1
|
A novel murine in vivo model for acute hereditary angioedema attacks. Sci Rep 2021; 11:15924. [PMID: 34354123 PMCID: PMC8342443 DOI: 10.1038/s41598-021-95125-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 06/15/2021] [Indexed: 12/03/2022] Open
Abstract
Hereditary Angioedema (HAE) is a rare genetic disease generally caused by deficiency or mutations in the C1-inhibitor gene, SERPING1, a member of the Serpin family. HAE results in acute attacks of edema, vasodilation, GI pain and hypotension. C1INH is a key inhibitor of enzymes controlling complement activation, fibrinolysis and the contact system. In HAE patients, contact system activation leads to uncontrolled production of bradykinin, the vasodilator responsible for the characteristic symptoms of HAE. In this study, we present the first physiological in vivo model to mimic acute HAE attacks. We evaluate hypotension, one of the many hallmark symptoms of acute HAE attacks using Serping1 deficient mice (serping1−/−) and implanted telemetry. Attacks were induced by IV injection of a silica nanoparticle (SiNP) suspension. Blood pressure was measured in real time, in conscious and untethered mice using implanted telemetry. SiNP injection induced a rapid, reversible decrease in blood pressure, in the presence of angiotensin converting enzyme (ACE) inhibition. We also demonstrate that an HAE therapeutic, ecallantide, can prevent HAE attacks in this model. The in vivo murine model described here can facilitate the understanding of acute HAE attacks, support drug development and ultimately contribute to improved patient care.
Collapse
|
2
|
La Merrill MA, Sethi S, Benard L, Moshier E, Haraldsson B, Buettner C. Perinatal DDT Exposure Induces Hypertension and Cardiac Hypertrophy in Adult Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1722-1727. [PMID: 27325568 PMCID: PMC5089878 DOI: 10.1289/ehp164] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/21/2016] [Accepted: 05/18/2016] [Indexed: 05/08/2023]
Abstract
BACKGROUND Dichlorodiphenyltrichloroethane (DDT) was used extensively to control malaria, typhus, body lice, and bubonic plague worldwide, until countries began restricting its use in the 1970s. However, the use of DDT to control vector-borne diseases continues in developing countries. Prenatal DDT exposure is associated with elevated blood pressure in humans. OBJECTIVE We hypothesized that perinatal DDT exposure causes hypertension in adult mice. METHODS DDT was administered to C57BL/6J dams from gestational day 11.5 to postnatal day 5. Blood pressure (BP) and myocardial wall thickness were measured in male and female adult offspring. Adult mice were treated with an angiotensin converting enzyme (ACE) inhibitor, captopril, to evaluate sensitivity to amelioration of DDT-associated hypertension by ACE inhibition. We further assessed the influence of DDT exposure on the expression of mRNAs that regulate BP through renal ion transport. RESULTS Adult mice perinatally exposed to DDT exhibited chronically increased systolic BP, increased myocardial wall thickness, and elevated expression of mRNAs of several renal ion transporters. Captopril completely reversed hypertension in mice perinatally exposed to DDT. CONCLUSIONS These data demonstrate that perinatal exposure to DDT causes hypertension and cardiac hypertrophy in adult offspring. A key mechanism underpinning this hypertension is an overactivated renin angiotensin system because ACE inhibition reverses the hypertension induced by perinatal DDT exposure. Citation: La Merrill M, Sethi S, Benard L, Moshier E, Haraldsson B, Buettner C. 2016. Perinatal DDT exposure induces hypertension and cardiac hypertrophy in adult mice. Environ Health Perspect 124:1722-1727; http://dx.doi.org/10.1289/EHP164.
Collapse
Affiliation(s)
- Michele A. La Merrill
- Department of Environmental Toxicology, University of California, Davis, Davis, CA, USA
- Department of Preventive Medicine, and
- Address correspondence to M. La Merrill, Department of Environmental Toxicology, University of California at Davis, 1 Shields Ave., 4245 Meyer Hall, Davis, CA 95616-5270 USA. Telephone: (530) 752-1142. , or C. Buettner, Department of Medicine, Mount Sinai School of Medicine, Division of Endocrinology, Metabolism Institute, One Gustave L. Levy Place, Box 1055, New York, NY 10029-6574 USA. Telephone: (212) 241-3425.
| | - Sunjay Sethi
- Department of Environmental Toxicology, University of California, Davis, Davis, CA, USA
| | - Ludovic Benard
- Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Borje Haraldsson
- Department of Nephrology, University of Gothenburg, Gothenburg, Sweden
| | - Christoph Buettner
- Department of Medicine,
- Department of Neuroscience, and
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Address correspondence to M. La Merrill, Department of Environmental Toxicology, University of California at Davis, 1 Shields Ave., 4245 Meyer Hall, Davis, CA 95616-5270 USA. Telephone: (530) 752-1142. , or C. Buettner, Department of Medicine, Mount Sinai School of Medicine, Division of Endocrinology, Metabolism Institute, One Gustave L. Levy Place, Box 1055, New York, NY 10029-6574 USA. Telephone: (212) 241-3425.
