artery occlusion (MCAO) rat stroke model. MPF and other quantitative MRI parameters (T1, T2, proton density, and apparent diffusion coefficient) were compared with histological and immunohistochemical markers of demyelination (Luxol Fast Blue stain, (LFB)), neuronal loss (NeuN immunofluorescence), axonal loss (Bielschowsky stain), and inflammation (Iba1 immunofluorescence) in three animal groups ( n = 5 per group) on the 1st, 3rd, and 10th day after MCAO. MPF and LFB optical density (OD) were significantly reduced in the ischemic lesion on all days after MCAO relative to the symmetrical regions of the contralateral hemisphere. Percentage changes in MPF and LFB OD in the ischemic lesion relative to the contralateral hemisphere significantly differed on the first day only. Percentage changes in LFB OD and MPF were strongly correlated (R = 0.81, P < 0.001) and did not correlate with other MRI parameters. MPF also did not correlate with other histological variables. Addition of T2 into multivariate regression further improved agreement between MPF and LFB OD (R = 0.89, P < 0.001) due to correction of the edema effect. This study provides histological validation of MPF as an imaging biomarker of demyelination in ischemic stroke.
Collapse
Affiliation(s)
| | - Alena A Kisel
- 1 Laboratory of Neurobiology, Tomsk State University, Tomsk, Russian Federation
| | - Andrey E Akulov
- 1 Laboratory of Neurobiology, Tomsk State University, Tomsk, Russian Federation.,2 Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Dmitriy N Atochin
- 1 Laboratory of Neurobiology, Tomsk State University, Tomsk, Russian Federation.,3 Cardiovascular Research Center, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA.,4 RASA Center in Tomsk, Tomsk Polytechnic University, Tomsk, Russian Federation
| | - Marina S Kudabaeva
- 1 Laboratory of Neurobiology, Tomsk State University, Tomsk, Russian Federation
| | | | - Michael V Svetlik
- 1 Laboratory of Neurobiology, Tomsk State University, Tomsk, Russian Federation
| | - Yana A Medvednikova
- 1 Laboratory of Neurobiology, Tomsk State University, Tomsk, Russian Federation
| | - Lilia R Mustafina
- 5 Department of Histology, Embryology and Cytology, Siberian State Medical University, Tomsk, Russian Federation
| | - Vasily L Yarnykh
- 1 Laboratory of Neurobiology, Tomsk State University, Tomsk, Russian Federation.,6 Department of Radiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Heo HY, Zhang Y, Burton TM, Jiang S, Zhao Y, van Zijl PCM, Leigh R, Zhou J. Improving the detection sensitivity of pH-weighted amide proton transfer MRI in acute stroke patients using extrapolated semisolid magnetization transfer reference signals. Magn Reson Med 2017. [PMID: 28639301 DOI: 10.1002/mrm.26799] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE To quantify amide protein transfer (APT) effects in acidic ischemic lesions and assess the spatial-temporal relationship among diffusion, perfusion, and pH deficits in acute stroke patients. METHODS Thirty acute stroke patients were scanned at 3 T. Quantitative APT (APT# ) effects in acidic ischemic lesions were measured using an extrapolated semisolid magnetization transfer reference signal technique and compared with commonly used MTRasym (3.5ppm) or APT-weighted parameters. RESULTS The APT# images showed clear pH deficits in the ischemic lesion, whereas the MTRasym (3.5ppm) signals were slightly hypointense. The APT# contrast between acidic ischemic lesions and normal tissue in acute stroke patients was more than three times larger than MTRasym (3.5ppm) contrast (-1.45 ± 0.40% for APT# versus -0.39 ± 0.52% for MTRasym (3.5ppm), P < 4.6 × 10-4 ). Hypoperfused and acidic areas without an apparent diffusion coefficient abnormality were observed and assigned to an ischemic acidosis penumbra. Hypoperfused areas at normal pH were also observed and assigned to benign oligemia. Hyperintense APT signals were observed in a hemorrhage area in one case. CONCLUSIONS The quantitative APT study using the extrapolated semisolid magnetization transfer reference signal approach enhances APT MRI sensitivity to pH compared with conventional APT-weighted MRI, allowing more reliable delineation of an ischemic acidosis in the penumbra. Magn Reson Med 78:871-880, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Hye-Young Heo
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Yi Zhang
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Tina M Burton
- Neuro Vascular Brain Imaging Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Shanshan Jiang
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Peter C M van Zijl
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Richard Leigh
- Neuro Vascular Brain Imaging Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Schuenke P, Koehler C, Korzowski A, Windschuh J, Bachert P, Ladd ME, Mundiyanapurath S, Paech D, Bickelhaupt S, Bonekamp D, Schlemmer HP, Radbruch A, Zaiss M. Adiabatically prepared spin-lock approach for T1ρ-based dynamic glucose enhanced MRI at ultrahigh fields. Magn Reson Med 2016; 78:215-225. [DOI: 10.1002/mrm.26370] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Patrick Schuenke
- German Cancer Research Center (DKFZ); Division of Medical Physics in Radiology; Heidelberg Germany
| | - Christina Koehler
- German Cancer Research Center (DKFZ); Division of Radiology; Heidelberg Germany
| | - Andreas Korzowski
- German Cancer Research Center (DKFZ); Division of Medical Physics in Radiology; Heidelberg Germany
| | - Johannes Windschuh
- German Cancer Research Center (DKFZ); Division of Medical Physics in Radiology; Heidelberg Germany
| | - Peter Bachert
- German Cancer Research Center (DKFZ); Division of Medical Physics in Radiology; Heidelberg Germany
| | - Mark E. Ladd
- German Cancer Research Center (DKFZ); Division of Medical Physics in Radiology; Heidelberg Germany
| | | | - Daniel Paech
- German Cancer Research Center (DKFZ); Division of Radiology; Heidelberg Germany
| | | | - David Bonekamp
- German Cancer Research Center (DKFZ); Division of Radiology; Heidelberg Germany
| | | | - Alexander Radbruch
- German Cancer Research Center (DKFZ); Division of Radiology; Heidelberg Germany
| | - Moritz Zaiss
- German Cancer Research Center (DKFZ); Division of Medical Physics in Radiology; Heidelberg Germany
- Max-Planck-Institute for Biological Cybernetics; Tübingen Baden-Württemberg Germany
| |
Collapse
|
7
|
Guo Y, Zhou IY, Chan ST, Wang Y, Mandeville ET, Igarashi T, Lo EH, Ji X, Sun PZ. pH-sensitive MRI demarcates graded tissue acidification during acute stroke - pH specificity enhancement with magnetization transfer and relaxation-normalized amide proton transfer (APT) MRI. Neuroimage 2016; 141:242-249. [PMID: 27444569 DOI: 10.1016/j.neuroimage.2016.07.025] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/06/2016] [Accepted: 07/11/2016] [Indexed: 11/26/2022] Open
Abstract
pH-sensitive amide proton transfer (APT) MRI provides a surrogate metabolic biomarker that complements the widely-used perfusion and diffusion imaging. However, the endogenous APT MRI is often calculated using the asymmetry analysis (MTRasym), which is susceptible to an inhomogeneous shift due to concomitant semisolid magnetization transfer (MT) and nuclear overhauser (NOE) effects. Although the intact brain tissue has little pH variation, white and gray matter appears distinct in the MTRasym image. Herein we showed that the heterogeneous MTRasym shift not related to pH highly correlates with MT ratio (MTR) and longitudinal relaxation rate (R1w), which can be reasonably corrected using the multiple regression analysis. Because there are relatively small MT and R1w changes during acute stroke, we postulate that magnetization transfer and relaxation-normalized APT (MRAPT) analysis increases MRI specificity to acidosis over the routine MTRasym image, hence facilitates ischemic lesion segmentation. We found significant differences in perfusion, pH and diffusion lesion volumes (P<0.001, ANOVA). Furthermore, MRAPT MRI depicted graded ischemic acidosis, with the most severe acidosis in the diffusion lesion (-1.05±0.29%/s), moderate acidification within the pH/diffusion mismatch (i.e., metabolic penumbra, -0.67±0.27%/s) and little pH change in the perfusion/pH mismatch (i.e., benign oligemia, -0.04±0.14%/s), providing refined stratification of ischemic tissue injury.
