1
|
Shaffer LR, Mahmud N. Statins in Cirrhosis: Hope or Hype? J Clin Exp Hepatol 2023; 13:1032-1046. [PMID: 37975036 PMCID: PMC10643276 DOI: 10.1016/j.jceh.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/01/2023] [Indexed: 11/19/2023] Open
Abstract
In recent years, studies have demonstrated the benefits of statins in a range of chronic diseases separate from cardiovascular outcomes. Early studies in the context of chronic liver disease have suggested favorable effects of statins leading to slowed fibrosis progression, reduced portal pressures, decreased rates of hepatic decompensation, and improved survival. This has increased interest in the potential role that statins may have in the management of chronic liver disease and cirrhosis, though many questions remain unanswered, including concerns regarding the safety of higher dose statins in patients with advanced decompensated cirrhosis. In this review, we provide an update on the current literature addressing the use of statins in patients with cirrhosis and highlight areas in which additional studies are needed.
Collapse
Affiliation(s)
- Lauren R. Shaffer
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nadim Mahmud
- Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Gastroenterology Section, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Leonard David Institute of Health Economics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Sun J, Wang W, Hu X, Zhang X, Zhu C, Hu J, Ma R. Local delivery of gaseous signaling molecules for orthopedic disease therapy. J Nanobiotechnology 2023; 21:58. [PMID: 36810201 PMCID: PMC9942085 DOI: 10.1186/s12951-023-01813-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Over the past decade, a proliferation of research has used nanoparticles to deliver gaseous signaling molecules for medical purposes. The discovery and revelation of the role of gaseous signaling molecules have been accompanied by nanoparticle therapies for their local delivery. While most of them have been applied in oncology, recent advances have demonstrated their considerable potential in diagnosing and treating orthopedic diseases. Three of the currently recognized gaseous signaling molecules, nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), are highlighted in this review along with their distinctive biological functions and roles in orthopedic diseases. Moreover, this review summarizes the progress in therapeutic development over the past ten years with a deeper discussion of unresolved issues and potential clinical applications.
Collapse
Affiliation(s)
- Jiaxuan Sun
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Wenzhi Wang
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Xianli Hu
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Xianzuo Zhang
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Ruixiang Ma
- Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
3
|
Hydroxyurea as a promising ADAM17 inhibitor. Med Hypotheses 2023. [DOI: 10.1016/j.mehy.2023.111021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
4
|
Yun B, Ahn SH, Yoon JH, Kim BK. Statin use and risk of progression to liver cirrhosis in chronic hepatitis B independent of conventional risk factors: A nationwide study. Hepatol Commun 2022; 6:2455-2464. [PMID: 35766457 PMCID: PMC9426396 DOI: 10.1002/hep4.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/15/2022] [Accepted: 05/30/2022] [Indexed: 11/08/2022] Open
Abstract
Many studies have elucidated the protective associations of statin use with liver cancer or mortality, but studies examining statin's effect on the risk of progression to liver cirrhosis considering medical/metabolic conditions or lifestyle factors are lacking. We aimed to assess statin's benefit independent of conventional risk factors. We identified 25,033 pairs of statin users (using statins for ≥90 days) and nonusers among patients with chronic hepatitis B (CHB) in the Republic of Korea's National Health Insurance Service database from 2010 to 2018. The primary endpoint was progression to cirrhosis from an inactive carrier or simple CHB. The cumulative probability was plotted using the Kaplan-Meier method. Adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs) were estimated using the multivariable Cox proportional hazard model. During a 218,472 person-year follow-up, 2210 incident cases of progression to cirrhosis occurred. The 5-year cumulative risks were 4.0% and 6.3% in statin users and nonusers, respectively (p < 0.001). Statin use was significantly associated with a decreased risk of progression to cirrhosis (aHR, 0.59; 95% CI, 0.55-0.65; p < 0.001), after adjusting for age, sex, hypertension, diabetes, dyslipidemia, antiviral therapy, aspirin use, metformin use, nonstatin medication for dyslipidemia, smoking, drinking, obesity, exercise, and liver dysfunction. This protective association was still significant in a dose-response manner and with different time lags for outcomes. Conclusion: Statin use is associated with a decreased risk of progression to cirrhosis among patients with CHB, independent of metabolic and lifestyle factors. Future studies are required to validate this observation.
Collapse
Affiliation(s)
- Byungyoon Yun
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Hoon Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Yonsei Liver Center, Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea
| | - Jin-Ha Yoon
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Institute for Occupational Health, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Beom Kyung Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.,Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Yonsei Liver Center, Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea
| |
Collapse
|
5
|
Datsko V, Loi H, Datsko T, Mudra A, Mykolenko A, Golovata T, Furdela M, Orel Y, Smachylo I, Burak A, Klantsa M, Oleshchuk O. Nitric oxide-mediated effects of L-ornithine-L-aspartate in acute toxic liver injury. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e83067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study was aimed to investigate nitric oxide-dependent mechanisms of L-ornithine-L-aspartate (LOLA) action in acute toxic liver injury in rats. Acute hepatitis was induced in Wistar rats using 50% oil solution of tetrachloromethane (CCl4) intragastrically (2 g/kg) twice in a 24 hour interval. Intraperitoneal treatment with LOLA (200 mg/kg) was started 6 hours after the second CCl4 administration and maintained for 3 consecutive days. L-Nω-Nitroarginine Methyl Ester (L-NAME) was used intraperitoneally (10 mg/kg). In CCl4-induced hepatitis, LOLA restores the structure of hepatocytes and prevents aminotransferases, alkaline phosphatase and gamma-glutamyl transferase elevation. It decreases total bilirubin concentration but does not affect increased cholesterol level. LOLA augments urea concentration, total protein level in blood and liver as well as serum and liver content of nitrite anions. LOLA enhances activity of catalase, glutathione S-transferase, manganese superoxide dismutase, increases reduced glutathione level and total antioxidant capacity and decreases thiobarbituric acid reactive substances level. The concomitant use of L-NAME inhibits the action of LOLA to enhance nitrite anions synthesis both in serum and liver, to delay the recovery of hepatocytes, to counteract LOLA effect against blood total protein reduction, to prevent the decline in aminotransferases, alkaline phosphatase,, gamma-glutamyl transferase and glutathione S-transferase activity and to reduce catalase activity and reduced glutathione level. Therefore, in CCl4-induced hepatitis, LOLA effectively prevents cytolysis and cholestasis, improves liver metabolism and protects against oxidative stress. Partially, these changes occur in nitric oxide-mediated mechanism since the use of L-NAME declines most of LOLA effects.
Collapse
|
6
|
Micó-Carnero M, Casillas-Ramírez A, Sánchez-González A, Rojano-Alfonso C, Peralta C. The Role of Neuregulin-1 in Steatotic and Non-Steatotic Liver Transplantation from Brain-Dead Donors. Biomedicines 2022; 10:978. [PMID: 35625715 PMCID: PMC9138382 DOI: 10.3390/biomedicines10050978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/29/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Brain death (BD) and steatosis are key risk factors to predict adverse post-transplant outcomes. We investigated the role of Neuregulin-1 (NRG1) in rat steatotic and non-steatotic liver transplantation (LT) from brain death donors (DBD). METHODS NRG1 pathways were characterized after surgery. RESULTS NRG1 and p21-activated kinase 1 (PAK1) levels increased in steatotic and non-steatotic grafts from DBDs. The abolishment of NRG1 effects reduced PAK1. When the effect of either NRG1 nor PAK1 was inhibited, injury and regenerative failure were exacerbated. The benefits of the NRG-1-PAK1 axis in liver grafts from DBDs were associated with increased vascular endothelial growth factor-A (VEGFA) and insulin growth factor-1 (IGF1) levels, respectively. Indeed, VEGFA administration in non-steatotic livers and IGF1 treatment in steatotic grafts prevented damage and regenerative failure resulting from the inhibition of either NRG1 or PAK-1 activity in each type of liver. Exogenous NRG1 induced greater injury than BD induction. CONCLUSIONS This study indicates the benefits of endogenous NRG1 in liver grafts from DBDs and underscores the specificity of the NRG1 signaling pathway depending on the type of liver: NRG1-PAK1-VEGFA in non-steatotic livers and NRG1-PAK1-IGF1 in steatotic livers. Exogenous NRG1 is not an appropriate strategy to apply to liver grafts from DBD.
Collapse
Affiliation(s)
- Marc Micó-Carnero
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| | - Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, Ciudad Victoria 87087, Mexico; (A.C.-R.); (A.S.-G.)
- Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Matamoros 87300, Mexico
| | - Alfredo Sánchez-González
- Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, Ciudad Victoria 87087, Mexico; (A.C.-R.); (A.S.-G.)
| | - Carlos Rojano-Alfonso
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| | - Carmen Peralta
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| |
Collapse
|
7
|
Ibrahim SA, Abdel-Gaber SA, Ibrahim MA, Amin EF, Mohammed RK, Abdelrahman AM. Nitric Oxide Modulation as a Potential Molecular Mechanism Underlying the Protective Role of NaHS in Liver Ischemia Reperfusion Injury. Curr Mol Pharmacol 2021; 15:676-682. [PMID: 34503437 DOI: 10.2174/1874467214666210909154609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/26/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIM Liver IR is a frequent clinical complication with high morbidity and mortality. The present study evaluated the possible protective effect of sodium hydrosulfide (NaHS), a H2S donor, in IR-induced hepatic injury and explored the mechanisms of actions of the investigated drug. METHODS Male albino rats (200-230 g) were divided into the following groups: group 1:Sham-operated non treated rats, group 2: IR non treated rats, group 3: L-NNA + IR rats, group 4: NaHS + IR rats, group 5: L-NNA + NaHS + IR rats. Blood samples were collected for ALT determination. Liver tissue samples were used for the assessment of GPx, catalase, SOD, MDA, total nitrites and TNF-α. Parts from the liver were fixed in 10% formalin solution for histopathological examination and immunohistochemical examination of iNOS, eNOS and caspase-3. RESULTS NaHS protected the liver against IR. This hepatoprotection was associated with normalization of antioxidant enzyme activity and decrease in hepatic MDA, TNF-α and expression of caspase-3 and iNOS. CONCLUSION NaHS is hepatoprotective in IR injury. The hepatoprotective effects of NaHS are associated with antioxidant, anti-inflammatory and antiapoptotic effects. These effects are probably mediated via NO modulation.