| |
Collapse
|
3
|
González-Núñez M, Riolobos AS, Castellano O, Fuentes-Calvo I, de los Ángeles Sevilla M, Oujo B, Pericacho M, Cruz-Gonzalez I, Pérez-Barriocanal F, ten Dijke P, López-Novoa JM. Heterozygous disruption of activin receptor-like kinase 1 is associated with increased arterial pressure in mice. Dis Model Mech 2015; 8:1427-39. [PMID: 26398936 PMCID: PMC4631783 DOI: 10.1242/dmm.019695] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 08/27/2015] [Indexed: 12/20/2022] Open
Abstract
The activin receptor-like kinase 1 (ALK-1) is a type I cell-surface receptor for the transforming growth factor-β (TGF-β) family of proteins. Hypertension is related to TGF-β1, because increased TGF-β1 expression is correlated with an elevation in arterial pressure (AP) and TGF-β expression is upregulated by the renin-angiotensin-aldosterone system. The purpose of this study was to assess the role of ALK-1 in regulation of AP using Alk1 haploinsufficient mice (Alk1(+/-)). We observed that systolic and diastolic AP were significantly higher in Alk1(+/-) than in Alk1(+/+) mice, and all functional and structural cardiac parameters (echocardiography and electrocardiography) were similar in both groups. Alk1(+/-) mice showed alterations in the circadian rhythm of AP, with higher AP than Alk1(+/+) mice during most of the light period. Higher AP in Alk1(+/-) mice is not a result of a reduction in the NO-dependent vasodilator response or of overactivation of the peripheral renin-angiotensin system. However, intracerebroventricular administration of losartan had a hypotensive effect in Alk1(+/-) and not in Alk1(+/+) mice. Alk1(+/-) mice showed a greater hypotensive response to the β-adrenergic antagonist atenolol and higher concentrations of epinephrine and norepinephrine in plasma than Alk1(+/+) mice. The number of brain cholinergic neurons in the anterior basal forebrain was reduced in Alk1(+/-) mice. Thus, we concluded that the ALK-1 receptor is involved in the control of AP, and the high AP of Alk1(+/-) mice is explained mainly by the sympathetic overactivation shown by these animals, which is probably related to the decreased number of cholinergic neurons.
Collapse
Affiliation(s)
- María González-Núñez
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca 37007, Spain Unidad de Fisiopatología Renal y Cardiovascular, Instituto 'Reina Sofía' de Investigación Nefrológica, Salamanca 37007, Spain Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca 37007, Spain
| | - Adela S Riolobos
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca 37007, Spain Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca 37007, Spain Instituto de Neurociencias de Castilla y León (INCYL), Salamanca 37008, Spain
| | - Orlando Castellano
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca 37007, Spain Instituto de Neurociencias de Castilla y León (INCYL), Salamanca 37008, Spain
| | - Isabel Fuentes-Calvo
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca 37007, Spain Unidad de Fisiopatología Renal y Cardiovascular, Instituto 'Reina Sofía' de Investigación Nefrológica, Salamanca 37007, Spain Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca 37007, Spain
| | | | - Bárbara Oujo
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca 37007, Spain Unidad de Fisiopatología Renal y Cardiovascular, Instituto 'Reina Sofía' de Investigación Nefrológica, Salamanca 37007, Spain Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca 37007, Spain
| | - Miguel Pericacho
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca 37007, Spain Unidad de Fisiopatología Renal y Cardiovascular, Instituto 'Reina Sofía' de Investigación Nefrológica, Salamanca 37007, Spain Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca 37007, Spain
| | - Ignacio Cruz-Gonzalez
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca 37007, Spain Departamento de Cardiología, Hospital Universitario de Salamanca, Salamanca 37007, Spain
| | - Fernando Pérez-Barriocanal
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca 37007, Spain Unidad de Fisiopatología Renal y Cardiovascular, Instituto 'Reina Sofía' de Investigación Nefrológica, Salamanca 37007, Spain Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca 37007, Spain
| | - Peter ten Dijke
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Jose M López-Novoa
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca 37007, Spain Unidad de Fisiopatología Renal y Cardiovascular, Instituto 'Reina Sofía' de Investigación Nefrológica, Salamanca 37007, Spain Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca 37007, Spain
| |
Collapse
|
4
|
Valanti E, Tsompanidis A, Sanoudou D. Pharmacogenomics in the development and characterization of atheroprotective drugs. Methods Mol Biol 2014; 1175:259-300. [PMID: 25150873 DOI: 10.1007/978-1-4939-0956-8_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Atherosclerosis is the main cause of cardiovascular disease (CVD) and can lead to stroke, myocardial infarction, and death. The clinically available atheroprotective drugs aim mainly at reducing the levels of circulating low-density lipoprotein (LDL), increasing high-density lipoprotein (HDL), and attenuating inflammation. However, the cardiovascular risk remains high, along with morbidity, mortality, and incidence of adverse drug events. Pharmacogenomics is increasingly contributing towards the characterization of existing atheroprotective drugs, the evaluation of novel ones, and the identification of promising, unexplored therapeutic targets, at the global molecular pathway level. This chapter presents highlights of pharmacogenomics investigations and discoveries that have contributed towards the elucidation of pharmacological atheroprotection, while opening the way to new therapeutic approaches.
