1
|
Muilenburg KM, Isder CC, Radhakrishnan P, Batra SK, Ly QP, Carlson MA, Bouvet M, Hollingsworth MA, Mohs AM. Mucins as contrast agent targets for fluorescence-guided surgery of pancreatic cancer. Cancer Lett 2023; 561:216150. [PMID: 36997106 PMCID: PMC10150776 DOI: 10.1016/j.canlet.2023.216150] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/16/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023]
Abstract
Pancreatic cancer is difficult to resect due to its unique challenges, often leading to incomplete tumor resections. Fluorescence-guided surgery (FGS), also known as intraoperative molecular imaging and optical surgical navigation, is an intraoperative tool that can aid surgeons in complete tumor resection through an increased ability to detect the tumor. To target the tumor, FGS contrast agents rely on biomarkers aberrantly expressed in malignant tissue compared to normal tissue. These biomarkers allow clinicians to identify the tumor and its stage before surgical resection and provide a contrast agent target for intraoperative imaging. Mucins, a family of glycoproteins, are upregulated in malignant tissue compared to normal tissue. Therefore, these proteins may serve as biomarkers for surgical resection. Intraoperative imaging of mucin expression in pancreatic cancer can potentially increase the number of complete resections. While some mucins have been studied for FGS, the potential ability to function as a biomarker target extends to the entire mucin family. Therefore, mucins are attractive proteins to investigate more broadly as FGS biomarkers. This review summarizes the biomarker traits of mucins and their potential use in FGS for pancreatic cancer.
Collapse
Affiliation(s)
- Kathryn M Muilenburg
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA.
| | - Carly C Isder
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA.
| | - Prakash Radhakrishnan
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, S 45th St, Omaha, NE, 68198, USA.
| | - Quan P Ly
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Department of Surgery, University of Nebraska Medical Center, 983280 Nebraska Medical Center, Omaha, NE, 68198-3280, USA.
| | - Mark A Carlson
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Department of Surgery, University of Nebraska Medical Center, 983280 Nebraska Medical Center, Omaha, NE, 68198-3280, USA.
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA; VA San Diego Healthcare System, 3350 La Jolla Village Dr, San Diego, CA, 92161, USA.
| | - Michael A Hollingsworth
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA.
| | - Aaron M Mohs
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, S 45th St, Omaha, NE, 68198, USA.
| |
Collapse
|
2
|
Gautam SK, Khan P, Natarajan G, Atri P, Aithal A, Ganti AK, Batra SK, Nasser MW, Jain M. Mucins as Potential Biomarkers for Early Detection of Cancer. Cancers (Basel) 2023; 15:1640. [PMID: 36980526 PMCID: PMC10046558 DOI: 10.3390/cancers15061640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/10/2023] Open
Abstract
Early detection significantly correlates with improved survival in cancer patients. So far, a limited number of biomarkers have been validated to diagnose cancers at an early stage. Considering the leading cancer types that contribute to more than 50% of deaths in the USA, we discuss the ongoing endeavors toward early detection of lung, breast, ovarian, colon, prostate, liver, and pancreatic cancers to highlight the significance of mucin glycoproteins in cancer diagnosis. As mucin deregulation is one of the earliest events in most epithelial malignancies following oncogenic transformation, these high-molecular-weight glycoproteins are considered potential candidates for biomarker development. The diagnostic potential of mucins is mainly attributed to their deregulated expression, altered glycosylation, splicing, and ability to induce autoantibodies. Secretory and shed mucins are commonly detected in patients' sera, body fluids, and tumor biopsies. For instance, CA125, also called MUC16, is one of the biomarkers implemented for the diagnosis of ovarian cancer and is currently being investigated for other malignancies. Similarly, MUC5AC, a secretory mucin, is a potential biomarker for pancreatic cancer. Moreover, anti-mucin autoantibodies and mucin-packaged exosomes have opened new avenues of biomarker development for early cancer diagnosis. In this review, we discuss the diagnostic potential of mucins in epithelial cancers and provide evidence and a rationale for developing a mucin-based biomarker panel for early cancer detection.
Collapse
Affiliation(s)
- Shailendra K. Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gopalakrishnan Natarajan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Abhijit Aithal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Apar K. Ganti
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Division of Oncology-Hematology, Department of Internal Medicine, VA Nebraska Western Iowa Health Care System, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd W. Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
3
|
Whole Exome Sequencing Identifies Two Novel Mutations in a Patient with UC Associated with PSC and SSA. Can J Gastroenterol Hepatol 2021; 2021:9936932. [PMID: 34545326 PMCID: PMC8449715 DOI: 10.1155/2021/9936932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/24/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Patients diagnosed with ulcerative colitis (UC) associated with primary sclerosis cholangitis (PSC) and sessile serrated adenoma (SSA) are rare. The present study aimed to identify the potential causative gene mutation in a patient with UC associated with PSC and SSA. METHODS DNA was extracted from the blood sample and tissue sample of SSA, followed by the whole exome sequencing (WES) analysis. Bioinformatics analysis was utilized to predict the deleteriousness of the identified variants. Multiple sequence alignment and conserved protein domain analyses were performed using online software. Sanger sequencing was used to validate the identified variants. Expression and diagnostic analysis of identified mutated genes was performed in the GSE119600 dataset (peripheral blood samples of PSC and UC) and GSE43841 dataset (tumor samples of SSA). RESULTS In the present study, a total of 842 single nucleotide variants (SNVs) in 728 genes were identified in the blood sample. Two variants, integrin beta 4 (ITGB4) (c.C2503G; p.P835A) and a mucin 3A (MUC3A) (c.C1019T; p.P340L), were further analyzed. MUC3A was associated with inflammatory bowel disease. Sanger sequence in blood revealed that the ITGB4 mutation was fully cosegregated with the result of WES in the patient. Additionally, a variant, tumor protein p53 gene (TP53) (c.86delA; p.N29Tfs ∗ 15) was identified in the tissue sample of SSA. Compared to that in normal controls, ITGB4 was upregulated in both UC and PSC, MUC3A was, respectively, upregulated and downregulated in PSC and UC, and TP53 was downregulated in SSA. ITGB4 and TP53 had a potential diagnostic value for UC, PSC and SSA. CONCLUSIONS The present study demonstrated that the ITGB4 (c.C2503G; p.P835A) and MUC3A (c.C1019T; p.P340L) mutations may be the potential causative variants in a patient with UC associated with PSC and SSA. TP53 (c.86delA; p.N29Tfs ∗ 15) mutation may be associated with SSA in this patient.
Collapse
|
4
|
Lu X. Structure and functions of T-cell immunoglobulin-domain and mucin- domain protein 3 in cancer. Curr Med Chem 2021; 29:1851-1865. [PMID: 34365943 DOI: 10.2174/0929867328666210806120904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND T-cell immunoglobulin (Ig)-domain and mucin-domain (TIM) proteins represent a family of receptors expressed on T-cells that play essential cellular immunity roles. The TIM proteins span across the membrane belonging to type I transmembrane proteins. The N terminus contains an Ig-like V-type domain and a Ser/Thr-rich mucin stalk as a co-inhibitory receptor. The C-terminal tail oriented toward the cytosol predominantly mediates intracellular signaling. METHODS This review discusses the structural features and functions of TIM-3, specifically on its role in mediating immune responses in different cell types, and the rationale for TIM-3-targeted cancer immunotherapy. RESULTS TIM-3 has gained significant importance to be a potential biomarker in cancer immunotherapy. It has been shown that blockade with checkpoint inhibitors promotes anti-tumor immunity and inhibits tumor growth in several preclinical tumor models. CONCLUSION TIM-3 is an immune regulating molecule expressed on several cell types, including IFNγ-producing T-cells, FoxP3+ Treg cells, and innate immune cells. The roles of TIM-3 in immunosuppression support its merit as a target for cancer immunotherapy.
Collapse
Affiliation(s)
- Xinjie Lu
- The Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, SW3 6LR. United Kingdom
| |
Collapse
|
5
|
Sun Y, Sun X, You C, Ma S, Luo Y, Peng S, Tang F, Tian X, Wang F, Huang Z, Yu H, Xiao Y, Wang X, Zhang J, Gong Y, Xie C. MUC3A promotes non-small cell lung cancer progression via activating the NFκB pathway and attenuates radiosensitivity. Int J Biol Sci 2021; 17:2523-2536. [PMID: 34326691 PMCID: PMC8315024 DOI: 10.7150/ijbs.59430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/20/2021] [Indexed: 11/20/2022] Open
Abstract
Mucin 3A (MUC3A) is highly expressed in non-small cell lung cancer (NSCLC), but its functions and effects on clinical outcomes are not well understood. Tissue microarray of 92 NSCLC samples indicated that high levels of MUC3A were associated with poor prognosis, advanced staging, and low differentiation. MUC3A knockdown significantly suppressed NSCLC cell proliferation and induced G1/S accumulation via downregulating cell cycle checkpoints. MUC3A knockdown also inhibited tumor growth in vivo and had synergistic effects with radiation. MUC3A knockdown increased radiation-induced DNA double strain breaks and γ-H2AX phosphorylation in NSCLC cells. MUC3A downregulation inhibited the BRCA-1/RAD51 pathway and nucleus translocation of P53 and XCRR6, suggesting that MUC3A promoted DNA damage repair and attenuated radiation sensitivity. MUC3A knockdown also resulted in less nucleus translocation of RELA and P53 in vivo. Immunoprecipitation revealed that MUC3A interacted with RELA and activated the NFκB pathway via promoting RELA phosphorylation and interfering the binding of RELA to IκB. Our studies indicated that MUC3A was a potential oncogene and associated with unfavorable clinical outcomes. NSCLC patients with a high MUC3A level, who should be more frequent follow-up and might benefit less from radiotherapy.
Collapse
Affiliation(s)
- Yingming Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Radiation and Medical Oncology, Affiliated Sanming First Hospital of Fujian Medical University, Sanming, China
| | - Xiaoge Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Radiation Oncology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Chengcheng You
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Pathology, China Three Gorges University Medical College, Yichang, China
| | - Shijing Ma
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shan Peng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fang Tang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoli Tian
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Feng Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhengrong Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hongnv Yu
- Central Laboratory of Xinhua Hospital of Dalian University, Department of Medical Oncology, Xinhua Hospital of Dalian University, Dalian, China
| | - Yu Xiao
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoyong Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junhong Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Almasmoum H. The Roles of Transmembrane Mucins Located on Chromosome 7q22.1 in Colorectal Cancer. Cancer Manag Res 2021; 13:3271-3280. [PMID: 33883940 PMCID: PMC8053700 DOI: 10.2147/cmar.s299089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common types of cancers. It is associated with a poor prognosis and high mortality. The role of mucins (MUCs) in colon tumorigenesis is unclear, but it might be significant in the progression of malignancy. Some mucins, such as MUC1 and MUC13, act as oncogenes, whereas others, such as MUC2 and MUC6, are tumor suppressors. However, there are still mucins with unidentified roles in CRC. In this review, we discuss the reported roles of mucins in CRC. Moreover, we review the capability of the mucin family to serve as a sensitive and specific histopathological marker for the early diagnosis of CRC. Lastly, the role of mucin genes clustered on chromosome 7q22 in CRC and other cancers is also discussed.
Collapse
Affiliation(s)
- Hussain Almasmoum
- Laboratory Medicine Department, Faculty of Applied Medical Science, Umm Al-Qura University, Makkah, 7607, Saudi Arabia
| |
Collapse
|
7
|
Luo Y, Ma S, Sun Y, Peng S, Zeng Z, Han L, Li S, Sun W, Xu J, Tian X, Wang F, Wu Q, Xiao Y, Zhang J, Gong Y, Xie C. MUC3A induces PD-L1 and reduces tyrosine kinase inhibitors effects in EGFR-mutant non-small cell lung cancer. Int J Biol Sci 2021; 17:1671-1681. [PMID: 33994852 PMCID: PMC8120466 DOI: 10.7150/ijbs.57964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/30/2021] [Indexed: 12/31/2022] Open
Abstract
The immune checkpoint ligand programmed death-ligand 1 (PD-L1) and the transmembrane mucin (MUC) 3A are upregulated in non-small cell lung cancer (NSCLC), contributing to the aggressive pathogenesis and poor prognosis. Here, we report that knocking down the oncogenic MUC3A suppresses the PD-L1 expression in NSCLC cells. MUC3A is a potent regulator of epidermal growth factor receptor (EGFR) stability, and MUC3A deficiency downregulates the activation of the PI3K/Akt and MAPK pathways, which subsequently reduces the expression of PD-L1. Furthermore, knockdown of MUC3A and tyrosine kinase inhibitors (TKIs) in EGFR-mutant NSCLC cells play a synergistic effect on inhibited proliferation and promoted apoptosis in vitro. In the BALB/c nude mice xenograft model, MUC3A deficiency enhances EGFR-mutated NSCLC sensitivity to TKIs. Our study shows that transmembrane mucin MUC3A induces PD-L1, thereby promoting immune escape in NSCLC, while downregulation of MUC3A enhances TKIs effects in EGFR-mutant NSCLC. These findings offer insights into the design of novel combination treatment for NSCLC.