Collapse
Affiliation(s)
- Salwa A Ibrahim
- Department of Pharmacology, Minia University Faculty of Medicine, Minia. Egypt
| | - Seham A Abdel-Gaber
- Department of Pharmacology, Minia University Faculty of Medicine, Minia. Egypt
| | - Mohamed A Ibrahim
- Department of Pharmacology, Minia University Faculty of Medicine, Minia. Egypt
| | - Entesar F Amin
- Department of Pharmacology, Minia University Faculty of Medicine, Minia. Egypt
| | - Rehab K Mohammed
- Department of Pathology, Minia University Faculty of Medicine, Minia. Egypt
| | - Aly M Abdelrahman
- Department of Pharmacology, Minia University Faculty of Medicine, Minia. Egypt
| |
Collapse
|
8
|
Li Q, Zhang W, Xiao E. SOD2 overexpression in bone marrow‑derived mesenchymal stem cells ameliorates hepatic ischemia/reperfusion injury. Mol Med Rep 2021; 24:671. [PMID: 34296303 PMCID: PMC8335722 DOI: 10.3892/mmr.2021.12310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/12/2021] [Indexed: 01/03/2023] Open
Abstract
Hepatic ischemia/reperfusion injury (HIRI) is a complex pathophysiological process that may develop after liver transplantation and resection surgery, as well as in uncontrolled clinical conditions. Bone marrow‑derived mesenchymal stem cells (BM‑MSCs) are potential targets for liver diseases. Thus, the present study aimed to investigate the effects of superoxide dismutase 2 (SOD2) overexpression in BM‑MSCs on HIRI by constructing a HIRI rat model. The adenoviral vector containing SOD2 and the corresponding control vector were designed and constructed, and SOD2‑overexpressing BM‑MSCs were injected into the tail vein of the rats. Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels, as well as pathological changes and the remnant liver regeneration rate were determined. The activities of SOD and glutathione peroxidase (GSH‑Px), and malondialdehyde (MDA) content were measured. Reactive oxygen species (ROS) were determined with 2',7'‑-dichlorofluorescein diacetate and measured via fluorescence microscopy. Cell apoptosis was assessed using TUNEL staining. Moreover, the expression levels of Bax, Bcl‑2 and caspase‑3 were detected via western blotting. SOD2‑overexpressing BM‑MSCs significantly reduced the elevation of serum AST and ALT levels. Furthermore, SOD2‑overexpressing BM‑MSCs enhanced SOD and GSH‑Px activities, and suppressed the production of MDA and ROS. Histopathological findings revealed that SOD2‑overexpressing BM‑MSCs decreased the number of TUNEL‑positive cells in the liver. It was also found that SOD2‑overexpressing BM‑MSCs promoted Bcl‑2 expression, but inhibited Bax and caspase‑3 expression in HIRI. Collectively, these findings suggest that SOD2‑overexpressing BM‑MSCs may provide therapeutic support in HIRI by inhibiting oxidative stress and hepatocyte apoptosis.
Collapse
Affiliation(s)
- Qiuyun Li
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Wei Zhang
- Department of Radiology, The Second People's Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Enhua Xiao
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
9
|
Micó-Carnero M, Casillas-Ramírez A, Caballeria-Casals A, Rojano-Alfonso C, Sánchez-González A, Peralta C. Role of Dietary Nutritional Treatment on Hepatic and Intestinal Damage in Transplantation with Steatotic and Non-Steatotic Liver Grafts from Brain Dead Donors. Nutrients 2021; 13:2554. [PMID: 34444713 PMCID: PMC8400262 DOI: 10.3390/nu13082554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/09/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022] Open
Abstract
Herein, we investigate whether: (1) the administration of glucose or a lipid emulsion is useful in liver transplantation (LT) using steatotic (induced genetically or nutritionally) or non-steatotic livers from donors after brain death (DBDs); and (2) any such benefits are due to reductions in intestinal damage and consequently to gut microbiota preservation. In recipients from DBDs, we show increased hepatic damage and failure in the maintenance of ATP, glycogen, phospholipid and growth factor (HGF, IGF1 and VEGFA) levels, compared to recipients from non-DBDs. In recipients of non-steatotic grafts from DBDs, the administration of glucose or lipids did not protect against hepatic damage. This was associated with unchanged ATP, glycogen, phospholipid and growth factor levels. However, the administration of lipids in steatotic grafts from DBDs protected against damage and ATP and glycogen drop and increased phospholipid levels. This was associated with increases in growth factors. In all recipients from DBDs, intestinal inflammation and damage (evaluated by LPS, vascular permeability, mucosal damage, TLR4, TNF, IL1, IL-10, MPO, MDA and edema formation) was not shown. In such cases, potential changes in gut microbiota would not be relevant since neither inflammation nor damage was evidenced in the intestine following LT in any of the groups evaluated. In conclusion, lipid treatment is the preferable nutritional support to protect against hepatic damage in steatotic LT from DBDs; the benefits were independent of alterations in the recipient intestine.
Collapse
Affiliation(s)
- Marc Micó-Carnero
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (A.C.-C.); (C.R.-A.)
| | - Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, 87087 Ciudad Victoria, Mexico; (A.C.-R.); (A.S.-G.)
- Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, 87300 Matamoros, Mexico
| | - Albert Caballeria-Casals
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (A.C.-C.); (C.R.-A.)
| | - Carlos Rojano-Alfonso
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (A.C.-C.); (C.R.-A.)
| | - Alfredo Sánchez-González
- Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, 87087 Ciudad Victoria, Mexico; (A.C.-R.); (A.S.-G.)
| | - Carmen Peralta
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (A.C.-C.); (C.R.-A.)
| |
Collapse
|
10
|
Neri AA, Dontas IA, Iliopoulos DC, Karatzas T. Pathophysiological Changes During Ischemia-reperfusion Injury in Rodent Hepatic Steatosis. In Vivo 2021; 34:953-964. [PMID: 32354880 DOI: 10.21873/invivo.11863] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIM Ischemia and reperfusion injuries may produce deleterious effects on hepatic tissue after liver surgery and transplantation. The impact of ischemia-reperfusion injury (IRI) on the liver depends on its substrate, the percentage of liver ischemic tissue subjected to IRI and the ischemia time. The consequences of IRI are more evident in pathologic liver substrates, such as steatotic livers. This review is the result of an extended bibliographic PubMed search focused on the last 20 years. It highlights basic differences encountered during IRI in lean and steatotic livers based on studies using rodent experimental models. CONCLUSION The main difference in cell death between lean and steatotic livers is the prevalence of apoptosis in the former and necrosis in the latter. There are also major changes in the effect of intracellular mediators, such as TNFα and IL-1β. Further experimental studies are needed in order to increase current knowledge of IRI effects and relevant mechanisms in both lean and steatotic livers, so that new preventive and therapeutic strategies maybe developed.
Collapse
Affiliation(s)
- Anna-Aikaterini Neri
- Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", KAT Hospital, School of Medicine, National & Kapodistrian University of Athens, Kifissia, Greece
| | - Ismene A Dontas
- Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", KAT Hospital, School of Medicine, National & Kapodistrian University of Athens, Kifissia, Greece
| | - Dimitrios C Iliopoulos
- Laboratory of Experimental Surgery & Surgical Research "N.S. Christeas", School of Medicine, National & Kapodistrian University of Athens, Athens, Greece
| | - Theodore Karatzas
- Laboratory of Experimental Surgery & Surgical Research "N.S. Christeas", School of Medicine, National & Kapodistrian University of Athens, Athens, Greece.,2 Department of Propedeutic Surgery, School of Medicine, National & Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
11
|
Bosch J, Gracia-Sancho J, Abraldes JG. Cirrhosis as new indication for statins. Gut 2020; 69:953-962. [PMID: 32139553 DOI: 10.1136/gutjnl-2019-318237] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 01/08/2020] [Accepted: 01/11/2020] [Indexed: 12/12/2022]
Abstract
In the recent years, there have been an increasing number of reports on favourable effects of statins in patients with advanced chronic liver disease. These include reduction in portal pressure, improved liver sinusoidal endothelial and hepatic microvascular dysfunction, decreased fibrogenesis, protection against ischaemia/reperfusion injury, safe prolongation of ex vivo liver graft preservation, reduced sensitivity to endotoxin-mediated liver damage, protection from acute-on-chronic liver failure, prevention of liver injury following hypovolaemic shock and preventing/delaying progression of cirrhosis of any aetiology. Moreover, statins have been shown to have potential beneficial effects in the progression of other liver diseases, such as chronic sclerosing cholangitis and in preventing hepatocellular carcinoma. Because of these many theoretically favourable effects, statins have evolved from being considered a risk to kind of wonder drugs for patients with chronic liver diseases. The present article reviews the current knowledge on the potential applications of statins in chronic liver diseases, from its mechanistic background to objective evidence from clinical studies.
Collapse
Affiliation(s)
- Jaime Bosch
- Inselspital Universitatsspital Bern, Bern, Switzerland .,Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain.,CIBEREHD, Barcelona, Spain
| | - Jordi Gracia-Sancho
- Inselspital Universitatsspital Bern, Bern, Switzerland .,Institut d'Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain.,CIBEREHD, Barcelona, Spain
| | - Juan G Abraldes
- Division of Gastroenterology (Liver Unit), University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
Hide D, Warren A, Fernández-Iglesias A, Maeso-Díaz R, Peralta C, Le Couteur DG, Bosch J, Cogger VC, Gracia-Sancho J. Ischemia/Reperfusion Injury in the Aged Liver: The Importance of the Sinusoidal Endothelium in Developing Therapeutic Strategies for the Elderly. J Gerontol A Biol Sci Med Sci 2020; 75:268-277. [PMID: 30649272 DOI: 10.1093/gerona/glz012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Indexed: 12/24/2022] Open
Abstract
The liver endothelium plays a key role in the progression and resolution of liver diseases in young and adult individuals. However, its role in older people remains unknown. We have herein evaluated the importance of the sinusoidal endothelium in the pathophysiology of acute liver injury, and investigated the applicability of simvastatin, in aged animals. Eighteen-months-old male Wistar rats underwent 60 minutes of partial warm ischemia followed by 2 hours of reperfusion (WIR). A group of aged rats received simvastatin for 3 days before WIR. Endothelial phenotype, parenchymal injury, oxidative and nitrosative stress, and fenestrae dynamics were analyzed. The effects of WIR and simvastatin were investigated in primary LSEC from aged animals. The results of this study demonstrated that WIR significantly damages the liver endothelium and its effects are markedly worse in old animals. WIR-aged livers exhibited reduced vasodilation and sinusoidal capillarization, associated with liver damage and cellular stress. Simvastatin prevented the detrimental effects of WIR in aged livers. In conclusion, the liver sinusoidal endothelium of old animals is highly vulnerable to acute insult, thus targeted protection is especially relevant in preventing liver damage. Simvastatin represents a useful therapeutic strategy in aging.
Collapse
Affiliation(s)
- Diana Hide
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, University of Barcelona Medical School, Barcelona, Spain
- Biomedical Research Network Center in Hepatic and Digestive Diseases (CIBEREHD), Madrid, Spain
| | - Alessandra Warren
- Center for Education and Research on Ageing & ANZAC Research Institute, University of Sydney and Concord Hospital, Australia
| | - Anabel Fernández-Iglesias
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, University of Barcelona Medical School, Barcelona, Spain
- Biomedical Research Network Center in Hepatic and Digestive Diseases (CIBEREHD), Madrid, Spain
| | - Raquel Maeso-Díaz
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, University of Barcelona Medical School, Barcelona, Spain
| | - Carmen Peralta
- Biomedical Research Network Center in Hepatic and Digestive Diseases (CIBEREHD), Madrid, Spain
- Protective Strategies Against Hepatic Ischemia-Reperfusion Group, IDIBAPS, Barcelona, Spain
| | - David G Le Couteur
- Center for Education and Research on Ageing & ANZAC Research Institute, University of Sydney and Concord Hospital, Australia
| | - Jaime Bosch
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, University of Barcelona Medical School, Barcelona, Spain
- Biomedical Research Network Center in Hepatic and Digestive Diseases (CIBEREHD), Madrid, Spain
- Hepatology, Department of Biomedical Research, Inselspital, Bern University, Switzerland
| | - Victoria C Cogger
- Center for Education and Research on Ageing & ANZAC Research Institute, University of Sydney and Concord Hospital, Australia
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, University of Barcelona Medical School, Barcelona, Spain
- Biomedical Research Network Center in Hepatic and Digestive Diseases (CIBEREHD), Madrid, Spain
- Hepatology, Department of Biomedical Research, Inselspital, Bern University, Switzerland
| |
Collapse
|
13
|
Avalos-de León CG, Jiménez-Castro MB, Cornide-Petronio ME, Gulfo J, Rotondo F, Gracia-Sancho J, Casillas-Ramírez A, Peralta C. The Effect of Fibroblast Growth Factor 15 Signaling in Non-Steatotic and Steatotic Liver Transplantation from Cardiocirculatory Death. Cells 2019; 8:1640. [PMID: 31847428 PMCID: PMC6952771 DOI: 10.3390/cells8121640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022] Open
Abstract
We elucidate the relevance of fibroblast growth factor 15 (FGF15) in liver transplantation (LT) using rats with both steatotic and non-steatotic organs from donors after cardiocirculatory death (DCD). Compared to LT from non-DCDs, the induction of cardiocirculatory death (CD) increases hepatic damage, proliferation, and intestinal and circulatory FGF15. This is associated with high levels of FGF15, bilirubin and bile acids (BAs), and overexpression of the enzyme involved in the alternative BA synthesis pathway, CYP27A1, in non-steatotic livers. Furthermore, CD activates the proliferative pathway, Hippo/YAP, in these types of liver. Blocking FGF15 action in LT from DCDs does not affect CYP27A1 but causes an overexpression of CYP7A, an enzyme from the classic BA synthesis pathway, and this is related to further accumulation of BAs and exacerbated damage. FGF15 inhibition also impairs proliferation without changing Hippo/YAP. In spite of worse damage, steatosis prevents a proliferative response in livers from DCDs. In steatotic grafts, CD does not modify CYP7A1, CYP27A1, BA, or the Hippo/YAP pathway, and FGF15 is not involved in damage or proliferation. Thus, endogenous FGF15 protects against BA accumulation and damage and promotes regeneration independently of the Hippo/YAP pathway, in non-steatotic LT from DCDs. Herein we show a minor role of FGF15 in steatotic LT from DCDs.