Collapse
Affiliation(s)
- Efi Valanti
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Athens, 115 27, Greece
| | | | | |
Collapse
|
5
|
Grande MT, Pascual G, Riolobos AS, Clemente-Lorenzo M, Bardaji B, Barreiro L, Tornavaca O, Meseguer A, López-Novoa JM. Increased oxidative stress, the renin-angiotensin system, and sympathetic overactivation induce hypertension in kidney androgen-regulated protein transgenic mice. Free Radic Biol Med 2011; 51:1831-41. [PMID: 21906672 DOI: 10.1016/j.freeradbiomed.2011.08.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 08/16/2011] [Accepted: 08/18/2011] [Indexed: 01/07/2023]
Abstract
Gender differences in the incidence and severity of hypertension have suggested the involvement of a sex-dependent mechanism. Transgenic (Tg) mice overexpressing kidney androgen-regulated protein (KAP) specifically in kidney showed hypertension associated with oxidative stress. Reactive oxygen species (ROS) are strongly implicated in the pathological signaling leading to hypertension in a framework that includes renin-angiotensin system (RAS) activation, increased sympathetic activity, and cardiac remodeling. In this report, we observed that plasma levels of angiotensin II and catecholamines were increased in KAP Tg mice, compared with wild-type animals. Systemic administration of Tempol, a membrane-permeative superoxide dismutase mimetic, reduced arterial pressure as well as urinary excretion of oxidative stress markers and reduced both angiotensin II and norepinephrine plasma levels in KAP Tg mice. Intracerebroventricular administration of Tempol also reduced arterial pressure in Tg mice. Moreover, administration of apocynin and DPI, inhibitors of NADPH oxidase, a major source of ROS, also reduced arterial pressure and both angiotensin II and norepinephrine plasma levels in Tg mice. Thus, we analyzed the involvement of the RAS and sympathetic nervous system in KAP Tg mouse hypertension. Both captopril and losartan reduced arterial blood pressure in Tg mice, as also occurred after β-adrenergic blockade with atenolol. Also, intracerebroventricular losartan administration reduced arterial pressure in KAP Tg mice. Our data demonstrate that hypertension in male KAP Tg mice is based on increased oxidative stress, increased sympathetic activity, and RAS activation. Moreover, our results suggest a role for increased oxidative stress in the CNS as a major cause of hypertension in these animals.
Collapse
Affiliation(s)
- María T Grande
- Renal and Cardiovascular Physiopathology Unit, Departamento de Fisiología y Farmacología, Universidad de Salamanca, 37007 Salamanca, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Barbalic M, Schwartz GL, Chapman AB, Turner ST, Boerwinkle E. Kininogen gene (KNG) variation has a consistent effect on aldosterone response to antihypertensive drug therapy: the GERA study. Physiol Genomics 2009; 39:56-60. [PMID: 19584173 DOI: 10.1152/physiolgenomics.00061.2009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent experimental and clinical studies suggested that apart from playing an essential role in blood pressure homeostasis, aldosterone is involved in the pathophysiology of cardiovascular and renal diseases by inducing structural changes in the heart, kidney, and vessel wall. The interindividual variation of aldosterone response to antihypertensive treatment is considerable, and is at least partially explained by genetic variation. In this study, we investigated aldosterone response to two antihypertensive drugs-a thiazide diuretic and an angiotensin receptor blocker (ARB). Genetic variations in 50 candidate genes were tested for association with aldosterone response in four independent samples: African American (AA) responders to a diuretic (n = 289), AA responders to an ARB (n = 252), European American (EA) responders to a diuretic (n = 295) and EA responders to an ARB (n = 300). Linear regression was used to test the association with inclusion of age, sex, and body mass index as covariates. The results indicated the existence of one or more variants in the kininogen gene (KNG) that influence interindividual variation in aldosterone response. The significant association was replicated in three of four studied groups. The single nucleotide polymorphism rs4686799 was associated in AA and EA responders to the diuretic (P = 0.04 and P = 0.07, respectively), and rs5030062 and rs698078 were significantly associated in EA responders to the diuretic (P = 0.05 and P = 0.01) and EA responders to the ARB (P = 0.04 and P = 0.02). Although the clinical implication of KNG gene variation to antihypertensive drug response is yet to be determined, this novel candidate locus provides important new insights into drug response physiology.
