1
|
Griffin WC, Lopez MF, Woodward JJ, Becker HC. Alcohol dependence and the ventral hippocampal influence on alcohol drinking in male mice. Alcohol 2023; 106:44-54. [PMID: 36328184 PMCID: PMC9868110 DOI: 10.1016/j.alcohol.2022.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/26/2022] [Accepted: 10/26/2022] [Indexed: 11/07/2022]
Abstract
Examining neural circuits underlying persistent, heavy drinking provides insight into the neurobiological mechanisms driving alcohol use disorder. Facilitated by its connectivity with other parts of the brain such as the nucleus accumbens (NAc), the ventral hippocampus (vHC) supports many behaviors, including those related to reward seeking and addiction. These studies used a well-established mouse model of alcohol (ethanol) dependence. After surgery to infuse DREADD-expressing viruses (hM4Di, hM3Dq, or mCherry-only) into the vHC and position guide cannula above the NAc, male C57BL/6J mice were treated in the CIE drinking model that involved repeated cycles of chronic intermittent alcohol (CIE) vapor or air (CTL) exposure alternating with weekly test drinking cycles in which mice were offered alcohol (15% v/v) 2 h/day. Additionally, smaller groups of mice were evaluated for either cFos expression or glutamate release using microdialysis procedures. In CIE mice expressing inhibitory (hM4Di) DREADDs in the vHC, drinking increased as expected, but CNO (3 mg/kg intraperitoneally [i.p.]) given 30 min before testing did not alter alcohol intake. However, in CTL mice expressing hM4Di, CNO significantly increased alcohol drinking (∼30%; p < 0.05) to levels similar to the CIE mice. The vHC-NAc pathway was targeted by infusing CNO into the NAc (3 or 10 μM/side) 30 min before testing. CNO activation of the pathway in mice expressing excitatory (hM3Dq) DREADDs selectively reduced consumption in CIE mice back to CTL levels (∼35-45%; p < 0.05) without affecting CTL alcohol intake. Lastly, activating the vHC-NAc pathway increased cFos expression and evoked significant glutamate release from the vHC terminals in the NAc. These data indicate that reduced activity of the vHC increases alcohol consumption and that targeted, increased activity of the vHC-NAc pathway attenuates excessive drinking associated with alcohol dependence. Thus, these findings indicate that the vHC and its glutamatergic projections to the NAc are involved in excessive alcohol drinking.
Collapse
Affiliation(s)
- William C Griffin
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, SC, United States.
| | - Marcelo F Lopez
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, SC, United States
| | - John J Woodward
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, SC, United States; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, SC, United States; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC 29425-0742, United States
| |
Collapse
|
2
|
Interoception and alcohol: Mechanisms, networks, and implications. Neuropharmacology 2021; 200:108807. [PMID: 34562442 DOI: 10.1016/j.neuropharm.2021.108807] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/25/2023]
Abstract
Interoception refers to the perception of the internal state of the body and is increasingly being recognized as an important factor in mental health disorders. Drugs of abuse produce powerful interoceptive states that are upstream of behaviors that drive and influence drug intake, and addiction pathology is impacted by interoceptive processes. The goal of the present review is to discuss interoceptive processes related to alcohol. We will cover physiological responses to alcohol, how interoceptive states can impact drinking, and the recruitment of brain networks as informed by clinical research. We also review the molecular and brain circuitry mechanisms of alcohol interoceptive effects as informed by preclinical studies. Finally, we will discuss emerging treatments with consideration of interoception processes. As our understanding of the role of interoception in drug and alcohol use grows, we suggest that the convergence of information provided by clinical and preclinical studies will be increasingly important. Given the complexity of interoceptive processing and the multitude of brain regions involved, an overarching network-based framework can provide context for how focused manipulations modulate interoceptive processing as a whole. In turn, preclinical studies can systematically determine the roles of individual nodes and their molecular underpinnings in a given network, potentially suggesting new therapeutic targets and directions. As interoceptive processing drives and influences motivation, emotion, and subsequent behavior, consideration of interoception is important for our understanding of processes that drive ongoing drinking and relapse.