Collapse
Affiliation(s)
- Yuan Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shijing Ma
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingming Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shan Peng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zihang Zeng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Linzhi Han
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuying Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenjie Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jieyu Xu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoli Tian
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Feng Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junhong Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Wang S, You L, Dai M, Zhao Y. Quantitative assessment of the diagnostic role of mucin family members in pancreatic cancer: a meta-analysis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:192. [PMID: 33708819 PMCID: PMC7940915 DOI: 10.21037/atm-20-5606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background The use of mucins (MUC) as specific biomarkers for various malignancies has recently emerged. MUC1, MUC4, MUC5AC, and MUC16 can be detected at different stages of pancreatic cancer (PC), and can be valuable for indicating the initiation and progression of this disease. However, the diagnostic significance of the mucin family in patients with PC remains disputed. Herein, we assessed the diagnostic accuracy of mucins in PC using a meta-analysis. Methods We searched the PubMed, Cochrane Library, Institute for Scientific Information (ISI) Web of Science, Embase, and Chinese databases from their date of inception to June 1, 2020 to identify studies assessing the diagnostic performance of mucins in PC. The estimations of diagnostic indicators in selected studies were extracted for further analysis by Meta-DiSc software. Publication bias was assessed using Deeks’ funnel plot asymmetry test. Results Our meta-analysis included 34 studies. The pooled accuracy indicators of MUC1 in PC including the sensitivity, specificity, diagnostic odds ratio (DOR), positive likelihood ratio (PLR), and negative likelihood ratio (NLR) (with 95% confidence intervals) were 0.84 (0.82–0.86), 0.60 (0.56–0.64), 18.37 (9.18–36.78), 2.62 (1.79–3.86), and 0.22 (0.15–0.33), respectively. The area under the summary receiver operating characteristic (SROC) curve was 0.8875 and the Q index was 0.8181. Quantitative random-effects meta-analysis of MUC4 in PC using the summary (ROC) curve model revealed a pooled sensitivity of 0.86 (95% confidence interval, 0.82–0.89) and specificity of 0.88 (95% confidence interval, 0.85–0.91). In addition, the meta-analysis of MUC5AC in PC diagnosis also showed a high sensitivity and specificity of 0.71 (95% confidence interval, 0.65–0.76) and 0.60 (95% confidence interval, 0.53–0.66), respectively. Regarding MUC16, the area under the summary ROC curve and Q index were 0.9185 and 0.8516, respectively. Conclusions In summary, our results suggested a good diagnostic accuracy of several crucial mucins in PC. Mucins may serve as optional indicators in PC examination, and further research is warranted to investigate the role of mucins as potential clinical biomarkers.
Collapse
Affiliation(s)
- Shunda Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Menghua Dai
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Wang S, You L, Dai M, Zhao Y. Mucins in pancreatic cancer: A well-established but promising family for diagnosis, prognosis and therapy. J Cell Mol Med 2020; 24:10279-10289. [PMID: 32745356 PMCID: PMC7521221 DOI: 10.1111/jcmm.15684] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/12/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
Mucins are a family of multifunctional glycoproteins that mostly line the surface of epithelial cells in the gastrointestinal tract and exert pivotal roles in gut lubrication and protection. Pancreatic cancer is a lethal disease with poor early diagnosis, limited therapeutic effects, and high numbers of cancer‐related deaths. In this review, we introduce the expression profiles of mucins in the normal pancreas, pancreatic precursor neoplasia and pancreatic cancer. Mucins in the pancreas contribute to biological processes such as the protection, lubrication and moisturization of epithelial tissues. They also participate in the carcinogenesis of pancreatic cancer and are used as diagnostic biomarkers and therapeutic targets. Herein, we discuss the important roles of mucins that lead to the lethality of pancreatic adenocarcinoma, particularly MUC1, MUC4, MUC5AC and MUC16 in disease progression, and present a comprehensive analysis of the clinical application of mucins and their promising roles in cancer treatment to gain a better understanding of the role of mucins in pancreatic cancer.
Collapse
Affiliation(s)
- Shunda Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Menghua Dai
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Wiktorowicz M, Mlynarski D, Pach R, Tomaszewska R, Kulig J, Richter P, Sierzega M. Rationale and feasibility of mucin expression profiling by qRT-PCR as diagnostic biomarkers in cytology specimens of pancreatic cancer. Pancreatology 2018; 18:977-982. [PMID: 30268674 DOI: 10.1016/j.pan.2018.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 09/18/2018] [Accepted: 09/24/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Aberrantly expressed mucin glycoproteins (MUC) play important roles in pancreatic ductal adenocarcinoma (PDAC), yet their use as a diagnostic aid in fine-needle aspiration biopsy (FNAB) is poorly documented. The aim of this study was to investigate the rationale and feasibility of mucin (MUC1, MUC2, MUC3, MUC4, MUC5AC, and MUC6) expression profiling by RT-PCR for diagnostic applications in cytology. METHODS Mucin expression was examined by RT-PCR and immunohistochemistry in specimens resected from patients with pancreatic (n = 101), ampullary (n = 23), and common bile duct (n = 10) cancers and 33 with chronic pancreatitis. Furthermore, mucin profiling by RT-PCR was prospectively compared in surgical and biopsy specimens of 40 patients with pancreatic solid tumours qualified for FNAB prior to surgery. RESULTS A logistic regression model to distinguish PDAC from chronic pancreatitis using RT-PCR profiling included MUC3, MUC5AC, and MUC6. The same set of mucins differentiated ampullary and bile duct cancers from chronic pancreatitis. AUCs for the ROC curves derived from the two models were 0.95 (95%CI 0.87-0.99) and 0.92 (95%CI 0.81-0.98), respectively. The corresponding positive likelihood ratios were 6.02 and 5.97, while the negative likelihood ratios were 0.10 and 0.12. AUCs of ROC curves obtained by RT-PCR and immunohistochemistry demonstrated that both analytical methods were comparable. Surgical and cytological samples showed significantly correlated values of ΔCt for individual mucins with the overall Pearson's correlation coefficient r = 0.841 (P = 0.001). CONCLUSIONS Mucin expression profiling of pancreatic cancer with RT-PCR is feasible and may be a valuable help in discriminating malignant lesions from chronic pancreatitis in FNAB cytology.
Collapse
Affiliation(s)
- Milosz Wiktorowicz
- First Department of Surgery, Jagiellonian University Medical College, Krakow, Poland
| | - Damian Mlynarski
- Department of Pathology, Jagiellonian University Medical College, Krakow, Poland
| | - Radoslaw Pach
- First Department of Surgery, Jagiellonian University Medical College, Krakow, Poland
| | - Romana Tomaszewska
- Department of Pathology, Jagiellonian University Medical College, Krakow, Poland
| | - Jan Kulig
- First Department of Surgery, Jagiellonian University Medical College, Krakow, Poland
| | - Piotr Richter
- First Department of Surgery, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Sierzega
- First Department of Surgery, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
11
|
Josic D, Martinovic T, Pavelic K. Glycosylation and metastases. Electrophoresis 2018; 40:140-150. [PMID: 30246896 DOI: 10.1002/elps.201800238] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 12/23/2022]
Abstract
The change of cellular glycosylation is one of the key events in malignant transformation and neoplastic progression, and tumor-related glycosylation alterations are promising targets in both tumor diagnosis and therapy. Both malignant transformation and neoplastic progression are the consequence of gene expression alterations and alterations in protein expression. Micro environmental factors such as extracellular matrix (ECM) also play an important role in their growth and metastasis. Tumor-associated glycans are important biomarker candidates for cancer diagnosis and prognosis, and analytical methods for their detection were developed recently. Glycoproteomics that use mass spectrometry for identification of cancer antigens and structural analysis of glycans play a key role in the investigation of changes of glycosylation during malignant transformation and tumor development and metastasis. Deep understanding of glycan remodeling in cancer and the role of glycosyltransferases that are involved in this process will require a detailed profiling of glycosylation patterns of tumor cells, and corresponding analytical methods for their detection were developed.
Collapse
Affiliation(s)
- Djuro Josic
- Department of Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA.,Department of Biotechnology, Centre for High-throughput technologies, University of Rijeka, Rijeka, Croatia.,University Juraj Dobrila, Pula, Croatia
| | - Tamara Martinovic
- Department of Biotechnology, Centre for High-throughput technologies, University of Rijeka, Rijeka, Croatia
| | - Kresimir Pavelic
- Department of Biotechnology, Centre for High-throughput technologies, University of Rijeka, Rijeka, Croatia.,University Juraj Dobrila, Pula, Croatia
| |
Collapse
|
12
|
Increased expression of MUC3A is associated with poor prognosis in localized clear-cell renal cell carcinoma. Oncotarget 2018; 7:50017-50026. [PMID: 27374181 PMCID: PMC5226565 DOI: 10.18632/oncotarget.10312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/13/2016] [Indexed: 01/04/2023] Open
Abstract
MUC3A is a membrane-associated mucin that recent evidence reveals the role of MUC3A in pathogenesis and progression of cancers. To evaluate the association between MUC3A expression with overall survival (OS) and recurrence-free survival (RFS) in patients with localized clear-cell renal cell carcinoma (ccRCC), we retrospectively detected MUC3A expression in samples of 384 postoperative localized ccRCC patients by immunohistochemistry. Median follow-up was 73 months (range: 42 – 74 mo). Overall, 41 patients died, 47 experienced recurrence. High MUC3A expression occurred in 45.8% of localized ccRCC cases, which was significantly associated with high pT-stage, high Fuhrman grade, high frequency of necrosis and LVI, and increased risk of recurrence and death (Logrank test P < 0.001 and P < 0.001, respectively). By multivariate analysis, MUC3A expression was confirmed as an adverse independent prognostic factor for OS and RFS. The prognostic accuracy of UISS, SSIGN, Leibovich models was significantly increased when MUC3A expression was integrated. Meanwhile, MUC3A was enrolled into a newly built nomogram with other factors selected by multivariate analysis. Calibration curves revealed optimal consistency between observations and prognosis. In conclusion, high MUC3A expression is an adverse prognostic biomarker for OS and RFS in postoperative localized ccRCC patients.
Collapse
|
13
|
Dhanisha SS, Guruvayoorappan C, Drishya S, Abeesh P. Mucins: Structural diversity, biosynthesis, its role in pathogenesis and as possible therapeutic targets. Crit Rev Oncol Hematol 2017; 122:98-122. [PMID: 29458795 DOI: 10.1016/j.critrevonc.2017.12.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/28/2017] [Accepted: 12/12/2017] [Indexed: 12/25/2022] Open
Abstract
Mucins are the main structural components of mucus that create a selective protective barrier for epithelial surface and also execute wide range of other physiological functions. Mucins can be classified into two types, namely secreted mucins and membrane bounded mucins. Alterations in mucin expression or glycosylation and mislocalization have been seen in various types of pathological conditions such as cancers, inflammatory bowel disease and ocular disease, which highlight the importance of mucin in maintaining homeostasis. Hence mucins can be used as attractive target for therapeutic intervention. In this review, we discuss in detail about the structural diversity of mucins; their biosynthesis; its role in pathogenesis; regulation and as possible therapeutic targets.
