1
|
Marvi MV, Neri I, Evangelisti C, Ramazzotti G, Asioli S, Zoli M, Mazzatenta D, Neri N, Morandi L, Tonon C, Lodi R, Franceschi E, McCubrey JA, Suh PG, Manzoli L, Ratti S. Phospholipases in Gliomas: Current Knowledge and Future Perspectives from Bench to Bedside. Biomolecules 2023; 13:biom13050798. [PMID: 37238668 DOI: 10.3390/biom13050798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Phospholipases are essential intermediaries that work as hydrolyzing enzymes of phospholipids (PLs), which represent the most abundant species contributing to the biological membranes of nervous cells of the healthy human brain. They generate different lipid mediators, such as diacylglycerol, phosphatidic acid, lysophosphatidic acid, and arachidonic acid, representing key elements of intra- and inter-cellular signaling and being involved in the regulation of several cellular mechanisms that can promote tumor progression and aggressiveness. In this review, it is summarized the current knowledge about the role of phospholipases in brain tumor progression, focusing on low- and high-grade gliomas, representing promising prognostic or therapeutic targets in cancer therapies due to their influential roles in cell proliferation, migration, growth, and survival. A deeper understanding of the phospholipases-related signaling pathways could be necessary to pave the way for new targeted therapeutic strategies.
Collapse
Affiliation(s)
- Maria Vittoria Marvi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| | - Irene Neri
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| | - Camilla Evangelisti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
- Programma Neurochirurgia Ipofisi-Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40124 Bologna, Italy
| | - Matteo Zoli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
- Programma Neurochirurgia Ipofisi-Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40124 Bologna, Italy
| | - Diego Mazzatenta
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
- Programma Neurochirurgia Ipofisi-Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40124 Bologna, Italy
| | - Niccolò Neri
- Programma Neurochirurgia Ipofisi-Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40124 Bologna, Italy
| | - Luca Morandi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | - Caterina Tonon
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | - Raffaele Lodi
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Pann-Ghill Suh
- Korea Brain Research Institute (KBRI), Daegu 41062, Republic of Korea
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| | - Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
2
|
Okada M, Nakagawa-Saito Y, Mitobe Y, Sugai A, Togashi K, Suzuki S, Kitanaka C. Inhibition of the Phospholipase Cε-c-Jun N-Terminal Kinase Axis Suppresses Glioma Stem Cell Properties. Int J Mol Sci 2022; 23:ijms23158785. [PMID: 35955917 PMCID: PMC9369372 DOI: 10.3390/ijms23158785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Glioma stem cells (GSCs), the cancer stem cells of glioblastoma multiforme (GBM), contribute to the malignancy of GBM due to their resistance to therapy and tumorigenic potential; therefore, the development of GSC-targeted therapies is urgently needed to improve the poor prognosis of GBM patients. The molecular mechanisms maintaining GSCs need to be elucidated in more detail for the development of GSC-targeted therapy. In comparison with patient-derived GSCs and their differentiated counterparts, we herein demonstrated for the first time that phospholipase C (PLC)ε was highly expressed in GSCs, in contrast to other PLC isoforms. A broad-spectrum PLC inhibitor suppressed the viability of GSCs, but not their stemness. Nevertheless, the knockdown of PLCε suppressed the survival of GSCs and induced cell death. The stem cell capacity of residual viable cells was also suppressed. Moreover, the survival of mice that were transplanted with PLCε knockdown-GSCs was longer than the control group. PLCε maintained the stemness of GSCs via the activation of JNK. The present study demonstrated for the first time that PLCε plays a critical role in maintaining the survival, stemness, and tumor initiation capacity of GSCs. Our study suggested that PLCε is a promising anti-GSC therapeutic target.
Collapse
Affiliation(s)
- Masashi Okada
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Correspondence: ; Tel.: +81-23-628-5214
| | - Yurika Nakagawa-Saito
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Yuta Mitobe
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Department of Neurosurgery, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Asuka Sugai
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Keita Togashi
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Department of Ophthalmology and Visual Sciences, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Shuhei Suzuki
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Department of Clinical Oncology, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Chifumi Kitanaka
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
- Research Institute for Promotion of Medical Sciences, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| |
Collapse
|
3
|
Marvi MV, Mongiorgi S, Ramazzotti G, Follo MY, Billi AM, Zoli M, Mazzatenta D, Morandi L, Asioli S, Papa V, McCubrey JA, Suh PG, Manzoli L, Cocco L, Ratti S. Role of PLCγ1 in the modulation of cell migration and cell invasion in glioblastoma. Adv Biol Regul 2022; 83:100838. [PMID: 34819252 DOI: 10.1016/j.jbior.2021.100838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Phosphoinositide-specific phospholipases C (PLCs) are a class of enzymes involved in several cell activities, such as cell cycle regulation, proliferation, differentiation and cytoskeletal dynamics. Among these enzymes, PLCγ1 is one of the most expressed PLCs in the brain, contributing to a complex network in the developing nervous system. Several studies have shown that PLCγ1 signaling imbalance is linked to several brain disorders, including glioblastoma, the most aggressive brain tumor in adults. Indeed, it has been demonstrated a link between PLCγ1 inhibition and the arrest of glioma cell motility of fetal rat brain aggregates and the impairment of cell invasion abilities following its down-regulation. This study aims to determine the pathological influence of PLCγ1 in glioblastoma, through a translational study which combines in silico data, data from glioblastoma patients' samples and data on engineered cell lines. We found out that PLCγ1 gene expression correlates with the pathological grade of gliomas, and it is higher in fifty patients' glioblastoma tissue samples compared to twenty healthy controls. Moreover, it was demonstrated that PLCγ1 silencing in U87-MG leads to a reduction in cell migration and invasion abilities. The opposite trend was observed following PLCγ1 overexpression, suggesting an interesting possible involvement of PLCγ1 in gliomas' aggressiveness.
Collapse
Affiliation(s)
- Maria Vittoria Marvi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Matilde Y Follo
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Anna Maria Billi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Matteo Zoli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Diego Mazzatenta
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Luca Morandi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Anatomic Pathology Unit, Azienda USL di Bologna, Bologna, Italy
| | - Veronica Papa
- Department of Motor Sciences and Wellness (DiSMeB), Università Degli Studi di Napoli "Parthenope,", 80133, Napoli, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu, 41062, South Korea; School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, South Korea
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.
| |
Collapse
|
4
|
Chen X, Zhu X, Wei Z, Lv Q. Identification and Differential Expression of microRNA in Response to Elevated Phospholipase Cγ Expression in Liver RH 35 Carcinoma Cells. CYTOL GENET+ 2021. [DOI: 10.3103/s009545272006002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Rusciano I, Marvi MV, Owusu Obeng E, Mongiorgi S, Ramazzotti G, Follo MY, Zoli M, Morandi L, Asioli S, Fabbri VP, McCubrey JA, Suh PG, Manzoli L, Cocco L, Ratti S. Location-dependent role of phospholipase C signaling in the brain: Physiology and pathology. Adv Biol Regul 2020; 79:100771. [PMID: 33303387 DOI: 10.1016/j.jbior.2020.100771] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/16/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022]
Abstract
Phosphoinositide-specific phospholipases C (PI-PLCs) are a class of enzymes involved in the phosphatidylinositol metabolism, which is implicated in the activation of several signaling pathways and which controls several cellular processes. The scientific community has long accepted the existence of a nuclear phosphoinositide (PI) metabolism, independent from the cytoplasmic one, critical in nuclear function control. Indeed, nuclear PIs are involved in many activities, such as cell cycle regulation, cell proliferation, cell differentiation, membrane transport, gene expression and cytoskeletal dynamics. There are several types of PIs and enzymes implicated in brain activities and among these enzymes, PI-PLCs contribute to a specific and complex network in the developing nervous system. Moreover, considering the abundant presence of PI-PLCβ1, PI-PLCγ1 and PI-PLCβ4 in the brain, a specific role for each PLC subtype has been suggested in the control of neuronal activity, which is important for synapse function, development and other mechanisms. The focus of this review is to describe the latest research about the involvement of PI-PLC signaling in the nervous system, both physiologically and in pathological conditions. Indeed, PI-PLC signaling imbalance seems to be also linked to several brain disorders including epilepsy, movement and behavior disorders, neurodegenerative diseases and, in addition, some PI-PLC subtypes could become potential novel signature genes for high-grade gliomas.