Collapse
|
3
|
Influence of sensitization on the discriminative stimulus effects of methylphenidate in mice. Behav Pharmacol 2015; 25:766-74. [PMID: 25325285 DOI: 10.1097/fbp.0000000000000095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Methylphenidate (MPH) remains an important therapy for attention-deficit hyperactivity disorder, but aspects of its pharmacology remain unclear. In the present study, we used a regimen of MPH (8 mg/kg daily×14 days) in C57BL/6J mice to determine whether establishing locomotor sensitization to MPH influenced the acquisition and the dose-response function of MPH in a classic drug discrimination procedure. MPH-sensitized mice (SENS group) showed enhanced locomotor activity to the 8 mg/kg exposure dose as well as a 2 mg/kg dose before discrimination training. However, the SENS mice did not acquire discrimination of either a low dose (2 mg/kg) or a higher dose (4 mg/kg) of MPH any more rapidly than the CTRL mice. Further, during generalization testing, the dose-response functions for the SENS and CTRL mice were identical. Therefore, we did not find that previous exposure to MPH, which produced a sensitized locomotor response, facilitated MPH discrimination.
Collapse
|
4
|
Anderson RI, Spear LP. Age differences in ethanol discrimination: acquisition and ethanol dose generalization curves following multiple training conditions in adolescent and adult rats. Alcohol Clin Exp Res 2013; 38:186-94. [PMID: 23952249 DOI: 10.1111/acer.12255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 06/03/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND Adolescents and adults vary in sensitivity to many effects of ethanol (EtOH), although it is unknown whether they also differ in their perception of EtOH's subjective cues. This study characterized EtOH discrimination in adolescent and adult male rats using a rapidly acquired Pavlovian conditioned approach procedure. METHODS EtOH at 1 of the 3 training doses (0.75, 1.0, or 1.25 g/kg) served as either a positive (POS) or negative (NOS) occasion setter. Each 20-minute training session consisted of eight 15-second presentations of 2 cue lights located on either side of a dipper delivering chocolate Boost(®) . For POS-trained rats, the cue lights reliably predicted 5-second presentations of chocolate Boost during EtOH but not saline sessions, with the opposite contingencies used for NOS-trained rats. Anticipatory approach behavior (head entries into the reward delivery area) in the presence and absence of the cue lights was used to calculate discrimination scores on EtOH and saline sessions. Following acquisition, various doses of EtOH (0 to 1.5 g/kg) were administered to establish generalization curves. RESULTS Although animals of both ages responded differentially on EtOH and saline sessions by the end of acquisition, adults met criterion more quickly and had higher discrimination scores during reinforced sessions than adolescents. Whereas adolescents failed to demonstrate any dose-dependent responding during testing when trained with the 0.75 or 1.25 g/kg EtOH doses, adults demonstrated broader EtOH generalization during testing sessions following training with all 3 EtOH doses. Among adolescents trained with 1.0 g/kg EtOH, less generalization occurred relative to adults. CONCLUSIONS Adolescents were less sensitive to EtOH's interoceptive effects, indicating that EtOH is likely a more salient cue for adults than for adolescents. These findings contribute to evidence that suggests adolescent-typical insensitivity to internal cues that typically limit EtOH consumption may contribute to the elevated intake commonly reported during this developmental period.
Collapse
Affiliation(s)
- Rachel I Anderson
- Department of Psychology, Binghamton University, Binghamton, New York
| | | |
Collapse
|
5
|
Griffin WC, McGovern RW, Bell GH, Randall PK, Middaugh LD, Patrick KS. Interactive effects of methylphenidate and alcohol on discrimination, conditioned place preference and motor coordination in C57BL/6J mice. Psychopharmacology (Berl) 2013; 225:613-25. [PMID: 22955568 PMCID: PMC3547134 DOI: 10.1007/s00213-012-2849-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/10/2012] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Prior research indicates methylphenidate (MPH) and alcohol (ethanol, EtOH) interact to significantly affect responses humans and mice. The present studies tested the hypothesis that MPH and EtOH interact to potentiate ethanol-related behaviors in mice. METHODS We used several behavioral tasks including: drug discrimination in MPH-trained and EtOH-trained mice, conditioned place preference (CPP), rota-rod and the parallel rod apparatus. We also used gas chromatographic methods to measure brain tissue levels of EtOH and the D- and L-isomers of MPH and the metabolite, ethylphenidate (EPH). RESULTS In discrimination, EtOH (1 g/kg) produced a significant leftward shift in the MPH generalization curve (1-2 mg/kg) for MPH-trained mice, but no effects of MPH (0.625-1.25 mg/kg) on EtOH discrimination in EtOH-trained mice (0-2.5 g/kg) were observed. In CPP, the MPH (1.25 mg/kg) and EtOH (1.75 g/kg) combination significantly increased time on the drug paired side compared to vehicle (30.7 %), but this was similar to MPH (28.8 %) and EtOH (33.6 %). Footslip errors measured in a parallel rod apparatus indicated that the drug combination was very ataxic, with footslips increasing 29.5 % compared to EtOH. Finally, brain EtOH concentrations were not altered by 1.75 g/kg EtOH combined with 1.25 mg/kg MPH. However, EtOH significantly increased D-MPH and L-EPH without changing L-MPH brain concentrations. CONCLUSIONS The enhanced behavioral effects when EtOH is combined with MPH are likely due to the selective increase in brain D-MPH concentrations. These studies are consistent with observations in humans of increased interoceptive awareness of the drug combination and provide new clinical perspectives regarding enhanced ataxic effects of this drug combination.
