1
|
Arkhipova V, Fu H, Hoorens MWH, Trinco G, Lameijer LN, Marin E, Feringa BL, Poelarends GJ, Szymanski W, Slotboom DJ, Guskov A. Structural Aspects of Photopharmacology: Insight into the Binding of Photoswitchable and Photocaged Inhibitors to the Glutamate Transporter Homologue. J Am Chem Soc 2021; 143:1513-1520. [PMID: 33449695 PMCID: PMC7844824 DOI: 10.1021/jacs.0c11336] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Photopharmacology addresses the challenge of drug selectivity and
side effects through creation of photoresponsive molecules activated
with light with high spatiotemporal precision. This is achieved through
incorporation of molecular photoswitches and photocages into the pharmacophore.
However, the structural basis for the light-induced modulation of
inhibitory potency in general is still missing, which poses a major
design challenge for this emerging field of research. Here we solved
crystal structures of the glutamate transporter homologue GltTk in complex with photoresponsive transport inhibitors—azobenzene
derivative of TBOA (both in trans and cis configuration) and with the photocaged compound ONB-hydroxyaspartate.
The essential role of glutamate transporters in the functioning of
the central nervous system renders them potential therapeutic targets
in the treatment of neurodegenerative diseases. The obtained structures
provide a clear structural insight into the origins of photocontrol
in photopharmacology and lay the foundation for application of photocontrolled
ligands to study the transporter dynamics by using time-resolved X-ray
crystallography.
Collapse
Affiliation(s)
- Valentina Arkhipova
- University Medical Center Groningen, Department of Radiology, Medical Imaging Center, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.,Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Haigen Fu
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Mark W H Hoorens
- University Medical Center Groningen, Department of Radiology, Medical Imaging Center, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.,Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Gianluca Trinco
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Lucien N Lameijer
- University Medical Center Groningen, Department of Radiology, Medical Imaging Center, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.,Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Egor Marin
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Ben L Feringa
- Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wiktor Szymanski
- University Medical Center Groningen, Department of Radiology, Medical Imaging Center, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.,Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Dirk J Slotboom
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Albert Guskov
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| |
Collapse
|
2
|
Kim HB, Yoo JY, Yoo SY, Lee JH, Chang W, Kim HS, Baik TK, Woo RS. Neuregulin-1 inhibits CoCl 2-induced upregulation of excitatory amino acid carrier 1 expression and oxidative stress in SH-SY5Y cells and the hippocampus of mice. Mol Brain 2020; 13:153. [PMID: 33187547 PMCID: PMC7664014 DOI: 10.1186/s13041-020-00686-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/09/2020] [Indexed: 11/10/2022] Open
Abstract
Excitatory amino acid carrier 1 (EAAC1) is an important subtype of excitatory amino acid transporters (EAATs) and is the route for neuronal cysteine uptake. CoCl2 is not only a hypoxia-mimetic reagent but also an oxidative stress inducer. Here, we found that CoCl2 induced significant EAAC1 overexpression in SH-SY5Y cells and the hippocampus of mice. Transient transfection of EAAC1 reduced CoCl2-induced cytotoxicity in SH-SY5Y cells. Based on this result, upregulation of EAAC1 expression by CoCl2 is thought to represent a compensatory response against oxidative stress in an acute hypoxic state. We further demonstrated that pretreatment with Neuregulin-1 (NRG1) rescued CoCl2-induced upregulation of EAAC1 and tau expression. NRG1 plays a protective role in the CoCl2-induced accumulation of reactive oxygen species (ROS) and reduction in antioxidative enzyme (SOD and GPx) activity. Moreover, NRG1 attenuated CoCl2-induced apoptosis and cell death. NRG1 inhibited the CoCl2-induced release of cleaved caspase-3 and reduction in Bcl-XL levels. Our novel finding suggests that NRG1 may play a protective role in hypoxia through the inhibition of oxidative stress and thereby maintain normal EAAC1 expression levels.
Collapse
Affiliation(s)
- Han-Byeol Kim
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, 143-5Jung-Gu, Yongdu-Dong, Daejeon, 301-746, Republic of Korea
| | - Ji-Young Yoo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, 143-5Jung-Gu, Yongdu-Dong, Daejeon, 301-746, Republic of Korea
| | - Seung-Yeon Yoo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, 143-5Jung-Gu, Yongdu-Dong, Daejeon, 301-746, Republic of Korea
| | - Jun-Ho Lee
- Department of Emergency Medical Technology, Daejeon University, Daejeon, 34520, Republic of Korea
| | - Wonseok Chang
- Department of Physiology, College of Medicine, Eulji University, Daejeon, 301-746, Republic of Korea
| | - Hye-Sun Kim
- Department of Pharmacology, College of Medicine, Seoul National University, Seoul, 110-799, Korea.,Seoul National University College of Medicine, Bundang Hospital, Sungnam, 13620, Republic of Korea
| | - Tai-Kyoung Baik
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, 143-5Jung-Gu, Yongdu-Dong, Daejeon, 301-746, Republic of Korea.
| | - Ran-Sook Woo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, 143-5Jung-Gu, Yongdu-Dong, Daejeon, 301-746, Republic of Korea.
| |
Collapse
|
3
|
Zhang LN, Hao L, Guo YS, Wang HY, Li LL, Liu LZ, Li WB. Are glutamate transporters neuroprotective or neurodegenerative during cerebral ischemia? J Mol Med (Berl) 2019; 97:281-289. [PMID: 30675649 DOI: 10.1007/s00109-019-01745-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 12/14/2022]
Abstract
The accumulation of glutamate (Glu) in the synaptic cleft during cerebral ischemia triggers the death of neurons, causing mental or physical handicap. However, the mechanisms of the alteration in Glu homeostasis and the imbalance between the release and clearance of Glu in ischemia are not yet completely understood. Additionally, the role of Glu transporters in regulating Glu concentration in the synaptic cleft is controversial. This review aims to provide readers with an in-depth understanding of Glu transporters in the early or later stages of ischemic events, or in mild or severe cerebral ischemia via alteration of Glu transporter expression, reversal of Glu transporters function, and trafficking between membrane and cytoplasm, to further clarify whether the Glu transporters are neuroprotective or neurodegenerative during cerebral ischemia. We provide the insights for deeper understanding of the mechanism of Glu transporters regulation after different periods and severities of cerebral ischemia.