Collapse
Affiliation(s)
- Suresh Sulekha Dhanisha
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram 695011, Kerala, India
| | - Chandrasekharan Guruvayoorappan
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram 695011, Kerala, India.
| | - Sudarsanan Drishya
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram 695011, Kerala, India
| | - Prathapan Abeesh
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Campus, Thiruvananthapuram 695011, Kerala, India
| |
Collapse
|
14
|
Bae JS, Lee J, Park Y, Park K, Kim JR, Cho DH, Jang KY, Park SH. Attenuation of MUC4 potentiates the anticancer activity of auranofin via regulation of the Her2/Akt/FOXO3 pathway in ovarian cancer cells. Oncol Rep 2017; 38:2417-2425. [PMID: 28765909 DOI: 10.3892/or.2017.5853] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 07/17/2017] [Indexed: 11/06/2022] Open
Abstract
Previously, we reported that auranofin induces apoptosis in SKOV3 cells via regulation of the IKKβ/FOXO3 pathway. In the present study, we reveal that the anticancer activity of auranofin in SKOV3 cells could be enhanced by the attenuation of MUC4 through the regulation of the Her2/Akt/FOXO3 pathway. Compared to the control-siRNA, siRNA transfection against MUC4 into SKOV3 cells accelerated the protein degradation of Her2. Under the same conditions, the expression level of phosphorylated Akt was also downregulated leading to an increase of FOXO3 in the nucleus. Notably, auranofin treatment in SKOV3 cells also resulted in the downregulation of the expression levels of both Her2 and phosphorylated Akt. Thus, Her2 was identified as the common molecular target protein by siRNA transfection against MUC4. Western blot analysis of total and nuclear fraction lysates from SKOV3 cells revealed that attenuation of MUC4 combined with auranofin treatment in SKOV3 cells synergistically activated FOXO3 translocation from the cytoplasm to the nucleus through the regulation of the Her2/Akt/FOXO3 pathway. Attenuation of MUC4 by siRNA transfection potentiated the antitumor effect of auranofin which was examined by performing in vitro assays such as WST-1, cell counting, colony formation, TUNEL and Annexin V staining. In addition, western blot analysis of the apoptosis‑related proteins such as PARP1, caspase-3, Bim extra large (EL), Bax and Bcl2 revealed that the attenuation of MUC4 by siRNA transfection potentiates the pro-apoptotic activity of auranofin in SKOV3 cells. Collectively, auranofin could regulate the Her2/Akt/FOXO3 signaling pathway in SKOV3 cells and be used as a potential antitumor agent considering the expression of MUC4 in ovarian cancer patients.
Collapse
Affiliation(s)
- Jun Sang Bae
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Jongsung Lee
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yoonkook Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| | - Kyungmoon Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| | - Jung Ryul Kim
- Department of Orthopaedic Surgery, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Dong Hyu Cho
- Department of Obstetrics and Gynecology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University- Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Kyu Yun Jang
- Department of Pathology, Chonbuk National University Medical School, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| |
Collapse
|
15
|
Mohamed M, Fisher C, Thway K. Low-grade fibromyxoid sarcoma: Clinical, morphologic and genetic features. Ann Diagn Pathol 2017. [DOI: 10.1016/j.anndiagpath.2017.04.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Sleightholm RL, Neilsen BK, Li J, Steele MM, Singh RK, Hollingsworth MA, Oupicky D. Emerging roles of the CXCL12/CXCR4 axis in pancreatic cancer progression and therapy. Pharmacol Ther 2017; 179:158-170. [PMID: 28549596 DOI: 10.1016/j.pharmthera.2017.05.012] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemokine networks regulate a variety of cellular, physiological, and immune processes. These normal functions can become appropriated by cancer cells to facilitate a more hospitable niche for aberrant cells by enhancing growth, proliferation, and metastasis. This is especially true in pancreatic cancer, where chemokine signaling is a vital component in the development of the supportive tumor microenvironment and the signaling between the cancer cells and surrounding stromal cells. Although expression patterns vary among cancer types, the chemokine receptor CXCR4 has been implicated in nearly every major malignancy and plays a prominent role in pancreatic cancer development and progression. This receptor, in conjunction with its primary chemokine ligand CXCL12, promotes pancreatic cancer development, invasion, and metastasis through the management of the tumor microenvironment via complex crosstalk with other pathways. Thus, CXCR4 likely contributes to the poor prognoses observed in patients afflicted with this malignancy. Recent exploration of combination therapies with CXCR4 antagonists have demonstrated improved outcomes, and abolishing the contribution of this pathway may prove crucial to effectively treat pancreatic cancer at both the primary tumor and metastases.
Collapse
Affiliation(s)
- Richard L Sleightholm
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA
| | - Beth K Neilsen
- Eppley Institute, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE, USA
| | - Jing Li
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA
| | - Maria M Steele
- Eppley Institute, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE, USA
| | - Rakesh K Singh
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, USA
| | - Michael A Hollingsworth
- Eppley Institute, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, USA
| | - David Oupicky
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
17
|
Abstract
Pancreatic cancer (PC) behaves very differently in comparison with other malignancies. Its incidence has been increasing continuously; mortality has not decreased, the diagnosis is frequently late, radical surgery is performed only in 15-20% of patients, and chemotherapy is only palliative. PC occurs in three different forms. Sporadic PC accounts for 90% of all PCs. Its most frequent form is the pancreatic ductal adenocarcinoma. The remaining 10% constitute two minority groups: familial PC (7%) and PC as a manifestation of a genetic cancer syndrome (3%). PCs are preceded by a precancerous lesion (precursor). At present, six different precursors are known. They have different histomorphological characteristics and malignant potential. The recognition and correct interpretation of individual precursors influences adequate clinical decision-making. The publication surveys the present knowledge of individual precursors and their role in the early pancreatic carcinogenesis.
Collapse
|
18
|
Pan S, Brentnall TA, Chen R. Glycoproteins and glycoproteomics in pancreatic cancer. World J Gastroenterol 2016; 22:9288-9299. [PMID: 27895417 PMCID: PMC5107693 DOI: 10.3748/wjg.v22.i42.9288] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/23/2016] [Accepted: 09/14/2016] [Indexed: 02/06/2023] Open
Abstract
Aberrations in protein glycosylation and polysaccharides play a pivotal role in pancreatic tumorigenesis, influencing cancer progression, metastasis, immuno-response and chemoresistance. Abnormal expression in sugar moieties can impact the function of various glycoproteins, including mucins, surface receptors, adhesive proteins, proteoglycans, as well as their effectors and binding ligands, resulting in an increase in pancreatic cancer invasiveness and a cancer-favored microenvironment. Recent advance in glycoproteomics, glycomics and other chemical biology techniques have been employed to better understand the complex mechanism of glycosylation events and how they orchestrate molecular activities in genomics, proteomics and metabolomics implicated in pancreatic adenocarcinoma. A variety of strategies have been demonstrated targeting protein glycosylation and polysaccharides for diagnostic and therapeutic development.
Collapse
|
19
|
Sierzega M, Młynarski D, Tomaszewska R, Kulig J. Semiquantitative immunohistochemistry for mucin (MUC1, MUC2, MUC3, MUC4, MUC5AC, and MUC6) profiling of pancreatic ductal cell adenocarcinoma improves diagnostic and prognostic performance. Histopathology 2016; 69:582-91. [PMID: 27165582 DOI: 10.1111/his.12994] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/06/2016] [Indexed: 02/04/2023]
Abstract
AIMS Mucin (MUC) glycoproteins are involved in various steps of the carcinogenesis and progression of human malignancies. The aim of this study was to verify whether semiquantitative evaluation of MUC staining by immunohistochemistry may help to differentiate pancreatic ductal cell adenocarcinoma (PDAC) from chronic pancreatitis and normal pancreas. METHODS AND RESULTS Mucin expression was examined by immunohistochemistry in surgical specimens resected from 101 patients with PDAC and 33 with chronic pancreatitis, and in 40 normal pancreatic tissue specimens. A quickscore (QS, range 0-300) was calculated by multiplying staining intensity by the percentage of positive cells. A diagnostic model was developed for MUC QS (MUC1, MUC2, MUC3, MUC4, MUC5AC, and MUC6), based on a receiver operating characteristic (ROC) curve and logistic regression analysis. Median QS values for MUC1 and MUC5AC were significantly higher for PDAC, whereas patients with non-malignant tissues had higher values for MUC3 and MUC6. The area under the curve for the ROC curve derived from the diagnostic model including MUC3, MUC5AC and MUC6 was 0.96 [95% confidence interval (CI) 0.91-0.98], with 85% sensitivity and 94% specificity. Median QS values for MUC2 were significantly higher in patients with less advanced tumours, whereas venous invasion was associated with a lower QS for MUC6. Moreover, multivariate survival analysis revealed that low MUC6 expression was a negative prognostic factor, with a hazard ratio of 1.73 (95% CI 1.07-2.81). CONCLUSIONS The three-MUC diagnostic model (MUC3, MUC5AC, and MUC6) showed an excellent ability to discriminate pancreatic cancer from non-malignant tissues, and yielded information that may prove useful for the development of clinical applications.
Collapse
Affiliation(s)
- Marek Sierzega
- First Department of Surgery, Jagiellonian University Medical College, Krakow, Poland.
| | - Damian Młynarski
- Department of Pathology, Jagiellonian University Medical College, Krakow, Poland
| | - Romana Tomaszewska
- Department of Pathology, Jagiellonian University Medical College, Krakow, Poland
| | - Jan Kulig
- First Department of Surgery, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
20
|
Wang L, Zhi X, Zhu Y, Zhang Q, Wang W, Li Z, Tang J, Wang J, Wei S, Li B, Zhou J, Jiang J, Yang L, Xu H, Xu Z. MUC4-promoted neural invasion is mediated by the axon guidance factor Netrin-1 in PDAC. Oncotarget 2016; 6:33805-22. [PMID: 26393880 PMCID: PMC4741804 DOI: 10.18632/oncotarget.5668] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/26/2015] [Indexed: 12/19/2022] Open
Abstract
Neuralinvasion (NI) is an important oncological feature of pancreatic ductal adenocarcinoma (PDAC). However, the underlying mechanism of NI in PDAC remains unclear. In this study, we found that MUC4 was overexpressed in PDAC tissues and high expression of MUC4 indicated a higher NI incidencethan low expression. In vitro, MUC4 knockdown inhibited the migration and invasion of PDAC cells and impaired the migration of PDAC cells along nerve in dorsal root ganglia (DRG)-PDAC cell co-culture assay. In vivo, MUC4 knockdown suppressed the NI of PDAC cells in a murine NI model. Mechanistically, our data revealed that MUC4 silencing resulted in decreased netrin-1 expression and re-expression of netrin-1 in MUC4-silenced cells rescued the capability of NI. Furthermore, we identified that decreased netrin-1 expression was owed to the downregulation of HER2/AKT/NF-κB pathway in MUC4-silenced cells. Additionally, MUC4 knockdown also resulted in the downregulation of pFAK, pSrc, pJNK and MMP9. Taken together, our findings revealed a novelrole of MUC4 in potentiating NI via netrin-1 through the HER2/AKT/NF-κBpathway in PDAC.
Collapse
Affiliation(s)
- Linjun Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Xiaofei Zhi
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, Jiangsu, P.R. China
| | - Yi Zhu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Qun Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Weizhi Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Zheng Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Jie Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Jiwei Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Song Wei
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Bowen Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Jianping Zhou
- Department of Gastrointestinal Surgery, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, P.R. China
| | - Jianguo Jiang
- Department of Gastrointestinal Surgery, Taizhou People's Hospital, Taizhou, Jiangsu, P.R. China
| | - Li Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, P.R. China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
21
|
Rodriguez SA, Impey SD, Pelz C, Enestvedt B, Bakis G, Owens M, Morgan TK. RNA sequencing distinguishes benign from malignant pancreatic lesions sampled by EUS-guided FNA. Gastrointest Endosc 2016; 84:252-8. [PMID: 26808815 DOI: 10.1016/j.gie.2016.01.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/14/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS EUS-guided FNA (EUS-FNA) is the primary method used to obtain pancreatic tissue for preoperative diagnosis. Accumulating evidence suggests diagnostic and prognostic information may be obtained by gene-expression profiling of these biopsy specimens. RNA sequencing (RNAseq) is a newer method of gene-expression profiling, but published data are scant on the use of this method on pancreas tissue obtained via EUS-FNA. The aim of this study was to determine whether RNAseq of EUS-FNA biopsy samples of undiagnosed pancreatic masses can reliably discriminate between benign and malignant tissue. METHODS In this prospective study, consenting adults presented to 2 tertiary care hospitals for EUS of suspected pancreatic mass. Tissue was submitted for RNAseq. The results were compared with cytologic diagnosis, surgical pathology diagnosis, or benign clinical follow-up of at least 1 year. RESULTS Forty-eight patients with solid pancreatic mass lesions were enrolled. Nine samples were excluded because of inadequate RNA and 3 because of final pathologic diagnosis of neuroendocrine tumor. Data from the first 13 patients were used to construct a linear classifier, and this was tested on the final 23 patients (15 malignant and 8 benign lesions). RNAseq of EUS-FNA biopsy samples distinguishes ductal adenocarcinoma from benign pancreatic solid masses with a sensitivity of .87 (range, .58-.98) and specificity of .75 (range, .35-.96). CONCLUSIONS This proof-of-principle study suggests RNAseq of EUS-FNA samples can reliably detect adenocarcinoma and may provide a new method to evaluate more diagnostically challenging pancreatic lesions.
