1
|
Li M, Liu Z, Wang D, Ye J, Shi Z, Pan C, Zhang Q, Ju R, Zheng Y, Liu Y. Intraocular mRNA delivery with endogenous MmPEG10-based virus-like particles. Exp Eye Res 2024; 243:109899. [PMID: 38636802 DOI: 10.1016/j.exer.2024.109899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/02/2024] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
Virus-like particles (VLP) are a promising tool for intracellular gene delivery, yet their potential in ocular gene therapy remains underexplored. In this study, we bridged this knowledge gap by demonstrating the successful generation and application of vesicular stomatitis virus glycoprotein (VSVG)-pseudotyped mouse PEG10 (MmPEG10)-VLP for intraocular mRNA delivery. Our findings revealed that PEG10-VLP can efficiently deliver GFP mRNA to adult retinal pigment epithelial cell line-19 (ARPE-19) cells, leading to transient expression. Moreover, we showed that MmPEG10-VLP can transfer SMAD7 to inhibit epithelial-mesenchymal transition (EMT) in RPE cells effectively. In vivo experiments further substantiated the potential of these vectors, as subretinal delivery into adult mice resulted in efficient transduction of retinal pigment epithelial (RPE) cells and GFP reporter gene expression without significant immune response. However, intravitreal injection did not yield efficient ocular expression. We also evaluated the transduction characteristics of MmPEG10-VLP following intracameral delivery, revealing transient GFP protein expression in corneal endothelial cells without significant immunotoxicities. In summary, our study established that VSVG pseudotyped MmPEG10-based VLP can transduce mitotically inactive RPE cells and corneal endothelial cells in vivo without triggering an inflammatory response, underscoring their potential utility in ocular gene therapy.
Collapse
Affiliation(s)
- Mengke Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China; Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100085 China
| | - Zhong Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Dongliang Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jinguo Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Zhuoxing Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Caineng Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Qikai Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China; Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100085 China.
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China; Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100085 China
| |
Collapse
|
2
|
Sarkar A, Junnuthula V, Dyawanapelly S. Ocular Therapeutics and Molecular Delivery Strategies for Neovascular Age-Related Macular Degeneration (nAMD). Int J Mol Sci 2021; 22:10594. [PMID: 34638935 PMCID: PMC8508687 DOI: 10.3390/ijms221910594] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of vision loss in geriatric population. Intravitreal (IVT) injections are popular clinical option. Biologics and small molecules offer efficacy but relatively shorter half-life after intravitreal injections. To address these challenges, numerous technologies and therapies are under development. Most of these strategies aim to reduce the frequency of injections, thereby increasing patient compliance and reducing patient-associated burden. Unlike IVT frequent injections, molecular therapies such as cell therapy and gene therapy offer restoration ability hence gained a lot of traction. The recent approval of ocular gene therapy for inherited disease offers new hope in this direction. However, until such breakthrough therapies are available to the majority of patients, antibody therapeutics will be on the shelf, continuing to provide therapeutic benefits. The present review aims to highlight the status of pre-clinical and clinical studies of neovascular AMD treatment modalities including Anti-VEGF therapy, upcoming bispecific antibodies, small molecules, port delivery systems, photodynamic therapy, radiation therapy, gene therapy, cell therapy, and combination therapies.
Collapse
Affiliation(s)
- Aira Sarkar
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA;
| | | | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai 400019, India
| |
Collapse
|
3
|
Munis AM. Gene Therapy Applications of Non-Human Lentiviral Vectors. Viruses 2020; 12:v12101106. [PMID: 33003635 PMCID: PMC7599719 DOI: 10.3390/v12101106] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
Recent commercialization of lentiviral vector (LV)-based cell therapies and successful reports of clinical studies have demonstrated the untapped potential of LVs to treat diseases and benefit patients. LVs hold notable and inherent advantages over other gene transfer agents based on their ability to transduce non-dividing cells, permanently transform target cell genome, and allow stable, long-term transgene expression. LV systems based on non-human lentiviruses are attractive alternatives to conventional HIV-1-based LVs due to their lack of pathogenicity in humans. This article reviews non-human lentiviruses and highlights their unique characteristics regarding virology and molecular biology. The LV systems developed based on these lentiviruses, as well as their successes and shortcomings, are also discussed. As the field of gene therapy is advancing rapidly, the use of LVs uncovers further challenges and possibilities. Advances in virology and an improved understanding of lentiviral biology will aid in the creation of recombinant viral vector variants suitable for translational applications from a variety of lentiviruses.
Collapse
Affiliation(s)
- Altar M Munis
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
4
|
Cavalieri V, Baiamonte E, Lo Iacono M. Non-Primate Lentiviral Vectors and Their Applications in Gene Therapy for Ocular Disorders. Viruses 2018; 10:E316. [PMID: 29890733 PMCID: PMC6024700 DOI: 10.3390/v10060316] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/18/2022] Open
Abstract
Lentiviruses have a number of molecular features in common, starting with the ability to integrate their genetic material into the genome of non-dividing infected cells. A peculiar property of non-primate lentiviruses consists in their incapability to infect and induce diseases in humans, thus providing the main rationale for deriving biologically safe lentiviral vectors for gene therapy applications. In this review, we first give an overview of non-primate lentiviruses, highlighting their common and distinctive molecular characteristics together with key concepts in the molecular biology of lentiviruses. We next examine the bioengineering strategies leading to the conversion of lentiviruses into recombinant lentiviral vectors, discussing their potential clinical applications in ophthalmological research. Finally, we highlight the invaluable role of animal organisms, including the emerging zebrafish model, in ocular gene therapy based on non-primate lentiviral vectors and in ophthalmology research and vision science in general.