Collapse
Affiliation(s)
- Isabella Rusciano
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Maria Vittoria Marvi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Eric Owusu Obeng
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matilde Y Follo
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Zoli
- Center for the Diagnosis and Treatment of Hypothalamic-Pituitary Diseases - Pituitary Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna (Institute of Neurological Sciences of Bologna), Bologna, Italy; Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Italy
| | - Luca Morandi
- Functional MR Unit, Bellaria Hospital, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139, Bologna, Italy
| | - Sofia Asioli
- Dipartimento di Scienze Biomediche e Neuromotorie, U.O.C. Anatomia Patologica, AUSL, Università di Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma Neurochirurgia Ipofisi, Bologna, Italy
| | - Viscardo Paolo Fabbri
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu, Republic of Korea; School of Life Sciences, UNIST, Ulsan, Republic of Korea
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
6
|
Kim SH, Kim H. Transcriptome Analysis of the Inhibitory Effect of Astaxanthin on Helicobacter pylori-Induced Gastric Carcinoma Cell Motility. Mar Drugs 2020; 18:md18070365. [PMID: 32679742 PMCID: PMC7404279 DOI: 10.3390/md18070365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection promotes the metastasis of gastric carcinoma cells by modulating signal transduction pathways that regulate cell proliferation, motility, and invasion. Astaxanthin (ASTX), a xanthophyll carotenoid, is known to inhibit cancer cell migration and invasion, however the mechanism of action of ASTX in H. pylori-infected gastric epithelial cells is not well understood. To gain insight into this process, we carried out a comparative RNA sequencing (RNA-Seq) analysis of human gastric cancer AGS (adenocarcinoma gastric) cells as a function of H. pylori infection and ASTX administration. The results were used to identify genes that are differently expressed in response to H. pylori and ASTX. Gene ontology (GO) analysis identified differentially expressed genes (DEGs) to be associated with cell cytoskeleton remodeling, motility, and/or migration. Among the 20 genes identified, those encoding c-MET, PI3KC2, PLCγ1, Cdc42, and ROCK1 were selected for verification by real-time PCR analysis. The verified genes were mapped, using signaling networks contained in the KEGG database, to create a signaling pathway through which ASTX might mitigate the effects of H. pylori-infection. We propose that H. pylori-induced upregulation of the upstream regulator c-MET, and hence, its downstream targets Cdc42 and ROCK1, is suppressed by ASTX. ASTX is also suggested to counteract H. pylori-induced activation of PI3K and PLCγ. In conclusion, ASTX can suppress H. pylori-induced gastric cancer progression by inhibiting cytoskeleton reorganization and reducing cell motility through downregulation of c-MET, EGFR, PI3KC2, PLCγ1, Cdc42, and ROCK1.
Collapse
|
7
|
Owusu Obeng E, Rusciano I, Marvi MV, Fazio A, Ratti S, Follo MY, Xian J, Manzoli L, Billi AM, Mongiorgi S, Ramazzotti G, Cocco L. Phosphoinositide-Dependent Signaling in Cancer: A Focus on Phospholipase C Isozymes. Int J Mol Sci 2020; 21:ijms21072581. [PMID: 32276377 PMCID: PMC7177890 DOI: 10.3390/ijms21072581] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
Phosphoinositides (PI) form just a minor portion of the total phospholipid content in cells but are significantly involved in cancer development and progression. In several cancer types, phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] play significant roles in regulating survival, proliferation, invasion, and growth of cancer cells. Phosphoinositide-specific phospholipase C (PLC) catalyze the generation of the essential second messengers diacylglycerol (DAG) and inositol 1,4,5 trisphosphate (InsP3) by hydrolyzing PtdIns(4,5)P2. DAG and InsP3 regulate Protein Kinase C (PKC) activation and the release of calcium ions (Ca2+) into the cytosol, respectively. This event leads to the control of several important biological processes implicated in cancer. PLCs have been extensively studied in cancer but their regulatory roles in the oncogenic process are not fully understood. This review aims to provide up-to-date knowledge on the involvement of PLCs in cancer. We focus specifically on PLCβ, PLCγ, PLCδ, and PLCε isoforms due to the numerous evidence of their involvement in various cancer types.
Collapse
|
8
|
Receptor Tyrosine Kinases: Principles and Functions in Glioma Invasion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:151-178. [PMID: 32034713 DOI: 10.1007/978-3-030-30651-9_8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein tyrosine kinases are enzymes that are capable of adding a phosphate group to specific tyrosines on target proteins. A receptor tyrosine kinase (RTK) is a tyrosine kinase located at the cellular membrane and is activated by binding of a ligand via its extracellular domain. Protein phosphorylation by kinases is an important mechanism for communicating signals within a cell and regulating cellular activity; furthermore, this mechanism functions as an "on" or "off" switch in many cellular functions. Ninety unique tyrosine kinase genes, including 58 RTKs, were identified in the human genome; the products of these genes regulate cellular proliferation, survival, differentiation, function, and motility. Tyrosine kinases play a critical role in the development and progression of many types of cancer, in addition to their roles as key regulators of normal cellular processes. Recent studies have revealed that RTKs such as epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), c-Met, Tie, Axl, discoidin domain receptor 1 (DDR1), and erythropoietin-producing human hepatocellular carcinoma (Eph) play a major role in glioma invasion. Herein, we summarize recent advances in understanding the role of RTKs in glioma pathobiology, especially the invasive phenotype, and present the perspective that RTKs are a potential target of glioma therapy.
Collapse
|
9
|
Jang HJ, Suh PG, Lee YJ, Shin KJ, Cocco L, Chae YC. PLCγ1: Potential arbitrator of cancer progression. Adv Biol Regul 2018; 67:179-189. [PMID: 29174396 DOI: 10.1016/j.jbior.2017.11.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Phospholipase C (PLC) is an essential mediator of cellular signaling. PLC regulates multiple cellular processes by generating bioactive molecules such as inositol-1,4,5-triphosphate (IP3) and diacylglycerol (DAG). These products propagate and regulate cellular signaling via calcium (Ca2+) mobilization and activation of protein kinase C (PKC), other kinases, and ion channels. PLCγ1, one of the primary subtypes of PLC, is directly activated by membrane receptors, including receptor tyrosine kinases (RTKs), and adhesion receptors such as integrin. PLCγ1 mediates signaling through direct interactions with other signaling molecules via SH domains, as well as its lipase activity. PLCγ1 is frequently enriched and mutated in various cancers, and is involved in the processes of tumorigenesis, including proliferation, migration, and invasion. Although many studies have suggested that PLCγ functions in cell mobility rather than proliferation in cancer, questions remain as to whether PLCγ regulates mitogenesis and whether PLCγ promotes or inhibits proliferation. Moreover, how PLCγ regulates cancer-associated cellular processes and the interplay among other proteins involved in cancer progression have yet to be fully elucidated. In this review, we discuss the current understanding of the role of PLCγ1 in cancer mobility and proliferation.
Collapse
Affiliation(s)
- Hyun-Jun Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Yu Jin Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Kyeong Jin Shin
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Cellular Signalling Laboratory, Institute of Human Anatomy, University of Bologna, Bologna, Italy
| | - Young Chan Chae
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| |
Collapse
|
10
|
TRPA1-FGFR2 binding event is a regulatory oncogenic driver modulated by miRNA-142-3p. Nat Commun 2017; 8:947. [PMID: 29038531 PMCID: PMC5643494 DOI: 10.1038/s41467-017-00983-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 08/08/2017] [Indexed: 01/09/2023] Open
Abstract
Recent evidence suggests that the ion channel TRPA1 is implicated in lung adenocarcinoma (LUAD), where its role and mechanism of action remain unknown. We have previously established that the membrane receptor FGFR2 drives LUAD progression through aberrant protein–protein interactions mediated via its C-terminal proline-rich motif. Here we report that the N-terminal ankyrin repeats of TRPA1 directly bind to the C-terminal proline-rich motif of FGFR2 inducing the constitutive activation of the receptor, thereby prompting LUAD progression and metastasis. Furthermore, we show that upon metastasis to the brain, TRPA1 gets depleted, an effect triggered by the transfer of TRPA1-targeting exosomal microRNA (miRNA-142-3p) from brain astrocytes to cancer cells. This downregulation, in turn, inhibits TRPA1-mediated activation of FGFR2, hindering the metastatic process. Our study reveals a direct binding event and characterizes the role of TRPA1 ankyrin repeats in regulating FGFR2-driven oncogenic process; a mechanism that is hindered by miRNA-142-3p. TRPA1 has been reported to contribute lung cancer adenocarcinoma (LUAD), but the mechanisms are unclear. Here the authors propose that TRPA1/FGFR2 interaction is functional in LUAD and show that astrocytes oppose brain metastasis by mediating the downregulation of TRPA1 through exosome-delivered miRNA-142-3p.
Collapse
|
11
|
Si Shen Wan Regulates Phospholipase Cγ-1 and PI3K/Akt Signal in Colonic Mucosa from Rats with Colitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:392405. [PMID: 26273312 PMCID: PMC4530235 DOI: 10.1155/2015/392405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 11/18/2022]
Abstract
The present study explored the feasible pathway of Si Shen Wan (SSW) in inhibiting apoptosis of intestinal epithelial cells (IECs) by observing activation of phospholipase Cγ-1 (PLC-γ1) and PI3K/Akt signal in colonic mucosa from rats with colitis. Experimental colitis was induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS) in the Sprague-Dawley rats. After SSW was administrated for 7 days after TNBS infusion, western blot showed an increment in levels of PI3K, p-Akt, and IL-23 and a decrement in levels of PLC-γ1 and HSP70 in colonic mucosal injury induced by TNBS. Meanwhile, assessments by ELISA revealed an increment in concentrations of IL-2, IL-6, and IL-17 and a reduction in level of TGF-β after TNBS challenge. Impressively, treatment with SSW for 7 days significantly attenuated the expressions of PI3K and p-Akt and the secretion of IL-2, IL-6, IL-17, and IL-23 and promoted the activation of PLC-γ1, HSP70, and TGF-β. Our previous studies had demonstrated that SSW restored colonic mucosal ulcers by inhibiting apoptosis of IECs. The present study demonstrated that the effect of SSW on inhibiting apoptosis of IECs was realized probably by activation of PLC-γ1 and suppression of PI3K/Akt signal pathway.