Collapse
Affiliation(s)
- Sarah A Rodriguez
- Division of Gastroenterology, Oregon Health & Science University, Portland, Oregon, USA; The Oregon Clinic Gastroenterology, Portland, Oregon, USA
| | - Soren D Impey
- Oregon Stem Cell Center, Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA
| | - Carl Pelz
- Oregon Stem Cell Center, Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA
| | - Brintha Enestvedt
- Division of Gastroenterology, Oregon Health & Science University, Portland, Oregon, USA
| | - Gennadiy Bakis
- Division of Gastroenterology, Oregon Health & Science University, Portland, Oregon, USA
| | - Michael Owens
- The Oregon Clinic Gastroenterology, Portland, Oregon, USA
| | - Terry K Morgan
- Department of Pathology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
22
|
Shea DJ, Wirtz D, Stebe KJ, Konstantopoulos K. Distinct kinetic and mechanical properties govern mucin 16- and podocalyxin-mediated tumor cell adhesion to E- and L-selectin in shear flow. Oncotarget 2016; 6:24842-55. [PMID: 26329844 PMCID: PMC4694797 DOI: 10.18632/oncotarget.4704] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/16/2015] [Indexed: 11/25/2022] Open
Abstract
Selectin-mediated tumor cell tethering to host cells, such as vascular endothelial cells, is a critical step in the process of cancer metastasis. We recently identified sialofucosylated mucin16 (MUC16) and podocalyxin (PODXL) as the major functional E- and L-selectin ligands expressed on the surface of metastatic pancreatic cancer cells. While the biophysics of leukocyte binding to selectins has been well studied, little is known about the mechanics of selectin-mediated adhesion pertinent to cancer metastasis. We thus sought to evaluate the critical parameters of selectin-mediated pancreatic tumor cell tethering and rolling. Using force spectroscopy, we characterized the binding interactions of MUC16 and PODXL to E- and L-selectin at the single-molecule level. To further analyze the response of these molecular interactions under physiologically relevant regimes, we used a microfluidic assay in conjunction with a mathematical model to study the biophysics of selectin-ligand binding as a function of fluid shear stress. We demonstrate that both MUC16 and PODXL-E-selectin-mediated interactions are mechanically stronger than like L-selectin interactions at the single-molecule level, and display a higher binding frequency at all contact times. The single-molecule kinetic and micromechanical properties of selectin-ligand bonds, along with the number of receptor-ligand bonds needed to initiate tethering, regulate the average velocity of ligand-coated microspheres rolling on selectin-coated surfaces in shear flow. Understanding the biophysics of selectin-ligand bonds and their responses to physiologically relevant shear stresses is vital for developing diagnostic assays and/or preventing the metastatic spread of tumor cells by interfering with selectin-mediated adhesion.
Collapse
Affiliation(s)
- Daniel J Shea
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, USA.,Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, USA.,Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, Maryland, USA.,Department of Oncology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Kathleen J Stebe
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, USA.,Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, USA.,Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, Maryland, USA.,Department of Oncology, The Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Shibahara H, Higashi M, Yokoyama S, Rousseau K, Kitazono I, Osako M, Shirahama H, Tashiro Y, Kurumiya Y, Narita M, Kuze S, Hasagawa H, Kato T, Kubota H, Suzuki H, Arai T, Sakai Y, Yuasa N, Fujino M, Kondo S, Okamoto Y, Yamamoto T, Hiromatsu T, Sasaki E, Shirai K, Kawai S, Hattori K, Tsuji H, Okochi O, Sakamoto M, Kondo A, Konishi N, Batra SK, Yonezawa S. A comprehensive expression analysis of mucins in appendiceal carcinoma in a multicenter study: MUC3 is a novel prognostic factor. PLoS One 2014; 9:e115613. [PMID: 25551773 PMCID: PMC4281150 DOI: 10.1371/journal.pone.0115613] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 11/28/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Mucins are implicated in survival in various cancers, but there have been no report addressed on survival in appendiceal carcinoma, an uncommon disease with different clinical and pathological features from those of other colon cancers. We aimed to investigate the clinical implications of expression of mucins in appendiceal carcinoma. METHODS Expression profiles of MUC1, MUC2, MUC3, MUC4, MUC5AC, MUC6, MUC16 and MUC17 in cancer tissue were examined by immunohistochemistry in 108 cases of surgically resected appendiceal carcinoma. RESULTS The following relationships of mucins with clinicopathologic factors were identified: MUC1 with positive lymphatic invasion (p = 0.036); MUC2 with histological type (mucinous carcinoma, p<0.001), superficial invasion depth (p = 0.007), negative venous invasion (p = 0.003), and curative resection (p = 0.019); MUC3 with non-curative resection (p = 0.017); MUC5AC with histological type (mucinous carcinoma, p = 0.002), negative lymphatic invasion (p = 0.021), and negative venous invasion (p = 0.022); and MUC16 with positive lymph node metastasis (p = 0.035), positive venous invasion (p<0.05), and non-curative resection (p = 0.035). A poor prognosis was related to positive lymph node metastasis (p = 0.04), positive lymphatic invasion (p = 0.02), positive venous invasion (p<0.001), non-curative resection (p<0.001), and positive expression of MUC3 (p = 0.004). In multivariate analysis, positive venous invasion (HR: 6.93, 95% CI: 1.93-24.96, p = 0.003), non-curative resection (HR: 10.19, 95% CI: 3.05-34.07, p<0.001) and positive MUC3 expression (HR: 3.37, 95% CI: 1.13-10.03, p = 0.03) were identified as significant independent prognostic factors in patients with appendiceal carcinoma. CONCLUSIONS Expression of MUC3 in appendiceal carcinoma is an independent factor for poor prognosis and a useful predictor of outcome in patients with appendiceal carcinoma after surgery.
Collapse
Affiliation(s)
| | - Michiyo Higashi
- Department of Human Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- * E-mail:
| | - Seiya Yokoyama
- Department of Human Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Karine Rousseau
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, United Kingdom
| | - Iwao Kitazono
- Department of Human Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masahiko Osako
- Department of Surgery, Kagoshima Medical Association Hospital, Kagoshima, Japan
| | - Hiroshi Shirahama
- Department of Pathology, Imakiire General Hospital, Kagoshima, Japan
| | - Yukie Tashiro
- Department of Pathology, Imakiire General Hospital, Kagoshima, Japan
| | | | | | - Shingo Kuze
- Department of Surgery, Chutoen General Medical Center, Kakegawa, Japan
| | - Hiroshi Hasagawa
- Department of Surgery, Japanese Red Cross Nagoya Daini Hospital, Nagoya, Japan
| | - Takehito Kato
- Department of Surgery, Toyohashi Municipal Hospital, Toyohashi, Japan
| | - Hitoshi Kubota
- Department of Surgery, Handa City Hospital, Handa, Japan
| | | | | | - Yu Sakai
- Department of Pathology, Anjo Kosei Hospital, Anjo, Japan
| | - Norihiro Yuasa
- Department of Surgery, Japanese Red Cross Nagoya Daiichi Hospital, Nagoya, Japan
| | - Masahiko Fujino
- Department of Pathology, Japanese Red Cross Nagoya Daiichi Hospital, Nagoya, Japan
| | - Shinji Kondo
- Department of Surgery, Sakashita Hospital, Nakatsugawa, Japan
| | - Yoshichika Okamoto
- Department of Surgery, Shizuoka Saiseikai General Hospital, Shizuoka, Japan
| | | | | | - Eiji Sasaki
- Department of Surgery, Kamiiida Daiichi General Hospital, Nagoya, Japan
| | - Kazuhisa Shirai
- Department of Surgery, Yamashita Hospital, Ichinomiya, Japan
| | - Satoru Kawai
- Department of Surgery, Tsushima City Hospital, Tsushima, Japan
| | | | - Hideki Tsuji
- Department of Surgery, Toyota Memorial Hospital, Toyota, Japan
| | - Osamu Okochi
- Department of Surgery, Tosei General Hospital, Seto, Japan
| | - Masaki Sakamoto
- Department of Surgery, Nagoya Tokushukai General Hospital, Kasugai, Japan
| | - Akinobu Kondo
- Department of Surgery, Saiseikai Matsusaka General Hospital, Matsusaka, Japan
| | - Naomi Konishi
- Department of Surgery, Mie Prefectural General Medical Center, Yokkaichi, Japan
| | - Surinder K. Batra
- Departments of Biochemistry and Molecular Biology, Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Suguru Yonezawa
- Department of Human Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
24
|
Erdmann JI, Eskens FALM, Vollmer CM, Kok NFM, Groot Koerkamp B, Biermann K, van Eijck CHJ. Histological and Molecular Subclassification of Pancreatic and Nonpancreatic Periampullary Cancers: Implications for (Neo) Adjuvant Systemic Treatment. Ann Surg Oncol 2014; 22:2401-7. [PMID: 25503345 DOI: 10.1245/s10434-014-4267-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Indexed: 12/12/2022]
Abstract
The benefit of adjuvant chemotherapy for resected pancreatic ductal adenocarcinoma (PDAC) has been confirmed in randomized controlled trials. For nonpancreatic periampullary cancers (NPPC) originating from the distal bile duct, duodenum, ampulla, or papilla of Vater, the role of adjuvant therapy remains largely unclear. This review describes methods for distinguishing PDAC from NPPC by means of readily available and recently developed molecular diagnostic methods. The difficulties of reliably determining the exact origin of these cancers pathologically also is discussed. The review also considers the possibility of unintentional inclusion of NPPC in the most important adjuvant trials on PDAC and the subsequent implications for interpretation of the results. The authors conclude that correct determination of the origin of periampullary cancers is essential for clinical management and should therefore be systematically incorporated into clinical practice and future studies.
Collapse
Affiliation(s)
- J I Erdmann
- Department of Surgery, Erasmus MC, Rotterdam, The Netherlands,
| | | | | | | | | | | | | |
Collapse
|
25
|
Bassagañas S, Carvalho S, Dias AM, Pérez-Garay M, Ortiz MR, Figueras J, Reis CA, Pinho SS, Peracaula R. Pancreatic cancer cell glycosylation regulates cell adhesion and invasion through the modulation of α2β1 integrin and E-cadherin function. PLoS One 2014; 9:e98595. [PMID: 24878505 PMCID: PMC4039506 DOI: 10.1371/journal.pone.0098595] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 05/05/2014] [Indexed: 12/21/2022] Open
Abstract
In our previous studies we have described that ST3Gal III transfected pancreatic adenocarcinoma Capan-1 and MDAPanc-28 cells show increased membrane expression levels of sialyl-Lewis x (SLe(x)) along with a concomitant decrease in α2,6-sialic acid compared to control cells. Here we have addressed the role of this glycosylation pattern in the functional properties of two glycoproteins involved in the processes of cancer cell invasion and migration, α2β1 integrin, the main receptor for type 1 collagen, and E-cadherin, responsible for cell-cell contacts and whose deregulation determines cell invasive capabilities. Our results demonstrate that ST3Gal III transfectants showed reduced cell-cell aggregation and increased invasive capacities. ST3Gal III transfected Capan-1 cells exhibited higher SLe(x) and lower α2,6-sialic acid content on the glycans of their α2β1 integrin molecules. As a consequence, higher phosphorylation of focal adhesion kinase tyrosine 397, which is recognized as one of the first steps of integrin-derived signaling pathways, was observed in these cells upon adhesion to type 1 collagen. This molecular mechanism underlies the increased migration through collagen of these cells. In addition, the pancreatic adenocarcinoma cell lines as well as human pancreatic tumor tissues showed colocalization of SLe(x) and E-cadherin, which was higher in the ST3Gal III transfectants. In conclusion, changes in the sialylation pattern of α2β1 integrin and E-cadherin appear to influence the functional role of these two glycoproteins supporting the role of these glycans as an underlying mechanism regulating pancreatic cancer cell adhesion and invasion.