Collapse
Affiliation(s)
- Li-Nan Zhang
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, China
| | - Liang Hao
- Department of Neurosurgery, Third Hospital of Shijiazhuang, Beijing, 050011, Hebei, China
| | - Yu-Song Guo
- Department of Traumatology, Third Hospital of Shijiazhuang, Beijing, 050011, Hebei, China
| | - Hai-Yan Wang
- Pharmaceutical Preparation Section, Third Hospital of Shijiazhuang, Beijing, 050011, Hebei, China
| | - Lin-Lin Li
- Clinical Medicine, College of Basic Medicine, Hebei Medical University, Beijing, 050017, Hebei, China
| | - Li-Zhe Liu
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, China
| | - Wen-Bin Li
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
4
|
Jolly S, Bazargani N, Quiroga AC, Pringle NP, Attwell D, Richardson WD, Li H. G protein-coupled receptor 37-like 1 modulates astrocyte glutamate transporters and neuronal NMDA receptors and is neuroprotective in ischemia. Glia 2017; 66:47-61. [PMID: 28795439 PMCID: PMC5724489 DOI: 10.1002/glia.23198] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/05/2017] [Accepted: 07/13/2017] [Indexed: 12/21/2022]
Abstract
We show that the G protein‐coupled receptor GPR37‐like 1 (GPR37L1) is expressed in most astrocytes and some oligodendrocyte precursors in the mouse central nervous system. This contrasts with GPR37, which is mainly in mature oligodendrocytes. Comparison of wild type and Gpr37l1–/– mice showed that loss of GPR37L1 did not affect the input resistance or resting potential of astrocytes or neurons in the hippocampus. However, GPR37L1‐mediated signalling inhibited astrocyte glutamate transporters and – surprisingly, given its lack of expression in neurons – reduced neuronal NMDA receptor (NMDAR) activity during prolonged activation of the receptors as occurs in ischemia. This effect on NMDAR signalling was not mediated by a change in the release of D‐serine or TNF‐α, two astrocyte‐derived agents known to modulate NMDAR function. After middle cerebral artery occlusion, Gpr37l1 expression was increased around the lesion. Neuronal death was increased by ∼40% in Gpr37l1–/– brain compared to wild type in an in vitro model of ischemia. Thus, GPR37L1 protects neurons during ischemia, presumably by modulating extracellular glutamate concentration and NMDAR activation.
Collapse
Affiliation(s)
- Sarah Jolly
- Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, United Kingdom
| | - Narges Bazargani
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, United Kingdom
| | - Alejandra C Quiroga
- Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, United Kingdom
| | - Nigel P Pringle
- Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, United Kingdom
| | - David Attwell
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, United Kingdom
| | - William D Richardson
- Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, United Kingdom
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, United Kingdom
| |
Collapse
|
5
|
Wang Y, Zhou Z, Tan H, Zhu S, Wang Y, Sun Y, Li XM, Wang JF. Nitrosylation of Vesicular Transporters in Brain of Amyloid Precursor Protein/Presenilin 1 Double Transgenic Mice. J Alzheimers Dis 2016; 55:1683-1692. [DOI: 10.3233/jad-160700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ying Wang
- Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
| | - Zhu Zhou
- Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
| | - Hua Tan
- Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
| | - Shenghua Zhu
- Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
| | - Yiran Wang
- Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
| | - Yingxia Sun
- Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
| | - Xin-Min Li
- Department of Psychiatry, University of Alberta, Edmonton, Canada
| | - Jun-Feng Wang
- Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
- Department of Psychiatry, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
6
|
Mechanisms of Excessive Extracellular Glutamate Accumulation in Temporal Lobe Epilepsy. Neurochem Res 2016; 42:1724-1734. [DOI: 10.1007/s11064-016-2105-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 12/17/2022]
|
7
|
Angamo EA, Rösner J, Liotta A, Kovács R, Heinemann U. A neuronal lactate uptake inhibitor slows recovery of extracellular ion concentration changes in the hippocampal CA3 region by affecting energy metabolism. J Neurophysiol 2016; 116:2420-2430. [PMID: 27559140 DOI: 10.1152/jn.00327.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/13/2016] [Indexed: 01/20/2023] Open
Abstract
Astrocyte-derived lactate supports pathologically enhanced neuronal metabolism, but its role under physiological conditions is still a matter of debate. Here, we determined the contribution of astrocytic neuronal lactate shuttle for maintenance of ion homeostasis and energy metabolism. We tested for the effects of α-cyano-4-hydroxycinnamic acid (4-CIN), which could interfere with energy metabolism by blocking monocarboxylate-transporter 2 (MCT2)-mediated neuronal lactate uptake, on evoked potentials, stimulus-induced changes in K+, Na+, Ca2+, and oxygen concentrations as well as on changes in flavin adenine dinucleotide (FAD) autofluorescence in the hippocampal area CA3. MCT2 blockade by 4-CIN reduced synaptically evoked but not antidromic population spikes. This effect was dependent on the activation of KATP channels indicating reduced neuronal ATP synthesis. By contrast, lactate receptor activation by 3,5-dihydroxybenzoic acid (3,5-DHBA) resulted in increased antidromic and orthodromic population spikes suggesting that 4-CIN effects are not mediated by lactate accumulation and subsequent activation of lactate receptors. Recovery kinetics of all ion transients were prolonged and baseline K+ concentration became elevated by blockade of lactate uptake. Lactate contributed to oxidative metabolism as both baseline respiration and stimulus-induced changes in Po2 were decreased, while FAD fluorescence increased likely due to a reduced conversion of FAD into FADH2 These data suggest that lactate shuttle contributes to regulation of ion homeostatsis and synaptic signaling even in the presence of ample glucose.
Collapse
Affiliation(s)
| | - Joerg Rösner
- Neuroscience Research Center, Charité Universitätsmedizin, Berlin, Germany
| | - Agustin Liotta
- Department of Anesthesiology and Intensive Care, Charité Universitätsmedizin, Berlin, Germany
| | - Richard Kovács
- Institute for Neurophysiology, Charité Universitätsmedizin, Berlin, Germany; and
| | - Uwe Heinemann
- Neuroscience Research Center, Charité Universitätsmedizin, Berlin, Germany;
| |
Collapse
|
8
|
The earliest neuronal responses to hypoxia in the neocortical circuit are glutamate-dependent. Neurobiol Dis 2016; 95:158-67. [PMID: 27443966 DOI: 10.1016/j.nbd.2016.07.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/11/2016] [Accepted: 07/17/2016] [Indexed: 11/23/2022] Open
Abstract
Soon after exposure to hypoxia or ischemia, neurons in cortical tissues undergo massive anoxic depolarization (AD). This precipitous event is preceded by more subtle neuronal changes, including enhanced excitatory and inhibitory synaptic transmitter release. Here, we have used patch-in-slice techniques to identify the earliest effects of acute hypoxia on the synaptic and intrinsic properties of Layer 5 neurons, to determine their time course and to evaluate the role of glutamate receptors in their generation. Coronal slices of mouse somatosensory cortex were maintained at 36°C in an interface chamber and challenged with episodes of hypoxia. In recordings with cell-attached electrodes, the open probability of Ca(2+)-dependent BK channels began to increase within seconds of hypoxia onset, indicating a sharp rise in [Ca(2+)]i just beneath the membrane. By using a high concentration of K(+) in the pipette, we simultaneously monitored the membrane potential and showed that the [Ca(2+)]i rise was not associated with membrane depolarization. The earliest hypoxia-induced synaptic disturbance was a marked increase in the frequency of sPSCs, which also began soon after the removal of oxygen and long before AD. This synaptic effect was accompanied by depletion of the readily releasable transmitter pools, as demonstrated by a decreased response to hyperosmotic solutions. The early [Ca(2+)]i rise, the early increase in transmitter release and the subsequent AD itself were all prevented by bathing in a cocktail containing blockers of ionotropic glutamate receptors. We found no evidence for involvement of pannexin hemichannels or TRPM7 channels in the early responses to hypoxia in this experimental preparation. Our data indicate that the earliest cellular consequences of cortical hypoxia are triggered by activation of glutamate-gated channels.