Collapse
Affiliation(s)
- Maja Barbalic
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
7
|
Duka A, Kintsurashvili E, Duka I, Ona D, Hopkins TA, Bader M, Gavras I, Gavras H. Angiotensin-converting enzyme inhibition after experimental myocardial infarct: role of the kinin B1 and B2 receptors. Hypertension 2008; 51:1352-7. [PMID: 18347228 DOI: 10.1161/hypertensionaha.107.108506] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We sought to define the contribution of each of the 2 kinin receptors (bradykinin 1 receptor [B(1)R] and bradykinin 2 receptor [B(2)R]) to the cardioprotection of angiotensin-converting enzyme (ACE) inhibition after acute myocardial infarct. Wild-type mice and gene knockout mice missing either B(1)R or B(2)R were submitted to coronary ligation with or without concurrent ACE inhibition and had evaluation of left ventricular systolic capacity by assessment of fractional shortening (FS). Baseline FS was similar in all of the animals and remained unchanged in sham-operated ones. At 3 weeks after myocardial infarct, in the wild-type group there was a 27% reduction of FS (P<0.5) without ACE inhibition and 8% with ACE inhibition; in the B(1)R(-/-) groups the FS was reduced by 24% and was no different (at 28%) with ACE inhibition; in the B(2)R(-/-) groups, however, the FS was decreased by 39% and with ACE inhibition was decreased further by 52%. Analysis of bradykinin receptor gene expression in hearts showed that when one receptor was missing, the other became significantly upregulated; but the B(1)R remained highly overexpressed in the B(2)R(-/-) mice throughout, whereas the overexpressed B(2)R became significantly suppressed in the B(1)R(-/-) mice in a manner quantitatively and directionally similar to that of wild-type mice. We conclude that both bradykinin receptors contribute to the cardioprotective bradykinin-mediated effect of ACE inhibition, not only the B(2)R as believed previously; but, whereas with potentiated bradykinin in the absence of B(1)R, the upregulation of B(2)R is simply insufficient to provide full cardioprotection, in the absence of B(2)R, the upregulated B(1)R actually seems to inflict further tissue damage.
Collapse
Affiliation(s)
- Arvi Duka
- Hypertension and Atherosclerosis Section, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Ignjacev-Lazich I, Kintsurashvili E, Johns C, Vitseva O, Duka A, Shenouda S, Gavras I, Gavras H. Angiotensin-converting enzyme regulates bradykinin receptor gene expression. Am J Physiol Heart Circ Physiol 2005; 289:H1814-20. [PMID: 16219810 DOI: 10.1152/ajpheart.00581.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The angiotensin-converting enzyme (ACE) is a membrane-bound peptidyl dipeptidase known to act on a variety of peptide substrates in the extracellular space. Its most notable functions are the formation of angiotensin II and the degradation of bradykinin. In the current experiments, we found that exogenous ACE added to vascular smooth muscle cell culture strongly induces and upregulates the genes of bradykinin receptors B1 and B2. This transcriptional regulatory property of ACE was shown to be unrelated to its known enzymatic properties. Indeed, ACE at 3.75 microg/ml added in the culture medium of vascular smooth muscle cells was found to cause marked upregulation of the mRNA expression of the genes for the B1 and B2 receptors of bradykinin by 22- and 11-fold, respectively. This phenomenon was not altered by the addition of specific angiotensin II antagonists for the AT1 or AT2 receptors. Moreover, the ACE inhibitor captopril, which inhibited ACE enzymatic activity, did not block its effect at the bradykinin receptor gene transcription level. Expression of both receptor genes was completely abolished by actinomycin D. Furthermore, transcriptional upregulation was inhibited by curcumin, suggesting involvement of different transcriptional factors in this phenomenon. Electrophoretic mobility shift assay revealed increase in NF-kappaB and activator protein-1 protein binding for consensus sequences, between ACE-treated cells versus untreated cells. The data indicate a novel biological function of the ACE unrelated to its well-known enzymatic function as a peptidyl dipeptidase.
