1
|
Vohlen C, Mohr J, Fomenko A, Kuiper-Makris C, Grzembke T, Aydogmus R, Wilke R, Hirani D, Dötsch J, Alejandre Alcazar MA. Dynamic Regulation of GH-IGF1 Signaling in Injury and Recovery in Hyperoxia-Induced Neonatal Lung Injury. Cells 2021; 10:2947. [PMID: 34831169 PMCID: PMC8616454 DOI: 10.3390/cells10112947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/28/2022] Open
Abstract
Prematurely born infants often require supplemental oxygen that impairs lung growth and results in arrest of alveolarization and bronchopulmonary dysplasia (BPD). The growth hormone (GH)- and insulin-like growth factor (IGF)1 systems regulate cell homeostasis and organ development. Since IGF1 is decreased in preterm infants, we investigated the GH- and IGF1 signaling (1) in newborn mice with acute and prolonged exposure to hyperoxia as well as after recovery in room air; and (2) in cultured murine lung epithelial cells (MLE-12) and primary neonatal lung fibroblasts (pLFs) after treatment with GH, IGF1, and IGF1-receptor (IGF1-R) inhibitor or silencing of GH-receptor (Ghr) and Igf1r using the siRNA technique. We found that (1) early postnatal hyperoxia caused an arrest of alveolarization that persisted until adulthood. Both short-term and prolonged hyperoxia reduced GH-receptor expression and STAT5 signaling, whereas Igf1 mRNA and pAKT signaling were increased. These findings were related to a loss of epithelial cell markers (SFTPC, AQP5) and proliferation of myofibroblasts (αSMA+ cells). After recovery, GH-R-expression and STAT5 signaling were activated, Igf1r mRNA reduced, and SFTPC protein significantly increased. Cell culture studies showed that IGF1 induced expression of mesenchymal (e.g., Col1a1, Col4a4) and alveolar epithelial cell type I (Hopx, Igfbp2) markers, whereas inhibition of IGF1 increased SFTPC and reduced AQP5 in MLE-12. GH increased Il6 mRNA and reduced proliferation of pLFs, whereas IGF1 exhibited the opposite effect. In summary, our data demonstrate an opposite regulation of GH- and IGF1- signaling during short-term/prolonged hyperoxia-induced lung injury and recovery, affecting alveolar epithelial cell differentiation, inflammatory activation of fibroblasts, and a possible uncoupling of the GH-IGF1 axis in lungs after hyperoxia.
Collapse
Affiliation(s)
- Christina Vohlen
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics—Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (C.V.); (J.M.); (A.F.); (C.K.-M.); (T.G.); (R.A.); (R.W.); (D.H.)
- Department of Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
- The German Centre for Lung Research (DZL), Institute for Lung Health, University of Giessen and Marburg Lung Centre (UGMLC), Justus-Liebig University Gießen, 35392 Gießen, Germany
| | - Jasmine Mohr
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics—Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (C.V.); (J.M.); (A.F.); (C.K.-M.); (T.G.); (R.A.); (R.W.); (D.H.)
| | - Alexey Fomenko
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics—Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (C.V.); (J.M.); (A.F.); (C.K.-M.); (T.G.); (R.A.); (R.W.); (D.H.)
| | - Celien Kuiper-Makris
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics—Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (C.V.); (J.M.); (A.F.); (C.K.-M.); (T.G.); (R.A.); (R.W.); (D.H.)
- Department of Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
| | - Tiffany Grzembke
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics—Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (C.V.); (J.M.); (A.F.); (C.K.-M.); (T.G.); (R.A.); (R.W.); (D.H.)
| | - Rabia Aydogmus
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics—Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (C.V.); (J.M.); (A.F.); (C.K.-M.); (T.G.); (R.A.); (R.W.); (D.H.)
| | - Rebecca Wilke
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics—Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (C.V.); (J.M.); (A.F.); (C.K.-M.); (T.G.); (R.A.); (R.W.); (D.H.)
| | - Dharmesh Hirani
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics—Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (C.V.); (J.M.); (A.F.); (C.K.-M.); (T.G.); (R.A.); (R.W.); (D.H.)
| | - Jörg Dötsch
- Department of Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
| | - Miguel A. Alejandre Alcazar
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics—Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (C.V.); (J.M.); (A.F.); (C.K.-M.); (T.G.); (R.A.); (R.W.); (D.H.)