Collapse
Affiliation(s)
- Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Edificio 16, 90128 Palermo, Italy.
- Advanced Technologies Network (ATeN) Center, University of Palermo, Viale delle Scienze Edificio 18, 90128 Palermo, Italy.
| | - Elena Baiamonte
- Campus of Haematology Franco e Piera Cutino, Villa Sofia-Cervello Hospital, 90146 Palermo, Italy.
| | - Melania Lo Iacono
- Campus of Haematology Franco e Piera Cutino, Villa Sofia-Cervello Hospital, 90146 Palermo, Italy.
| |
Collapse
|
5
|
Moore NA, Bracha P, Hussain RM, Morral N, Ciulla TA. Gene therapy for age-related macular degeneration. Expert Opin Biol Ther 2017; 17:1235-1244. [PMID: 28726562 DOI: 10.1080/14712598.2017.1356817] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION In neovascular age related macular degeneration (nAMD), gene therapy to chronically express anti-vascular endothelial growth factor (VEGF) proteins could ameliorate the treatment burden of chronic intravitreal therapy and improve limited visual outcomes associated with 'real world' undertreatment. Areas covered: In this review, the authors assess the evolution of gene therapy for AMD. Adeno-associated virus (AAV) vectors can transduce retinal pigment epithelium; one such early application was a phase I trial of AAV2-delivered pigment epithelium derived factor gene in advanced nAMD. Subsequently, gene therapy for AMD shifted to the investigation of soluble fms-like tyrosine kinase-1 (sFLT-1), an endogenously expressed VEGF inhibitor, binding and neutralizing VEGF-A. After some disappointing results, research has centered on novel vectors, including optimized AAV2, AAV8 and lentivirus, as well as genes encoding other anti-angiogenic proteins, including ranibizumab, aflibercept, angiostatin and endostatin. Also, gene therapy targeting the complement system is being investigated for geographic atrophy due to non-neovascular AMD. Expert opinion: The success of gene therapy for AMD will depend on the selection of the most appropriate therapeutic protein and its level of chronic expression. Future investigations will center on optimizing vector, promoter and delivery methods, and evaluating the risks of the chronic expression of anti-angiogenic or anti-complement proteins.
Collapse
Affiliation(s)
- Nicholas A Moore
- a Department of Ophthalmology , Indiana University School of Medicine , Indianapolis , IN , USA
| | - Peter Bracha
- a Department of Ophthalmology , Indiana University School of Medicine , Indianapolis , IN , USA
| | - Rehan M Hussain
- a Department of Ophthalmology , Indiana University School of Medicine , Indianapolis , IN , USA
| | - Nuria Morral
- c Department of Medical and Molecular Genetics , Indiana University School of Medicine , Indianapolis , IN , USA
| | - Thomas A Ciulla
- a Department of Ophthalmology , Indiana University School of Medicine , Indianapolis , IN , USA.,b Retina Service , Midwest Eye Institute , Indianapolis , IN , USA
| |
Collapse
|
6
|
Update on ocular gene therapy and advances in treatment of inherited retinal diseases and exudative macular degeneration. Curr Opin Ophthalmol 2016; 27:268-73. [DOI: 10.1097/icu.0000000000000256] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Safety and pharmacodynamics of suprachoroidal injection of triamcinolone acetonide as a controlled ocular drug release model. J Control Release 2015; 203:109-17. [PMID: 25700623 DOI: 10.1016/j.jconrel.2015.02.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/07/2015] [Accepted: 02/15/2015] [Indexed: 11/21/2022]
Abstract
Suprachoroidal injection is an emerging technique for drug delivery to the posterior segment, which is hard to reach by non-invasive approaches. However, the injection technique varies and the associated ocular safety is not well understood. In addition, it is not clear if drug formulation is a major factor in optimizing pharmacodynamics using this technique. The current study was designed to compare the suprachoroidal injection of different drug formulations and to characterize the safety and pharmacodynamics of triamcinolone acetonide (TA) delivered by this technique. Both indocyanine green (ICG) solution and TA suspension, at 50μL, 100μL, and 150μL, were suprachoroidally injected and intraocular pressure (IOP) tonometry, fundus photography, and electroretinography were performed over multiple time points up to eight weeks. After 50μL TA (Kenalog-40) suprachoroidal injection, 4-5 animals at 7 time points were sacrificed for aqueous, vitreous, retina, and plasma collections. TA was quantitated using ultra-performance liquid chromatography tandem mass spectrometry. For comparative efficacy study, 50μL (2mg) suprachoroidal TA versus 20mg subtenon TA were performed 4weeks before induction of experimental uveitis with 10ng of intravitreal lipopolysaccharide. After suprachoroidal injection, IOP had an acute elevation, higher volume caused higher IOP (p<0.0001). Equivalent volume of ICG solution led to a significantly smaller IOP elevation than after TA suprachoroidal injection. This finding suggests better distribution of ICG solution than TA suspension in the suprachoroidal space. Following a 50μL suprachoroidal injection, peak TA concentration in the aqueous was below 1ng/mL. In contrast, the posterior vitreous and retina had 1912ng/mL and 400,369ng/mL TA, respectively. Maximum TA in plasma was 11.6ng/mL. Drug exposure to the posterior retina was 523,910 times more than that to the aqueous and 29,516 times more than systemic TA exposure. In the treatment of lipopolysaccharide-induced uveitis, compared with 20mg subtenon injection, suprachoroidal 2mg TA demonstrated much better efficacy with significantly less aqueous humor cells and lower vitreous opacity scores (p<0.05). Histology showed much less vitreous inflammation in the suprachoroidal injection group (p<0.0001). It seems that a 50μL suprachoroidal injection of TA was well tolerated in rabbit eyes and demonstrated excellent penetration into the posterior retina, providing better therapeutic effect than subtenon 20mg TA.