Collapse
MESH Headings
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Blotting, Western
- Cell Nucleus/chemistry
- Cells, Cultured
- Cyclic AMP/metabolism
- Electrophoretic Mobility Shift Assay
- Gene Expression Regulation/physiology
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- NF-kappa B/metabolism
- Peptidyl-Dipeptidase A/physiology
- RNA/biosynthesis
- RNA/isolation & purification
- Rats
- Rats, Wistar
- Receptor, Bradykinin B1/biosynthesis
- Receptor, Bradykinin B1/genetics
- Receptor, Bradykinin B2/biosynthesis
- Receptor, Bradykinin B2/genetics
- Receptors, Bradykinin/biosynthesis
- Receptors, Bradykinin/genetics
- Transcription Factor AP-1/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Ivana Ignjacev-Lazich
- Hypertension & Atherosclerosis Section, Boston Univ. School of Medicine, 715 Albany St., Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Van Huysse JW, Hou X. Pressor response to CSF sodium in mice: mediation by a ouabain-like substance and renin-angiotensin system in the brain. Brain Res 2004; 1021:219-31. [PMID: 15342270 DOI: 10.1016/j.brainres.2004.06.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2004] [Indexed: 11/16/2022]
Abstract
Intracerebroventricular (i.c.v.) infusion of sodium in rats increases cerebrospinal fluid (CSF) [Na], mimicking the effects of a high salt diet in salt-sensitive strains and causing sympathetic hyperactivity and a pressor response that are mediated via both an endogenous brain ouabainlike substance (OLS) and the brain renin-angiotensin system (RAS). However, the concept that CSF sodium activates both the brain OLS and brain RAS to increase blood pressure has not been tested in any other species besides the rat. In the current study, it was established that continuous i.c.v. infusion of NaCl causes sustained increases in blood pressure and heart rate in both outbred (Swiss Webster, SW) and inbred (C57Bl/6) mouse strains. Subsequently, the mechanisms of the pressor effects were explored. In both SW and C57Bl/6, the i.c.v. administration of Fab fragments of an antibody with high affinity for ouabain and the OLS (Fab) abolished the pressor and tachycardic responses to i.c.v. sodium, as did the angiotensin II AT1 receptor antagonist losartan given i.c.v. In contrast, doses of NaCl, Fab and losartan that were effective i.c.v. were ineffective when given i.v. I.c.v. ouabain also caused the pressor and tachycardic responses, which were abolished by losartan (i.c.v.). In the reciprocal study, i.c.v. Fab had no effect on similar responses to i.c.v. angiotensin II. These studies demonstrate that the sustained blood pressure and heart rate responses caused by increases in CSF [Na] are mediated via both a brain OLS and the brain RAS. The RAS activation occurs downstream of the OLS effect.
Collapse
Affiliation(s)
- James W Van Huysse
- Hypertension Unit, University of Ottawa Heart Institute, Room H-347, 40 Ruskin Street, Ottawa, Ontario, Canada K1Y 4W7.
| | | |
Collapse
|
10
|
Xiao HD, Fuchs S, Cole JM, Disher KM, Sutliff RL, Bernstein KE. Role of bradykinin in angiotensin-converting enzyme knockout mice. Am J Physiol Heart Circ Physiol 2003; 284:H1969-77. [PMID: 12637363 DOI: 10.1152/ajpheart.00010.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiotensin-converting enzyme (ACE) plays a central role in the renin-angiotensin system. Whereas ACE is responsible for the production of angiotensin II, it is also important in the elimination of bradykinin. Constitutively, the biological function of bradykinin is mediated through the bradykinin B(2) receptor. ACE knockout mice have a complicated phenotype including very low blood pressure. To investigate the role of bradykinin in the expression of the ACE knockout phenotype, we bred B(2) receptor knockout mice with ACE knockout mice, thus generating a line of mice deficient in both the B(2) receptor and ACE. Surprisingly, these mice did not differ from ACE knockout mice in blood pressure, urine concentrating ability, renal pathology, and hematocrit. Thus abnormalities of bradykinin accumulation do not play an important role in the ACE knockout phenotype. Rather, this phenotype appears due to the defective production of angiotensin II.
Collapse
Affiliation(s)
- Hong D Xiao
- Department of Pathology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
11
|
Katori M, Majima M. The renal kallikrein-kinin system: its role as a safety valve for excess sodium intake, and its attenuation as a possible etiologic factor in salt-sensitive hypertension. Crit Rev Clin Lab Sci 2003; 40:43-115. [PMID: 12627748 DOI: 10.1080/713609329] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The distal tubules of the kidney express the full set of the components of the kallikrein-kinin system, which works independently from the plasma kallikrein-kinin system. Studies on the role of the renal kallikrein-kinin system, using congenitally kininogen-deficient Brown-Norway Katholiek rats and also bradykinin B2 receptor knockout mice, revealed that this system starts to function and to induce natriuresis and diuresis when sodium accumulates in the body as a result of excess sodium intake or aldosterone release, for example, by angiotensin II. Thus, it can be hypothesized that the system works as a safety valve for sodium accumulation. The large numbers of studies on hypertensive animal models and on essential hypertensive patients, particularly those with salt sensitivity, indicate a tendency toward the reduced excretion of urinary kallikrein, although this reduction is modified by potassium intake and impaired renal function. We hypothesize that the reduced excretion of the renal kallikrein may be attributable to a genetic defect of factor(s) in renal kallikrein secretion process and may cause salt-sensitive hypertension after salt intake.