Collapse
Affiliation(s)
- Sònia Bassagañas
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain
| | - Sandra Carvalho
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Institute of Biomedical Sciences of Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Ana M. Dias
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Institute of Biomedical Sciences of Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Marta Pérez-Garay
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain
| | - M. Rosa Ortiz
- Department of Pathology, Dr. Josep Trueta University Hospital, Girona, Spain
| | - Joan Figueras
- Department of Surgery, Dr. Josep Trueta University Hospital, IdIBGi, Girona, Spain
| | - Celso A. Reis
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Institute of Biomedical Sciences of Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Medical Faculty, University of Porto, Porto, Portugal
| | - Salomé S. Pinho
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Institute of Biomedical Sciences of Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Rosa Peracaula
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain
| |
Collapse
|
26
|
Thege FI, Lannin TB, Saha TN, Tsai S, Kochman ML, Hollingsworth MA, Rhim AD, Kirby BJ. Microfluidic immunocapture of circulating pancreatic cells using parallel EpCAM and MUC1 capture: characterization, optimization and downstream analysis. LAB ON A CHIP 2014; 14:1775-84. [PMID: 24681997 DOI: 10.1039/c4lc00041b] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We have developed and optimized a microfluidic device platform for the capture and analysis of circulating pancreatic cells (CPCs) and pancreatic circulating tumor cells (CTCs). Our platform uses parallel anti-EpCAM and cancer-specific mucin 1 (MUC1) immunocapture in a silicon microdevice. Using a combination of anti-EpCAM and anti-MUC1 capture in a single device, we are able to achieve efficient capture while extending immunocapture beyond single marker recognition. We also have detected a known oncogenic KRAS mutation in cells spiked in whole blood using immunocapture, RNA extraction, RT-PCR and Sanger sequencing. To allow for downstream single-cell genetic analysis, intact nuclei were released from captured cells by using targeted membrane lysis. We have developed a staining protocol for clinical samples, including standard CTC markers; DAPI, cytokeratin (CK) and CD45, and a novel marker of carcinogenesis in CPCs, mucin 4 (MUC4). We have also demonstrated a semi-automated approach to image analysis and CPC identification, suitable for clinical hypothesis generation. Initial results from immunocapture of a clinical pancreatic cancer patient sample show that parallel capture may capture more of the heterogeneity of the CPC population. With this platform, we aim to develop a diagnostic biomarker for early pancreatic carcinogenesis and patient risk stratification.
Collapse
Affiliation(s)
- Fredrik I Thege
- Department of Biomedical Engineering, College of Engineering, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Wachsmann MB, Pop LM, Vitetta ES. Pancreatic ductal adenocarcinoma: a review of immunologic aspects. J Investig Med 2014. [PMID: 22406516 DOI: 10.231/jim.0b013e31824a4d79] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the continued failures of both early diagnosis and treatment options for pancreatic cancer, it is now time to comprehensively evaluate the role of the immune system on the development and progression of pancreatic cancer. It is important to develop strategies that harness the molecules and cells of the immune system to treat this disease. This review will focus primarily on the role of immune cells in the development and progression of pancreatic ductal adenocarcinoma and to evaluate what is known about the interaction of immune cells with the tumor microenvironment and their role in tumor growth and metastasis. We will conclude with a brief discussion of therapy for pancreatic cancer and the potential role for immunotherapy. We hypothesize that the role of the immune system in tumor development and progression is tissue specific. Our hope is that better understanding of this process will lead to better treatments for this devastating disease.
Collapse
Affiliation(s)
- Megan B Wachsmann
- Masters Program in Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | |
Collapse
|
28
|
Shibahara H, Higashi M, Koriyama C, Yokoyama S, Kitazono I, Kurumiya Y, Narita M, Kuze S, Kyokane T, Mita S, Arai T, Kato T, Yuasa N, Yamaguchi R, Kubota H, Suzuki H, Baba S, Rousseau K, Batra SK, Yonezawa S. Pathobiological implications of mucin (MUC) expression in the outcome of small bowel cancer. PLoS One 2014; 9:e86111. [PMID: 24722639 PMCID: PMC3982950 DOI: 10.1371/journal.pone.0086111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 12/04/2013] [Indexed: 12/20/2022] Open
Abstract
Mucins have been associated with survival in various cancer patients, but there have been no studies of mucins in small bowel carcinoma (SBC). In this study, we investigated the relationships between mucin expression and clinicopathologic factors in 60 SBC cases, in which expression profiles of MUC1, MUC2, MUC3, MUC4, MUC5AC, MUC6 and MUC16 in cancer and normal tissues were examined by immunohistochemistry. MUC1, MUC5AC and MUC16 expression was increased in SBC lesions compared to the normal epithelium, and expression of these mucins was related to clinicopathologic factors, as follows: MUC1 [tumor location (p = 0.019), depth (p = 0.017) and curability (p = 0.007)], MUC5AC [tumor location (p = 0.063) and lymph node metastasis (p = 0.059)], and MUC16 [venous invasion (p = 0.016) and curability (p = 0.016)]. Analysis of 58 cases with survival data revealed five factors associated with a poor prognosis: poorly-differentiated or neuroendocrine histological type (p<0.001), lymph node metastasis (p<0.001), lymphatic invasion (p = 0.026), venous invasion (p<0.001) and curative resection (p<0.001), in addition to expression of MUC1 (p = 0.042), MUC5AC (p = 0.007) and MUC16 (p<0.001). In subsequent multivariate analysis with curability as the covariate, lymph node metastasis, venous invasion, and MUC5AC and/or MUC16 expression were significantly related to the prognosis. Multivariate analysis in curative cases (n = 45) showed that SBC with MUC5AC and/or MUC16 expression had a significantly independent high hazard risk after adjusting for the effects of venous invasion (hazard ratio: 5.6, 95% confidence interval: 1.8-17). In conclusion, the study shows that a MUC5AC-positive and/or MUC16-positive status is useful as a predictor of a poor outcome in patients with SBC.
Collapse
Affiliation(s)
| | - Michiyo Higashi
- Department of Human Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- * E-mail:
| | - Chihaya Koriyama
- Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Seiya Yokoyama
- Department of Human Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Iwao Kitazono
- Department of Human Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | | | | | - Shingo Kuze
- Department of Surgery, Chutoen General Medical Center, Kakegawa, Japan
| | - Takanori Kyokane
- Department of Surgery, Chutoen General Medical Center, Kakegawa, Japan
| | - Saburo Mita
- Department of Surgery, Chita City Hospital, Chita, Japan
| | | | - Takehito Kato
- Department of Surgery, Toyohashi Municipal Hospital, Toyohashi, Japan
| | - Norihiro Yuasa
- Department of Surgery, Japanese Red Cross Nagoya Daiichi Hospital, Nagoya, Japan
| | - Ryuzo Yamaguchi
- Department of Surgery, Kasugai Municipal Hospital, Kasugai, Japan
| | - Hitoshi Kubota
- Department of Surgery, Handa City Hospital, Handa, Japan
| | - Hideaki Suzuki
- Department of Surgery, Handa City Hospital, Handa, Japan
| | - Satoshi Baba
- Department of Diagnostic Pathology, University Hospital Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Karine Rousseau
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, United Kingdom
| | - Surinder K. Batra
- Departments of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Suguru Yonezawa
- Department of Human Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
29
|
Shi C, Merchant N, Newsome G, Goldenberg DM, Gold DV. Differentiation of pancreatic ductal adenocarcinoma from chronic pancreatitis by PAM4 immunohistochemistry. Arch Pathol Lab Med 2014; 138:220-8. [PMID: 24476519 DOI: 10.5858/arpa.2013-0056-oa] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CONTEXT PAM4 is a monoclonal antibody that shows high specificity for pancreatic ductal adenocarcinoma (PDAC) and its neoplastic precursor lesions. A PAM4-based serum immunoassay is able to detect 71% of early-stage patients and 91% with advanced disease. However, approximately 20% of patients diagnosed with chronic pancreatitis (CP) are also positive for circulating PAM4 antigen. The specificity of the PAM4 antibody is critical to the interpretation of the serum-based and immunohistochemical assays for detection of PDAC. OBJECTIVE To determine whether PAM4 can differentiate PDAC from nonneoplastic lesions of the pancreas. DESIGN Tissue microarrays of PDAC (N = 43) and surgical specimens from CP (N = 32) and benign cystic lesions (N = 19) were evaluated for expression of the PAM4 biomarker, MUC1, MUC4, CEACAM5/6, and CA19-9. RESULTS PAM4 and monoclonal antibodies (MAbs) to MUC1, MUC4, CEACAM5/6, and CA19-9 were each reactive with the majority of PDAC cases; however, PAM4 was the only monoclonal antibody not to react with adjacent, nonneoplastic parenchyma. Although PAM4 labeled 19% (6 of 32) of CP specimens, reactivity was restricted to pancreatic intraepithelial neoplasia associated with CP; inflamed tissues were negative in all cases. In contrast, MUC1, MUC4, CEACAM5/6, and CA19-9 were detected in 90%, 78%, 97%, and 100% of CP, respectively, with reactivity also present in nonneoplastic inflamed tissue. CONCLUSIONS PAM4 was the only monoclonal antibody able to differentiate PDAC (and pancreatic intraepithelial neoplasia precursor lesions) from benign, nonneoplastic tissues of the pancreas. These results suggest the use of PAM4 for evaluation of tissue specimens, and support its role as an immunoassay for detection of PDAC.
Collapse
Affiliation(s)
- Chanjuan Shi
- From the Departments of Pathology, Microbiology, and Immunology (Dr Shi) and Surgical Oncology (Dr Merchant), Vanderbilt University Medical Center, Nashville, Tennessee; and the Center for Molecular Medicine and Immunology, Garden State Cancer Center, Morris Plains, New Jersey (Mr Newsome and Drs Goldenberg and Gold)
| | | | | | | | | |
Collapse
|
30
|
Kaur S, Momi N, Chakraborty S, Wagner DG, Horn AJ, Lele SM, Theodorescu D, Batra SK. Altered expression of transmembrane mucins, MUC1 and MUC4, in bladder cancer: pathological implications in diagnosis. PLoS One 2014; 9:e92742. [PMID: 24671186 PMCID: PMC3966814 DOI: 10.1371/journal.pone.0092742] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 02/25/2014] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Radical changes in both expression and glycosylation pattern of transmembrane mucins have been observed in various malignancies. We and others have shown that MUC1 and MUC4, two transmembrane mucins, play a sentinel role in cell signaling events that drive several epithelial malignancies. In the present study, we investigated the expression profile of MUC1 and MUC4 in the non-neoplastic bladder urothelium, in various malignant neoplasms of bladder and in bladder carcinoma cell lines. MATERIAL AND METHODS Immunohistochemistry was performed on tissue sections from the urinary bladder biopsies, resection samples and tissue microarrays (TMAs) with monoclonal antibodies specific for MUC1 and MUC4. We also investigated their expression in bladder carcinoma cell lines by RT-PCR and immunoblotting. RESULTS MUC1 is expressed on the apical surface or in umbrella cells of the normal non-neoplastic bladder urothelium. Strong expression of MUC1 was also observed in urothelial carcinoma (UC). MUC1 staining increased from normal urothelium (n = 27, 0.35±0.12) to urothelial carcinoma (UC, n = 323, H-score, 2.4±0.22, p≤0.0001). In contrast to MUC1, MUC4 was expressed in all the layers of non-neoplastic bladder urothelium (n = 14, 2.5±0.28), both in the cell membrane and cytoplasm. In comparison to non-neoplastic urothelium, the loss of MUC4 expression was observed during urothelial carcinoma (n = 211, 0.56±0.06). However, re-expression of MUC4 was observed in a subset of metastatic cases of urothelial carcinoma (mean H-score 0.734±0.9). CONCLUSION The expression of MUC1 is increased while that of MUC4 decreased in UC compared to the normal non-neoplastic urothelium. Expression of both MUC1 and MUC4, however, are significantly higher in urothelial carcinoma metastatic cases compared to localized UC. These results suggest differential expression of MUC1 and MUC4 during development and progression of bladder carcinoma.