Collapse
Affiliation(s)
- Cindy G. Avalos-de León
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (C.G.A.-d.L.); (M.B.J.-C.); (M.E.C.-P.); (J.G.); (F.R.)
| | - Mónica B. Jiménez-Castro
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (C.G.A.-d.L.); (M.B.J.-C.); (M.E.C.-P.); (J.G.); (F.R.)
| | - María Eugenia Cornide-Petronio
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (C.G.A.-d.L.); (M.B.J.-C.); (M.E.C.-P.); (J.G.); (F.R.)
| | - José Gulfo
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (C.G.A.-d.L.); (M.B.J.-C.); (M.E.C.-P.); (J.G.); (F.R.)
| | - Floriana Rotondo
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (C.G.A.-d.L.); (M.B.J.-C.); (M.E.C.-P.); (J.G.); (F.R.)
| | - Jordi Gracia-Sancho
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain;
- Liver Vascular Biology Research Group, IDIBAPS, 08036 Barcelona, Spain
| | - Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, Ciudad Victoria 87087, Mexico
- Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Matamoros 87300, Mexico
| | - Carmen Peralta
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (C.G.A.-d.L.); (M.B.J.-C.); (M.E.C.-P.); (J.G.); (F.R.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain;
| |
Collapse
|
14
|
Avalos-de León CG, Jiménez-Castro MB, Cornide-Petronio ME, Casillas-Ramírez A, Peralta C. The Role of GLP1 in Rat Steatotic and Non-Steatotic Liver Transplantation from Cardiocirculatory Death Donors. Cells 2019; 8:1599. [PMID: 31835410 PMCID: PMC6953101 DOI: 10.3390/cells8121599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 01/06/2023] Open
Abstract
In liver transplantation (LT), organ shortage has led to the use of steatotic and non-steatotic grafts from donors after cardiocirculatory death (DCD). However, these grafts, especially those with steatosis, exhibit poor post-operative outcomes. To address this problem, we investigated the roles of gut-derived glucagon-like peptide 1 (GLP1) and dipeptidyl peptidase 4 (DPP4), the serine protease that cleaves it, in steatotic and non-steatotic LT from DCDs. Using Zucker rats, liver grafts from DCDs were cold stored and transplanted to recipients. GLP1 was administered to donors. The levels of GLP1 in intestine and of both GLP1 and DDP4 in circulation were unaltered following cardiocirculatory death (CD). In steatotic livers from DCD, increased GLP1 and decreased DPP4 were recorded, and administration of GLP1 caused a rise in hepatic GLP1 and a reduction in DDP4. This protected against inflammation, damage, and proliferation failure. Conversely, low GLP1 and high DDP4 were observed in non-steatotic livers from DCD. The exogenous GLP1 did not modify hepatic DDP4, and the accumulated GLP1 exerted harmful effects, increasing damage, inflammation, and regeneration failure. Herein, we show that there are differences in GLP1/DDP4 regulation depending on the type of liver implanted, suggesting that GLP1 can be used as a novel and effective therapy in steatotic grafts from DCDs but that it is not appropriate for non-steatotic DCDs.
Collapse
Affiliation(s)
- Cindy G. Avalos-de León
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (C.G.A.-d.L.); (M.B.J.-C.); (M.E.C.-P.)
| | - Mónica B. Jiménez-Castro
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (C.G.A.-d.L.); (M.B.J.-C.); (M.E.C.-P.)
| | - María Eugenia Cornide-Petronio
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (C.G.A.-d.L.); (M.B.J.-C.); (M.E.C.-P.)
| | - Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, Ciudad Victoria 87087, Mexico
- Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Matamoros 87300, Mexico
| | - Carmen Peralta
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (C.G.A.-d.L.); (M.B.J.-C.); (M.E.C.-P.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| |
Collapse
|
15
|
Akbari-Kordkheyli V, Azizi S, Khonakdar-Tarsi A. Effects of silibinin on hepatic warm ischemia-reperfusion injury in the rat model. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:789-796. [PMID: 32373301 PMCID: PMC7196349 DOI: 10.22038/ijbms.2019.34967.8313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/19/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Liver ischemia-reperfusion injuries (I/RI) are typically the main causes of liver dysfunction after various types of liver surgery especially liver transplantation. Radical components are the major causes of such direct injuries. We aimed to determine the beneficial effects of silibinin, a potent radical scavenger on liver I/RI. MATERIALS AND METHODS Thirty-two rats were divided into 4 groups. Group I: VEHICLE, the rats underwent laparotomy and received DMSO, group II: SILI, laparotomy was done and silibinin was administered. Group III: I/R, the rats received DMSO and were subjected to a liver I/R procedure and group IV: I/R+SILI, the animals underwent the I/R procedure and received silibinin. After 1 hr of ischemia followed by 3 hr reperfusion, blood was collected to evaluate the serum marker of liver injuries. Hepatic tissue was harvested to investigate glycogen content, histological changes, and vasoregulatory gene expression. RESULTS Results showed that serum AST, ALT, LDH, GGT, ALP, and hyaluronic acid (HA) increased significantly in I/R group compared with the VEHICLE group. Silibinin reduced this elevation except for GGT. Silibinin inhibited hepatocyte vacuolization and degeneration, endothelium damages, sinusoidal congestion and inflammation, and glycogen depletion during I/R. ET-1 mRNA was overproduced in the I/R group compared with the VEHICLE group which was decreased by silibinin. KLF2 and eNOS expression was reduced during I/R compared with the VEHICLE group. Silibinin elevated KLF2 expression but had no meaningful effect on eNOS expression. CONCLUSION Silibinin protected the liver from I/RI. Silibinin could improve liver circulation by preventing sinusoidal congestion, inflammation, and perhaps modification of the vasoregulatory gene expression.
Collapse
Affiliation(s)
| | - Soheil Azizi
- Department of Laboratory Medicine, Faculty of Allied Medical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abbas Khonakdar-Tarsi
- Department of Biochemistry, Biophysics and Genetics, Cellular and molecular biology research center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
16
|
Robertson FP, Fuller BJ, Davidson BR. An Evaluation of Ischaemic Preconditioning as a Method of Reducing Ischaemia Reperfusion Injury in Liver Surgery and Transplantation. J Clin Med 2017; 6:jcm6070069. [PMID: 28708111 PMCID: PMC5532577 DOI: 10.3390/jcm6070069] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/22/2017] [Accepted: 07/04/2017] [Indexed: 12/16/2022] Open
Abstract
Liver Ischaemia Reperfusion (IR) injury is a major cause of post-operative liver dysfunction, morbidity and mortality following liver resection surgery and transplantation. There are no proven therapies for IR injury in clinical practice and new approaches are required. Ischaemic Preconditioning (IPC) can be applied in both a direct and remote fashion and has been shown to ameliorate IR injury in small animal models. Its translation into clinical practice has been difficult, primarily by a lack of knowledge regarding the dominant protective mechanisms that it employs. A review of all current studies would suggest that IPC/RIPC relies on creating a small tissue injury resulting in the release of adenosine and l-arginine which act through the Adenosine receptors and the haem-oxygenase and endothelial nitric oxide synthase systems to reduce hepatocyte necrosis and improve the hepatic microcirculation post reperfusion. The next key step is to determine how long the stimulus requires to precondition humans to allow sufficient injury to occur to release the potential mediators. This would open the door to a new therapeutic chapter in this field.
Collapse
Affiliation(s)
- Francis P Robertson
- Division of Surgery and Interventional Science, Royal Free Campus, University College London, 9th Floor, Royal Free Hospital, Pond Street, London NW3 2QG, UK.
| | - Barry J Fuller
- Division of Surgery and Interventional Science, Royal Free Campus, University College London, 9th Floor, Royal Free Hospital, Pond Street, London NW3 2QG, UK.
| | - Brian R Davidson
- Division of Surgery and Interventional Science, Royal Free Campus, University College London, 9th Floor, Royal Free Hospital, Pond Street, London NW3 2QG, UK.
- Department of Hepaticopancreatobiliary Surgery and Liver Transplantation, Royal Free Foundation Trust, 9th Floor, Royal Free Hospital, Pond Street, London NW3 2QG, UK.
| |
Collapse
|
17
|
Toshihiro W, Kurata S, Takuro S, Ichiro O, Yasuaki S, Ikeda T, Ureshino H, Ayuse T. Protective Effect of Nitric Oxide on Liver Circulation from Ischemia Reperfusion Injury. J INVEST SURG 2015; 28:236-44. [PMID: 26290958 DOI: 10.3109/08941939.2015.1024357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION The reduction of endogenous nitric oxide (NO) production during hepatic ischemia-reperfusion injury, generally via a reduction in endothelial NO synthase activity, leads to liver injury. We hypothesized that administration of an exogenous NO donor into the portal vein may ameliorate hepatic blood flow reduction after a period of ischemia. MATERIAL AND METHODS A total of 90 min of ischemia (portal vein and hepatic artery) was applied in 15 anesthetized pigs, using the Pringle method under sevoflurane anesthesia. All animals were administered either saline (control group, n = 8) or sodium nitroprusside (SNP, n = 7) as exogenous NO donor drugs into the portal vein, 30 min before and after ischemia. The portal venous blood flow and hepatic artery blood flow were measured continuously using transonic flow probes attached to each vessel. Endogenous NO (NOx = NO2- + NO3-) production was measured every 10 min using a microdialysis probe placed in the left lobe of the liver. RESULTS In the SNP group, portal venous flow remained unchanged and hepatic artery flow significantly increased compared to baseline. Although the production of liver tissue NOx transiently decreased to 60% after ischemia, its level in the SNP group remained higher than the control saline group. CONCLUSION Regional administration of SNP into the portal vein increases hepatic arterial flow during ischemia reperfusion periods without altering mean systemic arterial pressure. We speculate that administration of an exogenous NO donor may be effective in preventing liver injury via preservation of total hepatic blood flow.