Collapse
|
12
|
Nakada M, Kita D, Teng L, Pyko IV, Watanabe T, Hayashi Y, Hamada JI. Receptor tyrosine kinases: principles and functions in glioma invasion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 986:143-70. [PMID: 22879068 DOI: 10.1007/978-94-007-4719-7_8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein tyrosine kinases are enzymes that are capable of adding a phosphate group to specific tyrosines on target proteins. A receptor tyrosine kinase (RTK) is a tyrosine kinase located at the cellular membrane and is activated by binding of a ligand via its extracellular domain. Protein phosphorylation by kinases is an important mechanism for communicating signals within a cell and regulating cellular activity; furthermore, this mechanism functions as an "on" or "off" switch in many cellular functions. Ninety unique tyrosine kinase genes, including 58 RTKs, were identified in the human genome; the products of these genes regulate cellular proliferation, survival, differentiation, function, and motility. Tyrosine kinases play a critical role in the development and progression of many types of cancer, in addition to their roles as key regulators of normal cellular processes. Recent studies have revealed that RTKs such as epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), c-Met, Tie, Axl, discoidin domain receptor 1 (DDR1), and erythropoietin-producing human hepatocellular carcinoma (Eph) play a major role in glioma invasion. Herein, we summarize recent advances in understanding the role of RTKs in glioma pathobiology, especially the invasive phenotype, and present the perspective that RTKs are a potential target of glioma therapy.
Collapse
Affiliation(s)
- Mitsutoshi Nakada
- Department of Neurosurgery, Division of Neuroscience, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan.
| | | | | | | | | | | | | |
Collapse
|
13
|
Feng L, Reynisdóttir I, Reynisson J. The effect of PLC-γ2 inhibitors on the growth of human tumour cells. Eur J Med Chem 2012; 54:463-9. [PMID: 22698703 DOI: 10.1016/j.ejmech.2012.05.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 05/16/2012] [Accepted: 05/22/2012] [Indexed: 12/01/2022]
Abstract
The phosphoinositide specific-phospholipase C-γ (PLC-γ1 and 2) enzymes are plausible anticancer targets implicated in cell motility important to invasion and dissemination of tumour cells. A host of known PLC-γ2 inhibitors were tested against the NCI60 panel of human tumour cell lines as well as their commercially available structural derivatives. A class of thieno[2,3-b]pyridines showed excellent growth arrest with derivative 3 giving GI(50) = 58 nM for the melanoma MDA-MB-435 cell line. The PLC-γ2 is uniquely expressed in haematopoietic cells and the leukaemia tumour cell lines were growth restricted on average GI(50) = 275 nM by derivative 3 indicating a specific interaction with this isoform. Furthermore, a moderate growth inhibition was found for compound classes of indoles and 1H-pyrazoles. It is likely that the active compounds do not only inhibit the PLC-γ2 isoform but other PLCs as well due to their conserved binding site. The compounds tested were identified by applying the tools of chemoinformatics, which supports the use of in silico methods in drug design.
Collapse
Affiliation(s)
- Linda Feng
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|
14
|
Drzewiecka H, Jagodzinski PP. Trichostatin A reduced phospholipase C gamma-1 transcript and protein contents in MCF-7 breast cancer cells. Biomed Pharmacother 2011; 66:1-5. [PMID: 22257695 DOI: 10.1016/j.biopha.2011.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 09/06/2011] [Indexed: 01/07/2023] Open
Abstract
It has recently been demonstrated that phospholipase C gamma-1 (PLCγ1) activation may contribute to breast carcinoma cell motility and their metastasis. Employing MCF-7 breast cancer cells, we showed the effect of trichostatin A (TSA) on the cellular contents of the PLCγ1 molecule. Using reverse transcription, real-time quantitative PCR and western blot analysis, we demonstrated that TSA reduced the PLCγ1 transcript and protein levels in MCF-7 cells. We also found that TSA decreased the half-life of the PLCγ1 transcript from approximately 7hours to 5hours. Moreover, we observed that protein synthesis appears to be essential in the TSA reduction of PLCγ1 mRNA stability. Since PLCγ1 activation is considered a key factor in the initiation of events that increase malignant cell motility, our observations may support the validity of TSA in anticancer studies.
Collapse
Affiliation(s)
- H Drzewiecka
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, 6 Święcickiego St., 60-781 Poznań, Poland
| | | |
Collapse
|
15
|
Phillips-Mason PJ, Kaur H, Burden-Gulley SM, Craig SEL, Brady-Kalnay SM. Identification of phospholipase C gamma1 as a protein tyrosine phosphatase mu substrate that regulates cell migration. J Cell Biochem 2011; 112:39-48. [PMID: 20506511 DOI: 10.1002/jcb.22710] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The receptor protein tyrosine phosphatase PTPµ has a cell-adhesion molecule-like extracellular segment and a catalytically active intracellular segment. This structure gives PTPµ the ability to transduce signals in response to cell-cell adhesion. Full-length PTPµ is down-regulated in glioma cells by proteolysis which is linked to increased migration of these cells in the brain. To gain insight into the substrates PTPµ may be dephosphorylating to suppress glioma cell migration, we used a substrate trapping method to identify PTPµ substrates in tumor cell lines. We identified both PKCδ and PLCγ1 as PTPµ substrates. As PLCγ1 activation is linked to increased invasion of cancer cells, we set out to determine whether PTPµ may be upstream of PLCγ1 in regulating glioma cell migration. We conducted brain slice assays using U87-MG human glioma cells in which PTPµ expression was reduced by shRNA to induce migration. Treatment of the same cells with PTPµ shRNA and a PLCγ1 inhibitor prevented migration of the cells within the brain slice. These data suggest that PLCγ1 is downstream of PTPµ and that dephosphorylation of PLCγ1 is likely to be a major pathway through which PTPµ suppresses glioma cell migration.
Collapse
Affiliation(s)
- Polly J Phillips-Mason
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106-4960, USA
| | | | | | | | | |
Collapse
|
16
|
Xie Z, Peng J, Pennypacker SD, Chen Y. Critical role for the catalytic activity of phospholipase C-gamma1 in epidermal growth factor-induced cell migration. Biochem Biophys Res Commun 2010; 399:425-8. [PMID: 20674545 DOI: 10.1016/j.bbrc.2010.07.098] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Accepted: 07/26/2010] [Indexed: 01/09/2023]
Abstract
Phospholipase C-gamma1 (PLC-gamma1), a tyrosine kinase substrate, has been implicated in the pathway for the epidermal growth factor receptor (EGFR)-induced cell migration. However, the underlying mechanism by which PLC-gamma1 mediates EGFR-induced cell migration remains elusive. In the present study, we sought to determine whether the lipase activity of PLC-gamma1 is required for EGFR-induced cell migration. We found that overexpression of PLC-gamma1 in squamous cell carcinoma SCC4 cells markedly enhanced EGF-induced PLC-gamma1 activation, intracellular calcium rise, and cell migration. This enhancement was abolished by mutational inactivation of the catalytic domain of PLC-gamma1. Inhibition of the downstream signaling processes mediated by the activity of phospholipase C (PLC) using IP(3) receptor inhibitor or intracellular calcium chelator blocked EGF-induced cell migration. These data indicate that EGF-induced cell migration is mediated by the lipase domain of PLC-gamma1 and the subsequent IP(3) generation and intracellular calcium mobilization.
Collapse
Affiliation(s)
- Zhongjian Xie
- Endocrine Unit, Veterans Affairs Medical Center, Northern California Institute for Research and Education, University of California, San Francisco, CA 94121, USA.
| | | | | | | |
Collapse
|
17
|
Sala G, Dituri F, Raimondi C, Previdi S, Maffucci T, Mazzoletti M, Rossi C, Iezzi M, Lattanzio R, Piantelli M, Iacobelli S, Broggini M, Falasca M. Phospholipase C 1 Is Required for Metastasis Development and Progression. Cancer Res 2008; 68:10187-96. [DOI: 10.1158/0008-5472.can-08-1181] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Dutta PR, Maity A. Cellular responses to EGFR inhibitors and their relevance to cancer therapy. Cancer Lett 2007; 254:165-77. [PMID: 17367921 PMCID: PMC1986742 DOI: 10.1016/j.canlet.2007.02.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2006] [Revised: 02/04/2007] [Accepted: 02/05/2007] [Indexed: 12/22/2022]
Abstract
EGFR is a trans-membrane receptor tyrosine kinase that belongs to the HER family of receptors. The EGFR family plays an essential role in normal organ development by mediating morphogenesis and differentiation. Unlike normal cells that have tight regulatory mechanisms controlling EGFR pathways, tumor cells often have dysregulated EGFR signaling through receptor overexpression and/or mutation. This leads to proliferation under adverse conditions, invasion of surrounding tissues, and increased angiogenesis as well as resistance to radiation and chemotherapy. Therefore, EGFR is a legitimate therapeutic target. Numerous EGFR inhibitors are under development, but to date only four of them are FDA-approved, including two that inhibit the receptor's intracellular tyrosine kinase activity (gefitinib and erlotinib) and two that block extracellular ligand binding (cetuximab, and most recently panitumumab). In this review, we focus on how these different inhibitors affect EGFR signaling and the mechanisms by which they potentiate the effects of chemotherapy and radiation therapy. Numerous clinical trials have been conducted with these agents either as monotherapy, in combination with chemotherapy, or concurrently with radiation. Unfortunately, many of the clinical trials reported so far have shown at best limited gains; therefore, understanding the actions of these agents is essential to improving their efficacy in the treatment of cancers.