Collapse
Affiliation(s)
- William C. Griffin
- Charleston Alcohol Research Center, Center for Drug and Alcohol Programs, Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, SC 29425-0742
| | | | - Guinevere H. Bell
- Department of Pharmaceutical and Biomedical Sciences Medical University of South Carolina, Charleston, SC 29425-0742
| | - Patrick K. Randall
- Charleston Alcohol Research Center, Center for Drug and Alcohol Programs, Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, SC 29425-0742
| | - Lawrence D. Middaugh
- Charleston Alcohol Research Center, Center for Drug and Alcohol Programs, Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, SC 29425-0742
,Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425-0742
| | - Kennerly S. Patrick
- Department of Pharmaceutical and Biomedical Sciences Medical University of South Carolina, Charleston, SC 29425-0742
| |
Collapse
|
6
|
Effects of vigabatrin, an irreversible GABA transaminase inhibitor, on ethanol reinforcement and ethanol discriminative stimuli in mice. Behav Pharmacol 2012; 23:178-90. [PMID: 22336593 DOI: 10.1097/fbp.0b013e3283512c56] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We tested the hypothesis that the irreversible γ-amino butyric acid transaminase inhibitor, γ-vinyl γ-amino butyric acid [vigabatrin (VGB)], would reduce ethanol reinforcement and enhance the discriminative-stimulus effect of ethanol, effectively reducing ethanol intake. The present studies used adult C57BL/6J (B6) mice in well-established operant, two-bottle choice consumption, locomotor activity, and ethanol discrimination procedures to comprehensively examine the effects of VGB on ethanol-supported behaviors. VGB dose-dependently reduced operant responding for ethanol and ethanol consumption for long periods of time. Importantly, a low dose (200 mg/kg) of VGB was selective for reducing ethanol responding without altering the intake of food or water reinforcement. Higher VGB doses (>200mg/kg) reduced ethanol intake, but also significantly increased water consumption and, more modestly, increased food consumption. Although not affecting locomotor activity on its own, VGB interacted with ethanol to reduce the stimulatory effects of ethanol on locomotion. Finally, VGB (200 mg/kg) significantly enhanced the discriminative-stimulus effects of ethanol as evidenced by significant leftward and upward shifts in ethanol generalization curves. Interestingly, VGB treatment was associated with slight increases in blood ethanol concentrations. The reduction in ethanol intake by VGB appears to be related to the ability of VGB to potentiate the pharmacological effects of ethanol.
Collapse
|
7
|
Goudie AJ, Cole JC, Sumnall HR. Olanzapine and JL13 induce cross-tolerance to the clozapine discriminative stimulus in rats. Behav Pharmacol 2007; 18:9-17. [PMID: 17218793 DOI: 10.1097/fbp.0b013e328014138d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have previously shown that chronic treatment with clozapine induces tolerance to the clozapine discriminative stimulus in rats. The studies reported here extended this work to assess whether chronic treatment with the clozapine-like antipsychotics olanzapine and 5-(4-methylpiperazin-1-yl)-8-chloro-pyrido[2,3-b][1,5] benzoxazepine fumarate (JL13) induced cross-tolerance to clozapine. Two groups of rats were trained to discriminate clozapine (5 mg/kg, intraperitoneal). Training was suspended and the rats were treated with either olanzapine or JL13 at high doses (5 and 20 mg/kg, respectively). These doses were administered twice daily. The clozapine generalization curve was computed three times - before chronic drug treatment, after 10 days of chronic treatment, and after 16 drug-free days. Both olanzapine and JL13 induced cross-tolerance to the clozapine stimulus, shown by significant 3.4 and 3.9 fold parallel shifts to the right in the clozapine generalization curves. Cross-tolerance was lost spontaneously during the drug-free days after treatment as clozapine sensitivity returned to baseline. We interpret these findings as indicative of the development of pharmacodynamic cross-tolerance to clozapine. Possible neuroadaptive mechanisms involved in such cross-tolerance are discussed. The paradigm outlined here allows refinement of antipsychotic drug discrimination assays to identify common chronic effects of such drugs.