Collapse
Affiliation(s)
- Watanabe Toshihiro
- a Divisions of Clinical Physiology, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan
| | - Shinji Kurata
- a Divisions of Clinical Physiology, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan
| | - Sanuki Takuro
- a Divisions of Clinical Physiology, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan
| | - Okayasu Ichiro
- a Divisions of Clinical Physiology, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan
| | - Shibata Yasuaki
- b Oral Pathology, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan
| | - Toru Ikeda
- b Oral Pathology, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan
| | - Hiroyuki Ureshino
- c Anesthesiology, Course of Medical and Dental Sciences, Department of Translational Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan
| | - Takao Ayuse
- a Divisions of Clinical Physiology, Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan
| |
Collapse
|
18
|
Lucas ML, Rhoden CR, Rhoden EL, Zettler CG, Mattos AAD. Effects of L-arginine and L-NAME on ischemia-reperfusion in rat liver. Acta Cir Bras 2015; 30:345-52. [DOI: 10.1590/s0102-865020150050000006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/20/2015] [Indexed: 12/16/2022] Open
|
19
|
Age-related changes in ADMA-DDAH-NO pathway in rat liver subjected to partial ischemia followed by global reperfusion. Exp Gerontol 2013; 50:45-51. [PMID: 24269305 DOI: 10.1016/j.exger.2013.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 11/06/2013] [Accepted: 11/12/2013] [Indexed: 12/26/2022]
Abstract
BACKGROUND Liver function is affected during ischemia/reperfusion (IR). We evaluated the effect of the aging process on selected parameters determining the NO level in rat liver subjected to IR. METHODS The animals were divided into the C-2 and the IR-2 group of young rats (2-4 months old) and the C-12 and the IR-12 group of older rats (12-14 months old). Livers belonging to the IR-2 and the IR-12 group were subjected to partial ischemia (60 min) and reperfusion (4 h). Blood samples were obtained after surgeries to estimate the activity of aminotransferases, as well as just before ischemia and during reperfusion (15, 120, and 240 min) to estimate concentration of arginine (Arg) and its derivatives: asymmetric and symmetric dimethylarginine (ADMA, SDMA). After IR, dimethylarginine dimethylaminohydrolase (DDAH) activity and protein concentration of inducible nitric oxide synthase (iNOS) were measured in liver homogenates. RESULTS In the IR-2 group ADMA level increased the most between 15 and 120 min of reperfusion and was the highest of all the groups (0.72±0.2 μmol/l). In the IR-12 group ADMA level decreased significantly and was lower compared to all the other groups at 15 min (0.42±0.2 μmol/l) and to IR-2 at 120 (0.52±0.1 μmol/l) and 240 min (0.38±0.1 μmol/l) of reperfusion. Only the IR-2 group SDMA level increased significantly between 15 (0.75±0.9 μmol/l) and 240 min (1.0±1.2 μmol/l) of reperfusion. At the beginning of the surgery the Arg level was significantly higher in young rats (C-2: 102.1±35.7 μmol/l; IR-2: 114.63±28.9 μmol/l) than in older ones (C-12: 41.88±44.7 μmol/l; IR-12: 28.64±30.6 μmol/l). In the C-2 group the Arg level (77.41±37.5 μmol/l) and Arg/ADMA (A/A) ratio (138.03±62.8 μmol/l) were significantly higher compared to the ischemic groups at 15 min and to all the other groups at 120 (Arg: 47.17±31.7 μmol/l; A/A: 88.28±66.2 μmol/l) and 240 min (Arg: 43.87±21.9 μmol/l; A/A: 118.02±106.3 μmol/l). In the IR-2 group Arg level (11.4±12.0 μmol/l) and A/A ratio (16.11±16.2 μmol/l) decreased significantly at 15 min and during the next phase of reperfusion the levels of those parameters were low, comparably to those in IR-12. As a result of IR, a decrease in DDAH activity and an increase in iNOS protein concentration were observed only in the young rats. CONCLUSIONS We found that in the non-ischemic groups the Arg level may be affected by the aging process. Under IR conditions, important changes in DDAH-ADMA-NO pathway were observed only in young livers.
Collapse
|
20
|
Influence of ezetimibe on ADMA-DDAH-NO pathway in rat liver subjected to partial ischemia followed by global reperfusion. Pharmacol Rep 2013; 65:122-33. [PMID: 23563030 DOI: 10.1016/s1734-1140(13)70970-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 10/02/2012] [Indexed: 02/04/2023]
Abstract
BACKGROUND We evaluated effect of ezetimibe on selected parameters determining NO level in rat liver subjected to ischemia reperfusion (IR). METHODS Rats received ezetimibe (5 mg/kg) (groups E0 and EIR) or saline solution (groups C0 and CIR) intragastrically for 21 days. Then, the livers of CIR and EIR underwent ischemia (60 min) and reperfusion (4 h). Blood samples were obtained before surgery to estimate activities of aminotransferases, and just before ischemia and during reperfusion to estimate asymmetric and symmetric dimethylarginine (ADMA, SDMA) and arginine (Arg) levels. After IR, dimethylarginine dimethylaminohydrolase (DDAH) activity and endothelial nitric oxide synthase (eNOS) protein concentration were measured in liver homogenates. DDAH and protein arginine methyltransferase (PRMT) mRNA were quantified by real-time PCR in liver tissue samples. RESULTS In CIR, the ADMA level was significantly higher compared to all other groups in 30 min and to E0 group in 120 min of reperfusion. In EIR, ADMA was low, compared to non-ischemic groups. At 30 and 120 min of reperfusion, in non-ischemic groups the level of Arg and Arg/ADMA ratio were significantly higher than in ischemic groups and E0 was the group with the highest levels of those parameters of all. In CIR, eNOS protein concentration was significantly lower than in ezetimibe-treated groups. Activity of DDAH was significantly higher in E0 than in non-treated groups. In ischemic groups, DDAH mRNA expression was significantly higher than in non-ischemic ones and PRMT mRNA expression was significantly higher in C0 than in all other groups. CONCLUSIONS Influence of ezetimibe on ADMA/DDAH/NO pathway demonstrated in this work may suggest protective properties of this drug on rat livers injured by IR and, to a lower extent, on livers non-subjected to IR.
Collapse
|
21
|
Papadopoulos D, Siempis T, Theodorakou E, Tsoulfas G. Hepatic ischemia and reperfusion injury and trauma: current concepts. ARCHIVES OF TRAUMA RESEARCH 2013; 2:63-70. [PMID: 24396796 PMCID: PMC3876547 DOI: 10.5812/atr.12501] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 06/11/2013] [Indexed: 02/06/2023]
Abstract
Context Ischemia-reperfusion injury is a fascinating topic which has drawn a lot of interest in the last several years. Hepatic ischemia reperfusion injury may occur in a variety of clinical situations. These include transplantation, liver resection, trauma, and vascular surgery. Evidence Acquisition The purpose of this review was to outline the molecular mechanisms underlying hepatic I/R injury and present the latest approaches, both surgical and pharmacological, regarding the prevention of it. A comprehensive electronic literature search in MEDLINE/PubMed was performed to identify relative articles published within the last 2 years. Results The basic mechanism of hepatic ischemia – reperfusion injury is one of blood deprivation during ischemia, followed by the return of flow during reperfusion. It involves a complex series of events, such as mitochondrial deenergization, adenosine-5'-triphosphate depletion, alterations of electrolyte homeostasis, as well as Kupffer cell activation, oxidative stress changes and upregulation of proinflammatory cytokine signaling. The great number of variable pathways, with several mediators interacting with each other, leads to a high number of candidates for potential therapeutic intervention. As far as surgical approaches are concerned, the modification of existing clamping techniques and the ischemic preconditioning are the most promising techniques till recently. In the search for novel techniques of protecting against hepatic ischemia reperfusion injury, many different strategies have been used in experimental models. The biggest part of this research lies around antioxidant therapy, but other potential solutions have been explored as well. Conclusions The management of hepatic trauma, in spite of the fact that it has become increasingly nonoperative, there still remains the possibility of hepatic resection in the hepatic trauma setting, especially in severe injuries. Hence, clinicians should be familiar with the concept of hepatic ischemia-reperfusion injury and respond appropriately and timely.
Collapse
Affiliation(s)
- Dimitrios Papadopoulos
- 1st Department of Surgery, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Thomas Siempis
- 1st Department of Surgery, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece
- Corresponding author: Thomas Siempis, 1st Department of Surgery, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece. Tel: +30-6978659716, E-mail:
| | - Eleni Theodorakou
- 1st Department of Surgery, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Georgios Tsoulfas
- 1st Department of Surgery, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece
| |
Collapse
|
22
|
Develi-Is S, Bekpinar S, Kalaz EB, Evran B, Unlucerci Y, Gulluoglu M, Uysal M. The protection by heme oxygenase-1 induction against thioacetamide-induced liver toxicity is associated with changes in arginine and asymmetric dimethylarginine. Cell Biochem Funct 2012; 31:122-8. [PMID: 22886620 DOI: 10.1002/cbf.2866] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 07/09/2012] [Accepted: 07/13/2012] [Indexed: 12/13/2022]
Abstract
This study was designed to investigate the role of HO-1 induction in prevention of thioacetamide (TAA)-induced oxidative stress, inflammation and liver damage. The changes in hepatic dimethylarginine dimethylaminohydrolase (DDAH) activity as well as plasma arginine and asymmetric dimethylarginine (ADMA) levels were also measured to evaluate nitric oxide (NO) bioavailability. Rats were divided into four groups as control, hemin, TAA and hemin + TAA groups. Hemin (50 mg kg(-1) , i.p.) was injected to rats 18 h before TAA treatment to induce HO-1 enzyme expression. Rats were given TAA (300 mg kg(-1) , i.p.) and killed 24 h after treatment. Although TAA treatment produced severe hepatic injury, upregulation of HO-1 ameliorated TAA-induced liver damage up to some extent as evidence by decreased serum alanine transaminase, aspartate transaminase and arginase activities and histopathological findings. Induction of HO-1 stimulated antioxidant system and decreased lipid peroxidation in TAA-treated rats. Myeloperoxidase activity and inducible NO synthase protein expression were decreased, whereas DDAH activity was increased by hemin injection in TAA-treated rats. Induction of HO-1 was associated with increased arginine levels and decreased ADMA levels, being the main determinants of NO production, in plasma of TAA-treated rats. In conclusion, our results indicate that HO-1 induction alleviated increased oxidative stress and inflammatory reactions together with deterioration in NO production in TAA-induced liver damage in rats.
Collapse
Affiliation(s)
- Seval Develi-Is
- Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | | | | | | | | | | | |
Collapse
|
23
|
Liu A, Fang H, Dirsch O, Jin H, Dahmen U. Oxidation of HMGB1 causes attenuation of its pro-inflammatory activity and occurs during liver ischemia and reperfusion. PLoS One 2012; 7:e35379. [PMID: 22514737 PMCID: PMC3325960 DOI: 10.1371/journal.pone.0035379] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 03/16/2012] [Indexed: 01/07/2023] Open
Abstract
High mobility group box 1 (HMGB1) is a nuclear transcription factor. Once HMGB1 is released by damaged cells or activated immune cells, it acts as danger molecule and triggers the inflammatory signaling cascade. Currently, evidence is accumulating that posttranslational modifications such as oxidation may modulate the pro-inflammatory potential of danger signals. We hypothesized that oxidation of HMGB1 may reduce its pro-inflammatory potential and could take place during prolonged ischemia and upon reperfusion. Liver grafts were cold preserved for 24 h and flushed with saline in hourly intervals to collect the effluent. Liver grafts, cold-preserved for 6 h, were transplanted into syngeneic recipients to obtain serum and liver samples 24 h after initiation of reperfusion. Addition of the effluent to a macrophage culture induced the synthesis of tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-6. The stimulatory activity of graft effluent was reduced after depletion of HMGB1 via immunoprecipitation. Oxidation of the effluent HMGB1 using H2O2 attenuated its stimulatory activity as well. Liver transplantation of cold preserved grafts caused HMGB1 translocation and release as determined by immunohistochemistry and ELISA-assay, respectively. Using Western blot with non-reducing conditions revealed the presence of oxidized HMGB1 in liver samples obtained after 12 h and in effluent samples after 16 h of cold preservation as well as in liver and serum samples obtained 24 h after reperfusion. These observations confirm that post-translational oxidation of HMGB1 attenuates its pro-inflammatory activity. Oxidation of HMGB1 as induced during prolonged ischemia and by reoxygenation during reperfusion in vivo might also attenuate its pro-inflammatory activity. Our findings also call for future studies to investigate the mechanism of the inhibitory effect of oxidized HMGB1 on the pro-inflammatory potential.