Collapse
|
8
|
Trapani I, Puppo A, Auricchio A. Vector platforms for gene therapy of inherited retinopathies. Prog Retin Eye Res 2014; 43:108-28. [PMID: 25124745 PMCID: PMC4241499 DOI: 10.1016/j.preteyeres.2014.08.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/26/2014] [Accepted: 08/02/2014] [Indexed: 12/20/2022]
Abstract
Inherited retinopathies (IR) are common untreatable blinding conditions. Most of them are inherited as monogenic disorders, due to mutations in genes expressed in retinal photoreceptors (PR) and in retinal pigment epithelium (RPE). The retina's compatibility with gene transfer has made transduction of different retinal cell layers in small and large animal models via viral and non-viral vectors possible. The ongoing identification of novel viruses as well as modifications of existing ones based either on rational design or directed evolution have generated vector variants with improved transduction properties. Dozens of promising proofs of concept have been obtained in IR animal models with both viral and non-viral vectors, and some of them have been relayed to clinical trials. To date, recombinant vectors based on the adeno-associated virus (AAV) represent the most promising tool for retinal gene therapy, given their ability to efficiently deliver therapeutic genes to both PR and RPE and their excellent safety and efficacy profiles in humans. However, AAVs' limited cargo capacity has prevented application of the viral vector to treatments requiring transfer of genes with a coding sequence larger than 5 kb. Vectors with larger capacity, i.e. nanoparticles, adenoviral and lentiviral vectors are being exploited for gene transfer to the retina in animal models and, more recently, in humans. This review focuses on the available platforms for retinal gene therapy to fight inherited blindness, highlights their main strengths and examines the efforts to overcome some of their limitations.
Collapse
Affiliation(s)
- Ivana Trapani
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Agostina Puppo
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy; Medical Genetics, Department of Translational Medicine, Federico II University, Naples, Italy.
| |
Collapse
|
9
|
Puppo A, Cesi G, Marrocco E, Piccolo P, Jacca S, Shayakhmetov DM, Parks RJ, Davidson BL, Colloca S, Brunetti-Pierri N, Ng P, Donofrio G, Auricchio A. Retinal transduction profiles by high-capacity viral vectors. Gene Ther 2014; 21:855-65. [PMID: 24989814 PMCID: PMC4193889 DOI: 10.1038/gt.2014.57] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/08/2014] [Accepted: 05/01/2014] [Indexed: 11/30/2022]
Abstract
Retinal gene therapy with adeno-associated viral (AAV) vectors is safe and effective in humans. However, the limited cargo capacity of AAV prevents their use for therapy of those inherited retinopathies (IRs) due to mutations in large (>5kb) genes. Viral vectors derived from Adenovirus (Ad), Lentivirus (LV) and Herpesvirus (HV) can package large DNA sequences but do not target efficiently retinal photoreceptors (PRs) where the majority of genes responsible for IRs are expressed. Here, we have evaluated the mouse retinal transduction profiles of vectors derived from 16 different Ad serotypes, 7 LV pseudotypes, and from a bovine HV. Most of the vectors tested transduced efficiently the retinal pigment epithelium (RPE). We found that LV-GP64 tends to transduce more PRs than the canonical LV-VSVG albeit this was restricted to a narrow region. We observed more extensive PR transduction with HdAd1, 2 and 5/F35++ than with LV, although none of them outperformed the canonical HdAd5 or matched the extension of PR transduction achieved with AAV2/8.
