1
|
Obare LM, Temu T, Mallal SA, Wanjalla CN. Inflammation in HIV and Its Impact on Atherosclerotic Cardiovascular Disease. Circ Res 2024; 134:1515-1545. [PMID: 38781301 PMCID: PMC11122788 DOI: 10.1161/circresaha.124.323891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
People living with HIV have a 1.5- to 2-fold increased risk of developing cardiovascular disease. Despite treatment with highly effective antiretroviral therapy, people living with HIV have chronic inflammation that makes them susceptible to multiple comorbidities. Several factors, including the HIV reservoir, coinfections, clonal hematopoiesis of indeterminate potential (CHIP), microbial translocation, and antiretroviral therapy, may contribute to the chronic state of inflammation. Within the innate immune system, macrophages harbor latent HIV and are among the prominent immune cells present in atheroma during the progression of atherosclerosis. They secrete inflammatory cytokines such as IL (interleukin)-6 and tumor necrosis-α that stimulate the expression of adhesion molecules on the endothelium. This leads to the recruitment of other immune cells, including cluster of differentiation (CD)8+ and CD4+ T cells, also present in early and late atheroma. As such, cells of the innate and adaptive immune systems contribute to both systemic inflammation and vascular inflammation. On a molecular level, HIV-1 primes the NLRP3 (NLR family pyrin domain containing 3) inflammasome, leading to an increased expression of IL-1β, which is important for cardiovascular outcomes. Moreover, activation of TLRs (toll-like receptors) by HIV, gut microbes, and substance abuse further activates the NLRP3 inflammasome pathway. Finally, HIV proteins such as Nef (negative regulatory factor) can inhibit cholesterol efflux in monocytes and macrophages through direct action on the cholesterol transporter ABCA1 (ATP-binding cassette transporter A1), which promotes the formation of foam cells and the progression of atherosclerotic plaque. Here, we summarize the stages of atherosclerosis in the context of HIV, highlighting the effects of HIV, coinfections, and antiretroviral therapy on cells of the innate and adaptive immune system and describe current and future interventions to reduce residual inflammation and improve cardiovascular outcomes among people living with HIV.
Collapse
Affiliation(s)
- Laventa M. Obare
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN (L.M.O., S.A.M., C.N.W.)
| | - Tecla Temu
- Department of Pathology, Harvard Medical School, Boston, MA (T.T.)
| | - Simon A. Mallal
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN (L.M.O., S.A.M., C.N.W.)
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN (S.A.M.)
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN (S.A.M.)
- Institute for Immunology and Infectious Diseases, Murdoch University, WA, Western Australia (S.A.M.)
| | - Celestine N. Wanjalla
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN (L.M.O., S.A.M., C.N.W.)
| |
Collapse
|
2
|
Macvanin MT, Gluvic ZM, Klisic AN, Manojlovic MS, Suri JS, Rizzo M, Isenovic ER. The Link between miRNAs and PCKS9 in Atherosclerosis. Curr Med Chem 2024; 31:6926-6956. [PMID: 37990898 DOI: 10.2174/0109298673262124231102042914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/30/2023] [Accepted: 09/11/2023] [Indexed: 11/23/2023]
Abstract
Cardiovascular disease (CDV) represents the major cause of death globally. Atherosclerosis, as the primary cause of CVD, is a chronic immune-inflammatory disorder with complex multifactorial pathophysiology encompassing oxidative stress, enhanced immune-inflammatory cascade, endothelial dysfunction, and thrombosis. An initiating event in atherosclerosis is the subendothelial accumulation of low-density lipoprotein (LDL), followed by the localization of macrophages to fatty deposits on blood vessel walls, forming lipid-laden macrophages (foam cells) that secrete compounds involved in plaque formation. Given the fact that foam cells are one of the key culprits that underlie the pathophysiology of atherosclerosis, special attention has been paid to the investigation of the efficient therapeutic approach to overcome the dysregulation of metabolism of cholesterol in macrophages, decrease the foam cell formation and/or to force its degradation. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secretory serine proteinase that has emerged as a significant regulator of the lipid metabolism pathway. PCSK9 activation leads to the degradation of LDL receptors (LDLRs), increasing LDL cholesterol (LDL-C) levels in the circulation. PCSK9 pathway dysregulation has been identified as one of the mechanisms involved in atherosclerosis. In addition, microRNAs (miRNAs) are investigated as important epigenetic factors in the pathophysiology of atherosclerosis and dysregulation of lipid metabolism. This review article summarizes the recent findings connecting the role of PCSK9 in atherosclerosis and the involvement of various miRNAs in regulating the expression of PCSK9-related genes. We also discuss PCSK9 pathway-targeting therapeutic interventions based on PCSK9 inhibition, and miRNA levels manipulation by therapeutic agents.