Collapse
Affiliation(s)
- Anding Liu
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Friedrich-Schiller-University Jena, Jena, Germany
- The Centre for Molecular Medicine, Shaoxing People's Hospital, the First Affiliated Hospital of Shaoxing University, Shaoxing, PR China
- Department of General, Visceral and Transplantation Surgery, University Hospital Essen, University of Duisburg and Essen, Essen, Germany
| | - Haoshu Fang
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Friedrich-Schiller-University Jena, Jena, Germany
- Department of General, Visceral and Transplantation Surgery, University Hospital Essen, University of Duisburg and Essen, Essen, Germany
| | - Olaf Dirsch
- Institute for Pathology, University Hospital of Jena, Jena, Germany
| | - Hao Jin
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Friedrich-Schiller-University Jena, Jena, Germany
- Department of General, Visceral and Transplantation Surgery, University Hospital Essen, University of Duisburg and Essen, Essen, Germany
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Friedrich-Schiller-University Jena, Jena, Germany
- Department of General, Visceral and Transplantation Surgery, University Hospital Essen, University of Duisburg and Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
24
|
Abu-Amara M, Yang SY, Seifalian A, Davidson B, Fuller B. The nitric oxide pathway--evidence and mechanisms for protection against liver ischaemia reperfusion injury. Liver Int 2012; 32:531-43. [PMID: 22316165 DOI: 10.1111/j.1478-3231.2012.02755.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 12/29/2011] [Indexed: 02/13/2023]
Abstract
Ischaemia reperfusion (IR) injury is a clinical entity with a major contribution to the morbidity and mortality of liver surgery and transplantation. A central pathway of protection against IR injury utilizes nitric oxide (NO). Nitric oxide synthase (NOS) enzymes manufacture NO from L-arginine. NO generated by the endothelial NOS (eNOS) isoform protects against liver IR injury, whereas inducible NOS (iNOS)-derived NO may have either a protective or a deleterious effect during the early phase of IR injury, depending on the length of ischaemia, length of reperfusion and experimental model. In late phase hepatic IR injury, iNOS-derived NO plays a protective role. In addition to NOS consumption of L-arginine during NO synthesis, this amino acid may also be metabolized by arginase, an enzyme whose release is increased during prolonged ischaemia, and therefore diverts L-arginine away from NOS metabolism leading to a drop in the rate of NO synthesis. NO most commonly acts through the soluble guanylyl cyclase-cyclic GMP- protein kinase G pathway to ameliorate hepatic IR injury. Both endogenously generated and exogenously administered NO donors protect against liver IR injury. The beneficial effects of NO on liver IR are not, however, universal, and certain conditions, such as steatosis, may influence the protective effects of NO. In this review, the evidence for, and mechanisms of these protective actions of NO are discussed, and areas in need of further research are highlighted.
Collapse
Affiliation(s)
- Mahmoud Abu-Amara
- Liver Transplantation and Hepatobiliary Unit, Royal Free Hospital, London, UK
| | | | | | | | | |
Collapse
|
25
|
Miranda LEC, Tirapelli LF, Ramos SG, Capellini VK, Celotto AC, Carlotti CG, Evora PRB. Nitric oxide synthase in heart and thoracic aorta after liver ischemia and reperfusion injury: an experimental study in rats. EXP CLIN TRANSPLANT 2012; 10:43-8. [PMID: 22309419 DOI: 10.6002/ect.2011.0055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES We tested the effects of liver reperfusion in the immunohistochemical expression of nitric oxide synthase on the thoracic aorta and the heart. MATERIALS AND METHODS We randomized 24 male Wistar rats into 3 groups: (1) control; (2) R2 group, with 60 minutes of partial (70%) liver ischemia and 2 hours of global liver reperfusion; (3) and R6 group, with 60 minutes of partial liver ischemia and 6 hours of global liver reperfusion. RESULTS In the heart, there was little, diffuse immunohistochemical endothelial staining; immunohistochemical inducible nitric oxide synthase staining was expressed in the adventitia layer of intramyocardial vessels in both cases, with a time-dependent but not statistically significant increase. In the thoracic aorta, a time-dependent decrease in endothelial nitric oxide synthase expression in the muscular layer after reperfusion, which was statistically significant in R6 versus the control. Positive immunostaining for inducible nitric oxide synthase was seen in the muscular and endothelial layers, and this varied from moderate in the control group, to light in the endothelium in groups R2 and R6. CONCLUSIONS We observed changes that may be implicated in heart injury and impairment of aortal tone after liver ischemia and reperfusion injury.
Collapse
|
26
|
Fukazawa K, Pretto EA. The effect of methylene blue during orthotopic liver transplantation on post reperfusion syndrome and postoperative graft function. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2011; 18:406-13. [PMID: 21104279 DOI: 10.1007/s00534-010-0344-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND/PURPOSE In orthotopic liver transplantation (OLT), a major component of the post-reperfusion syndrome is hypotension, which may lead to additional graft liver ischemia-reperfusion injury. A proposed mechanism of reperfusion hypotension is the massive induction of oxidative stress triggering the release of pro-inflammatory mediators, including nitric oxide (NO). Methylene blue (MB) is an inhibitor of inducible NO synthase and an NO scavenger that has been shown to attenuate reperfusion hypotension. Of note, recent reports have shown that the exogenous administration of NO during OLT significantly improved the recovery of the graft liver. Therefore, we sought to investigate the effects of MB on the functional recovery of the graft liver following OLT. METHODS We analyzed retrospective data from 715 patients who underwent OLT between 2003 and 2008. We classified patients into those who received a 1-1.5 mg/kg intravenous bolus of MB immediately prior to reperfusion (MB group) and those who did not (control group). Propensity score matching was used to adjust for differences between patients who received intraoperative MB and those who did not, and these data were used to determine the association between a single MB bolus during OLT and postoperative graft dysfunction. RESULTS Our study cohort consisted of 715 OLT patients, of whom 105 received MB and 610 did not. After propensity score matching, demographic and donor data were similar in the two groups, except for the older age of recipients in the MB group (55.5 ± 0.9 vs 53.1 ± 0.8 years, p = 0.026). No differences were seen in mean arterial pressure changes after reperfusion and no differences were found in vasopressor requirements (bolus or infusion) or transfusion requirements. In addition, there was no significant difference in the incidence of primary nonfunction, retransplantation within 60 days, acute rejection, or graft survival between the groups by multivariate analysis or Kaplan-Meier survival analysis. CONCLUSIONS In our study, the administration of MB at 1-1.5 mg/kg immediately prior to reperfusion did not prevent post-reperfusion hypotension and did not decrease vasopressor usage or transfusion requirements after reperfusion. Also, MB did not have any impact on postoperative graft function. These findings may argue against the routine use of MB during OLT.
Collapse
Affiliation(s)
- Kyota Fukazawa
- Division of Solid Organ Transplantation, Department of Anesthesiology, Preoperative and Pain Management, Leonard Miller School of Medicine, University of Miami, 1611 NW 12th Avenue, D318, Miami, FL 33136, USA.
| | | |
Collapse
|
27
|
Lee WY, Koh EJ, Lee SM. A combination of ischemic preconditioning and allopurinol protects against ischemic injury through a nitric oxide-dependent mechanism. Nitric Oxide 2011; 26:1-8. [PMID: 22119149 DOI: 10.1016/j.niox.2011.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 10/05/2011] [Accepted: 11/06/2011] [Indexed: 01/25/2023]
Abstract
This study examined the cytoprotective mechanisms of a combination of ischemic preconditioning (IPC) and allopurinol against liver injury caused by ischemia/reperfusion (I/R). Allopurinol (50mg/kg) was intraperitoneally administered 18 and 1h before sustained ischemia. A rat liver was preconditioned by 10 min of ischemia, followed by 10 min of reperfusion, and then subjected to 90 min of ischemia, followed by 5h of reperfusion. Rats were pretreated with adenosine deaminase (ADA), 3,7-dimethyl-1-[2-propargyl]-xanthine (DMPX), and N-nitro-l-arginine methyl ester (l-NAME) before IPC. Hepatic nitrite and nitrate and eNOS protein expression levels were increased by the combination of IPC and allopurinol. This increase was attenuated by ADA, DMPX, and l-NAME. I/R induced an increase in alanine aminotransferase activity, whereas it decreased the hepatic glutathione level. A combination of IPC and allopurinol attenuated these changes, which were abolished by ADA, DMPX, and l-NAME. The increase in the liver wet weight-to-dry weight ratio after I/R was attenuated by the combination of IPC and allopurinol. In contrast, hepatic bile flow was decreased after I/R, which was attenuated by the combination of IPC and allopurinol. These changes were restored by l-NAME. I/R induced a decrease in the level of mitochondrial dehydrogenase, whereas it increased mitochondrial swelling. A combination of IPC and allopurinol attenuated these changes, which were restored by ADA, DMPX, and l-NAME. Our findings suggest that a combination of IPC and allopurinol reduces post-ischemic hepatic injury by enhancing NO generation.
Collapse
Affiliation(s)
- Woo-Yong Lee
- School of Pharmacy, Sungkyunkwan University, Republic of Korea
| | | | | |
Collapse
|
28
|
Yirmibeşoğlu O, Büyükgebiz O, Ars D, Unay Ö, Çevik D. Lisinopril Inhibits Endothelin-1 in the Early Period of Hepatic Reperfusion Injury in a Partial Hepatectomy Model. Transplant Proc 2011; 43:2524-30. [DOI: 10.1016/j.transproceed.2011.06.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/14/2011] [Accepted: 06/13/2011] [Indexed: 10/17/2022]
|
29
|
Björnsson B, Winbladh A, Bojmar L, Trulsson LM, Olsson H, Sundqvist T, Gullstrand P, Sandström P. Remote or conventional ischemic preconditioning--local liver metabolism in rats studied with microdialysis. J Surg Res 2011; 176:55-62. [PMID: 21962739 DOI: 10.1016/j.jss.2011.07.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Revised: 07/16/2011] [Accepted: 07/22/2011] [Indexed: 01/17/2023]
Abstract
BACKGROUND Ischemic preconditioning (IPC) of the liver decreases liver injury secondary to ischemia and reperfusion. An attractive alternative to IPC is remote ischemic preconditioning (R-IPC), but these two methods have not previously been compared. MATERIAL AND METHODS Eighty-seven rats were randomized into four groups: sham operated (n = 15), 1 h segmental ischemia (IRI, n = 24), preceded by IPC (n = 24), or R-IPC (n = 24) (to the left hindleg). IPC and R-IPC were performed with 10 min ischemia and 10 min of reperfusion. Analyses of liver microdialysate (MD), serum transaminase levels, and liver histology were made. RESULTS Rats treated with IPC and R-IPC had significantly lower AST, 71.5 (19.6) IU/L respective 96.6 (12.4) at 4 h reperfusion than those subjected to IRI alone, 155 (20.9), P = 0.0004 and P = 0.04 respectively. IPC also had lower ALT levels, 41.6 (11.3) IU/L than had IRI 107.4 (15.5), P = 0.003. The MD glycerol was significantly higher during ischemia in the R-IPC [759 (84) μM] and the IRI [732 (67)] groups than in the IPC 514 (70) group, P = 0.022 and P = 0.046 respectively. The MD glucose after ischemia was lower in the IPC group 7.1 (1.2) than in the IRI group 12.7 (1.6), P = 0.005. Preconditioning to the liver caused an direct increase in lactate, glucose and glycerol in the ischemic segment compared with the control segment an effect not seen in the R-IPC and IRI groups. CONCLUSIONS IPC affects glucose metabolism in the rat liver, observed with MD. IPC reduces liver cell injury during ischemic and reperfusion in rats. R-IPC performed over the same length of time as IPC does not have the same effect as the latter on ALT levels and MD glycerol; this may suggest that R-IPC does not offer the same protection as IPC in this setting of rat liver IRI.