Collapse
|
9
|
Voytenko LP, Lushnikova IV, Savotchenko AV, Isaeva EV, Skok MV, Lykhmus OY, Patseva MA, Skibo GG. Hippocampal GABAergic interneurons coexpressing alpha7-nicotinic receptors and connexin-36 are able to improve neuronal viability under oxygen-glucose deprivation. Brain Res 2015; 1616:134-45. [PMID: 25966616 DOI: 10.1016/j.brainres.2015.04.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/10/2015] [Accepted: 04/30/2015] [Indexed: 01/09/2023]
Abstract
The hippocampal interneurons are very diverse by chemical profiles and rather inconsistent by sensitivity to CI. Some hippocampal GABAergic interneurons survive certain time after ischemia while ischemia-sensitive interneurons and pyramidal neurons are damaged. GABAergic signaling, nicotinic receptors expressing α7-subunit (α7nAChRs(+)) and connexin-36 (Cx36(+), electrotonic gapjunctions protein) contradictory modulate post-ischemic environment. We hypothesized that hippocampal ischemia-resistant GABAergic interneurons coexpressing glutamate decarboxylase-67 isoform (GAD67(+)), α7nAChRs(+), Cx36(+) are able to enhance neuronal viability. To check this hypothesis the histochemical and electrophysiological investigations have been performed using rat hippocampal organotypic culture in the condition of 30-min oxygen-glucose deprivation (OGD). Post-OGD reoxygenation (4h) revealed in CA1 pyramidal layer numerous damaged cells, decreased population spike amplitude and increased pair-pulse depression. In these conditions GAD67(+) interneurons displayed the OGD-resistance and significant increase of GABA synthesis/metabolism (GAD67-immunofluorescence, mitochondrial activity). The α7nAChRs(+) and Cx36(+) co-localizations were revealed in resistant GAD67(+) interneurons. Under OGD: GABAA-receptors (GABAARs) blockade increased cell damage and exacerbated the pair-pulse depression in CA1 pyramidal layer; α7nAChRs and Cx36-channels separate blockades sufficiently decreased cell damage while interneuronal GAD67-immunofluorescence and mitochondrial activity were similar to the control. Thus, hippocampal GABAergic interneurons co-expressing α7nAChRs and Cx36 remained resistant certain time after OGD and were able to modulate CA1 neuron survival through GABAARs, α7nAChRs and Cx36-channels activity. The enhancements of the neuronal viability together with GABA synthesis/metabolism normalization suggest cooperative neuroprotective mechanism that could be used for increase in efficiency of therapeutic strategies against post-ischemic pathology.
Collapse
Affiliation(s)
- L P Voytenko
- Department of Cytology, Bogomoletz Institute of Physiology, Kiev, Ukraine.
| | - I V Lushnikova
- Department of Cytology, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - A V Savotchenko
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Ukraine
| | - E V Isaeva
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Ukraine
| | - M V Skok
- Palladin Institute of Biochemistry, Kiev, Ukraine
| | - O Yu Lykhmus
- Palladin Institute of Biochemistry, Kiev, Ukraine
| | - M A Patseva
- Department of Cytology, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - G G Skibo
- Department of Cytology, Bogomoletz Institute of Physiology, Kiev, Ukraine
| |
Collapse
|
10
|
Ullah G, Wei Y, Dahlem MA, Wechselberger M, Schiff SJ. The Role of Cell Volume in the Dynamics of Seizure, Spreading Depression, and Anoxic Depolarization. PLoS Comput Biol 2015; 11:e1004414. [PMID: 26273829 PMCID: PMC4537206 DOI: 10.1371/journal.pcbi.1004414] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 06/24/2015] [Indexed: 11/19/2022] Open
Abstract
Cell volume changes are ubiquitous in normal and pathological activity of the brain. Nevertheless, we know little of how cell volume affects neuronal dynamics. We here performed the first detailed study of the effects of cell volume on neuronal dynamics. By incorporating cell swelling together with dynamic ion concentrations and oxygen supply into Hodgkin-Huxley type spiking dynamics, we demonstrate the spontaneous transition between epileptic seizure and spreading depression states as the cell swells and contracts in response to changes in osmotic pressure. Our use of volume as an order parameter further revealed a dynamical definition for the experimentally described physiological ceiling that separates seizure from spreading depression, as well as predicted a second ceiling that demarcates spreading depression from anoxic depolarization. Our model highlights the neuroprotective role of glial K buffering against seizures and spreading depression, and provides novel insights into anoxic depolarization and the relevant cell swelling during ischemia. We argue that the dynamics of seizures, spreading depression, and anoxic depolarization lie along a continuum of the repertoire of the neuron membrane that can be understood only when the dynamic ion concentrations, oxygen homeostasis,and cell swelling in response to osmotic pressure are taken into consideration. Our results demonstrate the feasibility of a unified framework for a wide range of neuronal behaviors that may be of substantial importance in the understanding of and potentially developing universal intervention strategies for these pathological states.