Collapse
Affiliation(s)
- Pinaki R Dutta
- Department of Radiation Oncology, University of Pennsylvania School of Medicine, 3620 Hamilton Walk, Philadelphia, PA 19104, USA
| | | |
Collapse
|
19
|
Choi JH, Yang YR, Lee SK, Kim IS, Ha SH, Kim EK, Bae YS, Ryu SH, Suh PG. Phospholipase C-gamma1 potentiates integrin-dependent cell spreading and migration through Pyk2/paxillin activation. Cell Signal 2007; 19:1784-96. [PMID: 17531443 DOI: 10.1016/j.cellsig.2007.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 03/29/2007] [Accepted: 04/05/2007] [Indexed: 11/25/2022]
Abstract
Phospholipase C-gamma1 (PLC-gamma1), which generates two second messengers, namely, inositol-1, 4, 5-trisphosphate and diacylglycerol, is implicated in growth factor-mediated chemotaxis. However, the exact role of PLC-gamma1 in integrin-mediated cell adhesion and migration remains poorly understood. In this study, we demonstrate that PLC-gamma1 is required for actin cytoskeletal organization and cell motility through the regulation of Pyk2 and paxillin activation. After fibronectin stimulation, PLC-gamma1 directly interacted with the cytoplasmic tail of integrin beta1. In PLC-gamma1-silenced cells, integrin-induced Pyk2 and paxillin phosphorylation were significantly reduced and PLC-gamma1 potentiated the integrin-induced Pyk2/paxillin activation in its enzymatic activity-dependent manner. In addition, specific knock-down of PLC-gamma1 resulted in a failure to form focal adhesions dependent on fibronectin stimulation, which appeared to be caused by the suppression of Pyk2 and paxillin phosphorylation. Interestingly, PLC-gamma1 potentiated the activations of Rac, thus integrin-induced lamellipodia formation was up-regulated. Consequently, the strength of cell-substratum interaction and cell motility were profoundly up-regulated by PLC-gamma1. Taken together, these results suggest that PLC-gamma1 is a key player in integrin-mediated cell spreading and motility achieved by the activation of Pyk2/paxillin/Rac signaling.
Collapse
Affiliation(s)
- Jang Hyun Choi
- Department of Life Science, Pohang University of Science and Technology, Pohang, Kyungbuk, 790-784, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Fomchenko EI, Holland EC. Platelet-derived growth factor-mediated gliomagenesis and brain tumor recruitment. Neurosurg Clin N Am 2007; 18:39-58, viii. [PMID: 17244553 DOI: 10.1016/j.nec.2006.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Platelet-derived growth factor (PDGF) is a growth factor family of ligands and receptors known to activate phosphatidylinositol 3-kinase, mitogen-activated protein kinase, Jak family kinase, Src family kinase, and phospholipase Cgamma signal transduction pathways, some of which have been causally linked to glioma formation. Extensive involvement of PDGF in development and its implication in a variety of pathologic conditions, including gliomagenesis, are mediated not only by autocrine effects but by paracrine effects. Many researchers view brain tumors as clonal entities derived from the cancer stem cell; however, recent documentation of the importance of the tumor microenvironment for glioma initiation and progression as well as the ability of neural stem or progenitor cells to migrate toward the sites of injury or tumor formation reveals additional complexities in brain tumorigenesis. Paracrine effects of PDGF in animal models of gliomagenesis, continued adult neurogenesis capable of increasing in response to brain injury, and the growth factor-rich environment of brain tumors suggest that recruitment may play a role in gliomagenesis. In this view, glioma formation involves recruitment of cells from the adjacent brain and possibly other sites.
Collapse
Affiliation(s)
- Elena I Fomchenko
- Department of Cancer Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | |
Collapse
|
21
|
Shin SY, Choi HY, Ahn BH, Min DS, Son SW, Lee YH. Phospholipase Cgamma1 stimulates transcriptional activation of the matrix metalloproteinase-3 gene via the protein kinase C/Raf/ERK cascade. Biochem Biophys Res Commun 2006; 353:611-6. [PMID: 17196935 DOI: 10.1016/j.bbrc.2006.12.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 12/11/2006] [Indexed: 11/16/2022]
Abstract
The phospholipid hydrolase phospholipase Cgamma1 (PLCgamma1) plays a major role in regulation of cell proliferation, development, and cell motility. Overexpression of PLCgamma1 is associated with tumor development, and it is overexpressed in some tumors. Matrix metalloproteinase-3 (MMP-3) is a protein involved in tumor invasion and metastasis. Here, we demonstrate that overexpression of PLCgamma1 stimulates MMP-3 expression at the transcriptional level via the PKC-mediated Raf/MEK1/ERK signaling cascade. We propose that modulation of PLCgamma1 activity might be of value in controlling the activity of MMPs, which are important regulators of invasion and metastasis in malignant tumors.
Collapse
Affiliation(s)
- Soon Young Shin
- Institute of Natural Science and Technology, Hanyang University, Ansan 426-791, South Korea
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
In spite of recent advances in molecular biology leading to the introduction of clinically active novel agents, such as imatinib, erlotinib, and bevacizumab, therapy of the most common epithelial tumors, such as lung cancer, remains unsuccessful. The diversity of molecular abnormalities in these tumors is felt to partly contribute to their resistance to therapy. It is, therefore, widely accepted that one approach to improving the efficacy of cancer therapy is the development of rational, hypothesis-based combinations of anticancer agents that may exhibit synergistic cytotoxic interactions. A number of empirical combination studies with the epidermal growth factor receptor and classic cytotoxic agents were undertaken in clinical trials, with disappointing results. It is, therefore, felt that preclinical combinations of epidermal growth factor receptor inhibitors and other novel agents, based on sound knowledge of complementary signaling pathways whose concerted inhibition would be hypothesized to inhibit growth, is the reasonable approach in the future. A brief overview of some of these pathways (mammalian target of rapamycin, vascular endothelial growth factor receptor, and ras/mitogen-activated protein kinase signaling) is provided in this review.
Collapse
Affiliation(s)
- Alex A Adjei
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| |
Collapse
|
23
|
Li X, Hua L, Deng F, Bai X, Zeng W, Lu D, Su Y, Luo S. NF-kappaB and Hsp70 are involved in the phospholipase Cgamma1 signaling pathway in colorectal cancer cells. Life Sci 2006; 77:2794-803. [PMID: 15996687 DOI: 10.1016/j.lfs.2005.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 02/27/2005] [Accepted: 05/03/2005] [Indexed: 11/23/2022]
Abstract
The majority of deaths from colorectal cancer are due to tumor invasion and metastasis. Induced migration of tumor cell is generally considered to be one critical step in cancer progression to the invasive and metastatic stage. Phospholipase Cgamma1 (PLCgamma1) is a key molecular switch in the process. But, the mechanism and function of PLCgamma1 in colorectal cancer motility are unclear. We showed first in this report that epidermal growth factor (EGF) stimulated the phosphorylation of PLCgamma1 in human colorectal cancer cell line LoVo. Inhibition of PLCgamma1 with the pharmacologic agent U73122 decreased the migration of LoVo cells in a dose-dependent manner while EGF treatment reversed it partially. PLCgamma1 signaling pathway also upregulated the activity of NF-kappaB. Furthermore, expression of Hsp70 was increased by treatment with U73122 or pyrrolidine dithiocarbamate (PDTC), a NF-kappaB inhibitor. These data indicated that PLCgamma1 played a pivotal role in the migration of human colorectal cancer cell and first demonstrated that upregulation of NF-kappaB binding activity and downregulation of Hsp70 expression were PLCgamma1-dependent in LoVo cells.
Collapse
Affiliation(s)
- Xiumei Li
- Department of Cell Biology, Southern Medical University, Guangzhou 510515, PR China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Athale CA, Deisboeck TS. The effects of EGF-receptor density on multiscale tumor growth patterns. J Theor Biol 2006; 238:771-9. [PMID: 16126230 DOI: 10.1016/j.jtbi.2005.06.029] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 05/31/2005] [Accepted: 06/23/2005] [Indexed: 11/26/2022]
Abstract
We studied the effects of epidermal growth factor receptor (EGFR) density on tumor growth dynamics, both on the sub- and the multi-cellular level using our previously developed model. This algorithm simulates the growth of a brain tumor using a multi-scale two-dimensional agent-based approach with an integrated transforming growth factor alpha (TGFalpha) induced EGFR-gene-protein interaction network. The results confirm that increasing cell receptor density correlates with an acceleration of the tumor system's spatio-temporal expansion dynamics. This multicellular behavior cannot be explained solely on the basis of spatial sub-cellular dynamics, which remain qualitatively similar amongst the three glioma cell lines investigated here in silico. Rather, we find that cells with higher EGFR density show an early increase in the phenotypic switching activity between proliferative and migratory traits, linked to a higher level of initial auto-stimulation by the PLCgamma-mediated TGFalpha-EGFR autocrine network. This indicates a more active protein level interaction in these chemotactically acting tumor systems and supports the role of post-translational regulation for the implemented EGFR pathway. Implications of these results for experimental cancer research are discussed.