Collapse
Affiliation(s)
- Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Navneet Momi
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Subhankar Chakraborty
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - David G. Wagner
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Adam J. Horn
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Subodh M. Lele
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail: (SML); (SKB)
| | - Dan Theodorescu
- University of Colorado Comprehensive Cancer Center, Aurora, Colorado, United States of America
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Buffett Cancer Center, Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail: (SML); (SKB)
| |
Collapse
|
31
|
Precursor lesions for sporadic pancreatic cancer: PanIN, IPMN, and MCN. BIOMED RESEARCH INTERNATIONAL 2014; 2014:474905. [PMID: 24783207 PMCID: PMC3982269 DOI: 10.1155/2014/474905] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/08/2014] [Accepted: 02/10/2014] [Indexed: 12/20/2022]
Abstract
Pancreatic cancer is still a dismal disease. The high mortality rate is mainly caused by the lack of highly sensitive and specific diagnostic tools, and most of the patients are diagnosed in an advanced and incurable stage. Knowledge about precursor lesions for pancreatic cancer has grown significantly over the last decade, and nowadays we know that mainly three lesions (PanIN, and IPMN, MCN) are responsible for the development of pancreatic cancer. The early detection of these lesions is still challenging but provides the chance to cure patients before they might get an invasive pancreatic carcinoma. This paper focuses on PanIN, IPMN, and MCN lesions and reviews the current level of knowledge and clinical measures.
Collapse
|
32
|
Kaur S, Sharma N, Krishn SR, Lakshmanan I, Rachagani S, Baine MJ, Smith LM, Lele SM, Sasson AR, Guha S, Mallya K, Anderson JM, Hollingsworth MA, Batra SK. MUC4-mediated regulation of acute phase protein lipocalin 2 through HER2/AKT/NF-κB signaling in pancreatic cancer. Clin Cancer Res 2014; 20:688-700. [PMID: 24240113 PMCID: PMC3946494 DOI: 10.1158/1078-0432.ccr-13-2174] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE MUC4 shows aberrant expression in early pancreatic lesions and a high specificity for pancreatic cancer. It thus has a high potential to be a sensitive and specific biomarker. Unfortunately, its low serum level limits its diagnostic/prognostic potential. We here report that a multifaceted acute phase protein lipocalin 2, regulated by MUC4, could be a potential diagnostic/prognostic marker for pancreatic cancer. Experimental Designs and RESULTS Overexpression/knockdown, luciferase reporter and molecular inhibition studies revealed that MUC4 regulates lipocalin 2 by stabilizing HER2 and stimulating AKT, which results in the activation of NF-κB. Immunohistochemical analyses of lipocalin 2 and MUC4 showed a significant positive correlation between MUC4 and lipocalin 2 in primary, metastatic tissues (Spearman correlation coefficient 0.71, P = 0.002) from rapid autopsy tissue sample from patients with pancreatic cancer as well as in serum and tissue samples from spontaneous KRASG(12)D mouse pancreatic cancer model (Spearman correlation coefficient 0.98, P < 0.05). Lipocalin 2 levels increased progressively with disease advancement (344.2 ± 22.8 ng/mL for 10 weeks to 3067.2 ± 572.6 for 50 weeks; P < 0.0001). In human pancreatic cancer cases, significantly elevated levels of lipocalin 2 were observed in patients with pancreatic cancer (148 ± 13.18 ng/mL) in comparison with controls (73.27 ± 4.9 ng/mL, P = 0.014). Analyses of pre- and postchemotherapy patients showed higher lipocalin 2 levels in prechemotherapy patients [121.7 ng/mL; 95% confidence interval (CI), 98.1-150.9] in comparison with the postchemotherapy (92.6 ng/mL; 95% CI, 76.7-111.6; P = 0.06) group. CONCLUSIONS This study delineates the association and the downstream mechanisms of MUC4-regulated elevation of lipocalin-2 (via HER2/AKT/NF-κB) and its clinical significance for prognosis of pancreatic cancer.
Collapse
Affiliation(s)
- Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Neil Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Shiv Ram Krishn
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Imay Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Michael J. Baine
- Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lynette M. Smith
- Department of Statistics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Subodh M. Lele
- Department of Pathology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Aaron R. Sasson
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sushovan Guha
- Division of Gastroenterology, Hepatology and Nutrition, UT Health-UT Health Science Center and Medical School at Houston, Houston, Texas, USA
| | - Kavita Mallya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Judy M. Anderson
- Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael A. Hollingsworth
- Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pathology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
33
|
Kaur S, Kumar S, Momi N, Sasson AR, Batra SK. Mucins in pancreatic cancer and its microenvironment. Nat Rev Gastroenterol Hepatol 2013; 10:607-20. [PMID: 23856888 PMCID: PMC3934431 DOI: 10.1038/nrgastro.2013.120] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pancreatic cancer remains a lethal malignancy with poor prognosis owing to therapeutic resistance, frequent recurrence and the absence of treatment strategies that specifically target the tumour and its supporting stroma. Deregulated cell-surface proteins drive neoplastic transformations and are envisioned to mediate crosstalk between the tumour and its microenvironment. Emerging studies have elaborated on the role of mucins in diverse biological functions, including enhanced tumorigenicity, invasiveness, metastasis and drug resistance through their characteristic O-linked and N-linked oligosaccharides (glycans), extended structures and unique domains. Multiple mucin domains differentially interact and regulate different components of the tumour microenvironment. This Review discusses: the expression pattern of various mucins in the pancreas under healthy, inflammatory, and cancerous conditions; the context-dependent attributes of mucins that differ under healthy and pathological conditions; the contribution of the tumour microenvironment in pancreatic cancer development and/or progression; diagnostic and/or prognostic efficacy of mucins; and mucin-based therapeutic strategies. Overall, this information should help to delineate the intricacies of pancreatic cancer by exploring the family of mucins, which, through various mechanisms in both tumour cells and the microenvironment, worsen disease outcome.
Collapse
Affiliation(s)
- Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Centre, 985870 Nebraska Medical Centre, Omaha, NE 68198-5870, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Centre, 985870 Nebraska Medical Centre, Omaha, NE 68198-5870, USA
| | - Navneet Momi
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Centre, 985870 Nebraska Medical Centre, Omaha, NE 68198-5870, USA
| | - Aaron R. Sasson
- Department of Surgery, University of Nebraska Medical Centre, 985870 Nebraska Medical Centre, Omaha, NE 68198-5870, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Centre, 985870 Nebraska Medical Centre, Omaha, NE 68198-5870, USA
| |
Collapse
|
34
|
Jiang Y, DiVittore NA, Young MM, Jia Z, Xie K, Ritty TM, Kester M, Fox TE. Altered sphingolipid metabolism in patients with metastatic pancreatic cancer. Biomolecules 2013; 3:435-48. [PMID: 24970174 PMCID: PMC4030952 DOI: 10.3390/biom3030435] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/10/2013] [Accepted: 07/24/2013] [Indexed: 01/28/2023] Open
Abstract
Although numerous genetic mutations and amplifications have been identified in pancreatic cancer, much of the molecular pathogenesis of the disease remains undefined. While proteomic and transcriptomic analyses have been utilized to probe and characterize pancreatic tumors, lipidomic analyses have not been applied to identify perturbations in pancreatic cancer patient samples. Thus, we utilized a mass spectrometry-based lipidomic approach, focused towards the sphingolipid class of lipids, to quantify changes in human pancreatic cancer tumor and plasma specimens. Subgroup analysis revealed that patients with positive lymph node metastasis have a markedly higher level of ceramide species (C16:0 and C24:1) in their tumor specimens compared to pancreatic cancer patients without nodal disease or to patients with pancreatitis. Also of interest, ceramide metabolites, including phosphorylated (sphingosine- and sphinganine-1-phosphate) and glycosylated (cerebroside) species were elevated in the plasma, but not the pancreas, of pancreatic cancer patients with nodal disease. Analysis of plasma level of cytokine and growth factors revealed that IL-6, IL-8, CCL11 (eotaxin), EGF and IP10 (interferon inducible protein 10, CXCL10) were elevated in patients with positive lymph nodes metastasis, but that only IP10 and EGF directly correlated with several sphingolipid changes. Taken together, these data indicate that sphingolipid metabolism is altered in human pancreatic cancer and associated with advanced disease. Assessing plasma and/or tissue sphingolipids could potentially risk stratify patients in the clinical setting.
Collapse
Affiliation(s)
- Yixing Jiang
- Pennsylvania state Hershey cancer institute, Hershey, PA17033, USA.
| | | | | | - Zhiliang Jia
- Department of gastrointestinal medical oncology, the University of Texas MD Anderson cancer center, Houston, TX77030, USA.
| | - Keping Xie
- Department of gastrointestinal medical oncology, the University of Texas MD Anderson cancer center, Houston, TX77030, USA.
| | - Timothy M Ritty
- Department of orthopedics Pennsylvania state college of medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Mark Kester
- Pennsylvania state Hershey cancer institute, Hershey, PA17033, USA.
| | - Todd E Fox
- Department of pharmacology, Hershey, PA17033, USA.
| |
Collapse
|
35
|
Chakraborty S, Jain M, Sasson AR, Batra SK. MUC4 as a diagnostic marker in cancer. ACTA ACUST UNITED AC 2013; 2:891-910. [PMID: 23495864 DOI: 10.1517/17530059.2.8.891] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Mucins are high molecular mass glycoproteins whose role in diagnosis, prognosis and therapy is being increasingly recognized owing to their altered expression in a variety of carcinomas. MUC4, a membrane-bound mucin encoded by a gene located on chromosome locus 3q29, is aberrantly expressed in several cancers including those of the bile duct, breast, colon, esophagus, ovary, lung, prostate, stomach and pancreas. OBJECTIVE This review considers the potential use of the MUC4 expression pattern in the diagnosis and prognosis of various cancers. RESULTS/CONCLUSION MUC4 expression is a specific marker of epithelial tumors and its expression correlates positively with the degree of differentiation in several cancers. Importantly, MUC4 has emerged as a specific marker of dysplasia, being expressed in the earliest dysplastic lesions preceding several malignancies, including lethal pancreatic cancer. The presence of MUC4-specific antibodies in the serum and of the transcript in peripheral blood mononuclear cells of cancer patients raises the possibility of it emerging as a new diagnostic biomarker for bedside application in high-risk individuals and those with established cancer.
Collapse
Affiliation(s)
- Subhankar Chakraborty
- University of Nebraska Medical Center, Eppley Institute for Research in Cancer, Department of Biochemistry and Molecular Biology, 984525 Nebraska Medical Center, Omaha, NE 68198-5870, USA +1 402 559 5455 ; +1 402 559 6650 ;
| | | | | | | |
Collapse
|
36
|
MUC4 is a sensitive and extremely useful marker for sclerosing epithelioid fibrosarcoma: association with FUS gene rearrangement. Am J Surg Pathol 2012; 36:1444-51. [PMID: 22982887 DOI: 10.1097/pas.0b013e3182562bf8] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sclerosing epithelioid fibrosarcoma (SEF) is a rare aggressive fibroblastic neoplasm composed of cords of epithelioid cells embedded in a dense collagenous stroma. The reported immunophenotype of SEF is nonspecific. Some SEF cases show morphologic and molecular overlap with low-grade fibromyxoid sarcoma (LGFMS), suggesting a relationship between these tumor types. MUC4 has recently been identified as a sensitive and specific marker for LGFMS; MUC4 expression was also observed in 2 tumors with hybrid features of SEF and LGFMS. We investigated MUC4 expression in SEF and other epithelioid soft tissue tumors to determine (1) the potential diagnostic utility of MUC4 for SEF and (2) the association between MUC4 expression and FUS rearrangement in SEF. Whole sections of 180 tumors were evaluated: 41 cases of SEF (including 29 "pure" SEF and 12 hybrid LGFMS-SEF), 20 epithelioid sarcomas, 11 clear cell sarcomas, 11 metastatic melanomas, 10 perivascular epithelioid cell tumors, 10 alveolar soft part sarcomas, 10 epithelioid angiosarcomas, 10 epithelioid hemangioendotheliomas, 10 epithelioid gastrointestinal stromal tumors, 10 myoepithelial carcinomas, 17 ossifying fibromyxoid tumors, 10 leiomyosarcomas, and 10 biphasic synovial sarcomas. Immunohistochemical analysis was performed after antigen retrieval using a mouse anti-MUC4 monoclonal antibody. Fluorescence in situ hybridization (FISH) was performed on 33 SEF cases using FUS break-apart probes. A subset of cases was also evaluated for EWSR1 and CREB3L2/L1 rearrangements by FISH. Strong diffuse cytoplasmic staining for MUC4 was observed in 32 of 41 (78%) cases of SEF, including all 12 hybrid tumors. FUS rearrangement was detected in 8 of 21 (38%) MUC4-positive cases of SEF with successful FISH studies. The prevalence of FUS rearrangement was similar in hybrid LGFMS-SEF (2 of 6; 33%) and SEF without an LGFMS component (6 of 15; 40%). FUS rearrangement was not detected in any cases of MUC4-negative SEF. Two hybrid tumors had both EWSR1 and CREB3L1 rearrangements. MUC4 expression was also seen in 9 of 10 (90%) biphasic synovial sarcomas, predominantly in the glandular component. All other tumor types were negative for MUC4, apart from focal reactivity in 5 ossifying fibromyxoid tumors, 2 epithelioid gastrointestinal stromal tumors, and 1 myoepithelial carcinoma. MUC4 is a sensitive and relatively specific marker for SEF among epithelioid soft tissue tumors. MUC4 expression occurs more frequently than FUS rearrangement in SEF. The finding of EWSR1 and CREB3L1 rearrangements in 2 cases of hybrid LGFMS-SEF suggests that SEFs are genetically heterogenous. MUC4-positive SEFs with FUS rearrangement are likely closely related to LGFMS. MUC4-positive SEFs that lack FUS rearrangement may be related to LGFMS but could have alternate fusion partners, including EWSR1. SEF without MUC4 expression may represent a distinct group of tumors. MUC4 expression correlates with glandular epithelial differentiation in biphasic synovial sarcoma and is very limited in other epithelioid soft tissue tumors.