Collapse
Affiliation(s)
- Ghanim Ullah
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States of America
| | - Yina Wei
- Department of Cell Biology and Neuroscience, University of California, Riverside, California 92501 United States of America
| | | | - Martin Wechselberger
- School of Mathematics and Statistics, University of Sydney, New South Wales, 2006, Australia
| | - Steven J Schiff
- Center for Neural Engineering, Departments of Engineering Science and Mechanics, Neurosurgery, and Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States of America
| |
Collapse
|
11
|
Jarosch MS, Gebhardt C, Fano S, Huchzermeyer C, ul Haq R, Behrens CJ, Heinemann U. Early adenosine release contributes to hypoxia-induced disruption of stimulus-induced sharp wave-ripple complexes in rat hippocampal area CA3. Eur J Neurosci 2015; 42:1808-17. [DOI: 10.1111/ejn.12941] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 04/14/2015] [Accepted: 05/06/2015] [Indexed: 01/31/2023]
Affiliation(s)
- Marlene S. Jarosch
- Institute for Neurophysiology; Charité - Universitätsmedizin Berlin; 10117 Berlin Germany
| | - Christine Gebhardt
- Institute for Neurophysiology; Charité - Universitätsmedizin Berlin; 10117 Berlin Germany
| | - Silvia Fano
- Institute for Neurophysiology; Charité - Universitätsmedizin Berlin; 10117 Berlin Germany
| | - Christine Huchzermeyer
- Institute for Neurophysiology; Charité - Universitätsmedizin Berlin; 10117 Berlin Germany
| | - Rizwan ul Haq
- Institute for Neurophysiology; Charité - Universitätsmedizin Berlin; 10117 Berlin Germany
| | - Christoph J. Behrens
- Institute for Neurophysiology; Charité - Universitätsmedizin Berlin; 10117 Berlin Germany
| | - Uwe Heinemann
- Institute for Neurophysiology; Charité - Universitätsmedizin Berlin; 10117 Berlin Germany
- Excellence Cluster NeuroCure; Berlin Germany
| |
Collapse
|
12
|
Nuñez-Figueredo Y, Pardo Andreu GL, Oliveira Loureiro S, Ganzella M, Ramírez-Sánchez J, Ochoa-Rodríguez E, Verdecia-Reyes Y, Delgado-Hernández R, Souza DO. The effects of JM-20 on the glutamatergic system in synaptic vesicles, synaptosomes and neural cells cultured from rat brain. Neurochem Int 2015; 81:41-7. [DOI: 10.1016/j.neuint.2015.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/24/2014] [Accepted: 01/15/2015] [Indexed: 01/07/2023]
|
13
|
Soria FN, Pérez-Samartín A, Martin A, Gona KB, Llop J, Szczupak B, Chara JC, Matute C, Domercq M. Extrasynaptic glutamate release through cystine/glutamate antiporter contributes to ischemic damage. J Clin Invest 2014; 124:3645-55. [PMID: 25036707 DOI: 10.1172/jci71886] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 05/21/2014] [Indexed: 01/21/2023] Open
Abstract
During brain ischemia, an excessive release of glutamate triggers neuronal death through the overactivation of NMDA receptors (NMDARs); however, the underlying pathways that alter glutamate homeostasis and whether synaptic or extrasynaptic sites are responsible for excess glutamate remain controversial. Here, we monitored ischemia-gated currents in pyramidal cortical neurons in brain slices from rodents in response to oxygen and glucose deprivation (OGD) as a real-time glutamate sensor to identify the source of glutamate release and determined the extent of neuronal damage. Blockade of excitatory amino acid transporters or vesicular glutamate release did not inhibit ischemia-gated currents or neuronal damage after OGD. In contrast, pharmacological inhibition of the cystine/glutamate antiporter dramatically attenuated ischemia-gated currents and cell death after OGD. Compared with control animals, mice lacking a functional cystine/glutamate antiporter exhibited reduced anoxic depolarization and neuronal death in response to OGD. Furthermore, glutamate released by the cystine/glutamate antiporter activated extrasynaptic, but not synaptic, NMDARs, and blockade of extrasynaptic NMDARs reduced ischemia-gated currents and cell damage after OGD. Finally, PET imaging showed increased cystine/glutamate antiporter function in ischemic rats. Altogether, these data suggest that cystine/glutamate antiporter function is increased in ischemia, contributing to elevated extracellular glutamate concentration, overactivation of extrasynaptic NMDARs, and ischemic neuronal death.
Collapse
|
14
|
Pietrobon D, Moskowitz MA. Chaos and commotion in the wake of cortical spreading depression and spreading depolarizations. Nat Rev Neurosci 2014; 15:379-93. [PMID: 24857965 DOI: 10.1038/nrn3770] [Citation(s) in RCA: 285] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Punctuated episodes of spreading depolarizations erupt in the brain, encumbering tissue structure and function, and raising fascinating unanswered questions concerning their initiation and propagation. Linked to migraine aura and headache, cortical spreading depression contributes to the morbidity in the world's migraine with aura population. Even more ominously, erupting spreading depolarizations accelerate tissue damage during brain injury. The once-held view that spreading depolarizations may not exist in the human brain has changed, largely because of the discovery of migraine genes that confer cortical spreading depression susceptibility, the application of sophisticated imaging tools and efforts to interrogate their impact in the acutely injured human brain.
Collapse
Affiliation(s)
- Daniela Pietrobon
- Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova 35121 Padova, Italy
| | - Michael A Moskowitz
- 1] Stroke and Neurovascular Regulation Laboratory, Departments of Radiology and Neurology, 149 13th Street, Room 6403, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA. [2] Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Beppu K, Sasaki T, Tanaka KF, Yamanaka A, Fukazawa Y, Shigemoto R, Matsui K. Optogenetic countering of glial acidosis suppresses glial glutamate release and ischemic brain damage. Neuron 2014; 81:314-20. [PMID: 24462096 DOI: 10.1016/j.neuron.2013.11.011] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2013] [Indexed: 12/31/2022]
Abstract
The brain demands high-energy supply and obstruction of blood flow causes rapid deterioration of the healthiness of brain cells. Two major events occur upon ischemia: acidosis and liberation of excess glutamate, which leads to excitotoxicity. However, cellular source of glutamate and its release mechanism upon ischemia remained unknown. Here we show a causal relationship between glial acidosis and neuronal excitotoxicity. As the major cation that flows through channelrhodopsin-2 (ChR2) is proton, this could be regarded as an optogenetic tool for instant intracellular acidification. Optical activation of ChR2 expressed in glial cells led to glial acidification and to release of glutamate. On the other hand, glial alkalization via optogenetic activation of a proton pump, archaerhodopsin (ArchT), led to cessation of glutamate release and to the relief of ischemic brain damage in vivo. Our results suggest that controlling glial pH may be an effective therapeutic strategy for intervention of ischemic brain damage.
Collapse
Affiliation(s)
- Kaoru Beppu
- Division of Cerebral Structure, National Institute for Physiological Sciences, Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8787, Japan; Department of Physiological Sciences, Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8787, Japan
| | - Takuya Sasaki
- Division of Cerebral Structure, National Institute for Physiological Sciences, Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8787, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Yugo Fukazawa
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Ryuichi Shigemoto
- Division of Cerebral Structure, National Institute for Physiological Sciences, Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8787, Japan; Department of Physiological Sciences, Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8787, Japan; IST Austria, 3400 Klosterneuburg, Austria
| | - Ko Matsui
- Division of Cerebral Structure, National Institute for Physiological Sciences, Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8787, Japan; Department of Physiological Sciences, Graduate University for Advanced Studies (SOKENDAI), Okazaki 444-8787, Japan; Division of Interdisciplinary Medical Science, Center for Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| |
Collapse
|
16
|
Abstract
L-Glutamate is the predominant excitatory neurotransmitter in the mammalian central nervous system and plays important roles in a wide variety of brain functions, but it is also a key player in the pathogenesis of many neurological disorders. The control of glutamate concentrations is critical to the normal functioning of the central nervous system, and in this review we discuss how glutamate transporters regulate glutamate concentrations to maintain dynamic signaling mechanisms between neurons. In 2004, the crystal structure of a prokaryotic homolog of the mammalian glutamate transporter family of proteins was crystallized and its structure determined. This has paved the way for a better understanding of the structural basis for glutamate transporter function. In this review we provide a broad perspective of this field of research, but focus primarily on the more recent studies with a particular emphasis on how our understanding of the structure of glutamate transporters has generated new insights.