Collapse
Affiliation(s)
- Bergthor Björnsson
- Department of Surgery, Faculty of Health Sciences, Linköping University, Surgical Clinic, County Council of Östergötland, Linköping, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Nitric oxide is an essential mediator of the protective effects of remote ischaemic preconditioning in a mouse model of liver ischaemia/reperfusion injury. Clin Sci (Lond) 2011; 121:257-66. [PMID: 21463257 DOI: 10.1042/cs20100598] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
NO (nitric oxide) may protect the liver from IR (ischaemia/reperfusion) injury. RIPC (remote ischaemic preconditioning) also protects against liver IR injury; however, the molecular mediator(s) of RIPC are currently unknown. The aim of the present study was to assess the role of NO in hindlimb RIPC-induced protection against liver IR injury. Mice were allocated to the following groups: sham group; RIPC group (six cycles of 4×4 min IR of hindlimb); IR group [40 min lobar (70%) hepatic ischaemia and 2-h reperfusion]; RIPC+IR group (RIPC followed by IR group procedures); and C-PTIO [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt]+RIPC+IR group [C-PTIO (a direct NO scavenger) was administered, followed by the RIPC+IR group procedure]. Hepatic MBF (microcirculatory blood flow) was measured throughout the experiment. Circulating NOx (nitrite and nitrate) levels, plasma liver transaminases, hepatic histopathological and TEM (transmission electron microscopy) studies were performed at the end of the experiment. NOx concentrations were significantly elevated (P<0.05) in the RIPC and RIPC+IR groups. Compared with liver IR alone, RIPC+IR preserved hepatic MBF during liver reperfusion (P<0.05). In contrast, C-PTIO+RIPC+IR reduced MBF compared with RIPC+IR (P<0.05). RIPC+IR reduced plasma transaminases (P<0.05), and histopathological and ultrastructural features of injury compared with IR alone. The protective effects of RIPC+IR in reducing liver IR injury were abrogated in the group that received antecedent C-PTIO (C-PTIO+RIPC+IR). In conclusion, NO is an essential mediator of the protection afforded by hindlimb RIPC against liver IR injury. The mechanisms underlying this protection involve preservation of the sinusoidal structure and maintenance of blood flow through the hepatic microcirculation.
Collapse
|
31
|
Remote hindlimb preconditioning and hepatoprotection: NO-table strides against liver ischaemia/reperfusion injury. Clin Sci (Lond) 2011; 121:253-5. [PMID: 21554251 DOI: 10.1042/cs20110243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 05/10/2011] [Indexed: 11/17/2022]
Abstract
Hepatic IR (ischaemia/reperfusion) injury is an important clinical problem complicating liver surgery and transplantation. IPC (ischaemic preconditioning) is a strategy whereby brief episodes of IR in an organ can induce an adaptive response to protect against subsequent prolonged IR injury. However, trauma to vessels supplying the target organ is unavoidable using the technique of direct IPC. One amenable strategy would be to apply the protective preconditioning stimulus to an organ distant or remote from the target organ of interest, a technique known as RIPC (remote IPC). In the present issue of Clinical Science, Abu-Amara and co-workers utilize hindlimb RIPC as a novel therapeutic strategy against liver IR injury and investigate the mechanistic contribution of NO to hepatoprotection by administering C-PTIO [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt], an NO scavenger. Their experiments set the stage for more definitive studies to demonstrate a discernible benefit for the utility of RIPC in liver surgery and transplantation.
Collapse
|
32
|
Abdennebi HB, Zaoualí MA, Alfany-Fernandez I, Tabka D, Roselló-Catafau J. How to protect liver graft with nitric oxide. World J Gastroenterol 2011; 17:2879-2889. [PMID: 21734799 PMCID: PMC3129502 DOI: 10.3748/wjg.v17.i24.2879] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 01/18/2011] [Accepted: 01/25/2011] [Indexed: 02/06/2023] Open
Abstract
Organ preservation and ischemia reperfusion injury associated with liver transplantation play an important role in the induction of graft injury. One of the earliest events associated with the reperfusion injury is endothelial cell dysfunction. It is generally accepted that endothelial nitric oxide synthase (e-NOS) is cell-protective by mediating vasodilatation, whereas inducible nitric oxide synthase mediates liver graft injury after transplantation. We conducted a critical review of the literature evaluating the potential applications of regulating and promoting e-NOS activity in liver preservation and transplantation, showing the most current evidence to support the concept that enhanced bioavailability of NO derived from e-NOS is detrimental to ameliorate graft liver preservation, as well as preventing subsequent graft reperfusion injury. This review deals mainly with the beneficial effects of promoting "endogenous" pathways for NO generation, via e-NOS inducer drugs in cold preservation solution, surgical strategies such as ischemic preconditioning, and alternative "exogenous" pathways that focus on the enrichment of cold storage liquid with NO donors. Finally, we also provide a basic bench-to-bed side summary of the liver physiology and cell signalling mechanisms that account for explaining the e-NOS protective effects in liver preservation and transplantation.
Collapse
|
33
|
S-nitroso-N-acetylcysteine: a promising drug for early ischemia/reperfusion injury in rat liver. Transplant Proc 2011; 42:4491-5. [PMID: 21168722 DOI: 10.1016/j.transproceed.2010.09.152] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 09/11/2010] [Accepted: 09/28/2010] [Indexed: 11/24/2022]
Abstract
BACKGROUND/AIMS Ischemia-reperfusion (I/R) injury is among the major causes of poor graft function early after liver transplantation that adversely influences patient survival. A variety of mediators have been implicated in the pathogenesis of I/R vascular injury, including nitric oxide (NO). Because of the beneficial effects of NO during preconditioning and reperfusion, strategies to prevent or ameliorate I/R injury through the stimulation of hepatic NO production are an area of significant clinical interest. We evaluated the role of S-nitroso-N-acetylcysteine (SNAC) as an NO donor in the prevention of liver I/R injury in an animal model. METHODS Adult male Wistar rats were randomly assigned to 3 experimental groups containing 5 animals each: the University of Wisconsin (UW) solution group; SNAC solution group; and SNAC-containing UW solution (SNAC+UW) group. Aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) were determined in samples of the cold storage solution at 2, 4, and 6 hours of preservation. After 6 hours of cold storage, We applied a 15-minute reperfusion period. Thereafter, the reperfusion was interrupted with blood samples obtained to measure AST, ALT, LDH, and thiobarbituric acid reactive substances (TBARS). Hepatic fragments were processed for histologic analysis, and to determine of TBARS, catalase, and glutathione levels. RESULTS During cold preservation, AST and LDH were significantly lower among the SNAC than the UW group or the SNAC+UW group (P = .004 and P = .03, respectively). ALT was comparable among the groups (P = .3). After reperfusion, serum levels of AST, ALT, and LDH, as well as of hepatic TBARS and catalase showed no differences among the groups. Glutathione concentration was lower in the SNAC and SNAC+UW group (P < .001) compared with the UW group. We did not observe histologic signs of preservation injury. CONCLUSION The SNAC solution showed a greater protective effect to preserve rat livers during cold storage, but it was comparable with UW.
Collapse
|
34
|
Abstract
Ischemia/reperfusion (I/R) injury still represents an important cause of morbidity following hepatic surgery and limits the use of marginal livers in hepatic transplantation. Transient blood flow interruption followed by reperfusion protects tissues against damage induced by subsequent I/R. This process known as ischemic preconditioning (IP) depends upon intrinsic cytoprotective systems whose activation can inhibit the progression of irreversible tissue damage. Compared to other organs, liver IP has additional features as it reduces inflammation and promotes hepatic regeneration. Our present understanding of the molecular mechanisms involved in liver IP is still largely incomplete. Experimental studies have shown that the protective effects of liver IP are triggered by the release of adenosine and nitric oxide and the subsequent activation of signal networks involving protein kinases such as phosphatidylinositol 3-kinase, protein kinase C δ/ε and p38 MAP kinase, and transcription factors such as signal transducer and activator of transcription 3, nuclear factor-κB and hypoxia-inducible factor 1. This article offers an overview of the molecular events underlying the preconditioning effects in the liver and points to the possibility of developing pharmacological approaches aimed at activating the intrinsic protective systems in patients undergoing liver surgery.
Collapse
|
35
|
Miranda LEC, Capellini VK, Reis GS, Celotto AC, Carlotti CG, Evora PRB. Effects of partial liver ischemia followed by global liver reperfusion on the remote tissue expression of nitric oxide synthase: lungs and kidneys. Transplant Proc 2010; 42:1557-62. [PMID: 20620474 DOI: 10.1016/j.transproceed.2010.02.097] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Revised: 01/04/2010] [Accepted: 02/26/2010] [Indexed: 10/19/2022]
Abstract
Hepatic ischemia followed by reperfusion (IR) results in mild to severe remote organ injury. Oxidative stress and nitric oxide (NO) seem to be involved in the IR injury. Our aim was to investigate the effects of liver I/R on hepatic function and lipid peroxidation, leukocyte infiltration and NO synthase (NOS) immunostaining in the lung and the kidney. We randomized 24 male Wistar rats into 3 groups: 1) control; 2) 60 minutes of partial (70%) liver I and 2 hours of global liver R; and 3) 60 minutes of partial (70%) liver I and 6 hours of global liver R. Groups 2 and 3 showed significant increases in plasma alanine and aspartate aminotransferase levels and in tissue malondialdehyde and myeloperoxidase contents. In the kidney, positive endothelial NOS (eNOS) staining was significantly decreased in group 3 compared with group 1. However, staining for inducible NOS (iNOS) and neuronal NOS (nNOS) did not differ among the groups. In the lung, the staining for eNOS and iNOS did not show significant differences among the groups; no positive nNOS staining was observed in any group. These results suggested that partial liver I followed by global liver R induced liver, kidney, and lung injuries characterized by neutrophil sequestration and increased oxidative stress. In addition, we supposed that the reduced NO formation via eNOS may be implicated in the moderate impairment of renal function, observed by others at 24 hours after liver I/R.