Collapse
Affiliation(s)
- A Puppo
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - G Cesi
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - E Marrocco
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - P Piccolo
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - S Jacca
- Department of Medical Veterinary Science, University of Parma, Parma, Italy
| | - D M Shayakhmetov
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University, Atlanta, GA, USA
| | - R J Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - B L Davidson
- Departments of Internal Medicine, Neurology and Molecular Physiology & Biophysics, University of Iowa, Iowa City, IA, USA
| | | | | | - P Ng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - G Donofrio
- Department of Medical Veterinary Science, University of Parma, Parma, Italy
| | - A Auricchio
- 1] Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy [2] Medical Genetics, Department of Translational Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
10
|
Bemelmans AP, Duqué S, Rivière C, Astord S, Desrosiers M, Marais T, Sahel JA, Voit T, Barkats M. A single intravenous AAV9 injection mediates bilateral gene transfer to the adult mouse retina. PLoS One 2013; 8:e61618. [PMID: 23613884 PMCID: PMC3626698 DOI: 10.1371/journal.pone.0061618] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 03/15/2013] [Indexed: 11/25/2022] Open
Abstract
Widespread gene delivery to the retina is an important challenge for the treatment of retinal diseases, such as retinal dystrophies. We and others have recently shown that the intravenous injection of a self-complementary (sc) AAV9 vector can direct efficient cell transduction in the central nervous system, in both neonatal and adult animals. We show here that the intravenous injection of scAAV9 encoding green fluorescent protein (GFP) resulted in gene transfer to all layers of the retina in adult mice, despite the presence of a mature blood-eye barrier. Cell morphology studies and double-labeling with retinal cell-specific markers showed that GFP was expressed in retinal pigment epithelium cells, photoreceptors, bipolar cells, Müller cells and retinal ganglion cells. The cells on the inner side of the retina, including retinal ganglion cells in particular, were transduced with the highest efficiency. Quantification of the cell population co-expressing GFP and Brn-3a showed that 45% of the retinal ganglion cells were efficiently transduced after intravenous scAAV9-GFP injection in adult mice. This study provides the first demonstration that a single intravenous scAAV9 injection can deliver transgenes to the retinas of both eyes in adult mice, suggesting that this vector serotype is able to cross mature blood-eye barriers. This intravascular gene transfer approach, by eliminating the potential invasiveness of ocular surgery, could constitute an alternative when fragility of the retina precludes subretinal or intravitreal injections of viral vectors, opening up new possibilities for gene therapy for retinal diseases.
Collapse
Affiliation(s)
- Alexis-Pierre Bemelmans
- INSERM, U968, Paris, France
- Institut de la Vision, Université Pierre et Marie Curie Paris 6 - UM80, Paris, France
- UMR_7210, CNRS, Paris, France
- Molecular Imaging Research Center (MIRCen) and CNRS URA2210, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d’Imagerie Biomédicale (I2BM), Fontenay-aux-Roses, France
| | - Sandra Duqué
- UM76 UPMC-AIM UMR S974, INSERM U 974, CNRS UMR 7215, Institut de Myologie, Université Pierre et Marie Curie Paris 6, Paris, France
| | | | - Stéphanie Astord
- UM76 UPMC-AIM UMR S974, INSERM U 974, CNRS UMR 7215, Institut de Myologie, Université Pierre et Marie Curie Paris 6, Paris, France
| | - Mélissa Desrosiers
- INSERM, U968, Paris, France
- Institut de la Vision, Université Pierre et Marie Curie Paris 6 - UM80, Paris, France
- UMR_7210, CNRS, Paris, France
| | - Thibault Marais
- UM76 UPMC-AIM UMR S974, INSERM U 974, CNRS UMR 7215, Institut de Myologie, Université Pierre et Marie Curie Paris 6, Paris, France
| | - José-Alain Sahel
- INSERM, U968, Paris, France
- Institut de la Vision, Université Pierre et Marie Curie Paris 6 - UM80, Paris, France
- UMR_7210, CNRS, Paris, France
- INSERM-DHOS CIC 503, Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, Paris, France
| | - Thomas Voit
- UM76 UPMC-AIM UMR S974, INSERM U 974, CNRS UMR 7215, Institut de Myologie, Université Pierre et Marie Curie Paris 6, Paris, France
| | - Martine Barkats
- UM76 UPMC-AIM UMR S974, INSERM U 974, CNRS UMR 7215, Institut de Myologie, Université Pierre et Marie Curie Paris 6, Paris, France
- * E-mail:
| |
Collapse
|
11
|
Wu Q, Cao M, Wang T, Jiang P, Zhou K. Downregulation of cAMP response element-binding protein by lentiviral vector-mediated RNAi attenuates morphine withdrawal syndromes in rats. Behav Brain Res 2012; 233:217-23. [DOI: 10.1016/j.bbr.2012.04.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/16/2012] [Accepted: 04/19/2012] [Indexed: 10/28/2022]
|
12
|
Abstract
Substantial advances in our understanding of lentivirus lifecycles and their various constituent proteins have permitted the bioengineering of lentiviral vectors now considered safe enough for clinical trials for both lethal and non-lethal diseases. They possess distinct properties that make them particularly suitable for gene delivery in ophthalmic diseases, including high expression, consistent targeting of various post-mitotic ocular cells in vivo and a paucity of associated intraocular inflammation, all contributing to their ability to mediate efficient and stable intraocular gene transfer. In this review, the intraocular tropisms and therapeutic applications of both primate and non-primate lentiviral vectors, and how the unique features of the eye influence these, are discussed. The feasibility of therapeutic targeting using these vectors in animal models of both anterior and posterior ophthalmic disorders has been established, and has, in combination with substantial progress in enhancing lentiviral vector bio-safety over the past two decades, paved the way for the first human ophthalmic clinical trials using lentivirus-based gene transfer vectors.