Collapse
Affiliation(s)
- Mirjana T Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran M Gluvic
- Department of Endocrinology and Diabetes, School of Medicine, University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra N Klisic
- Faculty of Medicine, Center for Laboratory Diagnostic, Primary Health Care Center, University of Montenegro, Podgorica, Montenegro
| | - Mia S Manojlovic
- Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, Athero- Point™, Roseville, CA95661, USA
| | - Manfredi Rizzo
- Department of Health Promotion, School of Medicine, Mother and Child Care and Medical Specialties (Promise), University of Palermo, Palermo, Italy
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Taylor JA, Hutchinson MA, Gearhart PJ, Maul RW. Antibodies in action: the role of humoral immunity in the fight against atherosclerosis. Immun Ageing 2022; 19:59. [PMID: 36461105 PMCID: PMC9717479 DOI: 10.1186/s12979-022-00316-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
The sequestering of oxidation-modified low-density lipoprotein by macrophages results in the accumulation of fatty deposits within the walls of arteries. Necrosis of these cells causes a release of intercellular epitopes and the activation of the adaptive immune system, which we predict leads to robust autoantibody production. T cells produce cytokines that act in the plaque environment and further stimulate B cell antibody production. B cells in atherosclerosis meanwhile have a mixed role based on subclass. The current model is that B-1 cells produce protective IgM antibodies in response to oxidation-specific epitopes that work to control plaque formation, while follicular B-2 cells produce class-switched antibodies (IgG, IgA, and IgE) which exacerbate the disease. Over the course of this review, we discuss further the validation of these protective antibodies while evaluating the current dogma regarding class-switched antibodies in atherosclerosis. There are several contradictory findings regarding the involvement of class-switched antibodies in the disease. We hypothesize that this is due to antigen-specificity, and not simply isotype, being important, and that a closer evaluation of these antibodies' targets should be conducted. We propose that specific antibodies may have therapeutical potential in preventing and controlling plaque development within a clinical setting.
Collapse
Affiliation(s)
- Joshua A. Taylor
- grid.419475.a0000 0000 9372 4913Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD USA ,grid.21107.350000 0001 2171 9311Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Mark A. Hutchinson
- grid.419475.a0000 0000 9372 4913Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD USA
| | - Patricia J. Gearhart
- grid.419475.a0000 0000 9372 4913Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD USA
| | - Robert W. Maul
- grid.419475.a0000 0000 9372 4913Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, MD USA
| |
Collapse
|
4
|
Lorey MB, Öörni K, Kovanen PT. Modified Lipoproteins Induce Arterial Wall Inflammation During Atherogenesis. Front Cardiovasc Med 2022; 9:841545. [PMID: 35310965 PMCID: PMC8927694 DOI: 10.3389/fcvm.2022.841545] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/26/2022] [Indexed: 12/15/2022] Open
Abstract
Circulating apolipoprotein B-containing lipoproteins, notably the low-density lipoproteins, enter the inner layer of the arterial wall, the intima, where a fraction of them is retained and modified by proteases, lipases, and oxidizing agents and enzymes. The modified lipoproteins and various modification products, such as fatty acids, ceramides, lysophospholipids, and oxidized lipids induce inflammatory reactions in the macrophages and the covering endothelial cells, initiating an increased leukocyte diapedesis. Lipolysis of the lipoproteins also induces the formation of cholesterol crystals with strong proinflammatory properties. Modified and aggregated lipoproteins, cholesterol crystals, and lipoproteins isolated from human atherosclerotic lesions, all can activate macrophages and thereby induce the secretion of proinflammatory cytokines, chemokines, and enzymes. The extent of lipoprotein retention, modification, and aggregation have been shown to depend largely on differences in the composition of the circulating lipoprotein particles. These properties can be modified by pharmacological means, and thereby provide opportunities for clinical interventions regarding the prevention and treatment of atherosclerotic vascular diseases.