Collapse
|
17
|
Lane MC, Jackson JG, Krizman EN, Rothstein JD, Porter BE, Robinson MB. Genetic deletion of the neuronal glutamate transporter, EAAC1, results in decreased neuronal death after pilocarpine-induced status epilepticus. Neurochem Int 2013; 73:152-8. [PMID: 24334055 DOI: 10.1016/j.neuint.2013.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/26/2013] [Accepted: 11/28/2013] [Indexed: 11/24/2022]
Abstract
Excitatory amino acid carrier 1 (EAAC1 also called EAAT3) is a Na(+)-dependent glutamate transporter expressed by both glutamatergic and GABAergic neurons. It provides precursors for the syntheses of glutathione and GABA and contributes to the clearance of synaptically released glutamate. Mice deleted of EAAC1 are more susceptible to neurodegeneration in models of ischemia, Parkinson's disease, and aging. Antisense knock-down of EAAC1 causes an absence seizure-like phenotype. Additionally, EAAC1 expression increases after chemonvulsant-induced seizures in rodent models and in tissue specimens from patients with refractory epilepsy. The goal of the present study was to determine if the absence of EAAC1 affects the sensitivity of mice to seizure-induced cell death. A chemoconvulsant dose of pilocarpine was administered to EAAC1(-/-) mice and to wild-type controls. Although EAAC1(-/-) mice experienced increased latency to seizure onset, no significant differences in behavioral seizure severity or mortality were observed. We examined EAAC1 immunofluorescence 24h after pilocarpine administration and confirmed that pilocarpine causes an increase in EAAC1 protein. Forty-eight hours after induction of seizures, cell death was measured in hippocampus and in cortex using Fluoro-Jade C. Surprisingly, there was ∼2-fold more cell death in area CA1 of wild-type mice than in the corresponding regions of the EAAC1(-/-) mice. Together, these studies indicate that absence of EAAC1 results in either a decrease in pilocarpine-induced seizures that is not detectable by behavioral criteria (surprising, since EAAC1 provides glutamate for GABA synthesis), or that the absence of EAAC1 results in less pilocarpine/seizure-induced cell death, possible explanations as discussed.
Collapse
Affiliation(s)
- Meredith C Lane
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua G Jackson
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth N Krizman
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeffery D Rothstein
- Department of Neurology and Neuroscience, Johns Hopkins University, Brain Sciences Institute, Baltimore, MD 21205, USA
| | - Brenda E Porter
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael B Robinson
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pharmacology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Death by a thousand cuts in Alzheimer's disease: hypoxia--the prodrome. Neurotox Res 2013; 24:216-43. [PMID: 23400634 DOI: 10.1007/s12640-013-9379-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/10/2013] [Accepted: 01/21/2013] [Indexed: 12/30/2022]
Abstract
A wide range of clinical consequences may be associated with obstructive sleep apnea (OSA) including systemic hypertension, cardiovascular disease, pulmonary hypertension, congestive heart failure, cerebrovascular disease, glucose intolerance, impotence, gastroesophageal reflux, and obesity, to name a few. Despite this, 82 % of men and 93 % of women with OSA remain undiagnosed. OSA affects many body systems, and induces major alterations in metabolic, autonomic, and cerebral functions. Typically, OSA is characterized by recurrent chronic intermittent hypoxia (CIH), hypercapnia, hypoventilation, sleep fragmentation, peripheral and central inflammation, cerebral hypoperfusion, and cerebral glucose hypometabolism. Upregulation of oxidative stress in OSA plays an important pathogenic role in the milieu of hypoxia-induced cerebral and cardiovascular dysfunctions. Strong evidence underscores that cerebral amyloidogenesis and tau phosphorylation--two cardinal features of Alzheimer's disease (AD), are triggered by hypoxia. Mice subjected to hypoxic conditions unambiguously demonstrated upregulation in cerebral amyloid plaque formation and tau phosphorylation, as well as memory deficit. Hypoxia triggers neuronal degeneration and axonal dysfunction in both cortex and brainstem. Consequently, neurocognitive impairment in apneic/hypoxic patients is attributable to a complex interplay between CIH and stimulation of several pathological trajectories. The framework presented here helps delineate the emergence and progression of cognitive decline, and may yield insight into AD neuropathogenesis. The global impact of CIH should provide a strong rationale for treating OSA and snoring clinically, in order to ameliorate neurocognitive impairment in aged/AD patients.
Collapse
|
19
|
Early ischemia enhances action potential-dependent, spontaneous glutamatergic responses in CA1 neurons. J Cereb Blood Flow Metab 2010; 30:555-65. [PMID: 19844238 PMCID: PMC2949140 DOI: 10.1038/jcbfm.2009.227] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Two types of quantal spontaneous neurotransmitter release are present in the nervous system, namely action potential (AP)-dependent release and AP-independent release. Previous studies have identified and characterized AP-independent release during hypoxia and ischemia. However, the relative contribution of AP-dependent spontaneous release to the overall glutamate released during transient ischemia has not been quantified. Furthermore, the neuronal activity that mediates such release has not been identified. Using acute brain slices, we show that AP-dependent release constitutes approximately one-third of the overall glutamate-mediated excitatory postsynaptic potentials/currents (EPSPs/EPSCs) measured onto hippocampal CA1 pyramidal neurons. However, during transient (2 mins) in vitro hypoxia-hypoglycemia, large-amplitude, AP-dependent spontaneous release is significantly enhanced and contributes to 74% of the overall glutamatergic responses. This increased AP-dependent release is due to hyper-excitability in the presynaptic CA3 neurons, which is mediated by the activity of NMDA receptors. Spontaneous glutamate release during ischemia can lead to excitotoxicity and perturbation of neural network functions.
Collapse
|
20
|
Glutamate uptake shapes low-[Mg2+] induced epileptiform activity in juvenile rat hippocampal slices. Brain Res 2009; 1309:172-8. [PMID: 19912995 DOI: 10.1016/j.brainres.2009.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 11/02/2009] [Accepted: 11/03/2009] [Indexed: 11/21/2022]
Abstract
A wide range of data support a role for ambient glutamate (Glu) in epilepsy, although temporal patterns associated with the cellular uptake of Glu have not been addressed in detail. We report on the effects of Glu uptake inhibitors on recurrent seizure-like events (SLEs) evoked by low-[Mg(2+)] condition in juvenile rat hippocampal slices. Effects were compared for inhibitors such as L-trans-pyrrolidine-2,4-dicarboxylate (tPDC), DL-threo-beta-benzyloxyaspartate (DL-TBOA) and dihydrokainic acid (DHK), representing different transporter specificity and transportability profiles. Latency to the first SLE after drug application was shortened by the inhibitors (in % of control: 500 microM tPDC: 54+/-7, 15 microM DL-TBOA: 74+/-5, 50 microM dl-TBOA: 70+/-6, 100 microM DHK: 69+/-4, 300 microM DHK: 71+/-7). Further SLEs were frequently aborted by higher inhibitor concentrations applied (500 microM tPDC: 2/6, 50 microM TBOA: 5/5, 100 microM DHK: 6/8, 300 microM DHK: 3/3). Simultaneous field potential and whole-cell voltage recordings showed depolarization-induced inactivation of CA3 pyramidal neurons during inhibitor application. In the presence of inhibitors, the amplitude of forthcoming SLE was also decreased (in % of control: 500 microM tPDC: 66+/-9, 15 microM dl-TBOA: 88+/-5, 50 microM dl-TBOA: 59+/-6, 100 microM DHK: 67+/-4, 300 microM DHK: 68+/-1). Dependent on type and concentration of the inhibitor, the duration of the first SLE of drug application either increased (100 microM DHK: 375+/-90 %; 100 microM tPDC: 137+/-13 %) or decreased (50 microM TBOA: 62+/-13 %; 300 microM DHK: 60+/-15 %) reflecting differences in subtype-specificity or mechanism of action of the inhibitors. Our findings suggest a role for ambient Glu in the genesis and maintenance of recurrent epileptiform discharges.