Collapse
Affiliation(s)
- K S Balaggan
- Department of Genetics, Institute of Ophthalmology, London, UK.
| | | |
Collapse
|
13
|
Yuan MK, Tao Y, Yu WZ, Kai W, Jiang YR. Lentivirus-mediated RNA interference of vascular endothelial growth factor in monkey eyes with iris neovascularization. Mol Vis 2010; 16:1743-53. [PMID: 20806089 PMCID: PMC2927369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Accepted: 08/20/2010] [Indexed: 10/25/2022] Open
Abstract
PURPOSE To explore the in vivo anti-angiogenesis effects resulting from lentivirus-mediated RNAi of vascular endothelial growth factor (VEGF) in monkeys with iris neovascularization (INV). METHODS Five specific recombinant lentiviral vectors for RNA interference, targeting Macaca mulatta VEGFA, were designed and the one with best knock down efficacy (LV-GFP-VEGFi1) in H1299 cells and RF/6A cells was selected by real-time PCR for in vivo use. A laser-induced retinal vein occlusion model was established in one eye of seven cynomolgus monkeys. In monkeys number 1, 3, and 5 (Group 1), the virus (1x10(8) particles) was intravitreally injected into the preretinal space of the animal's eye immediately after laser coagulation; and in monkeys number 2, 4, and 6 (Group 2), the virus (1x10(8) particles) was injected at 10 days after laser coagulation. In monkey number 7, a blank control injection was performed. In monkeys number 1 and 2, virus without RNAi sequence was used; in monkeys number 3 and 4, virus with nonspecific RNAi sequence was used; and in monkeys 5 and 6, LV-GFP-VEGFi1 was used. RESULTS In monkey number 5, at 23 days after laser treatment, no obvious INV was observed, while fluorescein angiography of the iris revealed high fluorescence at the margin of pupil and point posterior synechiae. At 50 days after laser treatment, only a slight ectropion uvea was found. However, in the other eyes, obvious INV or hyphema was observed. The densities of new iridic vessels all significantly varied: between monkey number 5 and number 3 (36.01+/-4.49/mm(2) versus 48.68+/-9.30/mm(2), p=0.025), between monkey number 3 and monkey number 7 (48.68+/-9.30/mm(2) versus 74.38+/-9.23/mm(2), p=0.002), and between monkey number 5 and number 7 (36.01+/-4.49/mm(2) versus 74.38+/-9.23/mm(2), p<0.001). CONCLUSIONS Lentivirus-mediated RNAi of VEGF may be a new strategy to treat iris neovascularization, while further studies are needed to investigate the long-term effect.
Collapse
|
14
|
Zhang M, Mo X, Fang Y, Guo W, Wu J, Zhang S, Huang Q. Rescue of photoreceptors by BDNF gene transfer using in vivo electroporation in the RCS rat of retinitis pigmentosa. Curr Eye Res 2009; 34:791-9. [PMID: 19839873 DOI: 10.1080/02713680903086018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE To investigate the feasibility of introducing brain-derived neurotrophic factor (BDNF) gene into retinal pigment epithelial cells in vivo by electroporation and whether this method can rescue photoreceptors of retinitis pigmentosa in Royal College Surgeons (RCS) rats. METHODS The BDNF-GFP fusion eukaryotic-expressing plasmid was constructed and subretinally or intravitreously injected into the eyes of RCS rats followed by in vivo electroporation. The expression of BDNF mRNA and protein was detected by RT-PCR and Western immunoblot analysis. The number of surviving photoreceptors was counted, and the TdT-dUTP terminal nick-end labeling (TUNEL) method was used to detect the apoptotic retinal cells at different timepoints after introduction of BDNF plasmid. RESULTS Treated eyes showed a significantly higher rescue ratio and a lower number of TUNEL-positive photoreceptors than did the control eyes at various timepoints. CONCLUSION These findings provide evidence that electroporation is an effective method for gene transfer into retinal pigment epithelial cells, and the rescue of photoreceptors can be achieved by BDNF gene transfection with electroporation.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Nicoud M, Kong J, Iqball S, Kan O, Naylor S, Gouras P, Allikmets R, Binley K. Development of photoreceptor-specific promoters and their utility to investigate EIAV lentiviral vector mediated gene transfer to photoreceptors. J Gene Med 2008; 9:1015-23. [PMID: 17963276 DOI: 10.1002/jgm.1115] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND We wanted to investigate the ability of recombinant equine infectious anemia virus (EIAV) vectors to transduce photoreceptor cells by developing a series of photoreceptor-specific promoters that drive strong gene expression in photoreceptor cells. METHODS Promoter fragments derived from the rhodopsin (RHO), the beta phosphodiesterase (PDE) and the retinitis pigmentosa (RP1) genes were cloned in combination with an enhancer element, derived from the interphotoreceptor retinoid-binding protein gene (IRBP), into luciferase reporter plasmids. An in vitro transient reporter assay was carried out in the human Y-79 retinoblastoma cell line. The optimal promoters from this screen were then cloned into the recombinant EIAV vector for evaluation in vivo following subretinal delivery into mice. RESULTS All promoters maintained a photoreceptor-specific expression profile in vitro and the gene expression was further enhanced in combination with the IRBP enhancer. The use of IRBP-combined RHO or PDE promoters showed modest but exclusive expression in photoreceptors following subretinal delivery to mice. By contrast an EIAV vector containing the cytomegalovirus (CMV) promoter drove reporter gene expression in both photoreceptors and retinal pigment epithelium. CONCLUSIONS It may be possible to use recombinant EIAV vectors containing photoreceptor-specific promoters to drive therapeutic gene expression to treat a range of retinal degenerative diseases where the photoreceptor cell is the primary disease target.