Collapse
Affiliation(s)
- L E Correia Miranda
- Department of Surgery and Liver Transplantation, University of Pernambuco, Recife, Pernambuco, Brazil
| | | | | | | | | | | |
Collapse
|
36
|
Xue F, Zhang JJ, Xu LM, Zhang C, Xia Q. Protective effects of HGF-MSP chimer (metron factor-1) on liver ischemia-reperfusion injury in rat model. J Dig Dis 2010; 11:299-305. [PMID: 20883426 DOI: 10.1111/j.1751-2980.2010.00453.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE It has been reported that metron factor-1 (MF-1), an engineered chimerical factor containing selected functional domains of hepatocyte growth factor and macrophage-stimulating protein (HGF-MSP), could prevent apoptosis and have an anti-inflammatory effect. In this study, we investigate the protective effect of MF-1 on liver ischemia-reperfusion (I/R) injury. METHODS Overall 30 Sprague Dawley rats were randomly divided into three groups: the I/R model group (n=12), the MF-1 treatment group (n=12), and the sham-operated group (n=6). Liver I/R injury was induced by clamping the blood supply to the left and median lobes of liver by an atraumatic clamp for 90 min, then removing the clamp and allowing reperfusion. Blood samples were obtained on days 1, 2, 3 and 7 to assess liver biochemistry and the histology of liver tissue. Levels of malondialdehyde (MDA), superoxide dismutase (SOD), nitric oxide (NO), endothelial nitric oxide synthase and inducible nitric oxide synthase were measured. In addition, the anti-oxidative effect of MF-1 on hepatocytes was assessed in vitro. RESULTS MF-1 treatment improved the rat survival rate significantly (P < 0.05). Liver biochemistry and histological changes were significantly ameliorated. MDA increased and SOD and NO decreased in the liver tissue. In vitro, MF-1 protected the human hepatic cell line HL-7702 from damage of oxidative stress. CONCLUSION MF-1 could protect the liver from I/R injury, which might involve the reduction of oxygen free radicals and the increase of NO synthesis in an injured liver.
Collapse
Affiliation(s)
- Feng Xue
- Organ Transplantation Center, Renji Hospital, Shanghai Jiaotong University School of Medicine, China.
| | | | | | | | | |
Collapse
|
37
|
Abstract
BACKGROUND Vascular occlusion to prevent haemorrhage during liver resection causes ischaemia-reperfusion (IR) injury. Insights into the mechanisms of IR injury gathered from experimental models have contributed to the development of therapeutic approaches, some of which have already been tested in randomized clinical trials. METHODS The review was based on a PubMed search using the terms 'ischemia AND hepatectomy', 'ischemia AND liver', 'hepatectomy AND drug treatment', 'liver AND intermittent clamping' and 'liver AND ischemic preconditioning'; only randomized controlled trials (RCTs) were included. RESULTS Twelve RCTs reported on ischaemic preconditioning and intermittent clamping. Both strategies seem to confer protection and allow extension of ischaemia time. Fourteen RCTs evaluating pharmacological interventions, including antioxidants, anti-inflammatory drugs, vasodilators, pharmacological preconditioning and glucose infusion, were identified. CONCLUSION Several strategies to prevent hepatic IR have been developed, but few have been incorporated into clinical practice. Although some pharmacological strategies showed promising results with improved clinical outcome there is not sufficient evidence to recommend them.
Collapse
Affiliation(s)
- R Bahde
- Surgical Research, Department of General and Visceral Surgery, Muenster University Hospital, Waldeyer Strasse 1, D-48149 Muenster, Germany
| | | |
Collapse
|
38
|
Trocha M, Merwid-Ląd A, Szuba A, Chlebda E, Pieśsniewska M, Sozański T, Szeląg A. Effect of simvastatin on nitric oxide synthases (eNOS, iNOS) and arginine and its derivatives (ADMA, SDMA) in ischemia/reperfusion injury in rat liver. Pharmacol Rep 2010; 62:343-51. [DOI: 10.1016/s1734-1140(10)70274-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 10/06/2009] [Indexed: 11/30/2022]
|
39
|
Different Mechanisms in Formation and Prevention of Indomethacin-induced Gastric Ulcers. Inflammation 2010; 33:224-34. [DOI: 10.1007/s10753-009-9176-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
40
|
Giovanardi RO, Rhoden EL, Cerski CT, Salvador M, Kalil AN. Pharmacological Preconditioning Using Intraportal Infusion of L-Arginine Protects Against Hepatic Ischemia Reperfusion Injury. J Surg Res 2009; 155:244-53. [DOI: 10.1016/j.jss.2008.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 06/06/2008] [Accepted: 07/02/2008] [Indexed: 02/08/2023]
|
41
|
Dursun H, Bilici M, Albayrak F, Ozturk C, Saglam MB, Alp HH, Suleyman H. Antiulcer activity of fluvoxamine in rats and its effect on oxidant and antioxidant parameters in stomach tissue. BMC Gastroenterol 2009; 9:36. [PMID: 19457229 PMCID: PMC2693117 DOI: 10.1186/1471-230x-9-36] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 05/20/2009] [Indexed: 01/11/2023] Open
Abstract
Background Although many drugs are available for the treatment of gastric ulcers, often these drugs are ineffective. Many antidepressant drugs have been shown to have antiulcer activity in various models of experimental ulcer. One such drug, the antidepressant mirtazapine, has been reported to have an antiulcer effect that involves an increase in antioxidant, and a decrease in oxidant, parameters. To date, however, there is no information available regarding the antiulcer activity for a similar antidepressant, fluvoxamine. This study aimed to investigate the antiulcer effects of fluvoxamine and to determine its relationship with antioxidants. Methods Groups of rats fasted for 24 h received fluvoxamine (25, 50, 100 and 200 mg/kg), ranitidine (50 mg/kg) or distilled water by oral gavage. Indomethacin (25 mg/kg) was orally administered to the rats as an ulcerative agent. Six hours after ulcer induction, the stomachs of the rats were excised and an ulcer index determined. Separate groups of rats were treated with the same doses of fluvoxamine and ranitidine, but not with indomethacin, to test effects of these drugs alone on biochemical parameters. The stomachs were evaluated biochemically to determine oxidant and antioxidant parameters. We used one-way ANOVA and least significant difference (LSD) options for data analysis. Results The 25, 50, 100 and 200 mg/kg doses of fluvoxamine exerted antiulcer effects of 48.5, 67.5, 82.1 and 96.1%, respectively, compared to the control rat group. Ranitidine showed an 86.5% antiulcer effect. No differences were observed in the absence of indomethacin treatment for any dose of fluvoxamine or for ranitidine. The levels of antioxidant parameters, total glutathione and nitric oxide, were increased in all fluvoxamine groups and in the ranitidine group when compared with the indomethacin-only group. In addition, fluvoxamine and ranitidine decreased the levels of the oxidant parameters, myeloperoxidase and malondialdeyhyde, in the stomach tissues of the rats when compared to indomethacin group. Conclusion We conclude that fluvoxamine has antiulcer effects, and that these occur by a mechanism that involves activation of antioxidant parameters and inhibition of some toxic oxidant parameters.
Collapse
Affiliation(s)
- Hakan Dursun
- Department of Pharmacology, Ataturk University, Faculty of Medicine, Erzurum, Turkey.
| | | | | | | | | | | | | |
Collapse
|
42
|
Ramalho FS, Alfany-Fernandez I, Casillas-Ramirez A, Massip-Salcedo M, Serafín A, Rimola A, Arroyo V, Rodés J, Roselló-Catafau J, Peralta C. Are angiotensin II receptor antagonists useful strategies in steatotic and nonsteatotic livers in conditions of partial hepatectomy under ischemia-reperfusion? J Pharmacol Exp Ther 2009; 329:130-140. [PMID: 19116369 DOI: 10.1124/jpet.108.147835] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We examined whether angiotensin (Ang) II receptor antagonists could be considered a therapeutic strategy in steatotic and nonsteatotic livers in conditions of partial hepatectomy under ischemia-reperfusion (I/R), which is commonly applied in clinical practice to reduce blood loss. We report that Ang II type I receptor (AT1R) antagonist, but not Ang II type II receptor (AT2R) antagonist, increased regeneration in nonsteatotic livers. In the presence of steatosis, both AT1R and AT2R antagonists increased liver regeneration. This effect was stronger when the two were combined. Neither of the Ang II receptor antagonists protected nonsteatotic livers against damage. Only the AT1R antagonist, through nitric oxide inhibition, reduced damage in steatotic livers. The combination of the AT1R and AT2R antagonists in steatotic livers conferred a similar degree of protection to AT1R antagonist alone. Herein, we show that p38 mitogen-activated protein kinase (p38) was a key mechanism in the regeneration induced by the Ang II receptor antagonists in both liver types because when this signaling pathway was inhibited, the beneficial effects of the Ang II receptor antagonists on liver regeneration disappeared, regardless of hepatocyte growth factor or transforming growth factor beta-hepatic levels. In conclusion, in conditions of partial hepatectomy under I/R, the AT1R antagonist for nonsteatotic livers and the AT1R and AT2R antagonists for steatotic livers improved regeneration in the remnant liver through p38 activation. In addition, the combination of the AT1R and AT2R antagonists in steatotic livers led to stronger liver regeneration than either antagonists used separately and also provided the same protection against damage as that afforded by AT1R antagonist alone.
Collapse
Affiliation(s)
- Fernando S Ramalho
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ischaemic and pharmacological preconditionings protect liver via adenosine and redox status following hepatic ischaemia/reperfusion in rats. Clin Sci (Lond) 2008; 115:69-77. [PMID: 18307414 DOI: 10.1042/cs20070415] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Although IPC (ischaemic preconditioning) is considered as a protective strategy in HI/R (hepatic ischaemia/reperfusion), the mechanisms for this effect have not been fully elucidated. In the present study we investigate whether PPC (pharmacological preconditioning) by transient activation of A(1)R (adenosine A(1) receptor) protects against long-term HI/R and whether the protective effects of IPC depend on A(1)R activation and whether both preconditionings affect remote organs. Wistar rats underwent IPC and long-term HI/R. Another set of animals were pharmacologically preconditioned with the A(1)R-agonist CCPA [2-chloro-N(6)-cyclopentyladenosine; 0.1 mg/kg of body weight, i.p. (intraperitoneally)] 24 h before HI/R. In other groups, rats received an A(1)R-antagonist, DPCPX (1,3-dipropyl-8-cyclopentylxanthine; 0.1 mg/kg of body weight, i.p.) 24 h before HI/R. Hepatic damage was evaluated by transaminase [AST (aspartate transaminase), ALT (alanine transaminase)] release; inflammation was assessed by hepatic MPO (myeloperoxidase) and serum TNFalpha (tumour necrosis factor alpha) and NO; oxidative stress was estimated by MDA (malondialdehyde) and 4-HDA (4-hydroxyalkenals), SOD (superoxide dismutase) activity, GSH and ADA (adenosine deaminase) as adenosine metabolism. Both preconditionings protected liver and lung against HI/R as indicated by the reduction in transaminases, MPO, MDA+4-HDA, NO, TNFalpha and ADA activity as compared with HI/R (P<0.05). However, pre-treatment with DPCPX abolished the protective effects of IPC and PPC. Preconditionings induced a significant increase in hepatic MnSOD (manganese SOD) activity and NO generation compared with the sham group, and this activity was abolished by DPCPX pre-treatment. A(1)R activation induced hepatic delayed preconditioning and blockade of A(1)R abolished hepatic IPC. IPC, as well as PPC, were able to prevent lung damage. These protective effects are associated with a reduction in oxidative stress, inflammation and endogenous antioxidant preservation.
Collapse
|
44
|
Spapen H. Liver perfusion in sepsis, septic shock, and multiorgan failure. Anat Rec (Hoboken) 2008; 291:714-20. [PMID: 18484618 DOI: 10.1002/ar.20646] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sepsis causes significant alterations in the hepatic macro- and microcirculation. Diverging views exist on global hepatic blood flow during experimental sepsis because of the large variety in animal and sepsis models. Fluid-resuscitated clinical sepsis is characterized by ongoing liver ischemia due to a defective oxygen extraction despite enhanced perfusion. The effects of vasoactive agents on the hepatosplanchnic circulation are variable, mostly anecdotal, and depend on baseline perfusion, time of drug administration, and use of concomitant medication. Microvascular blood flow disturbances are thought to play a pivotal role in the development of sepsis-induced multiorgan failure. Redistribution of intrahepatic blood flow in concert with a complex interplay between sinusoidal endothelial cells, liver macrophages, and passing leukocytes lead to a decreased perfusion and blood flow velocity in the liver sinusoids. Activation and dysfunction of the endothelial cell barrier with subsequent invasion of neutrophils and formation of microthrombi further enhance liver tissue ischemia and damage. Substances that regulate (micro)vascular tone, such as nitric oxide, endothelin-1, and carbon monoxide, are highly active during sepsis. Possible interactions between these mediators are not well understood, and their therapeutic manipulation produces equivocal or disappointing results. Whether and how standard resuscitation therapy influences the hepatic microvascular response to sepsis is unknown. Indirect evidence supports the concept that improving the microcirculation may prevent or ameliorate sepsis-induced organ failure.