Collapse
Affiliation(s)
- Makoto Katori
- Department of Pharmacology, Kitasato University School of Medicine, Kitasato 1-15-1, Sagamihara, Kanagawa, 228-8555, Japan.
| | | |
Collapse
|
12
|
|
13
|
Trabold F, Pons S, Hagege AA, Bloch-Faure M, Alhenc-Gelas F, Giudicelli JF, Richer-Giudicelli C, Meneton P. Cardiovascular phenotypes of kinin B2 receptor- and tissue kallikrein-deficient mice. Hypertension 2002; 40:90-5. [PMID: 12105144 DOI: 10.1161/01.hyp.0000021747.43346.95] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To clarify the role of the kallikrein-kinin system in cardiovascular homeostasis, the systemic and regional hemodynamics of kinin B2 receptor-deficient (B2-/-) and tissue kallikrein-deficient (TK-/-) mice were compared with their wild-type (WT) littermates on a pure C57BL/6 genetic background. B2-/-, TK-/-, and WT adult mice were normotensive and displayed normal hemodynamic (left ventricular [LV] pressure, cardiac output, total peripheral resistance, dP/dt(max)) and echocardiographic (septum and LV posterior wall thickness, LV diameter, LV mass, and LV fractional shortening) parameters. However, heart rate was lower in B2-/- mice compared with TK-/- and WT mice. In addition, B2-/- mice, but not TK-/- mice, exhibited lower coronary and renal blood flows and greater corresponding vascular resistances than did WT mice, indicating a tonic physiological vasodilating effect of bradykinin in these vascular beds. However, maximal coronary vasodilatation capacity, estimated after dipyridamole infusion, was similar in the 3 groups of mice. B2-/- mice were significantly more sensitive than were TK-/- mice to the vasoconstrictor effects of angiotensin II and norepinephrine. Finally, renin mRNA levels were significantly greater in B2-/- mice and smaller in TK-/- mice compared with WT mice. Taken together, these results indicate that under basal conditions, the kinin B2 receptor is not an important determinant of blood pressure in mice but is involved in the control of regional vascular tone in the coronaries and the kidneys. The phenotypic differences observed between TK-/- and B2-/- mice could be underlain by tissue kallikrein kinin-independent effect and/or kinin B1 receptor activation.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Blood Pressure/drug effects
- Blood Pressure/physiology
- Blotting, Northern
- Bradykinin/pharmacology
- Cardiac Output/drug effects
- Cardiac Output/physiology
- Cardiovascular Physiological Phenomena/drug effects
- Dose-Response Relationship, Drug
- Female
- Genotype
- Heart Ventricles/drug effects
- Hemodynamics/drug effects
- Homeostasis/genetics
- Kallikreins/deficiency
- Kallikreins/genetics
- Ketamine/pharmacology
- Kidney/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Norepinephrine/pharmacology
- Phenotype
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Angiotensin, Type 1
- Receptor, Bradykinin B2
- Receptors, Angiotensin/genetics
- Receptors, Bradykinin/deficiency
- Receptors, Bradykinin/genetics
- Regional Blood Flow/drug effects
- Renin/genetics
- Ventricular Function
- Xylazine/pharmacology
Collapse
Affiliation(s)
- Fabien Trabold
- Département de Pharmacologie, Faculté de Médecine Paris-Sud, INSERM 00-01, Le Kremlin-Bicêtre, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Duka I, Shenouda S, Johns C, Kintsurashvili E, Gavras I, Gavras H. Role of the B(2) receptor of bradykinin in insulin sensitivity. Hypertension 2001; 38:1355-60. [PMID: 11751717 DOI: 10.1161/hy1201.096574] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The biological actions of bradykinin (BK) are attributed to its B(2) type receptor (B(2)R), whereas the B(1)R is constitutively absent, inducible by inflammation and toxins. Previous studies in B(2)R gene knockout mice showed that the B(1)R is overexpressed, is further upregulated by hypertensive maneuvers, and assumes some of the hemodynamic functions of the B(2)R. The current experiments were designed to further clarify the metabolic function of the B(2)R and to explore whether the upregulated B(1)R can also assume the metabolic function of the missing B(2)R. One group of B(2)R-/- mice (n=9) and one of B(2)R+/+ controls (n=8) were treated for 3 days with captopril (which produced a similar blood pressure-lowering response in both groups) and studied with the hyperinsulinemic euglycemic clamp. The knockout mice had fasting and steady-state blood glucose levels similar to those of the wild-type mice but a had tendency to higher fasting insulin levels (at 27.8+/-5.2 versus 18+/-2.9 mU/L, respectively). However, they had significantly higher steady-state insulin levels (749+/-127.2 versus 429.1+/-31.5 mU/L, P<0.05) and a significantly lower glucose uptake rate (31+/-2.4 versus 41+/-2.3 mg/kg per minute, P<0.05) and insulin sensitivity index (4.6+/-0.9 versus 10+/-0.7 P<0.001). Analysis of B(1)R and B(2)R gene expression by reverse transcription-polymerase chain reaction in cardiac muscle, skeletal muscle, and adipose tissues revealed significantly higher B(1)R mRNA level in the knockouts versus wild-type (P<0.05) at baseline and a further significant upregulation in mRNA by 1.8- to 3.2-fold (P<0.05) after insulin infusion. We conclude that absence of B(2)R confers a state of insulin resistance because it results in impaired insulin-dependent glucose transport; this is probably a direct B(2)R effect because, unlike the hemodynamic autacoid-mediated effects, it cannot be assumed by the upregulated B(1)R.