Collapse
Affiliation(s)
- Martina B. Lorey
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Katariina Öörni
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- *Correspondence: Katariina Öörni
| | - Petri T. Kovanen
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| |
Collapse
|
5
|
Jiang XX, Bian W, Zhu YR, Wang Z, Ye P, Gu Y, Zhang H, Zuo G, Li X, Zhu L, Liu Z, Sun C, Chen SL, Zhang DM. Targeting the KCa3.1 channel suppresses diabetes-associated atherosclerosis via the STAT3/CD36 axis. Diabetes Res Clin Pract 2022; 185:109776. [PMID: 35149165 DOI: 10.1016/j.diabres.2022.109776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/21/2022] [Accepted: 02/07/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND In diet-induced arterial atherosclerosis, increased KCa3.1 channel was associated with atherosclerotic plaque progression and instability. Macrophages are involved in the formation of atherosclerotic plaques, and the release of inflammatory cytokines and oxygen free radicals promotes plaque progression. However, whether the macrophage KCa3.1 channel facilitates diabetes-accelerated atherosclerosis is still unclear. This study investigated atherosclerotic plaque in ApoE-/- mice regulated by the KCa3.1 channel. METHODS AND RESULTS In vivo, blocking KCa3.1channel inhibit the development of the atherosclerotic lesion in diabetic ApoE-/- mice fed with a high-fat diet. In vitro, upregulation of KCa3.1 channel level occurred in RAW264.7 cells treated with HG plus ox-LDL in a time-dependent manner. Blocking KCa3.1 significantly reduced the uptake of ox-LDL in mice peritoneal macrophages. Further studies indicated the KCa3.1 siRNA and TRAM-34 (KCa3.1 inhibitor) attenuated the scavenger receptor CD36 expression via inhibiting STAT3 phosphorylation. CONCLUSION Blockade of macrophage KCa3.1 channel inhibit cellular oxidized low-density lipoprotein accumulation and decrease proinflammation factors expression via STAT3/CD36 axis. This study provided a novel therapeutic target to reduce the risk of atherosclerosis development in diabetic patients.
Collapse
Affiliation(s)
- Xiao-Xin Jiang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China
| | - Weikang Bian
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China
| | - Yan-Rong Zhu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China
| | - Zhicheng Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China
| | - Peng Ye
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China
| | - Yue Gu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China
| | - Hongsong Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China
| | - Guangfeng Zuo
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China
| | - Xiaobo Li
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China
| | - Linlin Zhu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China
| | - Zhizhong Liu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China
| | - Chongxiu Sun
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China.
| | - Shao-Liang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China.
| | - Dai-Min Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China; Department of Cardiology, Sir Run Run Hospital, Nanjing Medical University, No. 109 Longmian Road, Nanjing 211166, PR China.
| |
Collapse
|
6
|
Chen J, Su Y, Pi S, Hu B, Mao L. The Dual Role of Low-Density Lipoprotein Receptor-Related Protein 1 in Atherosclerosis. Front Cardiovasc Med 2021; 8:682389. [PMID: 34124208 PMCID: PMC8192809 DOI: 10.3389/fcvm.2021.682389] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/05/2021] [Indexed: 12/26/2022] Open
Abstract
Low-density lipoprotein receptor–related protein-1 (LRP1) is a large endocytic and signaling receptor belonging to the LDL receptor (LDLR) gene family and that is widely expressed in several tissues. LRP1 comprises a large extracellular domain (ECD; 515 kDa, α chain) and a small intracellular domain (ICD; 85 kDa, β chain). The deletion of LRP1 leads to embryonic lethality in mice, revealing a crucial but yet undefined role in embryogenesis and development. LRP1 has been postulated to participate in numerous diverse physiological and pathological processes ranging from plasma lipoprotein homeostasis, atherosclerosis, tumor evolution, and fibrinolysis to neuronal regeneration and survival. Many studies using cultured cells and in vivo animal models have revealed the important roles of LRP1 in vascular remodeling, foam cell biology, inflammation and atherosclerosis. However, its role in atherosclerosis remains controversial. LRP1 not only participates in the removal of atherogenic lipoproteins and proatherogenic ligands in the liver but also mediates the uptake of aggregated LDL to promote the formation of macrophage- and vascular smooth muscle cell (VSMC)-derived foam cells, which causes a prothrombotic transformation of the vascular wall. The dual and opposing roles of LRP1 may also represent an interesting target for atherosclerosis therapeutics. This review highlights the influence of LRP1 during atherosclerosis development, focusing on its dual role in vascular cells and immune cells.