Collapse
Affiliation(s)
- Chaitanya A Athale
- Complex Biosystems Modeling Laboratory, Harvard-MIT, HST, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital-East, 2301, Bldg. 149, 13th Street, Charlestown, 02129, USA
| | | |
Collapse
|
25
|
Sibenaller ZA, Etame AB, Ali MM, Barua M, Braun TA, Casavant TL, Ryken TC. Genetic characterization of commonly used glioma cell lines in the rat animal model system. Neurosurg Focus 2005; 19:E1. [PMID: 16241103 DOI: 10.3171/foc.2005.19.4.2] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Object
Animal models have been used extensively to discern the molecular biology of diseases and to gain insight into treatments. Nevertheless, discrepancies in the effects of treatments and procedures have been encountered during the transition from these animal models to application of the information to clinical trials in humans. To assess the genetic similarities between human gliomas and four cell lines used routinely in animal models, the authors used microarray technology to characterize the similarities and differences in gene expression.
Methods
To define the changes in gene expression, normal rat astrocytes were compared with four rat glioma cell lines (C6, 9L, F98, and RG2). The data were analyzed using two different methods: fold-change analysis and statistical analysis with t statistics. The gene products that were highlighted after intersecting the lists generated by the two methods of analysis were scrutinized against changes in gene expression reported in the literature. Tumorigenesis involves three major steps: the accumulation of genetic alterations, uncontrolled growth, and selected survival of transformed cells. The discussion of the results focuses attention on genes whose primary function is in pathways involved in glioma proliferation, infiltration, and neovascularization. A comparative microarray analysis of differentially expressed genes for four of the commonly used rat tumor cell lines is presented here.
Conclusions
Due to the variances between the cell lines and results from analyses in humans, caution must be observed in interpreting as well as in the translation of information learned from animal models to its application in human trials.
Collapse
Affiliation(s)
- Zita A Sibenaller
- Department of Neurosurgery, University of Iowa Hospitals, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Bae JY, Ahn SJ, Lee JE, Kim JE, Han MR, Han W, Kim SW, Shin HJ, Lee SJ, Park D, Noh DY. BetaPix-a enhances the activity of phospholipase Cgamma1 by binding SH3 domain in breast cancer. J Cell Biochem 2005; 94:1010-6. [PMID: 15597340 DOI: 10.1002/jcb.20357] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Phospholipase C-gamma1 (PLCgamma1) plays a critical role in cell growth and proliferation by generating the second messengers, diacylglycerol and 1, 4, 5-inositol triphosphate. To investigate the roles of Src homology domain 2 and domain 3 of PLCgamma1 in PLCgamma1-mediated cell signaling, we characterized some proteins binding to these domains in the MCF7 and MDA-MB-231 breast cancer cell lines. Of the several proteins that bind to glutathione-S-transferase-SH2/SH2/SH3, we identified an 85 kDa protein that binds to the SH3 domain of PLCgamma1 as the guanine nucleotide exchange factor, p21-activated protein kinase-interacting exchange factor-a (betaPix-a). BetaPix-a co-immunoprecipitated with PLCgamma1 in breast cancer tissues extracts and in MCF7 and MDA-MB-231 cell extracts. In addition, PDGF-stimulated PLCgamma1 activity was elevated in betaPix-a-overexpressing NIH3T3 cells. Our results suggest that betaPix-a binds to the Src homology domain 3 of PLCgamma1 and promotes tumor growth in breast cancer by enhancing the activity PLCgamma1.
Collapse
Affiliation(s)
- Ji-Yeon Bae
- Cancer Research Institute, College of Medicine, Seoul National University, Yongon-dong, Chongno-gu, Seoul 110-744, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Shih AH, Holland EC. Platelet-derived growth factor (PDGF) and glial tumorigenesis. Cancer Lett 2005; 232:139-47. [PMID: 16139423 DOI: 10.1016/j.canlet.2005.02.002] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2005] [Accepted: 02/04/2005] [Indexed: 12/17/2022]
Abstract
Platelet-derived growth factor (PDGF) has long been implicated in cancer and is known to be involved in many biological processes. In Central Nervous System (CNS) neoplasms, particularly gliomas, PDGF is often over-expressed. However, what role PDGF plays in tumor progression remains to be fully described. A wide range of work from in vitro studies to mouse models have implicated the PDGF pathway in various processes including proliferation, cellular migration, development, and angiogenesis. Being a secreted factor, PDGF not only has autocrine effects on producing cells but also has potential for paracrine effects on other tumor cells and the tumor microenvironment. The development of small molecules that inhibit the PDGF receptor and various subsequent signaling components promises to introduce new approaches to the treatment of gliomas.
Collapse
Affiliation(s)
- Alan H Shih
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | | |
Collapse
|
28
|
Athale C, Mansury Y, Deisboeck TS. Simulating the impact of a molecular 'decision-process' on cellular phenotype and multicellular patterns in brain tumors. J Theor Biol 2004; 233:469-81. [PMID: 15748909 DOI: 10.1016/j.jtbi.2004.10.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Accepted: 10/14/2004] [Indexed: 11/30/2022]
Abstract
Experimental evidence indicates that human brain cancer cells proliferate or migrate, yet do not display both phenotypes at the same time. Here, we present a novel computational model simulating this cellular decision-process leading up to either phenotype based on a molecular interaction network of genes and proteins. The model's regulatory network consists of the epidermal growth factor receptor (EGFR), its ligand transforming growth factor-alpha (TGF alpha), the downstream enzyme phospholipaseC-gamma (PLC gamma) and a mitosis-associated response pathway. This network is activated by autocrine TGF alpha secretion, and the EGFR-dependent downstream signaling this step triggers, as well as modulated by an extrinsic nutritive glucose gradient. Employing a framework of mass action kinetics within a multiscale agent-based environment, we analyse both the emergent multicellular behavior of tumor growth and the single-cell molecular profiles that change over time and space. Our results show that one can indeed simulate the dichotomy between cell migration and proliferation based solely on an EGFR decision network. It turns out that these behavioral decisions on the single cell level impact the spatial dynamics of the entire cancerous system. Furthermore, the simulation results yield intriguing experimentally testable hypotheses also on the sub-cellular level such as spatial cytosolic polarization of PLC gamma towards an extrinsic chemotactic gradient. Implications of these results for future works, both on the modeling and experimental side are discussed.
Collapse
Affiliation(s)
- Chaitanya Athale
- Complex Biosystems Modeling Laboratory, Harvard-MIT (HST) Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
29
|
Del Duca D, Werbowetski T, Del Maestro RF. Spheroid preparation from hanging drops: characterization of a model of brain tumor invasion. J Neurooncol 2004; 67:295-303. [PMID: 15164985 DOI: 10.1023/b:neon.0000024220.07063.70] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND The use of three-dimensional in vitro models of brain tumor invasion has provided a system for reconstructing some of the cellular microenvironments present in the tumor mass. While spheroids of murine and human astrocytoma cells can be prepared using spinning cultures, spheroid preparation using many cell lines is not amenable to this method. We have developed a reproducible system of creating implantable spheroids that is applicable to different cell lines, and is independent of cell line characteristics. METHODS For murine and human brain tumor cell lines, 20 microl drops containing predetermined cell concentrations were suspended from the lids of culture dishes and the resulting aggregates were transferred to culture dishes base-coated with agar. The two-dimensional aggregates formed three-dimensional spheroids on the non-permissive agar substrate, and were then implanted into three-dimensional collagen I gels and the invasive activity assessed. The invasive activity of C6 and U251 spheroids prepared by hanging drops was compared to spheroids of similar size prepared by spinner culture. RESULTS The hanging drop method produced implantable spheroids capable of sustained invasion using all cell lines tested. Most cell lines required initial hanging drop cell concentrations of 45,000 cells/drop, suspension times of 48, and 72 h on agar. C6 spheroids had the same invasive capacity regardless of the model utilized, however U251 spheroids produced by hanging drops had significantly increased invasion compared to those prepared by spinner culture. Only spheroids prepared by spinner culture showed histological evidence of central necrosis. CONCLUSIONS This model represents a reproducible approach to the preparation of implantable spheroids with invasive potential that compares with those produced using spinner culture. The use of hanging drops broadens the applicability of three-dimensional in vitro assays examining brain tumor invasiveness.
Collapse
Affiliation(s)
- Danny Del Duca
- Brain Tumor Research Center, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec
| | | | | |
Collapse
|
30
|
Tatenhorst L, Senner V, Püttmann S, Paulus W. Regulators of G-protein signaling 3 and 4 (RGS3, RGS4) are associated with glioma cell motility. J Neuropathol Exp Neurol 2004; 63:210-22. [PMID: 15055445 DOI: 10.1093/jnen/63.3.210] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Diffuse brain invasion is a major reason for poor prognosis of glioma patients. The molecular mechanisms underlying infiltration are different from those of other cancer types. To detect genes associated with glioma invasion, highly migratory clones were selected from U373MG glioma cells and from primary glioblastoma cells, and the gene expression pattern of these "fast" cells was compared with that of the original ("slow") cells using oligonucleotide microarrays comprising 12,625 genes. A total of 28 genes were differently expressed in both primary and established cell populations, including 19 genes that were upregulated and 9 that were downregulated in fast cells. Most of these genes have not been linked to glioma invasion so far. Specifically, differentially expressed genes included those encoding extracellular matrix components (COL16A1, DPT), proteases (CATD, PRSS11), cytokines (MDK, IL8), transport proteins (SLC1A3, ATP10B), cytoskeleton constituents (ACTA2, ACTSG, NEFL), DNA repair enzymes (WRN, ADPRTL2), and G-protein signaling components (GNA12, RGS3, RGS4). RGS3 and RGS4, which are homologs of the Drosophila glia gene loco, were further functionally analyzed. U373MG glioma cell clones overexpressing RGS3 or RGS4 showed an increase of both adhesion and migration. These findings expand the spectrum of possible molecular pathways underlying the invasion of neoplastic astrocytes. Specifically, they suggest that RGS proteins and G-protein-mediated signal transduction are evolutionary conserved functional players.