Collapse
Affiliation(s)
- Marjorie Nicoud
- Oxford BioMedica (UK) Ltd., Medawar Centre, Robert Robinson Avenue, Oxford Science Park, Oxford OX4 4GA, UK
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Bender FLP, Fischer M, Funk N, Orel N, Rethwilm A, Sendtner M. High-efficiency gene transfer into cultured embryonic motoneurons using recombinant lentiviruses. Histochem Cell Biol 2006; 127:439-48. [PMID: 17102992 DOI: 10.1007/s00418-006-0247-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2006] [Indexed: 10/23/2022]
Abstract
Primary neurons are a common tool for investigating gene function for survival and morphological and functional differentiation. Gene transfer techniques play an important role in this context. However, the efficacy of conventional gene transfer techniques, in particular for primary motoneurons is low so that it is not possible to distinguish whether the observed effects are representative for all neurons or only for the small subpopulation that expresses the transfected cDNA. In order to develop techniques that allow high gene transfer rates, we have optimized lentiviral-based gene transfer for cultured motoneurons by using a replication-defective viral vector system. These techniques result in transduction efficacies higher than 50%, as judged by EGFP expression under the control of SFFV or CMV promoters. Under the same conditions, survival and morphology of the cultured motoneurons was not altered, at least not when virus titers did not exceed a multiplicity of infection of 100. Under the same cell culture conditions, electroporation resulted in less than 5% transfected motoneurons and reduced survival. Therefore we consider this lentivirus-based gene transfer protocol as a suitable tool to study the effects of gene transfer on motoneuron survival, differentiation and function.
Collapse
Affiliation(s)
- Florian L P Bender
- Institute for Clinical Neurobiology, University of Wurzburg, Josef-Schneider-Str. 11, 97080, Wurzburg, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Kayikcioglu OR, Mendez T, Morrison V, Freeman WR. A NEW TECHNIQUE FOR THE SUBRETINAL INJECTION OF SMALL VOLUMES BY USING A MODIFIED VISCOUS FLUID INJECTOR SYSTEM. Retina 2006; 26:1089-90. [PMID: 16622393 DOI: 10.1097/01.iae.0000220489.15162.7a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Abstract
The eye has unique advantages as a target organ for gene therapy of both inherited and acquired ocular disorders and offers a valuable model system for gene therapy. The eye is readily accessible to phenotypic examination and investigation of therapeutic effects in vivo by fundus imaging and electrophysiological techniques. Considerable progress has been made in the development of gene replacement therapies for retinal degenerations resulting from gene defects in photoreceptor cells (rds, RPGRIP, RS-1) and in retinal pigment epithelial cells (MerTK, RPE65, OA1) using recombinant adeno-associated virus and lentivirus-based vectors. Gene therapy also offers a potentially powerful approach to the treatment of complex acquired disorders such as those involving angiogenesis, inflammation and degeneration, by the targeted sustained intraocular delivery of therapeutic proteins. Proposals for clinical trials of gene therapy for early-onset retinal degeneration owing to defects in the gene encoding the visual cycle protein RPE65 have recently received ethical approval.