Collapse
Affiliation(s)
- Jiefang Chen
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Su
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shulan Pi
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Mao
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Libby P. The changing landscape of atherosclerosis. Nature 2021; 592:524-533. [PMID: 33883728 DOI: 10.1038/s41586-021-03392-8] [Citation(s) in RCA: 1295] [Impact Index Per Article: 323.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/24/2021] [Indexed: 02/06/2023]
Abstract
Emerging evidence has spurred a considerable evolution of concepts relating to atherosclerosis, and has called into question many previous notions. Here I review this evidence, and discuss its implications for understanding of atherosclerosis. The risk of developing atherosclerosis is no longer concentrated in Western countries, and it is instead involved in the majority of deaths worldwide. Atherosclerosis now affects younger people, and more women and individuals from a diverse range of ethnic backgrounds, than was formerly the case. The risk factor profile has shifted as levels of low-density lipoprotein (LDL) cholesterol, blood pressure and smoking have decreased. Recent research has challenged the protective effects of high-density lipoprotein, and now focuses on triglyceride-rich lipoproteins in addition to low-density lipoprotein as causal in atherosclerosis. Non-traditional drivers of atherosclerosis-such as disturbed sleep, physical inactivity, the microbiome, air pollution and environmental stress-have also gained attention. Inflammatory pathways and leukocytes link traditional and emerging risk factors alike to the altered behaviour of arterial wall cells. Probing the pathogenesis of atherosclerosis has highlighted the role of the bone marrow: somatic mutations in stem cells can cause clonal haematopoiesis, which represents a previously unrecognized but common and potent age-related contributor to the risk of developing cardiovascular disease. Characterizations of the mechanisms that underpin thrombotic complications of atherosclerosis have evolved beyond the 'vulnerable plaque' concept. These advances in our understanding of the biology of atherosclerosis have opened avenues to therapeutic interventions that promise to improve the prevention and treatment of now-ubiquitous atherosclerotic diseases.
Collapse
Affiliation(s)
- Peter Libby
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Sanda GM, Stancu CS, Deleanu M, Toma L, Niculescu LS, Sima AV. Aggregated LDL turn human macrophages into foam cells and induce mitochondrial dysfunction without triggering oxidative or endoplasmic reticulum stress. PLoS One 2021; 16:e0245797. [PMID: 33493198 PMCID: PMC7833132 DOI: 10.1371/journal.pone.0245797] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/07/2021] [Indexed: 11/18/2022] Open
Abstract
Uptake of modified lipoproteins by macrophages turns them into foam cells, the hallmark of the atherosclerotic plaque. The initiation and progression of atherosclerosis have been associated with mitochondrial dysfunction. It is known that aggregated low-density lipoproteins (agLDL) induce massive cholesterol accumulation in macrophages in contrast with native LDL (nLDL) and oxidized LDL (oxLDL). In the present study we aimed to assess the effect of agLDL on the mitochondria and ER function in macrophage-derived foam cells, in an attempt to estimate the potential of these cells, known constituents of early fatty streaks, to generate atheroma in the absence of oxidative stress. Results show that agLDL induce excessive accumulation of free (FC) and esterified cholesterol in THP-1 macrophages and determine mitochondrial dysfunction expressed as decreased mitochondrial membrane potential and diminished intracellular ATP levels, without generating mitochondrial reactive oxygen species (ROS) production. AgLDL did not stimulate intracellular ROS (superoxide anion or hydrogen peroxide) production, and did not trigger endoplasmic reticulum stress (ERS) or apoptosis. In contrast to agLDL, oxLDL did not modify FC levels, but stimulated the accumulation of 7-ketocholesterol in the cells, generating oxidative stress which is associated with an increased mitochondrial dysfunction, ERS and apoptosis. Taken together, our results reveal that agLDL induce foam cells formation and mild mitochondrial dysfunction in human macrophages without triggering oxidative or ERS. These data could partially explain the early formation of fatty streaks in the intima of human arteries by interaction of monocyte-derived macrophages with non-oxidatively aggregated LDL generating foam cells, which cannot evolve into atherosclerotic plaques in the absence of the oxidative stress.