- The German Centre for Lung Research (DZL), Institute for Lung Health, University of Giessen and Marburg Lung Centre (UGMLC), Justus-Liebig University Gießen, 35392 Gießen, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Cologne Excellence Cluster for Stress Responses in Ageing-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
2
|
Insulin-Like Growth Factor-1 Signaling in Lung Development and Inflammatory Lung Diseases. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6057589. [PMID: 30018981 PMCID: PMC6029485 DOI: 10.1155/2018/6057589] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/06/2018] [Indexed: 12/19/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) was firstly identified as a hormone that mediates the biological effects of growth hormone. Accumulating data have indicated the role of IGF-1 signaling pathway in lung development and diseases such as congenital disorders, cancers, inflammation, and fibrosis. IGF-1 signaling modulates the development and differentiation of many types of lung cells, including airway basal cells, club cells, alveolar epithelial cells, and fibroblasts. IGF-1 signaling deficiency results in alveolar hyperplasia in humans and disrupted lung architecture in animal models. The components of IGF-1 signaling pathways are potentiated as biomarkers as they are dysregulated locally or systemically in lung diseases, whereas data may be inconsistent or even paradoxical among different studies. The usage of IGF-1-based therapeutic agents urges for more researches in developmental disorders and inflammatory lung diseases, as the majority of current data are collected from limited number of animal experiments and are generally less exuberant than those in lung cancer. Elucidation of these questions by further bench-to-bedside researches may provide us with rational clinical diagnostic approaches and agents concerning IGF-1 signaling in lung diseases.
Collapse
|
3
|
Löfqvist C, Hellgren G, Niklasson A, Engström E, Ley D, Hansen‐Pupp I. Low postnatal serum IGF-I levels are associated with bronchopulmonary dysplasia (BPD). Acta Paediatr 2012; 101:1211-6. [PMID: 22924869 PMCID: PMC3569611 DOI: 10.1111/j.1651-2227.2012.02826.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Aim: To characterize postnatal changes in serum insulin-like growth factor-1 (IGF-I) in relation to development of bronchopulmonary dysplasia (BPD) in very preterm infants. Methods: Longitudinal study of 108 infants with mean (SD) gestational age (GA) 27.2 (2.2) weeks. Weekly serum samples of IGF-I were analysed from birth until postmenstrual age (PMA) 36 weeks. Multivariate models were developed to identify independent predictors of BPD. Results: Postnatal mean IGF-I levels at postnatal day (PND) 3–21 were lower in infants with BPD compared with infants with no BPD (16 vs. 26 μg/L, p < 0.001). Longitudinal postnatal change in IGF-I levels (IGF-I regression coefficient (β)), PNDs 3–21, was lower in infants with BPD compared with infants with no BPD (0.28 vs. 0.97, p = 0.002) and mean IGF-I during PMA 30–33 weeks was lower in infants with BPD as compared with infants without BPD (22 vs. 29 μg/L, p < 0.001). In a binomial multiple regression model, lower GA, male gender and lower mean serum IGF-I levels during PND 3–21 were the most predictive risk factors associated with BPD (r2 = 0.634, p < 0.001). Conclusion: Lower IGF-I concentrations during the first weeks after very preterm birth are associated with later development of BPD.
Collapse
Affiliation(s)
- Chatarina Löfqvist
- .Department of Ophthalmology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Gunnel Hellgren
- .Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Aimon Niklasson
- .Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Eva Engström
- .Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - David Ley
- .Division of Pediatrics, Department of Clinical Sciences Lund, Lund University Hospital, Lund, Sweden
| | - Ingrid Hansen‐Pupp
- .Division of Pediatrics, Department of Clinical Sciences Lund, Lund University Hospital, Lund, Sweden
| | | |
Collapse
|
4
|
Netzer NC, Breitenbach M. Metabolic changes through hypoxia in humans and in yeast as a comparable cell model. Sleep Breath 2010; 14:221-5. [PMID: 20535573 DOI: 10.1007/s11325-010-0342-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 02/10/2010] [Accepted: 02/17/2010] [Indexed: 12/17/2022]
Abstract
BACKGROUND In several investigations on mountaineers under moderate hypoxia, at altitudes between 2,500 m and 4,500 m, weight loss occurs, fat levels in the serum and insulin resistance (in diabetic mountaineers) are reduced. Animal studies with different time dosage regimens of hypoxia in animal cages revealed different and partly confusing results regarding fat metabolism under hypoxia. HYPOTHESES Hypothesis for the change in glucose and fat metabolism include a HIF promoted higher leptin rate under hypoxia and an increased glucose transport in peripheral organs. DISCUSSION This short review discusses some of the different investigations in this topic. In a second part it is shown how studies of metabolism in yeast cells with an upregulated glycolysis in the cell itself under hypoxic conditions could help to better understand metabolic changes under hypoxia.
Collapse
Affiliation(s)
- Nikolaus C Netzer
- Hermann Buhl Institute for Hypoxia and Sleep Medicine Research, Paracelsus Medical University, Salzburg, Austria.