Collapse
|
8
|
Becker HC, Baros AM. Effect of duration and pattern of chronic ethanol exposure on tolerance to the discriminative stimulus effects of ethanol in C57BL/6J mice. J Pharmacol Exp Ther 2006; 319:871-8. [PMID: 16914560 DOI: 10.1124/jpet.106.108795] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was conducted to examine whether amount and/or pattern (intermittent or continuous) of chronic ethanol exposure subsequently alters sensitivity to the discriminative stimulus effects of ethanol. Adult male C57BL/6J mice were trained to discriminate between 1.5 g/kg ethanol and saline in a two-lever food-reinforced operant procedure. Once ethanol discrimination was successfully acquired, generalization testing was conducted using a cumulative dosing procedure to generate a baseline dose-response function (0-2.5 g/kg ethanol). Discrimination training was then suspended while mice received chronic ethanol vapor or air exposure in inhalation chambers. The total amount of ethanol exposure was systematically increased, but it was delivered in an intermittent or continuous manner. At 24 or 16 h after inhalation treatment, ethanol discriminability was reassessed using the same generalization testing procedures. Results indicated that discrimination performance in control (air-exposed) mice was similar to baseline. However, sensitivity to the discriminative cue of ethanol following chronic ethanol treatment was reduced (as evidenced by rightward shifts in the dose-response functions and increased ED(50) values). The magnitude of this tolerance effect increased as a function of the number of chronic ethanol exposures as well as the total duration of ethanol exposure. In addition, tolerance was more robust when generalization testing was conducted earlier (16 versus 24 h) after chronic ethanol treatment was halted (2- to 3-fold increase in ED(50) values). These results may have important clinical implications, because blunted sensitivity to the discriminative cue of ethanol may contribute to enhanced ethanol self-administration behavior observed in these mice following similar chronic ethanol treatment.
Collapse
Affiliation(s)
- Howard C Becker
- Charleston Alcohol Research Center, Center for Drug and Alcohol Programs, Medical University of South Carolina, 67 President St., P.O. Box 250861, Charleston, SC 29425, USA.
| | | |
Collapse
|
9
|
Hodge CW, Grant KA, Becker HC, Besheer J, Crissman AM, Platt DM, Shannon EE, Shelton KL. Understanding how the brain perceives alcohol: neurobiological basis of ethanol discrimination. Alcohol Clin Exp Res 2006; 30:203-13. [PMID: 16441269 PMCID: PMC11583313 DOI: 10.1111/j.1530-0277.2006.00024.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the neurobiological mechanisms that regulate how the brain perceives the intoxicating effects of alcohol is highly relevant to understanding the development and maintenance of alcohol addiction. The basis for the subjective effects of intoxication can be studied in drug discrimination procedures in which animals are trained to differentiate the presence of internal stimulus effects of a given dose of ethanol (EtOH) from its absence. Research on the discriminative stimulus effects of psychoactive drugs has shown that these effects are mediated by specific receptor systems. In the case of alcohol, action mediated through ionotropic glutamate, gamma-aminobutyric acid, and serotonergic receptors concurrently produce complex, or multiple, basis for the discriminative stimulus effects of EtOH. These receptor systems may contribute differentially to the discriminative stimulus effects of EtOH based on the EtOH dose, species differences, physiological states, and genetic composition of the individual. An understanding of the receptor mechanisms that mediate the discriminative stimulus effects of EtOH can be used to develop medications aimed at decreasing the subjective effects associated with repeated intoxication. The goal of this symposium was to present an overview of recent findings that highlight the neurobiological mechanisms of EtOH's subjective effects and to suggest the relevance of these discoveries to both basic and clinical alcohol research.
Collapse
MESH Headings
- Alcoholic Intoxication/physiopathology
- Alcoholic Intoxication/psychology
- Alcoholism/physiopathology
- Alcoholism/psychology
- Animals
- Brain/drug effects
- Brain/physiopathology
- Discrimination Learning/drug effects
- Discrimination Learning/physiology
- Drug Tolerance/physiology
- Ethanol/blood
- Ethanol/toxicity
- Female
- Haplorhini
- Humans
- Male
- Mice
- Pregnanolone/physiology
- Rats
- Receptor, Metabotropic Glutamate 5
- Receptors, GABA-A/drug effects
- Receptors, GABA-A/physiology
- Receptors, Metabotropic Glutamate/drug effects
- Receptors, Metabotropic Glutamate/physiology
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/physiology
- Receptors, Neurotransmitter/drug effects
- Receptors, Neurotransmitter/physiology
- Receptors, Serotonin, 5-HT3/drug effects
- Receptors, Serotonin, 5-HT3/physiology
Collapse
Affiliation(s)
- Clyde W Hodge
- Department of Psychiatry and Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-5679, USA.
| | | | | | | | | | | | | | | |
Collapse
|