Collapse
Affiliation(s)
- Yingkun Guo
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Iris Yuwen Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Suk-Tak Chan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Yu Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; China-America Joint Neuroscience Institute, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Emiri T Mandeville
- Neuroprotection Research Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Takahiro Igarashi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Eng H Lo
- Neuroprotection Research Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Xunming Ji
- China-America Joint Neuroscience Institute, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; China-America Joint Neuroscience Institute, Xuanwu Hospital, Capital Medical University, Beijing, China; Neuroprotection Research Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
8
|
Wáng YXJ, Zhang Q, Li X, Chen W, Ahuja A, Yuan J. T1ρ magnetic resonance: basic physics principles and applications in knee and intervertebral disc imaging. Quant Imaging Med Surg 2015; 5:858-85. [PMID: 26807369 PMCID: PMC4700236 DOI: 10.3978/j.issn.2223-4292.2015.12.06] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/06/2015] [Indexed: 12/15/2022]
Abstract
T1ρ relaxation time provides a new contrast mechanism that differs from T1- and T2-weighted contrast, and is useful to study low-frequency motional processes and chemical exchange in biological tissues. T1ρ imaging can be performed in the forms of T1ρ-weighted image, T1ρ mapping and T1ρ dispersion. T1ρ imaging, particularly at low spin-lock frequency, is sensitive to B0 and B1 inhomogeneity. Various composite spin-lock pulses have been proposed to alleviate the influence of field inhomogeneity so as to reduce the banding-like spin-lock artifacts. T1ρ imaging could be specific absorption rate (SAR) intensive and time consuming. Efforts to address these issues and speed-up data acquisition are being explored to facilitate wider clinical applications. This paper reviews the T1ρ imaging's basic physic principles, as well as its application for cartilage imaging and intervertebral disc imaging. Compared to more established T2 relaxation time, it has been shown that T1ρ provides more sensitive detection of proteoglycan (PG) loss at early stages of cartilage degeneration. T1ρ has also been shown to provide more sensitive evaluation of annulus fibrosis (AF) degeneration of the discs.
Collapse
|
9
|
Zhao F, Yuan J, Lu G, Zhang LH, Chen ZY, Wáng YXJ. T1ρ relaxation time in brain regions increases with ageing: an experimental MRI observation in rats. Br J Radiol 2015; 89:20140704. [PMID: 26529226 DOI: 10.1259/bjr.20140704] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE T1ρ variation is associated with neurodegenerative diseases. This study aims to observe T1ρ relaxation time changes in rat brains associated with normal ageing in Sprague-Dawley (SD) rats, Wistar Kyoto (WKY) rats and spontaneously hypertension rats (SHRs). METHODS 18 male SD rats, 11 male WKY rats and 11 male SHRs were used. T1ρ measurement was performed at 3-T MR with a spin-lock frequency of 500 Hz. SD rats were scanned at the ages of 5, 8, 10 and 15 months. SHRs and WKY rats were scanned at the ages of 6, 9 and 12 months. RESULTS For SD rats, T1ρ at the thalamus, hippocampus and frontal cortices increased significantly from 5 to 15 months (p < 0.05). For the WKY rats and SHRs, the T1ρ values in the thalamus, hippocampus and frontal cortices also increased significantly from 6 to 12 months (p < 0.05). Furthermore, T1ρ in the thalamus, hippocampus and frontal cortices of SHRs were consistently higher than those of WKY rats at the ages of 6, 9 and 12 months (p < 0.05). The percentage regional T1ρ differences between WKY rats and SHRs did not change during ageing. CONCLUSION An increase in T1ρ was associated with age-related changes of the rat brain. ADVANCES IN KNOWLEDGE An age-related and hypertension-related T1ρ increase in rat brain regions was observed in the thalamus, hippocampus and frontal cortical regions of the rat brain.
Collapse
Affiliation(s)
- Feng Zhao
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | - Jing Yuan
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong.,2 Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong
| | - Gang Lu
- 3 Division of Neurosurgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | - Li H Zhang
- 4 School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Zhi Y Chen
- 5 Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yì-Xiáng J Wáng
- 1 Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| |
Collapse
|
10
|
Wu R, Xiao G, Zhou IY, Ran C, Sun PZ. Quantitative chemical exchange saturation transfer (qCEST) MRI - omega plot analysis of RF-spillover-corrected inverse CEST ratio asymmetry for simultaneous determination of labile proton ratio and exchange rate. NMR IN BIOMEDICINE 2015; 28:376-83. [PMID: 25615718 PMCID: PMC4339459 DOI: 10.1002/nbm.3257] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/04/2014] [Accepted: 12/16/2014] [Indexed: 02/05/2023]
Abstract
Chemical exchange saturation transfer (CEST) MRI is sensitive to labile proton concentration and exchange rate, thus allowing measurement of dilute CEST agent and microenvironmental properties. However, CEST measurement depends not only on the CEST agent properties but also on the experimental conditions. Quantitative CEST (qCEST) analysis has been proposed to address the limitation of the commonly used simplistic CEST-weighted calculation. Recent research has shown that the concomitant direct RF saturation (spillover) effect can be corrected using an inverse CEST ratio calculation. We postulated that a simplified qCEST analysis is feasible with omega plot analysis of the inverse CEST asymmetry calculation. Specifically, simulations showed that the numerically derived labile proton ratio and exchange rate were in good agreement with input values. In addition, the qCEST analysis was confirmed experimentally in a phantom with concurrent variation in CEST agent concentration and pH. Also, we demonstrated that the derived labile proton ratio increased linearly with creatine concentration (P < 0.01) while the pH-dependent exchange rate followed a dominantly base-catalyzed exchange relationship (P < 0.01). In summary, our study verified that a simplified qCEST analysis can simultaneously determine labile proton ratio and exchange rate in a relatively complex in vitro CEST system.
Collapse
Affiliation(s)
- Renhua Wu
- Department of Radiology, 2 Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Gang Xiao
- Department of Radiology, 2 Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Mathematics and Statistics, Hanshan Normal University, Chaozhou, China
| | - Iris Yuwen Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- Corresponding Authors: Dr. Phillip Zhe Sun (), Biomarker and Metabolism Imaging Lab, Martinos Center for Biomedical Imaging, MGH and Harvard Medical School, Rm 2301, 149 13 Street, Charlestown, MA 02129, USA, Tel: 617-726-4060, Fax: 617-726-7422
| |
Collapse
|
11
|
Li H, Zu Z, Zaiss M, Khan IS, Singer R, Gochberg DF, Bachert P, Gore JC, Xu J. Imaging of amide proton transfer and nuclear Overhauser enhancement in ischemic stroke with corrections for competing effects. NMR IN BIOMEDICINE 2015; 28:200-9. [PMID: 25483870 PMCID: PMC4303585 DOI: 10.1002/nbm.3243] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 10/21/2014] [Accepted: 11/11/2014] [Indexed: 05/08/2023]
Abstract
Chemical exchange saturation transfer (CEST) potentially provides the ability to detect small solute pools through indirect measurements of attenuated water signals. However, CEST effects may be diluted by various competing effects, such as non-specific magnetization transfer (MT) and asymmetric MT effects, water longitudinal relaxation (T1 ) and direct water saturation (radiofrequency spillover). In the current study, CEST images were acquired in rats following ischemic stroke and analyzed by comparing the reciprocals of the CEST signals at three different saturation offsets. This combined approach corrects the above competing effects and provides a more robust signal metric sensitive specifically to the proton exchange rate constant. The corrected amide proton transfer (APT) data show greater differences between the ischemic and contralateral (non-ischemic) hemispheres. By contrast, corrected nuclear Overhauser enhancements (NOEs) around -3.5 ppm from water change over time in both hemispheres, indicating whole-brain changes that have not been reported previously. This study may help us to better understand the contrast mechanisms of APT and NOE imaging in ischemic stroke, and may also establish a framework for future stroke measurements using CEST imaging with spillover, MT and T1 corrections.