Collapse
Affiliation(s)
- I Duka
- Hypertension and Atherosclerosis Section of the Department of Medicine, Boston University School of Medicine, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
15
|
Emanueli C, Salis MB, Figueroa C, Chao J, Chao L, Gaspa L, Capogrossi MC, Madeddu P. Participation of kinins in the captopril-induced inhibition of intimal hyperplasia caused by interruption of carotid blood flow in the mouse. Br J Pharmacol 2000; 130:1076-82. [PMID: 10882392 PMCID: PMC1572154 DOI: 10.1038/sj.bjp.0703388] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. In the rat balloon injury model, angiotensin-converting enzyme (ACE) inhibitors prevent vascular remodelling by inhibiting angiotensin II generation and kinin breakdown. We investigated if ACE inhibition also prevents the structural vascular responses to disruption of carotid artery blood flow and if kinin potentiation plays a role in such a protection. 2. Morphometric analysis of the structural alterations caused by ligation of the left carotid artery was performed 14 days after surgery in J129Sv wild-type mice (B(2)(+/+)) drinking normal tap water or water containing captopril (120 mg kg(-1) per day). In addition, the effect of captopril on vascular remodelling was tested in B(2)(+/+) given the bradykinin (BK) B(1) receptor antagonist des-Arg(9)-[Leu(8)]-BK (DALBK, 50 nmol kg(-1) per day, intraperitoneally) or the BK B(2) receptor antagonist D-Arg, [Hyp(3),Thi(5)D-Tic(7),Oic(8)]-BK (icatibant, 1 micromol kg(-1) per day, intraperitoneally), and in B(2) receptor gene knockout mice (B(2)(-/-)). 3. Interruption of blood flow resulted in carotid artery intimal hyperplasia and media thickening in untreated B(2)(+/+), these responses being partially suppressed by captopril. The inhibition of intimal thickening exerted by captopril was reduced in B(2)(+/+) given DALBK or icatibant (P<0.05 for both comparisons) as well as in B(2)(-/-) (P<0.05). Neither antagonism of kinin receptors nor disruption of the B(2) receptor gene altered the suppressive effect of captopril on media thickening. The protection of vascular wall structure was independent of the reduction in blood pressure by captopril. 4. These results demonstrate that kinins participate in the inhibitory effect of captopril on intimal hyperplasia via B(1) and B(2) receptor signalling. Our findings may have important implications in treating vascular remodelling evoked by altered shear stress conditions.
Collapse
Affiliation(s)
- Costanza Emanueli
- Gene Therapy Section of the National Laboratory of the National Institute of Biostructures and Biosystems (I.N.B.B.), Osilo, Sassari, Italy
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell' Immacolata (IDI, IRCCS), Roma, Italy
| | - Maria Bonaria Salis
- Gene Therapy Section of the National Laboratory of the National Institute of Biostructures and Biosystems (I.N.B.B.), Osilo, Sassari, Italy
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell' Immacolata (IDI, IRCCS), Roma, Italy
| | - Carlos Figueroa
- Istituto de Histologia y Patologia, Universidad Austral de Chile, Isla Teja, Valdivia, Chile
| | - Julie Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, U.S.A
| | - Lee Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, U.S.A
| | - Leonardo Gaspa
- Gene Therapy Section of the National Laboratory of the National Institute of Biostructures and Biosystems (I.N.B.B.), Osilo, Sassari, Italy
| | - Maurizio C Capogrossi
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell' Immacolata (IDI, IRCCS), Roma, Italy
| | - Paolo Madeddu
- Gene Therapy Section of the National Laboratory of the National Institute of Biostructures and Biosystems (I.N.B.B.), Osilo, Sassari, Italy
- Institute of Internal Medicine, School of Medicine, University of Sassari, Sassari, Italy
- Author for correspondence:
| |
Collapse
|
16
|
Stone EA, Zhang Y, Rosengarten H, Yeretsian J, Quartermain D. Brain alpha 1-adrenergic neurotransmission is necessary for behavioral activation to environmental change in mice. Neuroscience 2000; 94:1245-52. [PMID: 10625064 DOI: 10.1016/s0306-4522(99)00394-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Terazosin, a water-soluble alpha 1 antagonist that can be administered in high doses intraventricularly was used to study the relationship between brain alpha 1 adrenoceptor neurotransmission and behavioral activation in the mouse. The antagonist was found to produce a dose-dependent, complete inhibition of motor activity and catalepsy which were reversed preferentially by coinfusion of an alpha 1 agonist (phenylephrine) compared to a D1 (SKF38393) or a D2 agonist, (quinpirole). Blockade of central beta-1 (betaxolol), alpha-2 (RX821002) or beta-2 (ICI 118551) adrenoceptors had smaller or non-significant effects. Terazosin's selectivity for alpha 1 receptors versus dopaminergic receptors was verified under the present conditions by showing that the intraventricularly administered antagonist protected striatal and cerebral cortical alpha 1 receptors but not striatal or cortical D1 receptors from in vivo alkylation by N-ethoxycarbonyl-2-ethoxy-1, 2-dihydroxyquinoline. That its effect was due to blockade of brain rather than peripheral receptors was shown by the finding that intraperitoneal doses of terazosin three to 66 times greater than the maximal intraventricular dose produced less behavioral inhibition. Intraventricular terazosin also produced hypothermia and a reduced respiratory rate suggestive of a reduced sympathetic outflow. However, external heat did not affect the inactivity, and captopril, a hypotensive agent, did not mimic it. Terazosin did not impair performance on a horizontal wire test or the ability to make co-ordinated movements in a swim test suggesting that its activity-reducing effect was not due to sedation and may have a motivational or sensory gating component. It is concluded that central alpha 1-noradrenergic neurotransmission is required for behavioral activation to environmental change in the mouse and may operate on sensorimotor and motivational processes.