Collapse
Affiliation(s)
- Gabriela M Sanda
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Camelia S Stancu
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Mariana Deleanu
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania.,Faculty of Biotechnology, University of Agronomical Sciences and Veterinary Medicine, Bucharest, Romania
| | - Laura Toma
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Loredan S Niculescu
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Anca V Sima
- Lipidomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| |
Collapse
|
9
|
Benitez‐Amaro A, Pallara C, Nasarre L, Ferreira R, Gonzalo‐Calvo D, Prades R, Tarragó T, Llorente‐Cortés V. Development of Innovative Antiatherosclerotic Peptides through the Combination of Molecular Modeling and a Dual (Biochemical‐Cellular) Screening System. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Aleyda Benitez‐Amaro
- Institute of Biomedical Research of Barcelona (IIBB)Spanish National Research Council (CSIC) Barcelona 08036 Spain
- Group of Lipids and Cardiovascular PathologyBiomedical Research Institute Sant Pau (IIB Sant Pau)Hospital de la Santa Creu i Sant Pau Barcelona 08025 Spain
| | - Chiara Pallara
- Iproteos S.LBarcelona Science Park (PCB) Barcelona 08028 Spain
| | - Laura Nasarre
- Institute of Biomedical Research of Barcelona (IIBB)Spanish National Research Council (CSIC) Barcelona 08036 Spain
| | - Ruben Ferreira
- Iproteos S.LBarcelona Science Park (PCB) Barcelona 08028 Spain
| | - David Gonzalo‐Calvo
- Institute of Biomedical Research of Barcelona (IIBB)Spanish National Research Council (CSIC) Barcelona 08036 Spain
- Group of Lipids and Cardiovascular PathologyBiomedical Research Institute Sant Pau (IIB Sant Pau)Hospital de la Santa Creu i Sant Pau Barcelona 08025 Spain
- CIBER enfermedades cardiovasculares (CIBERcv) Madrid 28029 Spain
| | - Roger Prades
- Iproteos S.LBarcelona Science Park (PCB) Barcelona 08028 Spain
| | - Teresa Tarragó
- Iproteos S.LBarcelona Science Park (PCB) Barcelona 08028 Spain
| | - Vicenta Llorente‐Cortés
- Institute of Biomedical Research of Barcelona (IIBB)Spanish National Research Council (CSIC) Barcelona 08036 Spain
- Group of Lipids and Cardiovascular PathologyBiomedical Research Institute Sant Pau (IIB Sant Pau)Hospital de la Santa Creu i Sant Pau Barcelona 08025 Spain
- CIBER enfermedades cardiovasculares (CIBERcv) Madrid 28029 Spain
| |
Collapse
|
10
|
Meza-Figueroa D, Barboza-Flores M, Romero FM, Acosta-Elias M, Hernández-Mendiola E, Maldonado-Escalante F, Pérez-Segura E, González-Grijalva B, Meza-Montenegro M, García-Rico L, Navarro-Espinoza S, Santacruz-Gómez K, Gallego-Hernández A, Pedroza-Montero M. Metal bioaccessibility, particle size distribution and polydispersity of playground dust in synthetic lysosomal fluids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136481. [PMID: 31954252 DOI: 10.1016/j.scitotenv.2019.136481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/25/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
Inhalation of playground dust-derived fine particles in schoolyards poses a risk from exposure to metal(oids) and minerals. In this work, we obtained the total concentration and bioaccessibility of metal(oids) with Gamble Solution (GS) and Artificial Lysosomal Fluid (ALF) synthetic solutions, simulating the extracellular neutral pH environment of the lung and the intracellular conditions of the macrophage, respectively. Scanning Electron Microscope (SEM), and Dynamic Light Scattering analysis (DLS) techniques were used to characterize particles with a size smaller than 2.5 μm, which can be assimilated by macrophages in the deep part of the lung. Arsenic (As), lead (Pb), copper (Cu), manganese (Mn), zinc (Zn), and iron (Fe) showed concentrations of 39.9, 147.9, 286, 1369, 2313, 112,457 mg·kg-1, respectively. The results indicated that all studied elements were enriched when compared to (i) local geochemical background and (ii) findings reported in other cities around the world. Bioaccessibility of metal(oids) in GS was low-moderate for most studied elements. However, in ALF assays, bioaccessibility was high among the samples: for lead (Pb = 34-100%), arsenic (As = 14.7-100%), copper (Cu = 17.9-100%), and zinc (Zn = 35-52%) possibly related to hydrophobic minerals in dust. SEM and DLS image analysis showed that playground dust particles smaller than 2.5 μm are dominant, particularly particles with a size range of 500-600 nm. The polydispersity detected in these particle sizes showed that most of them might be crystalline compounds (elongated shapes) forming agglomerates instead of combustion particles (spheres). Moreover, the circularity detected varies from 0.57 to 0.79 (low roundness), which corroborates this finding. The presence of agglomerates of ultrafine/nanoparticles containing highly bioaccessible metals in playground sites may have severe implications in children's health. Therefore, further studies are required to characterize the size distribution, structure, shape and composition of such minerals which are essential factors related to the toxicology of inhaled dust particles.