Collapse
Affiliation(s)
- Herbert Spapen
- Intensive Care Department, University Hospital, Vrije Universiteit Brussels, Brussels, Belgium.
| |
Collapse
|
45
|
Lee SH, Culberson C, Korneszczuk K, Clemens MG. Differential mechanisms of hepatic vascular dysregulation with mild vs. moderate ischemia-reperfusion. Am J Physiol Gastrointest Liver Physiol 2008; 294:G1219-26. [PMID: 18325981 DOI: 10.1152/ajpgi.00527.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Endotoxemia produces hepatic vascular dysregulation resulting from inhibition of endothelin (ET)-stimulated NO production. Mechanisms include overexpression of caveolin-1 (Cav-1) and altered phosphorylation of endothelial nitric oxide (NO) synthase (NOS; eNOS) in sinusoidal endothelial cells. Since ischemia-reperfusion (I/R) also causes vascular dysregulation, we tested whether the mechanisms are the same. Rats were exposed to either mild (30 min) or moderate (60 min) hepatic ischemia in vivo followed by reperfusion (6 h). Livers were harvested and prepared into precision-cut liver slices for in vitro analysis of NOS activity and regulation. Both I/R injuries significantly abrogated both the ET-1 (1 microM) and the ET(B) receptor agonist (IRL-1620, 0.5 microM)-mediated stimulation of NOS activity. 30 min I/R resulted in overexpression of Cav-1 and loss of ET-stimulated phosphorylation of Ser1177 on eNOS, consistent with an inflammatory response. Sixty-minute I/R also resulted in loss of ET-stimulated Ser1177 phosphorylation, but Cav-1 expression was not altered. Moreover, expression of ET(B) receptors was significantly decreased. This suggests that the failure of ET to activate eNOS following 60-min I/R is associated with decreased protein expression consistent with ischemic injury. Thus hepatic vascular dysregulation following I/R is mediated by inflammatory mechanisms with mild I/R whereas ischemic mechanisms dominate following more severe I/R stress.
Collapse
Affiliation(s)
- Sang Ho Lee
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | | | | | | |
Collapse
|
46
|
Remote ischemic preconditioning: a novel protective method from ischemia reperfusion injury--a review. J Surg Res 2008; 150:304-30. [PMID: 19040966 DOI: 10.1016/j.jss.2007.12.747] [Citation(s) in RCA: 264] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 10/25/2007] [Accepted: 12/06/2007] [Indexed: 12/15/2022]
Abstract
BACKGROUND Restoration of blood supply to an organ after a critical period of ischemia results in parenchymal injury and dysfunction of the organ referred to as reperfusion injury. Ischemia reperfusion injury is often seen in organ transplants, major organ resections and in shock. Ischemic preconditioning (IPC) is an adaptational response of briefly ischemic tissues which serves to protect against subsequent prolonged ischemic insults and reperfusion injury. Ischemic preconditioning can be mechanical or pharmacological. Direct mechanical preconditioning in which the target organ is exposed to brief ischemia prior to prolonged ischemia has the benefit of reducing ischemia-reperfusion injury (IRI) but its main disadvantage is trauma to major vessels and stress to the target organ. Remote (inter organ) preconditioning is a recent observation in which brief ischemia of one organ has been shown to confer protection on distant organs without direct stress to the organ. AIM To discuss the evidence for remote IPC (RIPC), underlying mechanisms and possible clinical applications of RIPC. METHODS OF SEARCH: A Pubmed search with the keywords "ischemic preconditioning," "remote preconditioning," "remote ischemic preconditioning," and "ischemia reperfusion" was done. All articles on remote preconditioning up to September 2006 have been reviewed. Relevant reference articles from within these have been selected for further discussion. RESULTS Experimental studies have demonstrated that the heart, liver, lung, intestine, brain, kidney and limbs are capable of producing remote preconditioning when subjected to brief IR. Remote intra-organ preconditioning was first described in the heart where brief ischemia in one territory led to protection in other areas. Translation of RIPC to clinical application has been demonstrated by the use of brief forearm ischemia in preconditioning the heart prior to coronary bypass and in reducing endothelial dysfunction of the contra lateral limb. Recently protection of the heart has been demonstrated by remote hind limb preconditioning in children who underwent surgery on cardiopulmonary bypass for congenital heart disease. The RIPC stimulus presumably induces release of biochemical messengers which act either by the bloodstream or by the neurogenic pathway resulting in reduced oxidative stress and preservation of mitochondrial function. Studies have demonstrated endothelial NO, Free radicals, Kinases, Opioids, Catecholamines and K(ATP) channels as the candidate mechanism in remote preconditioning. Experiments have shown suppression of proinflammatory genes, expression of antioxidant genes and modulation of gene expression by RIPC as a novel method of IRI injury prevention. CONCLUSION There is strong evidence to support RIPC. The underlying mechanisms and pathways need further clarification. The effective use of RIPC needs to be investigated in clinical settings.
Collapse
|
47
|
Koeppel TA, Mihaljevic N, Kraenzlin B, Loehr M, Jesenofsky R, Post S, Palma P. Enhanced iNOS Gene Expression in the Steatotic Rat Liver after Normothermic Ischemia. Eur Surg Res 2007; 39:303-11. [PMID: 17595544 DOI: 10.1159/000104401] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 03/23/2007] [Indexed: 12/23/2022]
Abstract
BACKGROUND Impaired hepatic microcirculation in the steatotic liver has been identified as a considerable factor for increased vulnerability after ischemia/reperfusion (I/R). Changes in regulation and synthesis of vasoactive mediators, such as nitric oxide (NO) and endothelin (ET-1), may result in functional impairment of postischemic sinusoidal perfusion. The aim of the current study was to assess the impact of I/R injury on postischemic gene expression of NO and ET-1 in steatotic livers. MATERIALS AND METHODS Male Sprague-Dawley rats with or without hepatic steatosis (induced by carbon tetrachloride treatment) were subjected to normothermic I/R injury. Steady-state mRNA levels were assessed using RT-PCR to study the expression of genes encoding ET-1, NO synthase (endothelial cell NO synthase and inducible NO synthase, iNOS). Immunohistochemistry was performed for detection of iNOS. RESULTS I/R injury was followed by increased iNOS gene expression (RT-PCR/immunohistochemistry) in animals with hepatic steatosis, predominately in hepatocytes with fatty degeneration. A mild increase in mRNA levels for ET-1 was found in steatotic rat livers. I/R induced a further increase in ET-1 gene expression in some but not all reperfused steatotic livers. CONCLUSIONS We show an enhanced gene expression of iNOS in postischemic steatotic rat livers. Hepatocytes with fatty degeneration appear to be the major source for NO generation. Furthermore, I/R may also induce ET-1 gene expression. Dysregulation of sinusoidal perfusion by NO and ET-1 is therefore likely to contribute to I/R injury of the steatotic liver.
Collapse
Affiliation(s)
- Thomas A Koeppel
- Department of Surgery, Klinikum Mannheim gGmbH, University Hospital, Faculty of Medicine of the University of Heidelberg, Mannheim, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
van der Bilt JDW, Soeters ME, Duyverman AMMJ, Nijkamp MW, Witteveen PO, van Diest PJ, Kranenburg O, Borel Rinkes IHM. Perinecrotic hypoxia contributes to ischemia/reperfusion-accelerated outgrowth of colorectal micrometastases. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:1379-88. [PMID: 17392176 PMCID: PMC1829470 DOI: 10.2353/ajpath.2007.061028] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ischemia/reperfusion (I/R) is often inevitable during hepatic surgery and may stimulate the outgrowth of colorectal micrometastases. Postischemic microcirculatory disturbances contribute to I/R damage and may induce prolonged tissue hypoxia and consequent stabilization of hypoxia-inducible factor (HIF)-1alpha. The aim of this study was to evaluate the contribution of postischemic microcirculatory disturbances, hypoxia, and HIF-1alpha to I/R-accelerated tumor growth. Partial hepatic I/R attributable to temporary clamping of the left liver lobe induced microcirculatory failure for up to 5 days. This was accompanied by profound and prolonged perinecrotic tissue hypoxia, stabilization of HIF-1alpha, and massive perinecrotic outgrowth of pre-established micrometastases. Restoration of the microcirculation by treatment with Atrasentan and L-arginine minimized hypoxia and HIF-1alpha stabilization and reduced the accelerated outgrowth of micrometastases by 50%. Destabilization of HIF-1alpha by the HSP90 inhibitor 17-DMAG caused an increase in tissue necrosis but reduced I/R-stimulated tumor growth by more than 70%. In conclusion, prevention of postischemic microcirculatory disturbances and perinecrotic hypoxia reduces the accelerated outgrowth of colorectal liver metastases after I/R. This may, at least in part, be attributed to the prevention of HIF-1alpha stabilization. Prevention of tissue hypoxia or inhibition of HIF-1alpha may represent attractive approaches to limiting recurrent tumor growth after hepatic surgery.
Collapse
|
49
|
Perioperative kinetics of the nitric oxide derivatives nitrite/nitrate during orthotopic liver transplantation. Nitric Oxide 2007; 16:177-80. [DOI: 10.1016/j.niox.2006.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 06/20/2006] [Accepted: 07/06/2006] [Indexed: 11/21/2022]
|
50
|
Casillas-Ramírez A, Mosbah IB, Ramalho F, Roselló-Catafau J, Peralta C. Past and future approaches to ischemia-reperfusion lesion associated with liver transplantation. Life Sci 2006; 79:1881-1894. [PMID: 16828807 DOI: 10.1016/j.lfs.2006.06.024] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 05/19/2006] [Accepted: 06/08/2006] [Indexed: 02/06/2023]
Abstract
Ischemia-reperfusion (I/R) injury associated with liver transplantation remains a serious complication in clinical practice, in spite of several attempts to solve the problem. The present review focuses on the complexity of I/R injury, summarizing conflicting results obtained from the literature about the mechanisms responsible for it. We also review the therapeutic strategies designed in past years to reduce I/R injury, attempting to explain why most of them have not been applied clinically. These strategies include improvements in pharmacological treatments, modifications of University of Wisconsin (UW) preservation solution based on a variety of additives, and gene therapy. Finally, we will consider new potential protective strategies using trimetazidine, 5-amino-4-imidazole carboxamide riboside (AICAR), melatonin, modulators of the renin-angiotensin system (RAS) and the phosphatidylinositol-3-OH kinase (PI3K)-Akt and the p42/p44 extracellular signal-regulated kinases (Erk 1/2) pathway. These strategies have shown promising results for I/R injury but have not been tested in experimental liver transplantation to date. Moreover, we will review ischemic preconditioning, taking into account the recent clinical studies that suggest that this surgical strategy could be appropriate for liver transplantation.
Collapse
Affiliation(s)
- Araní Casillas-Ramírez
- Experimental Liver Ischemia-Reperfusion Unit, Instituto de Investigaciones Biomédicas de Barcelona August Pi i Sunyer, Experimental Hepatology, IIBB-CSIC, C/ Rosellón 161, 7th floors, 08036-Barcelona, Spain
| | | | | | | | | |
Collapse
|