Collapse
Affiliation(s)
- Lars Tatenhorst
- Institute of Neuropathology, University Hospital, Muenster, Germany
| | | | | | | |
Collapse
|
31
|
Wu X, Obata T, Khan Q, Highshaw RA, De Vere White R, Sweeney C. The phosphatidylinositol-3 kinase pathway regulates bladder cancer cell invasion. BJU Int 2004; 93:143-50. [PMID: 14678387 DOI: 10.1111/j.1464-410x.2004.04574.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVES To investigate the role of the phosphatidylinositol (PI)-3 kinase pathway in the invasion of bladder cancer cell lines, and to assess the activation of this pathway in primary human bladder tumours. MATERIALS AND METHODS Human bladder cancer cells were treated with pathway specific inhibitors or were transfected with PI-3 kinase pathway components. The invasion of cultured bladder cancer cells was analysed by an invasion assay. Bladder cancer cells lines and primary human bladder tumours were analysed for pathway activation by western blotting. RESULTS A specific inhibitor of PI-3 kinase enzyme activity, Ly294002, potently suppressed the invasive properties of three highly invasive bladder tumour cell lines. Restoration of the PTEN gene to invasive UM-UC-3 bladder tumour cells or expression of a dominant-negative version of the PI-3 kinase target, Akt, also potently inhibited invasion, indicating a central role for the PI-3 kinase/Akt pathway in this process. In addition, 55% of primary tumours from patients with bladder cancer had markedly high levels of phosphorylated Akt. CONCLUSION Pharmacological or biochemical inhibition of the PI-3 kinase pathway drastically reduced the invasive capacity of bladder cancer cell lines; over half of primary human bladder tumours had high Akt phosphorylation, suggesting that the aberrant activation of this pathway may contribute to the invasion of a significant subset of bladder cancers.
Collapse
Affiliation(s)
- X Wu
- UC Davis Cancer Center, Sacramento, CA, USA
| | | | | | | | | | | |
Collapse
|
32
|
Joy AM, Beaudry CE, Tran NL, Ponce FA, Holz DR, Demuth T, Berens ME. Migrating glioma cells activate the PI3-K pathway and display decreased susceptibility to apoptosis. J Cell Sci 2003; 116:4409-17. [PMID: 13130092 DOI: 10.1242/jcs.00712] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Glioma cells that migrate out of the main tumor mass into normal brain tissue contribute to the failure of most gliomas to respond to treatment. Treatments that target migratory glioma cells may enhance the therapeutic response. Multiple lines of evidence suggest that suppression of apoptosis accompanies activation of the migratory phenotype. Here, we determine whether migration and apoptosis are consistently linked in glioma cells and whether manipulation of migration influences cytotoxic therapy-induced apoptosis. Camptothecin and Trail-induced apoptosis were decreased 2-5-fold in actively migrating glioma cells relative to migration-restricted cells. Consistent with a mechanistic link between migration and apoptosis, the dose-response for stimulation of migration on laminin was inversely proportional to apoptosis induction. Treatment of glioma cells with migration inhibitors alone had little effect on basal rates of apoptosis and had little effect on Trail-induced or camptothecin-induced apoptosis in migration-restricted cells. By contrast, migration inhibitors increased camptothecin and Trail-induced apoptosis in actively migrating glioma cells. Migrating glioma cells have increased amounts of phosphorylated Akt and its downstream substrate glycogen synthase kinase-3 relative to migration restricted cells. Treatment of migrating cells with a specific inhibitor of phosphoinositide 3-kinase (PI3-K), LY294002, blocked the phosphorylation of Akt and increased the sensitivity to apoptosis. LY294002 had no effect on the migration of restricted cells. This suggests that migrating glioma cells activate the PI3-K survival pathway, protecting migrating cells from apoptosis. Taken together, these data provide support for a link between migration and apoptosis in glioma cells. In addition, evidence indicates that treatment with migration inhibitors, while not affecting apoptosis-induction in migration-restricted cells, can sensitize migrating glioma cells to cytotoxic agents.
Collapse
Affiliation(s)
- Anna M Joy
- The Translational Genomics Research Institute, 400 North 5th Street, Suite 1600, Phoenix, AZ 85004, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Kapoor GS, O'Rourke DM. Mitogenic signaling cascades in glial tumors. Neurosurgery 2003; 52:1425-34; discussion 1434-5. [PMID: 12762887 DOI: 10.1227/01.neu.0000065135.28143.39] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2002] [Accepted: 01/29/2003] [Indexed: 01/29/2023] Open
Abstract
Gliomas are primary central nervous system tumors that arise from astrocytes, oligodendrocytes, or their precursors. Gliomas can be classified into several groups according to histological features. A number of genetic alterations have been identified in human gliomas; these generally affect either signal transduction pathways activated by receptor tyrosine kinases or cell cycle growth arrest pathways. These observed genetic alterations are now being used to complement histopathological diagnosis. The aim of the present review is to give a broad overview of the receptor tyrosine kinase signaling machinery involved in gliomagenesis, with an emphasis on the cooperative interaction between receptor tyrosine kinase signaling and the cell cycle-regulatory machinery. Understanding molecular features of primary glial tumors will eventually allow for target-selective intervention in distinct glioma subsets and a more rational approach to adjuvant therapies for these refractory diseases.
Collapse
Affiliation(s)
- Gurpreet S Kapoor
- Department of Neurosurgery, University of Pennsylvania School of Medicine, 36th and Hamilton Walk, Philadelphia, PA 19104, USA
| | | |
Collapse
|
34
|
Piccolo E, Innominato PF, Mariggio MA, Maffucci T, Iacobelli S, Falasca M. The mechanism involved in the regulation of phospholipase Cgamma1 activity in cell migration. Oncogene 2002; 21:6520-9. [PMID: 12226755 DOI: 10.1038/sj.onc.1205821] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2001] [Revised: 06/19/2002] [Accepted: 06/28/2002] [Indexed: 12/15/2022]
Abstract
Activation of the enzyme phospholipase C (PLC) leads to the formation of second messengers inositol 1,4,5-trisphosphate and diacylglycerol. Tyrosine kinase receptors activate this reaction through PLCgamma isoenzymes. PLCgamma activity involves its activation with, and phosphorylation by, receptor tyrosine kinases. Recently, it has been shown that phosphoinositide 3-kinase (PI 3-K) may regulate PLCgamma activity through the interaction of the PI 3-K product phosphatidylinositol 3,4,5-trisphosphate (PtdIns-3,4,5-P(3)) and the PLCgamma pleckstrin homology (PH) domain. In an effort to understand the signalling pathway that involves PI 3-K regulation of PLCgamma, we found that EGF induces a PI 3-K-dependent translocation of PLCgamma1 at the leading edge of migrating cells in a wound healing assay. Similarly, the isolated PH, but not the Src-homology (SH) domains, N-SH2 or SH3, of PLCgamma1, translocates at the leading edge. Our experiments also showed that stable PH PLCgamma1 expression blocks epidermal growth factor (EGF)- and serum-induced cell motility and increases cell adhesion in MDA-MB-231 cells. This may suggest that influence of PI 3-K on PLCgamma1 could be relevant in cell migration, where PLCgamma1 seems to play a key role by modulating a series of events involved in actin polymerization.
Collapse
Affiliation(s)
- Enza Piccolo
- Department of Oncology and Neuroscience, Section of Medical Oncology, Universita 'G. D'Annunzio', Via dei Vestini 1, 66100 Chieti, Italy
| | | | | | | | | | | |
Collapse
|
35
|
Kassis J, Radinsky R, Wells A. Motility is rate-limiting for invasion of bladder carcinoma cell lines. Int J Biochem Cell Biol 2002; 34:762-75. [PMID: 11950593 DOI: 10.1016/s1357-2725(01)00173-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Induced migration of tumor cells is generally considered to be one critical step in cancer progression to the invasive and metastatic stage. The implicit caveat of studies that show this is that other, unknown, signaling pathways and biophysical events are actually the operative rate-limiting steps, and not motility per se. Thus, to examine the hypothesis that motility is a single, but overall rate-limiting function required for invasion, disparate motility processes need be blocked with concordant effects on tumor invasion. Recently, we and others have described two signaling pathways that are critical to growth factor-induced motility but not mitogenesis. The key molecular switches are phospholipase C-gamma (PLCgamma) and calpain for cytoskeletal reorganization and rear detachment, respectively. We examined this hypothesis in a highly invasive tumor, bladder carcinoma. Three different human tumor cell lines, 253J-B-V, UMUC and T-24, were tested for invasiveness in vitro by transmigration of a Matrigel barrier. Inhibiting PLCgamma with the pharmacologic agent U73122 or the molecular dominant-negative PLCz construct reduced both invasiveness and motility. The same was noted when calpain was blocked using calpain inhibitor I (ALLN). These results demonstrate that one interventional target for limiting invasion is not necessarily an individual motility pathway but rather cell migration per se.