Collapse
|
37
|
Dallas MR, Chen SH, Streppel MM, Sharma S, Maitra A, Konstantopoulos K. Sialofucosylated podocalyxin is a functional E- and L-selectin ligand expressed by metastatic pancreatic cancer cells. Am J Physiol Cell Physiol 2012; 303:C616-24. [PMID: 22814396 DOI: 10.1152/ajpcell.00149.2012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Selectin-mediated interactions in the vasculature promote metastatic spread by facilitating circulating tumor cell binding to selectin-expressing host cells. Therefore, identifying the selectin ligand(s) on tumor cells is critical to the prevention of blood-borne metastasis. A current challenge is to distinguish between structures expressed by circulating tumor cells that can bind selectins in vitro from the functional ligands whose depletion suppresses selectin-dependent binding under flow in vivo. Interestingly, podocalyxin (PODXL), which can bind E- and L-selectin, is upregulated in a number of cancers, including those of the breast, colon, and pancreas. In this work, we show that metastatic pancreatic cancer cells overexpress PODXL compared with nonmalignant pancreatic epithelial cells. We further demonstrate via tissue microarray that 69% of pancreatic ductal adenocarcinomas stain positive for PODXL. In cases of focal expression, positive staining is restricted to the invasive front of primary tumors. By combining immunoblot, immunodepletion, short-hairpin RNA-mediated gene silencing, and flow-based adhesion assays, we evaluated the functional role of sialofucosylated PODXL in selectin-mediated adhesion under flow. Our data indicate that sialofucosylated PODXL is a functional E- and L-selectin ligand expressed by metastatic pancreatic cancer cells, as specific depletion of this molecule from the cell surface significantly interferes with selectin-dependent interactions. Cumulatively, these data support a correlation between sialofucosylated PODXL expression and enhanced binding to selectins by metastatic pancreatic cancer cells and offer additional perspective on the upregulation of PODXL in aggressive cancers.
Collapse
Affiliation(s)
- Matthew R Dallas
- Dept. of Chemical and Biomolecular Engineering, Johns Hopkins Univ., Baltimore, MD 21218, USA
| | | | | | | | | | | |
Collapse
|
38
|
Rachagani S, Macha MA, Ponnusamy MP, Haridas D, Kaur S, Jain M, Batra SK. MUC4 potentiates invasion and metastasis of pancreatic cancer cells through stabilization of fibroblast growth factor receptor 1. Carcinogenesis 2012; 33:1953-64. [PMID: 22791819 DOI: 10.1093/carcin/bgs225] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
MUC4 is a type-1 transmembrane mucin differentially expressed in multiple cancers and has previously been shown to potentiate progression and metastasis of pancreatic cancer. In this study, we investigated the molecular mechanisms associated with the MUC4-induced invasion and metastasis in pancreatic cancer. Stable silencing of MUC4 in multiple pancreatic cancer cells resulted in the downregulation of N-cadherin and its interacting partner fibroblast growth factor receptor 1 (FGFR1) through downregulation of partly by pFAK, pMKK7, pJNK and pc-Jun pathway and partly through PI-3K/Akt pathway. The downregulation of FGFR1 in turn led to downregulation of pAkt, pERK1/2, pNF-κB, pIkBα, uPA, MMP-9, vimentin, N-cadherin, Twist, Slug and Zeb1 and upregulation of E-cadherin, Occludin, Cytokeratin-18 and Caspase-9 in MUC4 knockdown BXPC3 and Capan1 cells compared with scramble vector transfected cells. Further, downregulation of FGFR1 was associated with a significant change in morphology and reorganization of the actin-cytoskeleton, leading to a significant decrease in motility (P < 0.00001) and invasion (P < 0.0001) in vitro and decreased tumorigenicity and incidence of metastasis in vivo upon orthotopic implantation in the athymic mice. Taken together, the results of the present study suggest that MUC4 promotes invasion and metastasis by FGFR1 stabilization through the N-cadherin upregulation.
Collapse
Affiliation(s)
- Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska MedicalCenter, Omaha, NE 68198-5870, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
With the continued failures of both early diagnosis and treatment options for pancreatic cancer, it is now time to comprehensively evaluate the role of the immune system on the development and progression of pancreatic cancer. It is important to develop strategies that harness the molecules and cells of the immune system to treat this disease. This review will focus primarily on the role of immune cells in the development and progression of pancreatic ductal adenocarcinoma and to evaluate what is known about the interaction of immune cells with the tumor microenvironment and their role in tumor growth and metastasis. We will conclude with a brief discussion of therapy for pancreatic cancer and the potential role for immunotherapy. We hypothesize that the role of the immune system in tumor development and progression is tissue specific. Our hope is that better understanding of this process will lead to better treatments for this devastating disease.
Collapse
Affiliation(s)
- Megan B. Wachsmann
- Masters Program in Clinical Sciences, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd, Dallas, Texas 75390-8576, USA
| | - Laurentiu M. Pop
- The Cancer Immunobiology Center, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd, Dallas, Texas 75390-8576, USA
| | - Ellen S. Vitetta
- The Cancer Immunobiology Center, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd, Dallas, Texas 75390-8576, USA
- The Departments of Microbiology and Immunology, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd, Dallas, Texas 75390-8576, USA
| |
Collapse
|
40
|
Chen SH, Dallas MR, Balzer EM, Konstantopoulos K. Mucin 16 is a functional selectin ligand on pancreatic cancer cells. FASEB J 2011; 26:1349-59. [PMID: 22159147 DOI: 10.1096/fj.11-195669] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Selectins promote metastasis by mediating specific interactions between selectin ligands on tumor cells and selectin-expressing host cells in the microvasculature. Using affinity chromatography in conjunction with tandem mass spectrometry and bioinformatics tools, we identified mucin 16 (MUC16) as a novel selectin ligand expressed by metastatic pancreatic cancer cells. While up-regulated in many pancreatic cancers, the biological function of sialofucosylated MUC16 has yet to be fully elucidated. To address this, we employed blot rolling and cell-free flow-based adhesion assays using MUC16 immunopurified from pancreatic cancer cells and found that it efficiently binds E- and L- but not P-selectin. The selectin-binding determinants are sialofucosylated structures displayed on O- and N-linked glycans. Silencing MUC16 expression by RNAi markedly reduces pancreatic cancer cell binding to E- and L-selectin under flow. These findings provide a novel integrated perspective on the enhanced metastatic potential associated with MUC16 overexpression and the role of selectins in metastasis.
Collapse
Affiliation(s)
- Shih-Hsun Chen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
41
|
Haridas D, Chakraborty S, Ponnusamy MP, Lakshmanan I, Rachagani S, Cruz E, Kumar S, Das S, Lele SM, Anderson JM, Wittel UA, Hollingsworth MA, Batra SK. Pathobiological implications of MUC16 expression in pancreatic cancer. PLoS One 2011; 6:e26839. [PMID: 22066010 PMCID: PMC3204976 DOI: 10.1371/journal.pone.0026839] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 10/04/2011] [Indexed: 12/16/2022] Open
Abstract
MUC16 (CA125) belongs to a family of high-molecular weight O-glycosylated proteins known as mucins. While MUC16 is well known as a biomarker in ovarian cancer, its expression pattern in pancreatic cancer (PC), the fourth leading cause of cancer related deaths in the United States, remains unknown. The aim of our study was to analyze the expression of MUC16 during the initiation, progression and metastasis of PC for possible implication in PC diagnosis, prognosis and therapy. In this study, a microarray containing tissues from healthy and PC patients was used to investigate the differential protein expression of MUC16 in PC. MUC16 mRNA levels were also measured by RT-PCR in the normal human pancreatic, pancreatitis, and PC tissues. To investigate its expression pattern during PC metastasis, tissue samples from the primary pancreatic tumor and metastases (from the same patient) in the lymph nodes, liver, lung and omentum from Stage IV PC patients were analyzed. To determine its association in the initiation of PC, tissues from PC patients containing pre-neoplastic lesions of varying grades were stained for MUC16. Finally, MUC16 expression was analyzed in 18 human PC cell lines. MUC16 is not expressed in the normal pancreatic ducts and is strongly upregulated in PC and detected in pancreatitis tissue. It is first detected in the high-grade pre-neoplastic lesions preceding invasive adenocarcinoma, suggesting that its upregulation is a late event during the initiation of this disease. MUC16 expression appears to be stronger in metastatic lesions when compared to the primary tumor, suggesting a role in PC metastasis. We have also identified PC cell lines that express MUC16, which can be used in future studies to elucidate its functional role in PC. Altogether, our results reveal that MUC16 expression is significantly increased in PC and could play a potential role in the progression of this disease.
Collapse
Affiliation(s)
- Dhanya Haridas
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Subhankar Chakraborty
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Moorthy P. Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Eric Cruz
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Srustidhar Das
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Subodh M. Lele
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Judy M. Anderson
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Uwe A. Wittel
- Department of General and Visceral Surgery, Universitätsklinik Freiburg, Freiburg, Germany
| | - Michael A. Hollingsworth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
42
|
Yonezawa S, Higashi M, Yamada N, Yokoyama S, Kitamoto S, Kitajima S, Goto M. Mucins in human neoplasms: clinical pathology, gene expression and diagnostic application. Pathol Int 2011; 61:697-716. [PMID: 22126377 DOI: 10.1111/j.1440-1827.2011.02734.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mucins are high molecular weight glycoproteins that play important roles in carcinogenesis and tumor invasion. Our immunohistochemical studies demonstrated that MUC1 or MUC4 expression is related to the aggressive behavior and poor outcome of human neoplasms. MUC2 is expressed in indolent pancreatobiliary neoplasms, but these tumors sometimes show invasive growth with MUC1 expression in invasive areas. MUC5AC shows de novo high expression in many types of precancerous lesions of pancreatobiliary cancers and is an effective marker for early detection of the neoplasms. The combination of MUC1, MUC2, MUC4 and MUC5AC expression may be useful for early detection and evaluation of the potential for malignancy of pancreatobiliary neoplasms. Regarding the mechanism of mucin expression, we have recently reported that expression of the mucin genes is regulated epigenetically in cancer cell lines, using quantitative MassARRAY analysis, methylation-specific polymerase chain reaction analysis and chromatin immunoprecipitation analysis, with confirmation by the treatment with 5-aza-2'-deoxycytidine and trichostatin A. We have also developed a monoclonal antibody against the MUC1 cytoplasmic tail domain, which has many biological roles. Based on all of the above findings, we suggest that translational research into mucin gene expression mechanisms, including epigenetics, may provide new tools for early and accurate detection of human neoplasms.