Collapse
|
21
|
Zhang JH, Fung SJ, Xi M, Sampogna S, Chase MH. Recurrent apnea induces neuronal apoptosis in the guinea pig forebrain. Exp Neurol 2008; 216:290-4. [PMID: 19124019 DOI: 10.1016/j.expneurol.2008.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 12/01/2008] [Indexed: 11/29/2022]
Abstract
Obstructive sleep apnea (OSA) and sleep-disordered breathing (SDB) can result in impaired cognition and mental acuity, and the generation of mood disorders, including depression. However, the mechanisms of neuronal damage for these complications have not been elucidated. Accordingly, using immunohistochemical technique with monoclonal antibody against single-stranded DNA, we examined the morphological effects of chronic recurrent apnea on neurons in the hippocampus and related forebrain sites in guinea pigs. Our results show that a large number of neurons labeled by anti-ssDNA antibody were present in the cingulate, insular and frontal cortices, the hippocampus and the amygdala in conjunction with periods of recurrent apnea. However, no labeling was observed in comparable regions of the brain in control guinea pigs. In the cortices of experimental animals, labeled neurons were detected mainly in the superficial layers (II-III) in the frontal, insular and cingulate cortex. In the hippocampus, most labeled neurons were located in the CA1 region, in which most of stained neurons were observed in strata pyramidal, while only a few positive neurons were located in the strata radiatum and the strata oriens. In addition, a large number of labeled neurons were also detected in the central nucleus of amygdala in the guinea pigs underwent recurrent periods of apnea. The present data indicate that recurrent apnea results in cell death in the hippocampus and related forebrain regions via mechanisms of apoptosis, which may represent the basis for the clinical complications of obstructive sleep apnea and sleep-disordered breathing.
Collapse
|
22
|
Boston-Howes W, Williams EO, Bogush A, Scolere M, Pasinelli P, Trotti D. Nordihydroguaiaretic acid increases glutamate uptake in vitro and in vivo: therapeutic implications for amyotrophic lateral sclerosis. Exp Neurol 2008; 213:229-37. [PMID: 18625223 DOI: 10.1016/j.expneurol.2008.06.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 06/06/2008] [Accepted: 06/14/2008] [Indexed: 01/16/2023]
Abstract
Synaptic accumulation of glutamate causes neuronal death in many neurodegenerative pathologies including amyotrophic lateral sclerosis. Drugs capable of increasing glutamate uptake could therefore be therapeutically effective. We screened in a cell-based assay a library of 1040 FDA-approved drugs and nutrients for compounds that could enhance glutamate uptake. Nordihydroguaiaretic acid (NDGA), an anti-inflammatory drug that inhibits lipoxygensases, potently enhanced glutamate uptake in MN-1 cells. Given subcutaneously at 1 mg/day for 30 days in mice, NDGA increased glutamate uptake in spinal cord synaptosomes persistently throughout the treatment. However, when administered following the same regimen to the SOD1-G93A transgenic mouse model of ALS at disease onset, NDGA did not extend survival of these mice. We found that NDGA failed to sustain increased glutamate uptake in the SOD1-G93A mice despite an initial upregulation measured during the first 10 days of treatment. SOD1-G93A mice displayed a progressive increase in spinal cord expression levels of the efflux transporter P-glycoprotein beginning at disease onset. This increase was not mediated by the NDGA treatment because it was measured in untreated SOD1-G93A mice. Since P-glycoproteins control the extrusion of a broad range of toxins and xenobiotics and are responsible for drug resistance in many diseases including cancer and brain diseases such as epilepsy, we propose that the failure of NDGA in maintaining glutamate uptake upregulated in SOD1-G93A mice and its therapeutic inefficacy are due to acquired pharmacoresistance mediated by the increased expression of P-glycoprotein.
Collapse
Affiliation(s)
- William Boston-Howes
- Weinberg Unit for ALS Research, Farber Institute for the Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Sheldon AL, Robinson MB. The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int 2007; 51:333-55. [PMID: 17517448 PMCID: PMC2075474 DOI: 10.1016/j.neuint.2007.03.012] [Citation(s) in RCA: 444] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 03/28/2007] [Accepted: 03/30/2007] [Indexed: 12/20/2022]
Abstract
Extracellular concentrations of the predominant excitatory neurotransmitter, glutamate, and related excitatory amino acids are maintained at relatively low levels to ensure an appropriate signal-to-noise ratio and to prevent excessive activation of glutamate receptors that can result in cell death. The latter phenomenon is known as 'excitotoxicity' and has been associated with a wide range of acute and chronic neurodegenerative disorders, as well as disorders that result in the loss of non-neural cells such as oligodendroglia in multiple sclerosis. Unfortunately clinical trials with glutamate receptor antagonists that would logically seem to prevent the effects of excessive receptor activation have been associated with untoward side effects or little clinical benefit. In the mammalian CNS, the extracellular concentrations of glutamate are controlled by two types of transporters; these include a family of Na(+)-dependent transporters and a cystine-glutamate exchange process, referred to as system X(c)(-). In this review, we will focus primarily on the Na(+)-dependent transporters. A brief introduction to glutamate as a neurotransmitter will be followed by an overview of the properties of these transporters, including a summary of the presumed physiologic mechanisms that regulate these transporters. Many studies have provided compelling evidence that impairing the function of these transporters can increase the sensitivity of tissue to deleterious effects of aberrant activation of glutamate receptors. Over the last decade, it has become clear that many neurodegenerative disorders are associated with a change in localization and/or expression of some of the subtypes of these transporters. This would suggest that therapies directed toward enhancing transporter expression might be beneficial. However, there is also evidence that glutamate transporters might increase the susceptibility of tissue to the consequences of insults that result in a collapse of the electrochemical gradients required for normal function such as stroke. In spite of the potential adverse effects of upregulation of glutamate transporters, there is recent evidence that upregulation of one of the glutamate transporters, GLT-1 (also called EAAT2), with beta-lactam antibiotics attenuates the damage observed in models of both acute and chronic neurodegenerative disorders. While it seems somewhat unlikely that antibiotics specifically target GLT-1 expression, these studies identify a potential strategy to limit excitotoxicity. If successful, this type of approach could have widespread utility given the large number of neurodegenerative diseases associated with decreases in transporter expression and excitotoxicity. However, given the massive effort directed at developing glutamate receptor agents during the 1990s and the relatively modest advances to date, one wonders if we will maintain the patience needed to carefully understand the glutamatergic system so that it will be successfully targeted in the future.