Collapse
Affiliation(s)
- Jareer Kassis
- Pathology and Laboratory Medicine Service, Pittsburgh VAMC & Department of Pathology, University of Pittsburgh, S713 Scaife, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
36
|
de Boüard S, Christov C, Guillamo JS, Kassar-Duchossoy L, Palfi S, Leguerinel C, Masset M, Cohen-Hagenauer O, Peschanski M, Lefrançois T. Invasion of human glioma biopsy specimens in cultures of rodent brain slices: a quantitative analysis. J Neurosurg 2002; 97:169-76. [PMID: 12134908 DOI: 10.3171/jns.2002.97.1.0169] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The reliable assessment of the invasiveness of gliomas in vitro has proved elusive, because most invasion assays inadequately model in vivo invasion in its complexity. Recently, organotypical brain cultures were successfully used in short-term invasion studies on glioma cell lines. In this paper the authors report that the invasiveness of human glioma biopsy specimens directly implanted into rodent brain slices by using the intraslice implantation system (ISIS) can be quantified with precision. The model was first validated by the demonstration that, in long-term studies, established glioma cells survive in the ISIS and follow pathways of invasion similar to those in vivo. METHODS Brain slices (400 microm thick) from newborn mice were maintained on millicell membranes for 15 days. Cells from two human and one rodent glioblastoma multiforme (GBM) cell lines injected into the ISIS were detected by immunohistochemistry or after transfection with green fluorescent protein-containing vectors. Preferential migration along blood vessels was identified using confocal and fluorescent microscopy. Freshly isolated (< or = 24 hours after removal) 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate-prelabeled human glioma biopsy specimens were successfully implanted in 19 (83%) of 23 cases, including 12 GBMs and seven lower grade gliomas (LGGs). Morphometric quantification of distance and density of tumor cell invasion showed that the GBMs were two to four times more invasive than the LGGs. Heterogeneity of invasion was also observed among GBMs and LGGs. Directly implanted glioma fragments were more invasive than spheroids derived from the same biopsy specimen. CONCLUSIONS The ISIS combines a high success rate, technical simplicity, and detailed quantitative measurements and may, therefore, be used to study the invasiveness of biopsy specimens of gliomas of different grades.
Collapse
Affiliation(s)
- Sophie de Boüard
- Institut Nationale de la Santé et de la Recherche Médicale, Unité 421, Faculté de Médecine, Créteil, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kassis J, Maeda A, Teramoto N, Takada K, Wu C, Klein G, Wells A. EBV-expressing AGS gastric carcinoma cell sublines present increased motility and invasiveness. Int J Cancer 2002; 99:644-51. [PMID: 12115496 DOI: 10.1002/ijc.10382] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Tumor invasion marks a critical point in cancer progression; it is a harbinger of morbidity and mortality. Thus, the cellular events that enable the invasive phenotype are under intense investigation. Epstein-Barr virus (EBV) is associated with a number of cancers, including Burkitt lymphoma (BL) and nasopharyngeal carcinoma (NPC) and is suspected to contribute to their tumorigenesis. On average, 8% of gastric carcinomas have been shown to carry this virus. To explore whether the presence of EBV in gastric carcinoma contributes to tumor progression in this predominantly invasive carcinoma, we examined a panel of 2 in vitro EBV-infected human gastric cancer cell line sublines and their mock-infected AGS parental control line. We found EBV infection caused a marked increase in transmigration of a Matrigel barrier (415% and 303%, p < 0.05, for the 2 infected lines). This correlated with increased motility of these sublines (233% and 140%, p < 0.05). As this pattern of increased motility leading to a more pronounced enhancement of invasion has been noted in other tumor cells, we explored the roles of autocrine signaling pathways previously implicated in carcinoma motility and invasion. Inhibitors to the epidermal growth factor receptor (EGFR) (PD153035), phospholipase C (PLC) (U73122), extracellular-signal regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) (PD089035) and PI-3 kinase (Wortmannin) were not informative. These data suggest that EBV increases migration of AGS cells by a mechanism independent of these autocrine growth factor-induced pathways. Instead, we found that the EBV-infected cells presented increased focal adhesion kinase (FAK) phosphorylation. These findings suggest a role for integrin-mediated signaling in promoting EBV-associated invasiveness.
Collapse
Affiliation(s)
- Jareer Kassis
- Department of Pathology, Pittsburgh VAMC and University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Despite optimal clinical treatment, the prognosis for malignant gliomas remains poor. One of the primary reasons for treatment failure is not diffuse dissemination, but local invasion. Recently, there has been an increase in information regarding specific molecules that determine the aggressiveness and invasion potential of high-grade astrocytic tumors. In particular, expression of matrix metalloproteases in high-grade gliomas appears to correlate with tissue invasiveness. It is the purpose of the present review to describe the connection between alterations in growth-related genes, protease activity, and tumor biology, and how these connections may suggest potential novel therapeutic targets.
Collapse
Affiliation(s)
- Devin K Binder
- Department of Neurological Surgery, University of California, San Francisco 94143-0112, USA.
| | | |
Collapse
|
39
|
|
40
|
Besson A, Davy A, Robbins SM, Yong VW. Differential activation of ERKs to focal adhesions by PKC epsilon is required for PMA-induced adhesion and migration of human glioma cells. Oncogene 2001; 20:7398-407. [PMID: 11704869 DOI: 10.1038/sj.onc.1204899] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2001] [Revised: 08/01/2001] [Accepted: 08/07/2001] [Indexed: 11/09/2022]
Abstract
Protein kinase C (PKC) is a family of serine/threonine kinases involved in the transduction of a variety of signals. There is increasing evidence to indicate that specific PKC isoforms are involved in the regulation of distinct cellular processes. In glioma cells, PKC alpha was found to be a critical regulator of proliferation and cell cycle progression, while PKC epsilon was found to regulate adhesion and migration. Herein, we report that specific PKC isoforms are able to differentially activate extracellular-signal regulated kinase (ERK) in distinct cellular locations: while PKC alpha induces the activation of nuclear ERK, PKC epsilon induces the activation of ERK at focal adhesions. Inhibition of the ERK pathway completely abolished the PKC-induced integrin-mediated adhesion and migration. Thus, we present the first evidence that PKC epsilon is able to activate ERK at focal adhesions to mediate glioma cell adhesion and motility, providing a molecular mechanism to explain the different biological functions of PKC alpha and epsilon in glioma cells.
Collapse
Affiliation(s)
- A Besson
- Department of Oncology, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | | | | | | |
Collapse
|
41
|
Kassis J, Lauffenburger DA, Turner T, Wells A. Tumor invasion as dysregulated cell motility. Semin Cancer Biol 2001; 11:105-17. [PMID: 11322830 DOI: 10.1006/scbi.2000.0362] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Investigations across a range of disciplines over the past decade have brought the study of cell motility and its role in invasion to an exciting threshold. The biophysical forces proximally involved in generating cell locomotion, as well as the underlying signaling and genomic regulatory processes, are gradually becoming elucidated. We now appreciate the intricacies of the many cellular and extracellular events that modulate cell migration. This has enabled the demonstration of a causal role of cell motility in tumor progression, with various points of 'dysregulation' of motility being responsible for promoting invasion. In this paper, we describe key fundamental principles governing cell motility and branch out to describe the essence of the data that describe these principles. It has become evident that many proposed models may indeed be converging into a tightly-woven tapestry of coordinated events which employ various growth factors and their receptors, adhesion receptors (integrins), downstream molecules, cytoskeletal components, and altered genomic regulation to accomplish cell motility. Tumor invasion occurs in response to dysregulation of many of these modulatory points; specific examples include increased signaling from the EGF receptor and through PLC gamma, altered localization and expression of integrins, changes in actin modifying proteins and increased transcription from specific promoter sites. This diversity of alterations all leading to tumor invasion point to the difficulty of correcting causal events leading to tumor invasion and rather suggest that the underlying common processes required for motility be targeted for therapeutic intervention.
Collapse
Affiliation(s)
- J Kassis
- Department of Pathology, University of Pittsburgh and Pittsburgh VAMC, 713 Scaife Hall, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
42
|
Nojiri S, Hoek JB. Suppression of epidermal growth factor-induced phospholipase C activation associated with actin rearrangement in rat hepatocytes in primary culture. Hepatology 2000; 32:947-57. [PMID: 11050044 DOI: 10.1053/jhep.2000.18662] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Hepatocytes maintained in primary culture for periods of 1 to 24 hours exhibited a rapid decline in epidermal growth factor (EGF)-induced activation of phospholipase C (PLC), as was evident in a loss of EGF-induced inositol 1,4,5-trisphosphate (IP(3)) formation and mobilization of Ca(2+) from intracellular Ca(2+) stores. The loss of PLC activation was not the result of a decrease in EGF receptor or phospholipase C-gamma1 (PLCgamma1) protein levels, nor the result of a loss of tyrosine phosphorylation of these proteins, but was associated with a decrease in EGF-induced translocation of PLCgamma1 to the Triton-insoluble fraction, presumably reflecting binding to the actin cytoskeleton. Disruption of F-actin by treatment of cultured hepatocytes with cytochalasin D recovered the EGF-induced IP(3) formation and Ca(2+) mobilization to the same level and with the same dose-response relationship as was obtained in freshly isolated cells. Analysis of PLCgamma1 colocalization with F-actin by confocal microscopy showed that PLCgamma1 was mostly distributed diffusely in the cytosol, both in freshly plated cells and in cells in culture for 24 hours, despite marked differences in actin structures. EGF stimulation caused a modest redistribution of PLCgamma1 and a detectable increase in colocalization with cortical actin structures in freshly plated cells or in cytochalasin D-treated cells, but in cells that had been maintained and spread in culture only a limited PLCgamma1 relocation was detected to specific actin-structure associated with lamellipodia and membrane ruffles. We conclude that actin cytoskeletal structures can exert negative control over PLCgamma1 activity in hepatocytes and the interaction of the enzyme with specific actin structures dissociates PLCgamma1 tyrosine phosphorylation from activation of its enzymatic activity.