Collapse
Affiliation(s)
- Hua Li
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA
| | - Zhongliang Zu
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Moritz Zaiss
- Department of Medical Physics in Radiology, Deutsches Krebsforschungszentrum (DKFZ, German Cancer Research Center), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Imad S. Khan
- Section of Neurosurgery, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Robert Singer
- Section of Neurosurgery, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Daniel F. Gochberg
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Peter Bachert
- Department of Medical Physics in Radiology, Deutsches Krebsforschungszentrum (DKFZ, German Cancer Research Center), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - John C. Gore
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Junzhong Xu
- Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Corresponding author: Vanderbilt University Institute of Imaging Science, 1161 21st Avenue South, AA 1105 MCN, Nashville, TN 37232-2310, USA. Tel.: + 1 615 322 8359; Fax: + 1 615 322 0734. (J. Xu)
| |
Collapse
|
12
|
Kim J, Wu Y, Guo Y, Zheng H, Sun PZ. A review of optimization and quantification techniques for chemical exchange saturation transfer MRI toward sensitive in vivo imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 10:163-178. [PMID: 25641791 DOI: 10.1002/cmmi.1628] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/26/2014] [Accepted: 09/10/2014] [Indexed: 01/10/2023]
Abstract
Chemical exchange saturation transfer (CEST) MRI is a versatile imaging method that probes the chemical exchange between bulk water and exchangeable protons. CEST imaging indirectly detects dilute labile protons via bulk water signal changes following selective saturation of exchangeable protons, which offers substantial sensitivity enhancement and has sparked numerous biomedical applications. Over the past decade, CEST imaging techniques have rapidly evolved owing to contributions from multiple domains, including the development of CEST mathematical models, innovative contrast agent designs, sensitive data acquisition schemes, efficient field inhomogeneity correction algorithms, and quantitative CEST (qCEST) analysis. The CEST system that underlies the apparent CEST-weighted effect, however, is complex. The experimentally measurable CEST effect depends not only on parameters such as CEST agent concentration, pH and temperature, but also on relaxation rate, magnetic field strength and more importantly, experimental parameters including repetition time, RF irradiation amplitude and scheme, and image readout. Thorough understanding of the underlying CEST system using qCEST analysis may augment the diagnostic capability of conventional imaging. In this review, we provide a concise explanation of CEST acquisition methods and processing algorithms, including their advantages and limitations, for optimization and quantification of CEST MRI experiments.
Collapse
Affiliation(s)
- Jinsuh Kim
- Department of Radiology, University of Iowa, Iowa City, IA, USA
| | - Yin Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Yingkun Guo
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
13
|
Huang D, Li S, Dai Z, Shen Z, Yan G, Wu R. Novel gradient echo sequence‑based amide proton transfer magnetic resonance imaging in hyperacute cerebral infarction. Mol Med Rep 2015; 11:3279-84. [PMID: 25571956 PMCID: PMC4368135 DOI: 10.3892/mmr.2015.3165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 11/25/2014] [Indexed: 12/28/2022] Open
Abstract
In the progression of ischemia, pH is important and is essential in elucidating the association between metabolic disruption, lactate formation, acidosis and tissue damage. Chemical exchange-dependent saturation transfer (CEST) imaging can be used to detect tissue pH and, in particular, a specific form of CEST magnetic resonance imaging (MRI), termed amide proton transfer (APT) MRI, which is sensitive to pH and can detect ischemic lesions, even prior to diffusion abnormalities. The critical parameter governing the ability of CEST to detect pH is the sequence. In the present study, a novel strategy was used, based on the gradient echo sequence (GRE), which involved the insertion of a magnetization transfer pulse in each repetition time (TR) and minimizing the TR for in vivo APT imaging. The proposed GRE-APT MRI method was initially verified using a tissue-like pH phantom and optimized MRI parameters for APT imaging. In order to assess the range of acute cerebral infarction, rats (n=4) were subjected to middle cerebral artery occlusion (MCAO) and MRI scanning at 7 telsa (T). Hyperacute ischemic tissue damage was characterized using multiparametric imaging techniques, including diffusion, APT and T2-Weighted MRI. By using a magnetization transfer pulse and minimizing TR, GRE-APT provided high spatial resolution and a homogeneous signal, with clearly distinguished cerebral anatomy. The GRE-APT and diffusion MRI were significantly correlated with lactate content and the area of cerebral infarction in the APT and apparent diffusion coefficient (ADC) maps matched consistently during the hyperacute period. In addition, compared with the infarction area observed on the ADC MRI map, the APT map contained tissue, which had not yet been irreversibly damaged. Therefore, GRE-APT MRI waa able to detect ischemic lactic acidosis with sensitivity and spatiotemporal resolution, suggesting the potential use of pH MRI as a surrogate imaging marker of impaired tissue metabolism for the diagnosis and prognosis of hyperacute stroke.
Collapse
Affiliation(s)
- Dexiao Huang
- Department of Medical Imaging, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, Guangdong 515041, P.R. China
| | - Shenkai Li
- Department of Medical Imaging, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, Guangdong 515041, P.R. China
| | - Zhuozhi Dai
- Department of Medical Imaging, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, Guangdong 515041, P.R. China
| | - Zhiwei Shen
- Department of Medical Imaging, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, Guangdong 515041, P.R. China
| | - Gen Yan
- Department of Medical Imaging, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, Guangdong 515041, P.R. China
| | - Renhua Wu
- Department of Medical Imaging, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, Guangdong 515041, P.R. China
| |
Collapse
|
14
|
Johnson CP, Heo HY, Thedens DR, Wemmie JA, Magnotta VA. Rapid acquisition strategy for functional T1ρ mapping of the brain. Magn Reson Imaging 2014; 32:1067-77. [PMID: 25093630 PMCID: PMC4171198 DOI: 10.1016/j.mri.2014.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 05/27/2014] [Accepted: 07/25/2014] [Indexed: 11/29/2022]
Abstract
Functional T1ρ mapping has been proposed as a method to assess pH and metabolism dynamics in the brain with high spatial and temporal resolution. The purpose of this work is to describe and evaluate a variant of the spin-locked echo-planar imaging sequence for functional T1ρ mapping at 3T. The proposed sequence rapidly acquires a time series of T1ρ maps with 4.0second temporal resolution and 10 slices of volumetric coverage. Simulation, phantom, and in vivo experiments are used to evaluate many aspects of the sequence and its implementation including fidelity of measured T1ρ dynamics, potential confounds to the T1ρ response, imaging parameter tradeoffs, time series analysis approaches, and differences compared to blood oxygen level dependent functional magnetic resonance imaging. It is shown that the high temporal resolution and volumetric coverage of the sequence are obtained with some expense including underestimation of the T1ρ response, sensitivity to T1 dynamics, and reduced signal-to-noise ratio. In vivo studies using a flashing checkerboard functional magnetic resonance imaging paradigm suggest differences between T1ρ and blood oxygen level dependent activation patterns. Possible sources of the functional T1ρ response and potential sequence improvements are discussed. The capability of T1ρ to map whole-brain pH and metabolism dynamics with high temporal and spatial resolution is potentially unique and warrants further investigation and development.