Collapse
Affiliation(s)
- Amanda L. Sheldon
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA. 19104-4318
- Departments of Pediatrics and Pharmacology, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA. 19104-4318
| | - Michael B. Robinson
- Departments of Pediatrics and Pharmacology, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA. 19104-4318
| |
Collapse
|
25
|
|
26
|
Waxman EA, Baconguis I, Lynch DR, Robinson MB. N-methyl-D-aspartate receptor-dependent regulation of the glutamate transporter excitatory amino acid carrier 1. J Biol Chem 2007; 282:17594-607. [PMID: 17459877 DOI: 10.1074/jbc.m702278200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The neuronal transporter excitatory amino acid carrier 1 (EAAC1) is enriched in perisynaptic regions, where it may regulate synaptic spillover of glutamate. In this study we examined potential interactions between EAAC1 and ionotropic glutamate receptors. N-Methyl-D-aspartate (NMDA) receptor subunits NR1, NR2A, and NR2B, but not the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunit GluR2, were co-immunoprecipitated with EAAC1 from neuron-enriched hippocampal cultures. A similar interaction was observed in C6 glioma and human embryonic kidney cells after co-transfection with Myc epitope-tagged EAAC1 and NMDA receptor subunits. Co-transfection of C6 glioma with the combination of NR1 and NR2 subunits dramatically increased (approximately 3-fold) the amount of Myc-EAAC1 that can be labeled with a membrane-impermeable biotinylating reagent. In hippocampal cultures, brief (5 min), robust (100 microM NMDA, 10 microM glycine) activation of the NMDA receptor decreased biotinylated EAAC1 to approximately 50% of control levels. This effect was inhibited by an NMDA receptor antagonist, intracellular or extracellular calcium chelators, or hypertonic sucrose. Glutamate, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid with cyclothiazide, and thapsigargin mimicked the effects of NMDA. These studies suggest that NMDA receptors interact with EAAC1, facilitate cell surface expression of EAAC1 under basal conditions, and control internalization of EAAC1 upon activation. This NMDA receptor-dependent regulation of EAAC1 provides a novel mechanism that may shape excitatory signaling during synaptic plasticity and/or excitotoxicity.
Collapse
Affiliation(s)
- Elisa A Waxman
- Department of Pharmacology, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
27
|
Robinson MB. Acute regulation of sodium-dependent glutamate transporters: a focus on constitutive and regulated trafficking. Handb Exp Pharmacol 2006:251-75. [PMID: 16722240 DOI: 10.1007/3-540-29784-7_13] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The acidic amino acid glutamate activates a family of ligand-gated ion channels to mediate depolarization that can be as short-lived as a few milliseconds and activates a family of G protein-coupled receptors that couple to both ion channels and other second messenger pathways. Glutamate is the predominant excitatory neurotransmitter in the mammalian central nervous system and is required for essentially all motor, sensory, and cognitive functions. In addition, glutamate-mediated signaling is required for development and the synaptic plasticity thought to underlie memory formation and retrieval. The levels of glutamate in brain approach 10 mmol/kg and most cells in the CNS express at least one of the receptor subtypes. Unlike acetylcholine that mediates "rapid" excitatory neurotransmission at the neuromuscular junction, there is no evidence for extracellular inactivation of glutamate. Instead, glutamate is cleared by a family of Na(+)-dependent transport systems that are found on glial processes that sheath the synapse and found on the pre- and postsynaptic elements of neurons. These transporters ensure crisp excitatory transmission by maintaining synaptic concentrations below those required for tonic activation of glutamate receptors under baseline conditions (approximately 1 microM) and serve to limit activation of glutamate receptors after release. During the past few years, it has become clear that like many of the other neurotransmitter transporters discussed in this volume of Handbook of Experimental Pharmacology, the activity of these transporters can be rapidly regulated by a variety of effectors. In this chapter, a broad overview of excitatory signaling will be followed by a brief introduction to the family of Na(+)-dependent glutamate transporters and a detailed discussion of our current understanding of the mechanisms that control transporter activity. The focus will be on our current understanding of the mechanisms that could regulate transporter activity within minutes, implying that this regulation is independent of transcriptional or translational control mechanisms. The glutamate transporters found in forebrain are regulated by redistributing the proteins to or from the plasma membrane; the signals involved and the net effects on transporter activity are being defined. In addition, there is evidence to suggest that the intrinsic activity of these transporters is also regulated by mechanisms that are independent of transporter redistribution; less is known about these events. As this field progresses, it should be possible to determine how this regulation affects physiologic and pathologic events in the CNS.
Collapse
Affiliation(s)
- M B Robinson
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, 502 AbramsonResearch Building, 3615 Civic Center Blvd., Philadelphia, PA 19104-4318, USA.
| |
Collapse
|
28
|
Nieoullon A, Canolle B, Masmejean F, Guillet B, Pisano P, Lortet S. The neuronal excitatory amino acid transporter EAAC1/EAAT3: does it represent a major actor at the brain excitatory synapse? J Neurochem 2006; 98:1007-18. [PMID: 16800850 DOI: 10.1111/j.1471-4159.2006.03978.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
EAAC1/EAAT3 is a transporter of glutamate (Glu) present at the post-synaptic neuronal element, in opposition to the two other main transporters, GLAST/EAAT1 and GLT1/EAAT2, expressed at the excitatory amino acid (EAA) synapse by surrounding astrocytes. Although, in the adult, EAAC1/EAAT3 exhibits a rather low expression level and is considered to make a minor contribution to Glu removal from the synapse, its early expression during brain development, before the astrocytes are functional, suggests that such a neuronal transporter is involved in the developmental effects of EAA and, possibly, in the biosynthesis and trophic role of GABA, which is excitatory in nature in different brain regions during the earlier stages of brain development. This neuronal Glu transporter is considered to have a dual action as it is apparently involved in the neuronal uptake of cysteine, which acts as a key substrate for the synthesis of glutathione, a major anti-oxidant, because the neurones do not express the Xc(-) transport system in the mature brain. Interestingly, EAAC1/EAAT3 activity/expression was shown to be highly regulated by neuronal activity as well as by intracellular signalling pathways involving primarily alpha protein kinase C (alphaPKC) and phosphatidylinositol-3-kinase (PI3K). Such regulatory processes could act either at the post-traductional level or at the transcriptional level. It is worth noting that EAAC1/EAAT3 exhibits specificity, compared with other EAA transporters, because it is present mainly in the intracellular compartment and only for about 20% at the plasma membrane. Variations in neuronal Glu uptake were shown to be associated with rapid changes in the trafficking of the transporter protein altering the membranar location of the transporter. More recent data show that astrocyte-secreted factors such as cholesterol could also influence rapid changes in the location of EAAC1/EAAT3 between the plasma membrane and the cytoplasmic compartment. Such a highly regulated process of EAAC1/EAAT3 activity/expression may have implications in the physiopathology of major diseases affecting EAA brain signalling, which is further supported by data obtained in animal models of hypoxia-anoxia, for example.