Collapse
Affiliation(s)
- S Nojiri
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | | |
Collapse
|
43
|
Doong H, Price J, Kim YS, Gasbarre C, Probst J, Liotta LA, Blanchette J, Rizzo K, Kohn E. CAIR-1/BAG-3 forms an EGF-regulated ternary complex with phospholipase C-gamma and Hsp70/Hsc70. Oncogene 2000; 19:4385-95. [PMID: 10980614 DOI: 10.1038/sj.onc.1203797] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CAIR-1/BAG-3 forms an EGF-regulated ternary complex with Hsp70/Hsc70 and latent phospholipase C-gamma (PLC-gamma). The expression of CAIR-1, CAI stressed-1, was induced in A2058 human melanoma cells by continuous exposure to CAI, an inhibitor of nonvoltage-gated calcium influx. CAIR-1 sequence is identical, save 2 amino acids, to BAG-3 also cloned recently as Bis, a member of the bcl-2-associated athanogene family. We show that CAIR-1/BAG-3 binds to Hsp70/Hsc70 in intact cells and this binding is increased by short term exposure to CAI (P<0.007). CAIR-1/BAG-3 is phosphorylated in vivo in the absence of stimulation. Basal phosphorylation is inhibited by treatment with d-erythrosphingosine (d-ES), a broad inhibitor of the protein kinase C family. CAIR-1/BAG-3 contains several PXXP SH3 binding domains leading to the hypothesis that it is a partner protein of phospholipase C-gamma. PLC-gamma is bound to CAIR-1/BAG-3 in unstimulated cells. It is increased by CAI or d-ES (P=0.05) treatment, and abrogated by EGF (r2=0.99); d-ES treatment blocks the EGF-mediated dissociation. We show that CAIR-1/BAG-3 binds to PLC-gamma and Hsp70/Hsc70 through separate and distinct domains. Hsp70/Hsc70 binds to the BAG domain of BAGs-1 and -3. CAIR-1/BAG-3 from control and EGF-treated cell lysates bound selectively to the SH3 domain of PLC-gamma, but not its N-SH2 or C-SH2 domains. Confirming the SH3 interaction, PLC-gamma was pulled down by CAIR-1/BAG-3 PXXP-GST fusions, but GST-PXXP constructs confronted with lysates from EGF-treated cells did not bind PLC-gamma as was seen in intact cells. Hsp70/Hsc70 was brought down by the PLC-gamma SH3 construct equally from native and EGF-treated cells, but did not bind the PXXP construct under either condition. We propose that CAIR-1/BAG-3 may act as a multifunctional signaling protein linking the Hsp70/Hsc70 pathway with those necessary for activation of the EGF receptor tyrosine kinase signaling pathways.
Collapse
Affiliation(s)
- H Doong
- Molecular Signaling Section, Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Khoshyomn S, Lew S, DeMattia J, Singer EB, Penar PL. Brain tumor invasion rate measured in vitro does not correlate with Ki-67 expression. J Neurooncol 2000; 45:111-6. [PMID: 10778726 DOI: 10.1023/a:1006375316331] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The need for more accurate prediction of the biological behavior of brain tumors has lead to the use of immunohistochemical methods for assessment of proliferating cell nuclear antigens such as Ki-67. There is a variable association of glioma Ki-67 labeling index with patient survival. Brain invasion by individual tumor cells also defines biological aggressiveness, and can be assessed in vitro. Further, proliferation and migration seem to be mutually exclusive behaviors for a given cell at a point in time. We studied the relationship between Ki-67 labeling index and invasion rate in a group of 10 gliomas, and 2 meningiomas. Human tumor spheroids obtained from operative specimen were co-cultured with fetal rat brain aggregates, and invasion rate was measured by confocal microscopic observation. There was no correlation between two measures of invasion and Ki-67 labeling. This finding supports the dichotomous nature of glioma proliferation and invasion, and may in part explain the limited usefulness of proliferation marker labeling.
Collapse
Affiliation(s)
- S Khoshyomn
- Department of Surgery, University of Vermont College of Medicine, Burlington, USA
| | | | | | | | | |
Collapse
|
45
|
Morimoto AM, Tomlinson MG, Nakatani K, Bolen JB, Roth RA, Herbst R. The MMAC1 tumor suppressor phosphatase inhibits phospholipase C and integrin-linked kinase activity. Oncogene 2000; 19:200-9. [PMID: 10644997 DOI: 10.1038/sj.onc.1203288] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Loss of the tumor suppressor MMAC1 has been shown to be involved in breast, prostate and brain cancer. Consistent with its identification as a tumor suppressor, expression of MMAC1 has been demonstrated to reduce cell proliferation, tumorigenicity, and motility as well as affect cell-cell and cell-matrix interactions of malignant human glioma cells. Subsequently, MMAC1 was shown to have lipid phosphatase activity towards PIP3 and protein phosphatase activity against focal adhesion kinase (FAK). The lipid phosphatase activity of MMAC1 results in decreased activation of the PIP3-dependent, anti-apoptotic kinase, AKT. It is thought that this inhibition of AKT culminates with reduced glioma cell proliferation. In contrast, MMAC1's effects on cell motility, cell - cell and cell - matrix interactions are thought to be due to its protein phosphatase activity towards FAK. However, recent studies suggest that the lipid phosphatase activity of MMAC1 correlates with its ability to be a tumor suppressor. The high rate of mutation of MMAC1 in late stage metastatic tumors suggests that effects of MMAC1 on motility, cell - cell and cell - matrix interactions are due to its tumor suppressor activity. Therefore the lipid phosphatase activity of MMAC1 may affect PIP3 dependent signaling pathways and result in reduced motility and altered cell - cell and cell - matrix interactions. We demonstrate here that expression of MMAC1 in human glioma cells reduced intracellular levels of inositol trisphosphate and inhibited extracellular Ca2+ influx, suggesting that MMAC1 affects the phospholipase C signaling pathway. In addition, we show that MMAC1 expression inhibits integrin-linked kinase activity. Furthermore, we show that these effects require the catalytic activity of MMAC1. Our data thus provide a link of MMAC1 to PIP3 dependent signaling pathways that regulate cell - matrix and cell - cell interactions as well as motility. Lastly, we demonstrate that AKT3, an isoform of AKT highly expressed in the brain, is also a target for MMAC1 repression. These data suggest an important role for AKT3 in glioblastoma multiforme. We therefore propose that repression of multiple PIP3 dependent signaling pathways may be required for MMAC1 to act as a tumor suppressor.
Collapse
Affiliation(s)
- A M Morimoto
- Department of Cell Signaling, DNAX Research Institute, 901 California Ave, Palo Alto, California, CA 94304, USA
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
A ubiquitous signaling event in hormonal responses is the phospholipase C (PLC)-catalyzed hydrolysis of phosphatidylinositol 4, 5-bisphosphate to produce the metabolite second messenger molecules inositol 1,4,5-trisphosphate and diacylglycerol. The former provokes a transient increase in intracellular free Ca(2+), while the latter serves as a direct activator of protein kinase C. In tyrosine kinase-dependent signaling pathways this reaction is mediated by the PLC-gamma isozymes. These are direct substrates of many tyrosine kinases in a wide variety of cell types. The mechanism of PLC-gamma activation involves its association with and phosphorylation by receptor and non-receptor tyrosine kinases, as well as interaction with specialized adaptor molecules and, perhaps, other second messenger molecules. However, the biochemistry of PLC-gamma is at a more advanced state than a clear understanding of exactly how this signaling element functions in the generation of a mitogenic response.
Collapse
Affiliation(s)
- G Carpenter
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232-0146, USA.
| | | |
Collapse
|
47
|
Abstract
Cancer progression to the invasive and metastatic stage represents the most formidable barrier to successful treatment. To develop rational therapies, we must determine the molecular bases of these transitions. Cell motility is one of the defining characteristics of invasive tumors, enabling tumors to migrate into adjacent tissues or transmigrate limiting basement membranes and extracellular matrices. Invasive tumor cells have been demonstrated to present dysregulated cell motility in response to extracellular signals from growth factors and cytokines. Recent findings suggest that this growth factor receptor-mediated motility is one of the most common aberrations in tumor cells leading to invasiveness and represents a cellular behavior distinct from-adhesion-related haptokinetic and haptotactic migration. This review focuses on the emerging understanding of the biochemical and biophysical foundations of growth factor-induced cell motility and tumor cell invasiveness, and the implications for development of targeted agents, with particular emphasis on signaling from the epidermal growth factor (EGF) and hepatocyte growth factor (HGF) receptors, as these have most often been associated with tumor invasion. The nascent models highlight the roles of various intracellular signaling pathways including phospholipase C-gamma (PLC gamma), phosphatidylinositol (PI)3'-kinase, mitogen-activated protein (MAP) kinase, and actin cytoskeleton-related events. Development of novel agents against tumor invasion will require not only a detailed appreciation of the biochemical regulatory elements of motility but also a paradigm shift in our approach to and assessment of cancer therapy.
Collapse
Affiliation(s)
- A Wells
- Department of Pathology, University of Alabama at Birmingham, USA
| |
Collapse
|