Collapse
Affiliation(s)
- Diana Meza-Figueroa
- Department of Geology, University of Sonora, Rosales y Encinas, Hermosillo, Sonora 83000, Mexico
| | - Marcelino Barboza-Flores
- Department of Physics Research, University of Sonora, Rosales y Encinas, Hermosillo, Sonora 83000, Mexico
| | - Francisco M Romero
- Institute of Geology, National University of Mexico, Ciudad Universitaria, Delegación Coyoacán, Ciudad de México 04510, Mexico
| | - Mónica Acosta-Elias
- Department of Physics Research, University of Sonora, Rosales y Encinas, Hermosillo, Sonora 83000, Mexico
| | - Ernesto Hernández-Mendiola
- Institute of Geology, National University of Mexico, Ciudad Universitaria, Delegación Coyoacán, Ciudad de México 04510, Mexico
| | | | - Efrén Pérez-Segura
- Department of Geology, University of Sonora, Rosales y Encinas, Hermosillo, Sonora 83000, Mexico
| | - Belem González-Grijalva
- Department of Geology, University of Sonora, Rosales y Encinas, Hermosillo, Sonora 83000, Mexico
| | | | - Leticia García-Rico
- Center of Research in Food and Development, A.C. Carretera a la Victoria km 0.6, Hermosillo, Sonora 83304, Mexico
| | - Sofía Navarro-Espinoza
- Nanotechnology PhD Program, University of Sonora, Rosales y Encinas, Hermosillo, Sonora 83000, Mexico
| | - Karla Santacruz-Gómez
- Physics Department, University of Sonora, Rosales y Encinas, Hermosillo, Sonora 83000, Mexico
| | - Ana Gallego-Hernández
- Department of Physics Research, University of Sonora, Rosales y Encinas, Hermosillo, Sonora 83000, Mexico
| | - Martín Pedroza-Montero
- Department of Physics Research, University of Sonora, Rosales y Encinas, Hermosillo, Sonora 83000, Mexico.
| |
Collapse
|
11
|
Brophy ML, Dong Y, Tao H, Yancey PG, Song K, Zhang K, Wen A, Wu H, Lee Y, Malovichko MV, Sithu SD, Wong S, Yu L, Kocher O, Bischoff J, Srivastava S, Linton MF, Ley K, Chen H. Myeloid-Specific Deletion of Epsins 1 and 2 Reduces Atherosclerosis by Preventing LRP-1 Downregulation. Circ Res 2019; 124:e6-e19. [PMID: 30595089 DOI: 10.1161/circresaha.118.313028] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RATIONALE Atherosclerosis is, in part, caused by immune and inflammatory cell infiltration into the vascular wall, leading to enhanced inflammation and lipid accumulation in the aortic endothelium. Understanding the molecular mechanisms underlying this disease is critical for the development of new therapies. Our recent studies demonstrate that epsins, a family of ubiquitin-binding endocytic adaptors, are critical regulators of atherogenicity. Given the fundamental contribution lesion macrophages make to fuel atherosclerosis, whether and how myeloid-specific epsins promote atherogenesis is an open and significant question. OBJECTIVE We will determine the role of myeloid-specific epsins in regulating lesion macrophage function during atherosclerosis. METHODS AND RESULTS We engineered myeloid cell-specific epsins double knockout mice (LysM-DKO) on an ApoE-/- background. On Western diet, these mice exhibited marked decrease in atherosclerotic lesion formation, diminished immune and inflammatory cell content in aortas, and reduced necrotic core content but increased smooth muscle cell content in aortic root sections. Epsins deficiency hindered foam cell formation and suppressed proinflammatory macrophage phenotype but increased efferocytosis and anti-inflammatory macrophage phenotype in primary macrophages. Mechanistically, we show that epsin loss specifically increased total and surface levels of LRP-1 (LDLR [low-density lipoprotein receptor]-related protein 1), an efferocytosis receptor with antiatherosclerotic properties. We further show that epsin and LRP-1 interact via epsin's ubiquitin-interacting motif domain. ox-LDL (oxidized LDL) treatment increased LRP-1 ubiquitination, subsequent binding to epsin, and its internalization from the cell surface, suggesting that epsins promote the ubiquitin-dependent internalization and downregulation of LRP-1. Crossing ApoE-/-/LysM-DKO mice onto an LRP-1 heterozygous background restored, in part, atherosclerosis, suggesting that epsin-mediated LRP-1 downregulation in macrophages plays a pivotal role in propelling atherogenesis. CONCLUSIONS Myeloid epsins promote atherogenesis by facilitating proinflammatory macrophage recruitment and inhibiting efferocytosis in part by downregulating LRP-1, implicating that targeting epsins in macrophages may serve as a novel therapeutic strategy to treat atherosclerosis.