Collapse
Affiliation(s)
| | - Hye-Young Heo
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA
| | | | - John A Wemmie
- Department of Psychiatry, University of Iowa, Iowa City, IA; Department of Veterans Affairs Medical Center, Iowa City, IA
| | - Vincent A Magnotta
- Department of Radiology, University of Iowa, Iowa City, IA; Department of Biomedical Engineering, University of Iowa, Iowa City, IA; Department of Psychiatry, University of Iowa, Iowa City, IA
| |
Collapse
|
15
|
Kauppinen RA. Multiparametric magnetic resonance imaging of acute experimental brain ischaemia. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 80:12-25. [PMID: 24924265 DOI: 10.1016/j.pnmrs.2014.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/07/2014] [Accepted: 05/07/2014] [Indexed: 06/03/2023]
Abstract
Ischaemia is a condition in which blood flow either drops to zero or proceeds at severely decreased levels that cannot supply sufficient oxidizable substrates to maintain energy metabolism in vivo. Brain, a highly oxidative organ, is particularly susceptible to ischaemia. Ischaemia leads to loss of consciousness in seconds and, if prolonged, permanent tissue damage is inevitable. Ischaemia primarily results in a collapse of cerebral energy state, followed by a series of subtle changes in anaerobic metabolism, ion and water homeostasis that eventually initiate destructive internal and external processes in brain tissue. (31)P and (1)H NMR spectroscopy were initially used to evaluate anaerobic metabolism in brain. However, since the early 1990s (1)H Magnetic Resonance Imaging (MRI), exploiting the nuclear magnetism of tissue water, has become the key method for assessment of ischaemic brain tissue. This article summarises multi-parametric (1)H MRI work that has exploited diffusion, relaxation and magnetisation transfer as 'contrasts' to image ischaemic brain in preclinical models for the first few hours, with a view to assessing evolution of ischaemia and tissue viability in a non-invasive manner.
Collapse
Affiliation(s)
- Risto A Kauppinen
- School of Experimental Psychology and Clinical Research and Imaging Centre, University of Bristol, 12a Priory Road, Bristol BS8 1TU, UK.
| |
Collapse
|
16
|
Chan KWY, Liu G, van Zijl PCM, Bulte JWM, McMahon MT. Magnetization transfer contrast MRI for non-invasive assessment of innate and adaptive immune responses against alginate-encapsulated cells. Biomaterials 2014; 35:7811-8. [PMID: 24930848 DOI: 10.1016/j.biomaterials.2014.05.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/21/2014] [Indexed: 12/24/2022]
Abstract
By means of physical isolation of cells inside semi-permeable hydrogels, encapsulation has been widely used to immunoprotect transplanted cells. While spherical alginate microcapsules are now being used clinically, there still is little known about the patient's immune system response unless biopsies are obtained. We investigated the use of Magnetization Transfer (MT) imaging to non-invasively detect host immune responses against alginate capsules containing xenografted human hepatocytes in four groups of animals, including transplanted empty capsules (-Cells/-IS), capsules with live cells with (+LiveCells/+IS) and without immunosuppression (+LiveCells/-IS), and capsules with apoptotic cells in non-immunosuppressed animals (+DeadCells/-IS). The highest MT ratio (MTR) was found in +LiveCells/-IS, which increased from day 0 by 38% and 53% on days 7 and 14 after transplantation respectively, and corresponded to a distinctive increase in cell infiltration on histology. Furthermore, we show that macromolecular ratio maps based on MT data are more sensitive to cell infiltration and fibrosis than conventional MTR maps. Such maps showed a significant difference between +LiveCells/-IS (0.18 ± 0.02) and +DeadCells/-IS (0.13 ± 0.02) on day 7 (P < 0.01) existed, which was not observed on MTR imaging. We conclude that MT imaging, which is clinically available, can be applied for non-invasive monitoring of the occurrence of a host immune response against encapsulated cells.
Collapse
Affiliation(s)
- Kannie W Y Chan
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA; Center of Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Baltimore, MD 21205, USA
| | - Guanshu Liu
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Peter C M van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA; Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Baltimore, MD 21205, USA
| | - Michael T McMahon
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA; Center of Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
17
|
McVicar N, Li AX, Gonçalves DF, Bellyou M, Meakin SO, Prado MAM, Bartha R. Quantitative tissue pH measurement during cerebral ischemia using amine and amide concentration-independent detection (AACID) with MRI. J Cereb Blood Flow Metab 2014; 34:690-8. [PMID: 24496171 PMCID: PMC3982091 DOI: 10.1038/jcbfm.2014.12] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 11/26/2013] [Accepted: 12/23/2013] [Indexed: 11/09/2022]
Abstract
Tissue pH is an indicator of altered cellular metabolism in diseases including stroke and cancer. Ischemic tissue often becomes acidic due to increased anaerobic respiration leading to irreversible cellular damage. Chemical exchange saturation transfer (CEST) effects can be used to generate pH-weighted magnetic resonance imaging (MRI) contrast, which has been used to delineate the ischemic penumbra after ischemic stroke. In the current study, a novel MRI ratiometric technique is presented to measure absolute pH using the ratio of CEST-mediated contrast from amine and amide protons: amine/amide concentration-independent detection (AACID). Effects of CEST were observed at 2.75 parts per million (p.p.m.) for amine protons and at 3.50 p.p.m. for amide protons downfield (i.e., higher frequency) from bulk water. Using numerical simulations and in vitro MRI experiments, we showed that pH measured using AACID was independent of tissue relaxation time constants, macromolecular magnetization transfer effects, protein concentration, and temperature within the physiologic range. After in vivo pH calibration using phosphorus ((31)P) magnetic resonance spectroscopy ((31)P-MRS), local acidosis is detected in mouse brain after focal permanent middle cerebral artery occlusion. In summary, our results suggest that AACID represents a noninvasive method to directly measure the spatial distribution of absolute pH in vivo using CEST MRI.
Collapse
Affiliation(s)
- Nevin McVicar
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Alex X Li
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Daniela F Gonçalves
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Biophysics, Neuroscience Centre, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Miranda Bellyou
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Susan O Meakin
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Biochemistry, University of Western Ontario, Western University, London, Ontario, Canada
| | - Marco AM Prado
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Robert Bartha
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
18
|
Jokivarsi KT, Liimatainen T, Kauppinen RA, Gröhn OHJ, Närväinen J. Relaxation along a fictitious field (RAFF) and Z-spectroscopy using alternating-phase irradiation (ZAPI) in permanent focal cerebral ischemia in rat. PLoS One 2013; 8:e69157. [PMID: 23874898 PMCID: PMC3714241 DOI: 10.1371/journal.pone.0069157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 06/11/2013] [Indexed: 11/18/2022] Open
Abstract
Cerebral ischemia alters the molecular dynamics and content of water in brain tissue, which is reflected in NMR relaxation, diffusion and magnetization transfer (MT) parameters. In this study, the behavior of two new MRI contrasts, Relaxation Along a Fictitious Field (RAFF) and Z-spectroscopy using Alternating-Phase Irradiation (ZAPI), were quantified together with conventional relaxation parameters (T1, T2 and T1ρ) and MT ratios in acute cerebral ischemia in rat. The right middle cerebral artery was permanently occluded and quantitative MRI data was acquired sequentially for the above parameters for up to 6 hours. The following conclusions were drawn: 1) Time-dependent changes in RAFF and T1ρ relaxation are not coupled to those in MT. 2) RAFF relaxation evolves more like transverse, rather than longitudinal relaxation. 3) MT measured with ZAPI is less sensitive to ischemia than conventional MT. 4) ZAPI data suggest alterations in the T2 distribution of macromolecules in acute cerebral ischemia. It was shown that both RAFF and ZAPI provide complementary MRI information from acute ischemic brain tissue. The presented multiparametric MRI data may aid in the assessment of brain tissue status early in ischemic stroke.