Collapse
Affiliation(s)
- Suguru Yonezawa
- Department of Human Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
| | | | | | | | | | | | | |
Collapse
|
43
|
Carrara S, Cangi MG, Arcidiacono PG, Perri F, Petrone MC, Mezzi G, Boemo C, Talarico A, Cin ED, Grassini G, Doglioni C, Testoni PA. Mucin expression pattern in pancreatic diseases: findings from EUS-guided fine-needle aspiration biopsies. Am J Gastroenterol 2011; 106:1359-1363. [PMID: 21647207 DOI: 10.1038/ajg.2011.22] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Alterations in mucin (MUC) glycosylation and expression have been described in cancer. Endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) can provide material for molecular biology analysis. This study assessed the feasibility of evaluating MUC expression from material obtained by EUS-FNA and studied the profile of MUC expression in benign and malignant pancreatic lesions. METHODS A total of 90 patients with solid or cystic pancreatic lesions underwent FNA. The aspirated material was used for cytological analysis and RNA extraction to assess the expression pattern of MUCs by reverse transcription-PCR with primers specific for the MUC1, MUC2, MUC3, MUC4, MUC5A, MUC5B, MUC6, and MUC7 genes. RESULTS RNA extraction was successful in 81% of the biopsies. The prevalences of MUC1, MUC2, MUC4, and MUC7 in ductal adenocarcinoma were 57.7, 51.4, 18.9, and 73.0%, respectively. Fifty percent of benign lesions and neuroendocrine tumors (NETs), and 63% of intraductal papillary mucinous neoplasms (IPMNs) were positive for MUC1. Twenty-five percent of benign lesions, 86% of NETs, and 47% of IPMNs were positive for MUC2. Of NETs, 50% were positive for MUC1, and 14% were positive for MUC7. None of the benign lesions or NETs expressed MUC4. MUC7 expression was highly significant for adenocarcinoma (P=0.007) and borderline for IPMN (P=0.05). MUC7 was expressed in 37.5% of chronic pancreatitis cases. CONCLUSIONS RNA can be extracted from samples obtained under EUS-FNA. MUC7 could serve as a potential biological marker to identify malignant lesions, especially pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Silvia Carrara
- Division of Gastroenterology and Gastrointestinal Endoscopy, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yamada N, Kitamoto S, Yokoyama S, Hamada T, Goto M, Tsutsumida H, Higashi M, Yonezawa S. Epigenetic regulation of mucin genes in human cancers. Clin Epigenetics 2011; 2:85-96. [PMID: 22704331 PMCID: PMC3365379 DOI: 10.1007/s13148-011-0037-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 04/18/2011] [Indexed: 12/16/2022] Open
Abstract
Mucins are high molecular weight glycoproteins that play important roles in diagnostic and prognostic prediction and in carcinogenesis and tumor invasion. Regulation of expression of mucin genes has been studied extensively, and signaling pathways, transcriptional regulators, and epigenetic modification in promoter regions have been described. Detection of the epigenetic status of cancer-related mucin genes is important for early diagnosis of cancer and for monitoring of tumor behavior and response to targeted therapy. Effects of micro-RNAs on mucin gene expression have also started to emerge. In this review, we discuss the current views on epigenetic mechanisms of regulation of mucin genes (MUC1, MUC2, MUC3A, MUC4, MUC5AC, MUC5B, MUC6, MUC16, and MUC17) and the possible clinical applications of this epigenetic information.
Collapse
|
45
|
Wang G, Lipert RJ, Jain M, Kaur S, Chakraboty S, Torres MP, Batra SK, Brand RE, Porter MD. Detection of the potential pancreatic cancer marker MUC4 in serum using surface-enhanced Raman scattering. Anal Chem 2011; 83:2554-61. [PMID: 21391573 DOI: 10.1021/ac102829b] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer (PC) is one of the most lethal malignancies. It has a 5-year survival rate of only 6%, owing in part to the lack of a reliable tumor marker for early diagnosis. Recent research has shown that the mucin protein MUC4 is aberrantly expressed in pancreatic adenocarcinoma cell lines and tissues but is undetectable in normal pancreas and chronic pancreatitis. Thus, the level of MUC4 in patient sera has the potential to function as a diagnostic and prognostic marker for PC. However, the measurement of MUC4 in sera using conventional test platforms (e.g., enzyme linked immunosorbent assay (ELISA) and radioimmunoassay (RIA)) has been unsuccessful. This has prevented the assessment of the utility of this protein as a possible PC marker in sera. In addressing this obstacle, the work herein examines the potential to create a simple diagnostic test for MUC4 through the development of a surface-enhanced Raman scattering (SERS)-based immunoassay, which was then used to demonstrate the first ever detection of MUC4 in cancer patient serum samples. Importantly, these measurements showed that sera from patients with PC produced a significantly higher SERS response for MUC4 compared to sera from healthy individuals and from patients with benign diseases. These results indicate that a SERS-based immunoassay can monitor MUC4 levels in patient sera, representing a much needed first step toward assessing the potential of this protein to serve as a serum marker for the early stage diagnosis of PC. This paper details these and other findings (i.e., the detection of the mucin protein CA19-9), which demonstrate that our SERS assay outperforms conventional assays (i.e., RIA and ELISA) with respect to limits of detection, readout time, and required sample volume.
Collapse
|
46
|
Chakraborty S, Swanson BJ, Bonthu N, Batra SK. Aberrant upregulation of MUC4 mucin expression in cutaneous condyloma acuminatum and squamous cell carcinoma suggests a potential role in the diagnosis and therapy of skin diseases. J Clin Pathol 2011; 63:579-84. [PMID: 20591909 DOI: 10.1136/jcp.2010.076125] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AIM Mucins comprise a family of high-molecular-weight glycoproteins. MUC4, a large transmembrane mucin, has recently emerged as a novel marker for diagnosis, prognosis and therapy in several malignancies. However, its role in skin pathologies remains unknown. The aim of this study was to analyse the expression of MUC4 in cutaneous pathologies by immunohistochemistry for potential diagnostic, prognostic and therapeutic applications. METHODS A total of 330 tissue spots representing the normal skin, and benign and malignant cutaneous diseases, were analysed after staining with the monoclonal antibody to human MUC4 (clone 8G7). RESULTS While the normal epidermis showed a negative to weak-positive expression of MUC4, its expression was significantly upregulated in squamous cell carcinomas (SCCs) where the intensity of staining correlated negatively with tumour grade and positively with age. A moderately strong MUC4 expression was also noted in 2/20 cancer adjacent normal skin and 2/21 chronically inflamed skin tissues, while 10/19 cases of vulval condyloma acuminate, 3/12 of vulval hyperplasia and 2 cases of verruca vulgaris also showed strong MUC4 positivity. Malignant melanoma, basal cell carcinoma and cutaneous cysts were negative. CONCLUSION The results indicate that MUC4 expression is aberrantly upregulated in cutaneous SCCs, vulval condylomas and verruca vulgaris. Further, it appears that MUC4 expression in the skin may be modulated by chronic inflammation and the presence of an adjacent cutaneous malignancy in certain cases. These observations suggest a novel role for MUC4 mucin in the pathogenesis of cutaneous SCC and a possible application as a diagnostic and/or prognostic marker in cutaneous pathologies.
Collapse
Affiliation(s)
- Subhankar Chakraborty
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USA
| | | | | | | |
Collapse
|
47
|
Zhu Y, Zhang JJ, Zhu R, Zhu Y, Liang WB, Gao WT, Yu JB, Xu ZK, Miao Y. The increase in the expression and hypomethylation of MUC4 gene with the progression of pancreatic ductal adenocarcinoma. Med Oncol 2010; 28 Suppl 1:S175-84. [PMID: 20922503 DOI: 10.1007/s12032-010-9683-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 09/08/2010] [Indexed: 12/14/2022]
Abstract
The MUC4 gene could have a key role in the progression of pancreatic cancer, but the quantitative measurement of its expression in clinical tissue samples remains a challenge. The correlations between MUC4 promoter methylation status in vivo and either pancreatic cancer progression or MUC4 mRNA expression need to be demonstrated. We used the techniques of quantitative real-time PCR and DNA methylation-specific PCR combined microdissection to precisely detect MUC4 expression and promoter methylation status in 116 microdissected foci from 57 patients with pancreatic ductal adenocarcinoma. Both mRNA expression and hypomethylation frequency increased from normal to precancerous lesions to pancreatic cancer. Multivariate Cox regression analysis showed that high-level MUC4 expression (P = 0.008) and tumor-node-metastasis staging (P = 0.038) were significant independent risk factors for predicting the prognosis of 57 patients. The MUC4 mRNA expression was not significantly correlated with promoter methylation status in 30 foci of pancreatic ductal adenocarcinoma. These results suggest that high mRNA expression and hypomethylation of the MUC4 gene could be involved in carcinogenesis and in the malignant development of pancreatic ductal adenocarcinoma. The MUC4 mRNA expression may become a new prognostic marker for pancreatic cancer. Microdissection-based quantitative real-time PCR and methylation-specific PCR contribute to the quantitative detection of MUC4 expression in clinical samples and reflect the epigenetic regulatory mechanisms of MUC4 in vivo.
Collapse
Affiliation(s)
- Yi Zhu
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Aloysius MM, Zaitoun AM, Awad S, Ilyas M, Rowlands BJ, Lobo DN. Mucins and CD56 as markers of tumour invasion and prognosis in periampullary cancer. Br J Surg 2010; 97:1269-78. [PMID: 20602499 DOI: 10.1002/bjs.7107] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND This study investigated the association of mucins and cluster of differentiation (CD) 56 with vascular and perineural invasion and survival in patients with periampullary cancer. METHODS Immunohistochemical staining was performed on formalin-fixed pancreatic tissue microarrays (cancer, chronic pancreatitis and normal pancreatic tissue) constructed from 126 pancreatic resections (cancer, 104; chronic pancreatitis, 22). Mucin (MUC) 1, MUC4 and MUC5AC expression was quantified using the immunohistochemical score (range 0-300), MUC3 expression was described as membranous or cytoplasmic, and expression of CD56, MUC2 and MUC6 as present or absent. RESULTS In cancers, vascular invasion correlated with overexpression (immunohistochemical score of 100 or more) of MUC1 (P = 0.003) and presence of MUC6 (P = 0.024), and perineural invasion correlated with overexpression of MUC5AC (P = 0.015). Reduced survival was observed with overexpression of MUC4 (P = 0.032) and MUC5AC (P = 0.048), membranous expression of MUC3 (P = 0.048), and presence of CD56 (P = 0.041). Perineural invasion also correlated with CD56 expression (P = 0.001). Overexpression of MUC4 and MUC5AC correlated with tumour recurrence (P = 0.001 and P = 0.034 respectively). Multivariable analysis identified membranous expression of MUC3 (P = 0.023), lymphatic invasion (P = 0.015) and perineural invasion (P = 0.004) as independent predictors of poor survival. CONCLUSION Mucins and CD56 may be markers of prognosis in patients with periampullary cancer.
Collapse
Affiliation(s)
- M M Aloysius
- Division of Gastrointestinal Surgery, Nottingham Digestive Diseases Centre, National Institute for Health Research Biomedical Research Unit, Nottingham University Hospitals, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | | | | | | | | | | |
Collapse
|
49
|
Kitamoto S, Yamada N, Yokoyama S, Houjou I, Higashi M, Yonezawa S. Promoter hypomethylation contributes to the expression of MUC3A in cancer cells. Biochem Biophys Res Commun 2010; 397:333-9. [DOI: 10.1016/j.bbrc.2010.05.124] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 05/24/2010] [Indexed: 01/04/2023]
|
50
|
Bafna S, Kaur S, Batra SK. Membrane-bound mucins: the mechanistic basis for alterations in the growth and survival of cancer cells. Oncogene 2010; 29:2893-904. [PMID: 20348949 DOI: 10.1038/onc.2010.87] [Citation(s) in RCA: 287] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mucins (MUC) are high molecular weight O-linked glycoproteins whose primary functions are to hydrate, protect, and lubricate the epithelial luminal surfaces of the ducts within the human body. The MUC family is comprised of large secreted gel forming and transmembrane (TM) mucins. MUC1, MUC4, and MUC16 are the well-characterized TM mucins and have been shown to be aberrantly overexpressed in various malignancies including cystic fibrosis, asthma, and cancer. Recent studies have uncovered the unique roles of these mucins in the pathogenesis of cancer. These mucins possess specific domains that can make complex associations with various signaling pathways, impacting cell survival through alterations of cell growth, proliferation, death, and autophagy. The cytoplasmic domain of MUC1 serves as a scaffold for interaction with various signaling proteins. On the other hand, MUC4 mediates its effect by stabilizing and enhancing the activity of growth factor receptor ErbB2. MUC16, previously known as CA125, is a well-known serum marker for the diagnosis of ovarian cancer and has a key role in stimulation and dissemination of ovarian cancer cells by interacting with mesothelin and galectin. Therefore, herein we discuss the function and divergent mechanisms of MUC1, MUC4, and MUC16 in carcinogenesis in the context of alteration in cell growth and survival.
Collapse
Affiliation(s)
- S Bafna
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | | | | |
Collapse
|