Collapse
Affiliation(s)
- E A Stone
- Department of Psychiatry, New York University School of Medicine, NY 10016, USA
| | | | | | | | | |
Collapse
|
17
|
Loke KE, Curran CM, Messina EJ, Laycock SK, Shesely EG, Carretero OA, Hintze TH. Role of nitric oxide in the control of cardiac oxygen consumption in B(2)-kinin receptor knockout mice. Hypertension 1999; 34:563-7. [PMID: 10523327 DOI: 10.1161/01.hyp.34.4.563] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to determine whether bradykinin, the angiotensin-converting enzyme inhibitor ramiprilat, and the calcium-channel antagonist amlodipine reduce myocardial oxygen consumption (MV(O2)) via a B(2)-kinin receptor/nitric oxide-dependent mechanism. Left ventricular free wall and septum were isolated from normal and B(2)-kinin receptor knockout (B(2) -/-) mice. Myocardial tissue oxygen consumption was measured in an airtight chamber with a Clark-type oxygen electrode. Baseline MV(O2) was not significantly different between normal (239+/-13 nmol of O(2). min(-1). g(-1)) and B(2) -/- (263+/-24 nmol of O(2). min(-1). g(-1)) mice. S-nitroso-N-acetyl-penicillamine (10(-7) to 10(-4) mol/L) reduced oxygen consumption in a concentration-dependent manner in both normal (maximum, 36+/-3%) and B(2) -/- mice (28+/-3%). This was also true for the endothelium-dependent vasodilator substance P (10(-10) to 10(-7) mol/L; 22+/-7% in normal mice and 20+/-4% in B(2) -/- mice). Bradykinin (10(-7) to 10(-4) mol/L), ramiprilat (10(-7) to 10(-4) mol/L), and amlodipine (10(-7) to 10(-5) mol/L) all caused concentration-dependent decreases in MV(O2)in normal mice. At the highest concentration, tissue O(2) consumption was decreased by 18+/-3%, 20+/-5%, and 28+/-3%, respectively. The reduction in MV(O2) to all 3 drugs was attenuated in the presence of N(G)-nitro-L-arginine-methyl ester. However, in the B(2) -/- mice, bradykinin, ramiprilat, and amlodipine had virtually no effect on MV(O2). Therefore, nitric oxide, through a bradykinin-receptor-dependent mechanism, regulates cardiac oxygen consumption. This physiological mechanism is absent in B(2) -/- mice and may be evidence of an important therapeutic mechanism of action of angiotensin-converting enzyme inhibitors and amlodipine.
Collapse
Affiliation(s)
- K E Loke
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Dendorfer A, Wolfrum S, Dominiak P. Pharmacology and cardiovascular implications of the kinin-kallikrein system. JAPANESE JOURNAL OF PHARMACOLOGY 1999; 79:403-26. [PMID: 10361880 DOI: 10.1254/jjp.79.403] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Kinins are peptide hormones that can exert a significant influence on the regulation of blood pressure and vascular tone due to their vasodilatatory, natriuretic and growth modulating activity. Their cardiovascular involvement in physiological and pathophysiological situations has been studied intensively since inhibitors for angiotensin I-converting enzyme and selective receptor antagonists have become available for pharmacologically potentiating or inhibiting kinin-mediated reactions. Molecular biological analysis and the establishment of genetically modified animal models have also allowed newer information to be acquired on this subject. In this review, the components and cardiovascularly relevant mechanisms of the kinin-kallikrein system shall be described. Organ-specific effects concerning the kidneys, the vascular system, the heart and nervous tissue shall also be illustrated. On this issue, the physiological functions and pathophysiological implications of the kinin-kallikrein system should be clearly distinguished from the many, mostly endothelium-mediated protective effects which occur during ACE inhibition due to the potentiation of kinin effects. Finally, a view shall also be cast upon newly discovered targets of action, which could be exploited for therapeutically altering the kinin-kallikrein system.
Collapse
Affiliation(s)
- A Dendorfer
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical University Lübeck, Germany
| | | | | |
Collapse
|