Collapse
Affiliation(s)
- Kimmo T Jokivarsi
- Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | |
Collapse
|
19
|
Moldes O, Sobrino T, Blanco M, Agulla J, Barral D, Ramos-Cabrer P, Castillo J. Neuroprotection afforded by antagonists of endothelin-1 receptors in experimental stroke. Neuropharmacology 2012; 63:1279-85. [PMID: 22975409 DOI: 10.1016/j.neuropharm.2012.08.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 07/28/2012] [Accepted: 08/21/2012] [Indexed: 10/27/2022]
Abstract
Endothelin-1 (ET-1) is involved on the development of cerebral edema in acute ischemic stroke. As edema is a therapeutic target in cerebral ischemia, our aim was to study the effect of antagonists for ET-1 receptors (Clazosentan® and BQ-788, specific antagonists for receptors A and B, respectively) on the development of edema, infarct volume and sensorial-motor deficits in rats subjected to ischemia by occlusion of the middle cerebral artery (MCAO). We used Wistar rats (280-320 g) submitted to ischemia by intraluminal transient (90 min) MCAO. After ischemia, rats were randomized into 4 groups (n = 6) treated with; 1) control group (saline), 2) Clazosentan® group (10 mg/kg iv), 3) BQ-788 group (3 mg/kg iv), and 4) combined treatment (Clazosentan® 10 mg/kg plus BQ-788 3 mg/kg iv). We observed that rats treated with Clazosentan® showed a reduction of edema, measured by MRI, at 72 h (hours) and at day 7 (both p < 0.0001), and a decrease in the serum levels of ET-1 at 72 h (p < 0.0001) and at day 7 (p = 0.009). The combined treatment also induced a reduction of edema at 24 h (p = 0.004), 72 h (p < 0.0001) and at day 7 (p < 0.0001), a reduction on infarct volume, measured by MRI, at 24 and 72 h, and at day 7 (all p < 0.01), and a better sensorimotor recovery at 24 and 72 h, and at day 7 (all p < 0.01). Moreover, Clazosentan® induced a decrease in AQP4 expression, while BQ-788 induced an increase in AQP9 expression. These results suggest that antagonists for ET-1 receptors may be a good therapeutic target for cerebral ischemia.
Collapse
Affiliation(s)
- Octavio Moldes
- Clinical Neurosciences Research Laboratory, Neurovascular Area, Department of Neurology, Hospital Clínico Universitario, IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | | | | | |
Collapse
|
20
|
Sun PZ, Cheung JS, Wang E, Lo EH. Association between pH-weighted endogenous amide proton chemical exchange saturation transfer MRI and tissue lactic acidosis during acute ischemic stroke. J Cereb Blood Flow Metab 2011; 31:1743-50. [PMID: 21386856 PMCID: PMC3170940 DOI: 10.1038/jcbfm.2011.23] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ischemic tissue becomes acidic after initiation of anaerobic respiration, which may result in impaired tissue metabolism and, ultimately, in severe tissue damage. Although changes in the major cerebral metabolites can be studied using magnetic resonance (MR) spectroscopy (MRS)-based techniques, their spatiotemporal resolution is often not sufficient for routine examination of fast-evolving and heterogeneous acute stroke lesions. Recently, pH-weighted MR imaging (MRI) has been proposed as a means to assess tissue acidosis by probing the pH-dependent chemical exchange of amide protons from endogenous proteins and peptides. In this study, we characterized acute ischemic tissue damage using localized proton MRS and multiparametric imaging techniques that included perfusion, diffusion, pH, and relaxation MRI. Our study showed that pH-weighted MRI can detect ischemic lesions and strongly correlates with tissue lactate content measured by (1)H MRS, indicating lactic acidosis. Our results also confirmed the correlation between apparent diffusion coefficient and lactate; however, no significant relationship was found for perfusion, T(1), and T(2). In summary, our study showed that optimized endogenous pH-weighted MRI, by sensitizing to local tissue pH, remains a promising tool for providing a surrogate imaging marker of lactic acidosis and altered tissue metabolism, and augments conventional techniques for stroke diagnosis.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA.
| | | | | | | |
Collapse
|
21
|
Bailey C, Desmond KL, Czarnota GJ, Stanisz GJ. Quantitative magnetization transfer studies of apoptotic cell death. Magn Reson Med 2011; 66:264-9. [DOI: 10.1002/mrm.22820] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 11/30/2010] [Accepted: 12/20/2010] [Indexed: 11/06/2022]
|
22
|
Jokivarsi KT, Niskanen JP, Michaeli S, Gröhn HI, Garwood M, Kauppinen RA, Gröhn OH. Quantitative assessment of water pools by T 1 rho and T 2 rho MRI in acute cerebral ischemia of the rat. J Cereb Blood Flow Metab 2009; 29:206-16. [PMID: 18827834 PMCID: PMC4783795 DOI: 10.1038/jcbfm.2008.113] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The rotating frame longitudinal relaxation magnetic resonance imaging (MRI) contrast, T(1 rho), obtained with on-resonance continuous wave (CW) spin-lock field is a sensitive indicator of tissue changes associated with hyperacute stroke. Here, the rotating frame relaxation concept was extended by acquiring both T(1 rho) and transverse rotating frame (T(2 rho)) MRI data using both CW and adiabatic hyperbolic secant (HSn; n=1, 4, or 8) pulses in a rat stroke model of middle cerebral artery occlusion. The results show differences in the sensitivity of spin-lock T(1 rho) and T(2 rho) MRI to detect hyperacute ischemia. The most sensitive techniques were CW-T(1 rho) and T(1 rho) using HS4 or HS8 pulses. Fitting a two-pool exchange model to the T(1 rho) and T(2 rho) MRI data acquired from the infarcting brain indicated time-dependent increase in free water fraction, decrease in the correlation time of water fraction associated with macromolecules, and increase in the exchange correlation time. These findings are consistent with known pathology in acute stroke, including vasogenic edema, destructive processes, and tissue acidification. Our results show that the sensitivity of the spin-lock MRI contrast in vivo can be modified using different spin-lock preparation blocks, and that physicochemical models of the rotating frame relaxation may provide insight into progression of ischemia in vivo.
Collapse
Affiliation(s)
- Kimmo T Jokivarsi
- Biomedical Imaging Unit, Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland
| | | | | | | | | | | | | |
Collapse
|
23
|
Sun PZ, Sorensen AG. Imaging pH using the chemical exchange saturation transfer (CEST) MRI: Correction of concomitant RF irradiation effects to quantify CEST MRI for chemical exchange rate and pH. Magn Reson Med 2008; 60:390-7. [PMID: 18666128 DOI: 10.1002/mrm.21653] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Chemical exchange saturation transfer (CEST) MRI has been shown capable of detecting dilute labile protons and abnormal tissue glucose/oxygen metabolism, and thus, may serve as a complementary imaging technique to the conventional MRI methods. CEST imaging, however, is also dependent on experimental parameters such as the power, duration, and waveform of the irradiation RF pulse. As a result, its sensitivity and specificity for microenvironment properties such as pH is not optimal. In this study, the dependence of CEST contrast on experimental parameters was solved and an iterative compensation algorithm was proposed that corrects the experimentally measured CEST contrast from the concomitant RF irradiation effects. The proposed algorithm was verified with both numerical simulation and experimental measurements from a tissue-like pH phantom, and showed that pH derived from the compensated CEST imaging agrees reasonably well with pH-electrode measurements within 0.1 pH unit. In sum, our study validates the use of a correction algorithm to compensate CEST imaging from concomitant RF irradiation effects for accurate calibration of the chemical exchange rate, and demonstrates the feasibility of pH imaging with CEST MRI.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Harvard Medical School, Charlestown, Massachusetts 02129, USA.