Collapse
Affiliation(s)
- Megan L Brophy
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center (M.L.B.)
| | - Yunzhou Dong
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA
| | - Huan Tao
- Atherosclerosis Research Unit, Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (H.T., P.G.Y., M.F.L.)
| | - Patricia G Yancey
- Atherosclerosis Research Unit, Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (H.T., P.G.Y., M.F.L.)
| | - Kai Song
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA
| | - Kun Zhang
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA.,Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China (K.Z.)
| | - Aiyun Wen
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA
| | - Hao Wu
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA
| | - Yang Lee
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA
| | - Marina V Malovichko
- Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, KY (M.V.M., S.D.S., S.S.)
| | - Srinivas D Sithu
- Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, KY (M.V.M., S.D.S., S.S.)
| | - Scott Wong
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA
| | - Lili Yu
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA
| | - Olivier Kocher
- Department of Pathology and Center for Vascular Biology Research, Beth Israel Medical Deaconess Medical Center (O.K.), Harvard Medical School, MA
| | - Joyce Bischoff
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA
| | - Sanjay Srivastava
- Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, KY (M.V.M., S.D.S., S.S.)
| | - MacRae F Linton
- Atherosclerosis Research Unit, Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (H.T., P.G.Y., M.F.L.)
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (K.L.)
| | - Hong Chen
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital (M.L.B., Y.D., K.S., K.Z., A.W., H.W., Y.L., S.W., L.Y., J.B., H.C.), Harvard Medical School, MA
| |
Collapse
|
12
|
Maxfield FR, Barbosa-Lorenzi VC, Singh RK. Digestive exophagy: Phagocyte digestion of objects too large for phagocytosis. Traffic 2019; 21:6-12. [PMID: 31664749 DOI: 10.1111/tra.12712] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/18/2019] [Accepted: 10/26/2019] [Indexed: 12/29/2022]
Abstract
Mammalian phagocytes carry out several essential functions, including killing and digesting infectious organisms, clearing denatured proteins, removing dead cells and removing several types of debris from the extracellular space. Many of these functions involve phagocytosis, the engulfment of a target in a specialized endocytic process and then fusion of the new phagosome with lysosomes. Phagocytes such as macrophages can phagocytose targets that are several micrometers in diameter (eg, dead cells), but in some cases they encounter much larger objects. We have studied two such examples in some detail: large deposits of lipoproteins such as those in the wall of blood vessels associated with atherosclerosis, and dead adipocytes, which are dozens of micrometers in diameter. We describe a process, which we call digestive exophagy, in which macrophages create a tight seal in contact with the target, acidify the sealed zone and secrete lysosomal contents into the contact zone. By this process, hydrolysis by lysosomal enzymes occurs in a compartment that is outside the cell. We compare this process to the well characterized digestion of bone by osteoclasts, and we point out key similarities and differences.