Collapse
Affiliation(s)
- J W B Bainbridge
- Division of Molecular Therapy, Institute of Ophthalmology, University College London, London, UK
| | | | | |
Collapse
|
19
|
Kayikcioglu OR, Cheng L, Kozak I, Bergeron-Lynn G, Schulteis CT, Rhoades KL, Freeman WR. Toxicity of subretinal ribozyme to the proliferating cell nuclear antigen and 5-fluorouracil in rat eyes. Curr Eye Res 2006; 31:435-40. [PMID: 16714235 DOI: 10.1080/02713680600672177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE To investigate the subretinal toxicity profile of the ribozyme to the proliferating cell nuclear antigen (PCNA-Rz) and 5-fluorouracil (5-FU), as well as the highest nontoxic subretinal dose of the mixture of the two agents in rat eyes. METHODS Brown-Norway rats received subretinal injections of 1 microg, 10 microg, and 100 microg/microl PCNA-Rz and 0.06 microg/microl, 0.3 microg/microl, and 1.5 microg/microl 5-FU in the right eyes, and the left eyes were injected with H-BSS as control. Each dose was tested on 5 eyes in a 5 microl volume. In a second study, a combination of 5-FU (1.5 microg/microL) with varying 10-30-50 microg/microl doses of PCNA-Rz was tested in a regimen of four sequential subretinal injections. Toxicity was monitored by biomicroscopy, indirect ophthalmoscopy, electroretinography (ERG), and histology. RESULTS The highest nontoxic dose for subretinal PCNA-Rz was 10 microg/microl, whereas 100 microg/microl showed disturbance of pigmentation with corresponding histological changes of retinal photoreceptor loss and retinal pigment epithelium proliferation or irregularities. Subretinal injection of all three doses of 5-FU did not show any toxicity. Serial injections of a mixture of 1.5 microg/microl 5-FU with 10 microg/microl of PCNA-Rz was found to be safe in rat eyes. CONCLUSIONS Subretinal injections of the combination of PCNA-Rz (10 microg/microl) and 5-FU (1.5 microg/microl) demonstrated to be safe in rat eyes during the course of this study, even with a multiple administration of four injections.
Collapse
Affiliation(s)
- O R Kayikcioglu
- Joan and Irwin Jacobs Retina Center at UCSD/Shiley Eye Center, University of California-San Diego, 9415 Campus Point Drive, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Reiners J, Nagel-Wolfrum K, Jürgens K, Märker T, Wolfrum U. Molecular basis of human Usher syndrome: deciphering the meshes of the Usher protein network provides insights into the pathomechanisms of the Usher disease. Exp Eye Res 2006; 83:97-119. [PMID: 16545802 DOI: 10.1016/j.exer.2005.11.010] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 11/15/2005] [Accepted: 11/21/2005] [Indexed: 11/17/2022]
Abstract
Usher syndrome (USH) is the most frequent cause of combined deaf-blindness in man. It is clinically and genetically heterogeneous and at least 12 chromosomal loci are assigned to three clinical USH types, namely USH1A-G, USH2A-C, USH3A (Davenport, S.L.H., Omenn, G.S., 1977. The heterogeneity of Usher syndrome. Vth Int. Conf. Birth Defects, Montreal; Petit, C., 2001. Usher syndrome: from genetics to pathogenesis. Annu. Rev. Genomics Hum. Genet. 2, 271-297). Mutations in USH type 1 genes cause the most severe form of USH. In USH1 patients, congenital deafness is combined with a pre-pubertal onset of retinitis pigmentosa (RP) and severe vestibular dysfunctions. Those with USH2 have moderate to severe congenital hearing loss, non-vestibular dysfunction and a later onset of RP. USH3 is characterized by variable RP and vestibular dysfunction combined with progressive hearing loss. The gene products of eight identified USH genes belong to different protein classes and families. There are five known USH1 molecules: the molecular motor myosin VIIa (USH1B); the two cell-cell adhesion cadherin proteins, cadherin 23 (USH1D) and protocadherin 15, (USH1F) and the scaffold proteins, harmonin (USH1C) and SANS (USH1G). In addition, two USH2 genes and one USH3A gene have been identified. The two USH2 genes code for the transmembrane protein USH2A, also termed USH2A ("usherin") and the G-protein-coupled 7-transmembrane receptor VLGR1b (USH2C), respectively, whereas the USH3A gene encodes clarin-1, a member of the clarin family which exhibits 4-transmembrane domains. Molecular analysis of USH1 protein function revealed that all five USH1 proteins are integrated into a protein network via binding to PDZ domains in the USH1C protein harmonin. Furthermore, this scaffold function of harmonin is supported by the USH1G protein SANS. Recently, we have shown that the USH2 proteins USH2A and VLGR1b as well as the candidate for USH2B, the sodium bicarbonate co-transporter NBC3, are also integrated into this USH protein network. In the inner ear, these interactions are essential for the differentiation of hair cell stereocilia but may also participate in the mechano-electrical signal transduction and the synaptic function of maturated hair cells. In the retina, the co-expression of all USH1 and USH2 proteins at the synapse of photoreceptor cells indicates that they are organized in an USH protein network there. The identification of the USH protein network indicates a common pathophysiological pathway in USH. Dysfunction or absence of any of the molecules in the mutual "interactome" related to the USH disease may lead to disruption of the network causing senso-neuronal degeneration in the inner ear and the retina, the clinical symptoms of USH.