Collapse
Affiliation(s)
- André Nieoullon
- IBDML-IC2N, UMR 6216 CNRS, Université de la Méditerranée, Institut de Biologie du Développement de Marseille-Luminy, Marseille, France.
| | | | | | | | | | | |
Collapse
|
29
|
Albrecht J, Hanganu IL, Heck N, Luhmann HJ. Oxygen and glucose deprivation induces major dysfunction in the somatosensory cortex of the newborn rat. Eur J Neurosci 2006; 22:2295-305. [PMID: 16262667 DOI: 10.1111/j.1460-9568.2005.04398.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanisms and functional consequences of ischemia-induced injury during perinatal development are poorly understood. Subplate neurons (SPn) play a central role in early cortical development and a pathophysiological impairment of these neurons may have long-term detrimental effects on cortical function. The acute and long-term consequences of combined oxygen and glucose deprivation (OGD) were investigated in SPn and compared with OGD-induced dysfunction of immature layer V pyramidal cortical neurons (PCn) in somatosensory cortical slices from postnatal day (P)0-4 rats. OGD for 50 min followed by a 10-24-h period of normal oxygenation and glucose supply in vitro or in culture led to pronounced caspase-3-dependent apoptotic cell death in all cortical layers. Whole-cell patch-clamp recordings revealed that the majority of SPn and PCn responded to OGD with an initial long-lasting ischemic hyperpolarization accompanied by a decrease in input resistance (R(in)), followed by an ischemic depolarization (ID). Upon reoxygenation and glucose supply, the recovery of the membrane potential and R(in) was followed by a Na+/K+-ATPase-dependent postischemic hyperpolarization, and in almost half of the investigated SPn and PCn by a postischemic depolarization. Whereas neither a moderate (2.5 mm) nor a high (4.8 mm) increase in extracellular magnesium concentration protected the SPn from OGD-induced dysfunction, blockade of NMDA receptors with MK-801 led to a significant delay and decrease of the ID. Our data demonstrate that OGD induces apoptosis and a profound dysfunction in SPn and PCn, and underline the critical role of NMDA receptors in early ischemia-induced neuronal damage.
Collapse
Affiliation(s)
- Juliane Albrecht
- Institute of Physiology & Pathophysiology, Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | | | | | | |
Collapse
|
30
|
Allen NJ, Káradóttir R, Attwell D. A preferential role for glycolysis in preventing the anoxic depolarization of rat hippocampal area CA1 pyramidal cells. J Neurosci 2005; 25:848-59. [PMID: 15673665 PMCID: PMC6725613 DOI: 10.1523/jneurosci.4157-04.2005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During brain anoxia or ischemia, a decrease in the level of ATP leads to a sudden decrease in transmembrane ion gradients [anoxic depolarization (AD)]. This releases glutamate by reversing the operation of glutamate transporters, which triggers neuronal death. By whole-cell clamping CA1 pyramidal cells, we investigated the energy stores that delay the occurrence of the AD in hippocampal slices when O2 and glucose are removed. With glycolytic and mitochondrial ATP production blocked in P12 slices, the AD occurred in approximately 7 min at 33 degrees C, reflecting the time needed for metabolic activity to consume the existing ATP and phosphocreatine, and for subsequent ion gradient decrease. Allowing glycolysis fueled by glycogen, in the absence of glucose, delayed the AD by 5.5 min, whereas superfused glucose prevented the AD for >1 h. With glycolysis blocked, the latency to the AD was 6.5 min longer when mitochondria were allowed to function, demonstrating that metabolites downstream of glycolysis (pyruvate, citric acid cycle intermediates, and amino acid oxidation) provide a significant energy store for oxidative phosphorylation. With glycolysis blocked but mitochondria functioning, superfusing lactate did not significantly delay the AD, showing that ATP production from lactate is much less than that from endogenous metabolites. These data demonstrate a preferential role for glycolysis in preventing the AD. They also define a hierarchy of pool sizes for hippocampal energy stores and suggest that brain ATP production from glial lactate may not be significant in conditions of energy deprivation.
Collapse
Affiliation(s)
- Nicola J Allen
- Department of Physiology, University College London, London WC1E 6BT, United Kingdom
| | | | | |
Collapse
|
31
|
Hamann M, Rossi DJ, Mohr C, Andrade AL, Attwell D. The electrical response of cerebellar Purkinje neurons to simulated ischaemia. ACTA ACUST UNITED AC 2005; 128:2408-20. [PMID: 16123143 PMCID: PMC8906496 DOI: 10.1093/brain/awh619] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Despite lacking N-methyl-D-aspartate receptors, cerebellar Purkinje cells are highly vulnerable to ischaemic insults, which lead them to die necrotically in an -amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) receptor-dependent manner. To investigate the electrical events leading to this cell death, we whole-cell clamped Purkinje cells in cerebellar slices. Simulated ischaemia evoked an initial hyperpolarization of Purkinje cells by 8.5 mV, followed by a regenerative 'anoxic depolarization' (AD) to -14 mV. The AD was prevented by glutamate receptor blockers. In voltage-clamp mode, we used the cells' glutamate receptors to sense the rise of extracellular glutamate concentration induced by ischaemia, with GABA(A) and GABA(B) receptors blocked and Cs+ as the main pipette cation. Ischaemia induced a small (<500 pA) slowly developing inward current in Purkinje cells, followed by a sudden large inward 'AD current' (approximately 6 nA) which was largely prevented by blocking AMPA receptors. Removing extracellular calcium reduced the large glutamate-mediated current by approximately 70% at early times (after 10 min ischaemia), but had no effect at later times (15 min). Blocking the operation of glutamate transporters, by preloading cells with the slowly transported glutamate analogue PDC (L-trans-pyrrolidine-2,4-dicarboxylate), reduced the current by approximately 88% at early and 83% at later times. In Purkinje cells in slices from mice lacking the glial glutamate transporters GLAST or GLT-1, the ischaemia-evoked AD current was indistinguishable from that in wild-type slices. These data suggest that, in cerebellar ischaemia, the dominant cause of the electrophysiological dysfunction of Purkinje cells is an activation of Purkinje cell AMPA receptors. The glutamate activating these receptors is released both by exocytosis (at early times) and by reversal of a glutamate transporter, apparently in neurons.
Collapse
Affiliation(s)
- Martine Hamann
- Department of Physiology, University College London, London, UK
- Present address: Department of Cell Physiology, University of Leicester, Leicester, UK
| | - David J. Rossi
- Department of Physiology, University College London, London, UK
- Present address: Neurological Sciences Institute, Oregon Health and Science University, Beaverton, USA
| | - Claudia Mohr
- Present address: Neurological Sciences Institute, Oregon Health and Science University, Beaverton, USA
| | - Adriana L. Andrade
- Present address: Neurological Sciences Institute, Oregon Health and Science University, Beaverton, USA
| | - David Attwell
- Department of Physiology, University College London, London, UK
| |
Collapse
|
32
|
Allen NJ, Káradóttir R, Attwell D. Reversal or reduction of glutamate and GABA transport in CNS pathology and therapy. Pflugers Arch 2004; 449:132-42. [PMID: 15338308 DOI: 10.1007/s00424-004-1318-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Accepted: 05/20/2004] [Indexed: 10/26/2022]
Abstract
A dysfunction of amino acid neurotransmitter transporters occurs in a number of central nervous system disorders, including stroke, epilepsy, cerebral palsy and amyotrophic lateral sclerosis. This dysfunction can comprise a reversal of transport direction, leading to the release of neurotransmitter into the extracellular space, or an alteration in transporter expression level. This review analyses the role of glutamate and GABA transporters in the pathogenesis and therapy of a number of acute and chronic neurological disorders.
Collapse
Affiliation(s)
- Nicola J Allen
- Department of Physiology, University College London, Gower Street, London, WC1E 6BT, UK
| | | | | |
Collapse
|