| | | |
Collapse
|
24
|
Sun PZ, Benner T, Kumar A, Sorensen AG. Investigation of optimizing and translating pH-sensitive pulsed-chemical exchange saturation transfer (CEST) imaging to a 3T clinical scanner. Magn Reson Med 2008; 60:834-41. [PMID: 18816867 PMCID: PMC2678923 DOI: 10.1002/mrm.21714] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 05/08/2008] [Indexed: 01/07/2023]
Abstract
Chemical exchange saturation transfer (CEST) MRI provides a sensitive detection mechanism that allows characterization of dilute labile protons usually undetectable by conventional MRI. Particularly, amide proton transfer (APT) imaging, a variant of CEST MRI, has been shown capable of detecting ischemic acidosis, and may serve as a surrogate metabolic imaging marker. For preclinical CEST imaging, continuous-wave (CW) radiofrequency (RF) irradiation is often applied so that the steady state CEST contrast can be reached. On clinical scanners, however, specific absorption rate (SAR) limit and hardware preclude the use of CW irradiation, and instead require an irradiation scheme of repetitive RF pulses (pulsed-CEST imaging). In this work, CW- and pulsed-CEST MRI were systematically compared using a tissue-like pH phantom on an imager capable of both CW and pulsed RF irradiation schemes. The results showed that the maximally obtainable pulsed-CEST contrast is approximately 95% of CW-CEST contrast, and their optimal RF irradiation powers are equal. Moreover, the pulsed-CEST sequence was translated to a 3 Tesla clinical scanner and detected pH contrast from the labile creatine amine groups (1.9 ppm). Furthermore, pilot endogenous APT imaging of normal human volunteers was demonstrated, warranting future APT MRI of stroke patients to elucidate its diagnostic value.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology and Harvard Medical School, Charlestown, Massachusetts 02129, USA.
| | | | | | | |
Collapse
|
25
|
Tuor UI, Meng S, Qiao M, Webster NB, Crowley SM, Dyck RH, Tomanek B. Differential progression of magnetization transfer imaging changes depending on severity of cerebral hypoxic-ischemic injury. J Cereb Blood Flow Metab 2008; 28:1613-23. [PMID: 18506197 DOI: 10.1038/jcbfm.2008.49] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We hypothesized that magnetic resonance magnetization transfer (MT) imaging would be sensitive for detecting cerebral ischemic injury in white matter of neonatal brain. We compared the progression of changes in T(2) and the MT ratio (MTR) after cerebral hypoxic-ischemic insults of differing severity in neonatal rats. Magnetization transfer imaging parameters were first optimized, and then MTR and T(2) maps were acquired at various times after a mild (rather selective white matter) or substantial insult produced by unilateral cerebral hypoxia-ischemia. Depending on insult severity, time after insult, and region (e.g., subcortical white matter or cortex), cerebral hypoxia-ischemia produced reductions in MTR and an increase in T(2). The exception was acutely at 1 to 5 h at which time points MTR was reduced ipsilaterally in white matter, whereas T(2) was not affected significantly. Progression of imaging changes differed in rats grouped according to whether gross damage was present after chronic recovery. Behavioral changes were generally associated with chronic reductions in MTR and gross brain damage. Magnetization transfer imaging was capable of early detection of hypoxic-ischemic injury and particularly sensitive for identifying the progression of cerebral injury in white matter. Magnetization transfer ratio has potential for assisting with early diagnosis and treatment assessment for infants affected by perinatal hypoxia-ischemia.
Collapse
Affiliation(s)
- Ursula I Tuor
- MR Technology, Institute for Biodiagnostics (West), Calgary, Alberta, Canada.
| | | | | | | | | | | | | |
Collapse
|
26
|
Sibson NR, Lowe JP, Blamire AM, Martin MJ, Obrenovitch TP, Anthony DC. Acute astrocyte activation in brain detected by MRI: new insights into T(1) hypointensity. J Cereb Blood Flow Metab 2008; 28:621-32. [PMID: 17851455 DOI: 10.1038/sj.jcbfm.9600549] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Increases in the T(1) of brain tissue, which give rise to dark or hypointense areas on T(1)-weighted images using magnetic resonance imaging (MRI), are common to a number of neuropathologies including multiple sclerosis (MS) and ischaemia. However, the biologic significance of T(1) increases remains unclear. Using a multiparametric MRI approach and well-defined experimental models, we have experimentally induced increases in tissue T(1) to determine the underlying cellular basis of such changes. We have shown that a rapid acute increase in T(1) relaxation in the brain occurs in experimental models of both low-flow ischaemia induced by intrastriatal injection of endothelin-1 (ET-1), and excitotoxicity induced by intrastriatal injection of N-methyl-D-aspartate (NMDA). However, there appears to be no consistent correlation between increases in T(1) relaxation and changes in other MRI parameters (apparent diffusion coefficient, T(2) relaxation, or magnetisation transfer ratio of tissue water). Immunohistochemically, one common morphologic feature shared by the ET-1 and NMDA models is acute astrocyte activation, which was detectable within 2 h of intracerebral ET-1 injection. Pretreatment with an inhibitor of astrocyte activation, arundic acid, significantly reduced the spatial extent of the T(1) signal change induced by intrastriatal ET-1 injection. These findings suggest that an increase in T(1) relaxation may identify the acute development of reactive astrocytes within a central nervous system lesion. Early changes in T(1) may, therefore, provide insight into acute and reversible injury processes in neurologic patients, such as those observed before contrast enhancement in MS.
Collapse
Affiliation(s)
- Nicola R Sibson
- Experimental Neuroimaging Group, Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK.
| | | | | | | | | | | |
Collapse
|
27
|
Jokivarsi KT, Gröhn HI, Gröhn OH, Kauppinen RA. Proton transfer ratio, lactate, and intracellular pH in acute cerebral ischemia. Magn Reson Med 2007; 57:647-53. [PMID: 17390356 DOI: 10.1002/mrm.21181] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The amide proton transfer ratio (APTR) from the asymmetry of the Z-spectrum was determined in rat brain tissue during and after unilateral middle cerebral artery occlusion (MCAo). Cerebral lactate (Lac) as determined by (1)H NMR spectroscopy, water diffusion, and T(1rho) were quantified as well. Lac concentrations were used to estimate intracellular pH (pH(i)) in the brain during the MCA occlusion. A decrease in APTR during occlusion indicated acidification from 7.1 to 6.79 +/- 0.19 (a drop by 0.3 +/- 0.2 pH units), whereas pH(i) computed from Lac concentration was 6.3 +/- 0.2 (a drop by 0.8 +/- 0.2 pH units). Despite the disagreement between the two methods in terms of the size of the change in the absolute pH(i) during ischemia, DeltaAPTR and pH(i) (and Lac concentration) displayed a strong correlation during the MCAo. Diffusion and T(1rho) indicated cytotoxic edema following MCA occlusion; however, APTR returned slowly toward the values determined in the contralateral hemisphere post-ischemia. These data argue that the APTR during ischemia is affected not only by pH(i) but by other physicochemical factors as well, and indicates different aspects of pathology in the post-ischemic brain compared to those that influence water diffusion and T(1rho).