Collapse
Affiliation(s)
- Jan Reiners
- Institute of Zoology, Department of Cell and Matrix Biology, Johannes Gutenberg University of Mainz, Müllerweg 6, D-55099 Mainz, Germany
| | | | | | | | | |
Collapse
|
21
|
Kayikcioglu OR, Falkenstein I, Cheng L, Kozak I, La Bree L, Azen SP, Wong-Staal F, Paoni NF, Freeman WR. Therapy with ribozyme to the proliferating cell nuclear antigen-ribozyme and 5-fluorouracil of experimental choroidal neovascularization in rats. J Ocul Pharmacol Ther 2006; 22:1-9. [PMID: 16503769 DOI: 10.1089/jop.2006.22.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE The aim of this study was to evaluate the efficacy of hammerhead ribozyme to the proliferating cell nuclear antigen (PCNA-Rz) and 5-fluorouracil (5-FU) in experimental choroidal neovascularization (CNV) model in rats. METHODS Laser was used to induce CNV in each eye of 44 rats. For angiography studies, injections of either a mixture of PCNA-Rz 10 microg/microL and 5-FU 1.5 microg/microL, versus the same dose of either drug alone versus a control injection of Hanks' Balanced Salt Solution (HBSS) were performed. We also studied this regimen to evaluate scar size and volume. RESULTS There was significantly less angiographic leakage for the treated eyes compared to the controls by 3.53 grading points (P = 0.0005); CNV leakage was reduced in the combination group compared to 5-FU alone by 1.75 grading units (P = 0.04) and compared to PCNARz by 2.22 grading units (P = 0.07). The scar size and volume were smaller (diameter 354.6 +/- 174.2 microm vs 477.3 +/- 157.0 microm), (thickness 52.7 +/- 43.0 microm versus 79.6 +/- 46.2 microm) with a reduction in scar volume of 44.8%. CONCLUSIONS Subretinal injection of PCNA-Rz and 5-FU mixture is more effective as treatment of laser-induced CNV, than either drug alone. The majority of the antiangiogenic effect is a result of 5-FU activity with a contribution by the PCNA ribozyme.
Collapse
Affiliation(s)
- Ozcan R Kayikcioglu
- Department of Ophthalmology, UCSD/Shiley Eye Center, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Balaggan KS, Binley K, Esapa M, Iqball S, Askham Z, Kan O, Tschernutter M, Bainbridge JWB, Naylor S, Ali RR. Stable and efficient intraocular gene transfer using pseudotyped EIAV lentiviral vectors. J Gene Med 2006; 8:275-85. [PMID: 16299834 DOI: 10.1002/jgm.845] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND We have developed minimal non-primate lentiviral vectors based on the equine infectious anaemia virus (EIAV). We evaluated the in vivo expression profiles of these vectors delivered regionally to ocular tissues to define their potential utility in ocular gene therapy. METHODS EIAV vectors pseudotyped with VSV-G or rabies-G envelope proteins were delivered subretinally, intravitreally or into the anterior chambers (intracameral administration) in mice. Reporter gene (eGFP) expression was analysed using in vivo retinal imaging or histological examination of eyes and brains at intervals between 3 days and 16 months. We investigated the effects of vector titre, pseudotype, genome configuration, site of intraocular administration, intentional retinal trauma and the degree of retinal maturation on the spatial and temporal expression profiles of these vectors. RESULTS Subretinal vector delivery resulted in efficient and stable transduction of retinal pigment epithelial (RPE) cells and variable transduction of photoreceptors up to 16 months post-injection. Retinal trauma facilitated the local transduction of neurosensory retinal cells. Intracameral administration of VSV-G- but not rabies-G-pseudotyped vectors produced stable eGFP expression in corneal endothelial cells and trabecular meshwork. CONCLUSIONS The cellular tropism and expression kinetics of optimised EIAV vectors after intraocular administration make them attractive vehicles for delivering therapeutic genes in the management of inherited and acquired retinal and anterior segment disorders.
Collapse
Affiliation(s)
- K S Balaggan
- Division of Molecular Therapy, Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ralph GS, Binley K, Wong LF, Azzouz M, Mazarakis ND. Gene therapy for neurodegenerative and ocular diseases using lentiviral vectors. Clin Sci (Lond) 2005; 110:37-46. [PMID: 16336203 DOI: 10.1042/cs20050158] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Gene therapy holds great promise for the treatment of a wide range of inherited and acquired disorders. The development of viral vector systems to mediate safe and long-lasting expression of therapeutic transgenes in specific target cell populations is continually advancing. Gene therapy for the nervous system is particularly challenging due to the post-mitotic nature of neuronal cells and the restricted accessibility of the brain itself. Viral vectors based on lentiviruses provide particularly attractive vehicles for delivery of therapeutic genes to treat neurological and ocular diseases, since they efficiently transduce non-dividing cells and mediate sustained transgene expression. Furthermore, novel routes of vector delivery to the nervous system have recently been elucidated and these have increased further the scope of lentiviruses for gene therapy application. Several studies have demonstrated convincing therapeutic efficacy of lentiviral-based gene therapies in animal models of severe neurological disorders and the push for progressing such vectors to the clinic is ongoing. This review describes the key features of lentiviral vectors that make them such useful tools for gene therapy to the nervous system and outlines the major breakthroughs in the potential use of such vectors for treating neurodegenerative and ocular diseases.
Collapse
Affiliation(s)
- G Scott Ralph
- Oxford Biomedica plc, The Medawar Centre, Oxford Science Park, Oxford OX4 4GA, UK.
| | | | | | | | | |
Collapse
|