| | | |
Collapse
|
5
|
Chen XQ, Xu NY, Du JZ, Wang Y, Duan C. Corticotropin-releasing factor receptor subtype 1 and somatostatin modulating hypoxia-caused downregulated mRNA of pituitary growth hormone and upregulated mRNA of hepatic insulin-like growth factor-I of rats. Mol Cell Endocrinol 2005; 242:50-8. [PMID: 16139950 DOI: 10.1016/j.mce.2005.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 06/22/2005] [Accepted: 07/13/2005] [Indexed: 10/25/2022]
Abstract
The study aims to examine the effects of restraint, cold, and in combination of hypoxia on pituitary GH mRNA and hepatic IGF-I mRNA and its protein in rats, and the potential involvement of corticotropin-releasing factor receptor subtype 1 (CRFR1) and SS in mediating the effects of continual hypoxia. Continual or intermittent hypoxia of 5 km (10.8% O2) was simulated in a hypobaric chamber. The mRNAs and peptides were determined using RT-PCR and Elisa or histochemistry. Continual hypoxia of 5 km markedly enhanced immunostaining pituitary GH and hepatic IGF-I for 1 and 2 days restoring afterward. The hypoxia for 5 days significantly reduced the pituitary GH mRNA and increased the hepatic IGF-I mRNA. Intermittent hypoxia of 5 km 4 h/day for 2 days, cold (4 degrees C) 4h/day for 2 days, and restraint 4 h/day for 2 days alone or in combination significantly enhanced immunostaining pituitary GH and hepatic IGF-I (except cold). The combined stresses had greater effects than single stresses alone. CRFR1 antagonist (CP154526) or SS antagonist (cysteamine) markedly blocked hypoxia-reduced pituitary GH mRNA and hypoxia-activated hepatic IGF-I mRNA, and further reduced hypoxia-reduced plasma IGF. In conclusion, hypoxia (continually or intermittently), restraint, cold alone or in combination modulate pituitary GH and hepatic IGF-I. The pituitary GH/GH mRNA and hepatic IGF-I/IGF-I mRNA, and plasma IGF-I are modified by hypoxia through SS and CRFR1 mediation.
Collapse
Affiliation(s)
- Xue-Qun Chen
- Division of Neurobiology and Physiology, College of Life Sciences, Zhejiang University (Yuquan Campus), Hangzhou 310027, China
| | | | | | | | | |
Collapse
|
6
|
Carrascosa C, Torres-Aleman I, Lopez-Lopez C, Carro E, Espejo L, Torrado S, Torrado JJ. Microspheres containing insulin-like growth factor I for treatment of chronic neurodegeneration. Biomaterials 2004; 25:707-14. [PMID: 14607509 DOI: 10.1016/s0142-9612(03)00562-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The therapeutic potential of peptide growth factors as insulin-like growth factor I (IGF-I) is currently under intense scrutiny in a wide variety of diseases, including neurodegenerative illnesses. A new poly(lactic-co-glycolide)-based microsphere IGF-I controlled release formulation for subcutaneous (SC) delivery has been developed by a triple emulsion method. The resulting microspheres displayed a mean diameter of 1.5microm, with an encapsulation efficiency of 74.3%. The protein retained integrity after the microencapsulation process as evaluated by circular dichroism and SDS-PAGE. The administration of IGF-I in microspheres caused at least a 30-fold increase in IGF-I mean residence time in rats and mice when compared with the conventional SC solution. Therefore, dosing can be changed from the conventional twice a day to once every 2 weeks. Therapeutic efficacy of this new formulation has been studied in mutant mice with inherited Purkinje cell degeneration (PCD). These mice show a chronic limb discoordination that is resolved after continuous systemic delivery of IGF-I. Normal motor coordination was maintained as long as IGF-I microsphere therapy is continued. Moreover, severely affected PCD mice, with marked ataxia, muscle wasting and shortened life-span showed a significant improvement after continuous IGF-I microsphere therapy as determined by enhanced motor coordination, marked weight gain and extended survival. This new formulation can be considered of great therapeutic promise for some chronic brain diseases.
Collapse
Affiliation(s)
- C Carrascosa
- Department of Pharmaceutical Technology, School of Pharmacy, Complutense University, Cajal Institute, CSIC, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Poor nutritional status is associated with an increased incidence of morbidity and mortality in patients with chronic obstructive pulmonary disease (COPD). While a number of factors have been shown to produce tissue catabolism, no single mechanism has been clearly identified as a primary cause for weight loss in patients with severe COPD. Without a clear understanding of the aetiology of weight loss, therapeutic strategies to reverse this process have historically been unsuccessful. A review of recent studies allows consideration of a model of mechanisms of weight loss. This model includes multiple pathways that may be activated singly or simultaneously to cause loss of weight, specifically lean body mass. These include energy imbalances, elevated levels of cytokines, tissue hypoxia and the effects of cocorticosteroid therapy. To date, interventional studies that have looked at newer pharmacotherapies such as growth hormone and anabolic steroids in patients with COPD who are losing weight have not demonstrated reversal of weight loss or improvement in nutritional status. Currently, early identification of patients at risk for weight loss and aggressive nutritional supplementation coupled with an exercise programme has demonstrated the greatest benefit. However, with increasing understanding of the mechanisms that may be implicated, new targets for therapies are being identified. Of particular research interest are molecules such as leukotrienes, hormones, tumour necrosis factor-alpha and acute-phase proteins, which are noted to be elevated in some patients with COPD-associated weight loss. Currently, inhibitors to some of these inflammatory substances are used therapeutically in other chronic illnesses such as rheumatoid arthritis and cancer cachexia. Future research may investigate their usefulness in COPD and direct new therapies that target the processes contributing to weight loss in these patients.
Collapse
Affiliation(s)
- Jean K Berry
- University of Illinois at Chicago, College of Nursing, 60612-7350, USA.
| | | |
Collapse
|