Collapse
Affiliation(s)
- Kimmo T Jokivarsi
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland
| | | | | | | |
Collapse
|
28
|
Sun PZ, Zhou J, Huang J, van Zijl P. Simplified quantitative description of amide proton transfer (APT) imaging during acute ischemia. Magn Reson Med 2007; 57:405-10. [PMID: 17260362 DOI: 10.1002/mrm.21151] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Amide proton transfer (APT) imaging employs the chemical exchange saturation transfer (CEST) mechanism to detect mobile endogenous proteins and peptides. It can be used to detect pH reduction during acute ischemia and thus provide complementary information to perfusion-weighted (PWI) and diffusion-weighted (DWI) imaging. However, the APT contrast depends strongly on the choice of imaging parameters, especially the radiofrequency (RF) saturation time and strength, which need to be optimized. In this work it is shown that even though at least three proton pools are present, the description of the APT process during acute ischemia can be greatly simplified by means of a dual two-pool model analysis. With this approach, the experimentally measured RF irradiation power dependence of the effect in the rat brain was well predicted. The results showed an optimal RF strength of 0.75 microT for our particular coil setup, and a maximally obtainable APT ratio difference of 2.9%+/-0.3% between ischemic and normal brain regions.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | |
Collapse
|
29
|
Zhang H, Xie Y. Dynamics of paramagnetic agents by off-resonance rotating frame technique in the presence of magnetization transfer effect. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2007; 184:275-91. [PMID: 17123851 PMCID: PMC1941718 DOI: 10.1016/j.jmr.2006.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 11/06/2006] [Accepted: 11/06/2006] [Indexed: 05/12/2023]
Abstract
The simple method for measuring the rotational correlation time of paramagnetic ion chelates via off-resonance rotating frame technique is challenged in vivo by the magnetization transfer effect. A theoretical model for the spin relaxation of water protons in the presence of paramagnetic ion chelates and magnetization transfer effect is described. This model considers the competitive relaxations of water protons by the paramagnetic relaxation pathway and the magnetization transfer pathway. The influence of magnetization transfer on the total residual z-magnetization has been quantitatively evaluated in the context of the magnetization map and various difference magnetization profiles for the macromolecule conjugated Gd-DTPA in cross-linked protein gels. The numerical simulations and experimental validations confirm that the rotational correlation time for the paramagnetic ion chelates can be measured even in the presence of strong magnetization transfer. This spin relaxation model also provides novel approaches to enhance the detection sensitivity for paramagnetic labeling by suppressing the spin relaxations caused by the magnetization transfer. The inclusion of the magnetization transfer effect allows us to use the magnetization map as a simulation tool to design efficient paramagnetic labeling targeting at specific tissues, to design experiments running at low RF power depositions, and to optimize the sensitivity for detecting paramagnetic labeling. Thus, the presented method will be a very useful tool for the in vivo applications such as molecular imaging via paramagnetic labeling.
Collapse
Affiliation(s)
- Huiming Zhang
- Center for Basic MR Research, Evanston Northwestern Healthcare Research Institute, 1033 University Place, suite 100, Evanston, IL 60201, USA.
| | | |
Collapse
|
30
|
Wegener S, Weber R, Ramos-Cabrer P, Uhlenkueken U, Sprenger C, Wiedermann D, Villringer A, Hoehn M. Temporal profile of T2-weighted MRI distinguishes between pannecrosis and selective neuronal death after transient focal cerebral ischemia in the rat. J Cereb Blood Flow Metab 2006; 26:38-47. [PMID: 15988477 DOI: 10.1038/sj.jcbfm.9600166] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transient middle cerebral artery occlusion (MCAO) by an intraluminal thread leads to primarily subcortical infarctions with little sensorimotor impairment in the Wistar rat strain. We investigated the course of infarct development in this lesion type for 10 weeks using magnetic resonance imaging (MRI) along with histological characterization. MCAO was induced in male Wistar rats (260 to 300 g) for 60 mins. Animals received follow-up T1- and T2-weighted MRI from day 1 until week 10. Separate groups of animals were analyzed histologically after 2, 6, and 10 weeks. Histology included immunohistochemistry for neuronal and astrocytic markers as well as hematoxylin eosin and luxol fast blue-cresyl violet staining. In contrast to lesions involving the cortex, exclusively subcortical infarctions were characterized by a complete resolution of initially increased T1 and T2 relaxation times by 10 weeks. Between 2 and 10 weeks, neuronal death and gliosis as well as a dense inflammatory infiltrate were evident in these lesions, without damage to fiber tracts or development of cystic cavities. Exclusively subcortical lesions in Wistar rats are characterized by normalization of T1 and T2 relaxation times, which might, however, not be mistaken for tissue recovery. Despite this MRI normalization, selective neuronal death and gliosis develop. Although MRI at individual time points might therefore be ambiguous, the temporal profile of relaxation time changes over the chronic time period allows discrimination of the lesion development into selective neuronal death or pannecrosis.
Collapse
Affiliation(s)
- Susanne Wegener
- In-vivo-NMR-Laboratory, Max-Planck-Institute for Neurological Research, Cologne, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhou J, Payen JF, van Zijl PCM. The interaction between magnetization transfer and blood-oxygen-level-dependent effects. Magn Reson Med 2005; 53:356-66. [PMID: 15678541 DOI: 10.1002/mrm.20348] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Low-power off-resonance spin-echo magnetization transfer (MT) imaging experiments with a long repetition time (TR) were performed on rat brain for a range of arterial PCO2 levels. The measured magnetization transfer ratio decreased with increased arterial PCO2 levels. When performing blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI)-type data analysis in which signal intensities were normalized to the normocapnic state, the CO2-based BOLD effect was much stronger with than without saturation. This increased effect is a consequence of the fact that the MT effect reduces the signal intensity in tissue more than in blood, thereby amplifying the contribution of the intravascular BOLD signal change to the overall BOLD effect. The results offer a potential approach to measure absolute cerebral blood volume in vivo and to amplify the BOLD effects for fMRI studies.
Collapse
Affiliation(s)
- Jinyuan Zhou
- Division of MRI Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2195, USA.
| | | | | |
Collapse
|
32
|
Kavec M, Gröhn OHJ, Gröhn HI, Garwood M, Kauppinen RA. Dynamic dephasing changes in developing ischemic cerebral infarction in rats studied by Carr-PurcellT2magnetic resonance imaging. Magn Reson Med 2005; 53:960-4. [PMID: 15799047 DOI: 10.1002/mrm.20409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Carr-Purcell (CP) T(2) MRI with adiabatic pulses, acquired with varying interecho interval (tau(CP)), was used to study the time course of T(2) and relative dynamic-dephasing contrast in the rat brain. Exposure to 30 min of middle cerebral artery occlusion (MCAo) resulted in an irreversible increase in absolute CP-T(2) relaxation times. This was not associated with signal change in the relative dynamic-dephasing images, as computed by subtracting short tau(CP) CP-T(2) images from long tau(CP) images and normalizing for long tau(CP) images. A day after MCAo strong CP-T(2) hyperintensity and low apparent diffusion coefficient were evident in the striatum with a decline in relative dynamic-dephasing contrast. Low dynamic dephasing contrast prevailed in striatum until day 5 post-MCAo, returning to control levels with similar time course to normalizing T(2) and diffusion. The present results show a novel behavior of dynamic-dephasing contrast in poststroke brain tissue, providing data to assess the age of infarction in association to T(2) images.
Collapse
Affiliation(s)
- Martin Kavec
- Department of Biomedical NMR and National Bio-NMR Facility, A. I.Virtanen Institute, University of Kuopio, Kuopio, Finland
| | | | | | | | | |
Collapse
|
33
|
Kavec M, Gröhn OHJ, Kettunen MI, Silvennoinen MJ, Garwood M, Kauppinen RA. Acute cerebral ischemia in rats studied by Carr-Purcell spin-echo magnetic resonance imaging: assessment of blood oxygenation level-dependent and tissue effects on the transverse relaxation. Magn Reson Med 2004; 51:1138-46. [PMID: 15170833 DOI: 10.1002/mrm.20089] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Acute cerebral ischemia has been shown to be associated with an enhanced transverse relaxation rate in rat brain parenchyma, chiefly due to the blood oxygenation level-dependent (BOLD) effect. In this study, Carr-Purcell R(2) (CP R(2)), acquired both with short and long time intervals between centers of adiabatic pi-pulses (tau(CP)), was used to assess the contributions of BOLD and tissue effects to the transverse relaxation in two brain ischemia models of rat at 4.7 T. R(1rho) and diffusion MR images were also acquired in the same animals. During the first minutes of global ischemia, the long tau(CP) R(2) in brain parenchyma increased, whereas the short tau(CP) R(2) was unchanged. Based on the simulations, and using constraints of intravascular BOLD effect on parenchymal R(2), the former observation was ascribed to be due to susceptibility changes arising in the extravascular compartment. R(1rho) declined almost immediately after the onset of focal cerebral ischemia, and further declined during the evolution of ischemic damage. Interestingly, short tau(CP) CP R(2) started to decline after some 20 min of focal ischemia and declined over a time course similar to that of R(1rho), indicating that it may be an MRI marker for irreversible tissue changes in cerebral ischemia. The present results show that CP R(2) MRI can reveal both tissue- and blood-derived contrast changes in acute cerebral ischemia.
Collapse
Affiliation(s)
- Martin Kavec
- Department of Biomedical NMR and National Bio-NMR Facility, A.I. Virtanen Institute, University of Kuopio, Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
34
|
Kettunen MI, Gröhn OHJ, Kauppinen RA. Quantitative T1rho NMR spectroscopy of rat cerebral metabolites in vivo: effects of global ischemia. Magn Reson Med 2004; 51:875-80. [PMID: 15122667 DOI: 10.1002/mrm.20099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The NMR relaxation times (T(1rho), T(2), and T(1)) of water, N-acetylaspartate (NAA), creatine (Cr), choline-containing compounds (Cho), and lactate (Lac) were quantified in rat brain at 4.7 T. In control animals, the cerebral T(1rho) figures, as determined with a spin-lock field of 1.0 G, were 575 +/- 30 ms, 380 +/- 19 ms, 705 +/- 53 ms, and 90 +/- 1 ms for NAA, Cr, Cho, and water, respectively. The T(1rho) figures were 62-103% longer than their respective T(2) values determined by a multiecho method. In global (ischemic) ischemia, T(1rho) of NAA declined by 34%, that of Cr and Cho did not change, and that of water increased by 10%. The T(1rho) of lactate in ischemic brain was 367 +/- 44 ms. Similar patterns of changes were observed in the multiecho T(2) of these cerebral metabolites. The T(1) of water and NAA changed in a fashion similar to that of T(1rho) and T(2). These results show differential responses in metabolite and water T(1rho) relaxation times following ischemia, and indicate that metabolite T(1rho) and T(2) relaxation times behave similarly in the ischemic brain. The contributions of dipolar and nondipolar effects on T(1rho) relaxation in vivo are discussed in this work.
Collapse
Affiliation(s)
- Mikko I Kettunen
- Department of Biomedical NMR and National Bio-NMR Facility, A.I.Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland
| | | | | |
Collapse
|
35
|
Zhou J, Payen JF, Wilson DA, Traystman RJ, van Zijl PCM. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med 2003; 9:1085-90. [PMID: 12872167 DOI: 10.1038/nm907] [Citation(s) in RCA: 936] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2002] [Accepted: 06/05/2003] [Indexed: 11/09/2022]
Abstract
In the past decade, it has become possible to use the nuclear (proton, 1H) signal of the hydrogen atoms in water for noninvasive assessment of functional and physiological parameters with magnetic resonance imaging (MRI). Here we show that it is possible to produce pH-sensitive MRI contrast by exploiting the exchange between the hydrogen atoms of water and the amide hydrogen atoms of endogenous mobile cellular proteins and peptides. Although amide proton concentrations are in the millimolar range, we achieved a detection sensitivity of several percent on the water signal (molar concentration). The pH dependence of the signal was calibrated in situ, using phosphorus spectroscopy to determine pH, and proton exchange spectroscopy to measure the amide proton transfer rate. To show the potential of amide proton transfer (APT) contrast for detecting acute stroke, pH effects were noninvasively imaged in ischemic rat brain. This observation opens the possibility of using intrinsic pH contrast, as well as protein- and/or peptide-content contrast, as diagnostic tools in clinical imaging.
Collapse
Affiliation(s)
- Jinyuan Zhou
- Division of MRI Research, Department of Radiology, Johns Hopkins University School of Medicine, 217 Traylor Building, 720 Rutland Avenue, Baltimore, Maryland 21205, USA.
| | | | | | | | | |
Collapse
|
36
|
Balata S, Olde Damink SWM, Ferguson K, Marshall I, Hayes PC, Deutz NEP, Williams R, Wardlaw J, Jalan R. Induced hyperammonemia alters neuropsychology, brain MR spectroscopy and magnetization transfer in cirrhosis. Hepatology 2003; 37:931-9. [PMID: 12668989 DOI: 10.1053/jhep.2003.50156] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hyperammonemia is a universal finding after gastrointestinal hemorrhage in cirrhosis. We administered an oral amino acid solution mimicking the hemoglobin molecule to examine neuropsychological changes, brain glutamine levels, and brain magnetization transfer ratio (MTR). Forty-eight metabolically stable patients with cirrhosis and no evidence of "overt" hepatic encephalopathy (HE) were randomized to receive 75 g of amino acid solution or placebo; measurements were performed before and 4 hours after administration. Neuropsychological tests included the Trails B Test, Digit Symbol Substitution Test, memory subtest of the Randt battery, and reaction time. Plasma was collected for ammonia and amino acid measurements, and brain metabolism was studied using proton magnetic resonance (MR) spectroscopy in the first 16 randomized patients. In 7 other patients, MTR was measured. A significant increase in ammonia levels was observed in the amino acid group (amino acid group, 76 +/- 7.3 to 121 +/- 6.4 micromol/L; placebo, 83 +/- 3.3 to 78 +/- 2.9 micromol/L; P <.001). Neuropsychological function improved significantly in the placebo group, but no significant change in neuropsychological function was observed in the amino acid group. Brain glutamate/glutamine (Glx)/creatine (Cr) ratio increased significantly in the amino acid group. MTR decreased significantly from 30 +/-2.9 to 23 +/- 4 (P <.01) after administration of the amino acid solution. In conclusion, an improvement in neuropsychological test results followed placebo, which was not observed in patients administered the amino acid solution. Induced hyperammonemia resulted in an increase in brain Glx/Cr ratio and a decrease in MTR, which may indicate an increase in brain water as the operative mechanism.
Collapse
Affiliation(s)
- Sherzad Balata
- Liver Unit, Royal Infirmary of Edinburgh, Edinburgh, Scotland
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gröhn OHJ, Mäkelä HI, Lukkarinen JA, DelaBarre L, Lin J, Garwood M, Kauppinen RA. On- and off-resonance T(1rho) MRI in acute cerebral ischemia of the rat. Magn Reson Med 2003; 49:172-6. [PMID: 12509834 DOI: 10.1002/mrm.10356] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The ability of on-resonance T(1rho) (T(1rho)) and off-resonance T(1rho) (T(1rho)(off)) measurements to indicate acute cerebral ischemia in a rat model of transient middle cerebral artery (MCA) occlusion was investigated at 4.7 T. T(1rho) was determined with B(1) fields of 0.4, 0.8, and 1.6 G, and T(1rho)(off) with five offset frequencies ((Delta)omega) ranging from 0-7.5 kHz at B(1) of 0.4 G, yielding effective B(1) (B(eff)) from 0.4 to 1.8 G. Diffusion, T(1), and T(2) were also quantified. Both T(1rho) and T(1rho)(off) acquired with (Delta)(o)< 2.5 kHz showed positive contrast during the first hours of MCA occlusion in the ischemic tissue delineated by low diffusion. Interestingly, T(1rho)(off) contrast acquired with (Delta)omega > 2.5 kHz was clearly less sensitive to ischemic alterations, and developed with a delayed time course. This discrepancy is thought to be a consequence of the frequency dependency of cross-relaxation during irradiation with spin-lock pulses.
Collapse
Affiliation(s)
- Olli H J Gröhn
- Department of Biomedical NMR, National Bio-NMR Facility, A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland
| | | | | | | | | | | | | |
Collapse
|