Collapse
Affiliation(s)
| | | | - Rajesh K Singh
- Department of Biochemistry, Weill Cornell Medicine, New York, New York
| |
Collapse
|
13
|
Benitez-Amaro A, Pallara C, Nasarre L, Rivas-Urbina A, Benitez S, Vea A, Bornachea O, de Gonzalo-Calvo D, Serra-Mir G, Villegas S, Prades R, Sanchez-Quesada JL, Chiva C, Sabido E, Tarragó T, Llorente-Cortés V. Molecular basis for the protective effects of low-density lipoprotein receptor-related protein 1 (LRP1)-derived peptides against LDL aggregation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1302-1316. [PMID: 31077676 DOI: 10.1016/j.bbamem.2019.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/09/2019] [Accepted: 05/01/2019] [Indexed: 01/02/2023]
Abstract
Aggregated LDL is the first ligand reported to interact with the cluster II CR9 domain of low-density lipoprotein receptor-related protein 1 (LRP1). In particular, the C-terminal half of domain CR9, comprising the region Gly1127-Cys1140 exclusively recognizes aggregated LDL and it is crucial for aggregated LDL binding. Our aim was to study the effect of the sequence Gly1127-Cys1140 (named peptide LP3 and its retro-enantio version, named peptide DP3) on the structural characteristics of sphingomyelinase- (SMase) and phospholipase 2 (PLA2)-modified LDL particles. Turbidimetry, gel filtration chromatography (GFC) and transmission electronic microscopy (TEM) analysis showed that LP3 and DP3 peptides strongly inhibited SMase- and PLA2-induced LDL aggregation. Nondenaturing polyacrylamide gradient gel electrophoresis (GGE), agarose gel electrophoresis and high-performance thin-layer chromatography (HPTLC) indicated that LP3 and DP3 prevented SMase-induced alterations in LDL particle size, electric charge and phospholipid content, respectively, but not those induced by PLA2. Western blot analysis showed that LP3 and DP3 counteracted changes in ApoB-100 conformation induced by the two enzymes. LDL proteomics (LDL trypsin digestion followed by mass spectroscopy) and computational modeling methods evidenced that peptides preserve ApoB-100 conformation due to their electrostatic interactions with a basic region of ApoB-100. These results demonstrate that LRP1-derived peptides are protective against LDL aggregation, even in conditions of extreme lipolysis, through their capacity to bind to ApoB-100 regions critical for ApoB-100 conformational preservation. These results suggests that these LRP1(CR9) derived peptides could be promising tools to prevent LDL aggregation induced by the main proteolytic enzymes acting in the arterial intima.
Collapse
Affiliation(s)
- Aleyda Benitez-Amaro
- Group of Lipids and Cardiovascular Pathology, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Chiara Pallara
- Iproteos S.L., Barcelona Science Park (PCB), Barcelona, Spain
| | - Laura Nasarre
- Group of Lipids and Cardiovascular Pathology, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Andrea Rivas-Urbina
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Sonia Benitez
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Angela Vea
- Group of Lipids and Cardiovascular Pathology, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Olga Bornachea
- Group of Lipids and Cardiovascular Pathology, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
| | - David de Gonzalo-Calvo
- Group of Lipids and Cardiovascular Pathology, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain; CIBER Enfermedades Cardiovasculares (CIBERcv), Spain
| | - Gabriel Serra-Mir
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Sandra Villegas
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Roger Prades
- Iproteos S.L., Barcelona Science Park (PCB), Barcelona, Spain
| | - José Luís Sanchez-Quesada
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain; CIBER DIABETES y Enfermedades Metabólicas Asociadas (CIBERdem), Spain
| | - Cristina Chiva
- Proteomics Unit, Centre de Regulació Genòmica, Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Eduard Sabido
- Proteomics Unit, Centre de Regulació Genòmica, Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Teresa Tarragó
- Iproteos S.L., Barcelona Science Park (PCB), Barcelona, Spain
| | - Vicenta Llorente-Cortés
- Group of Lipids and Cardiovascular Pathology, Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain; CIBER Enfermedades Cardiovasculares (CIBERcv), Spain.
| |
Collapse
|
14
|
Role of inflammation in the pathogenesis of atherosclerosis and therapeutic interventions. Atherosclerosis 2018; 276:98-108. [DOI: 10.1016/j.atherosclerosis.2018.07.014] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/03/2018] [Accepted: 07/11/2018] [Indexed: 12/15/2022]
|
15
|
Zanoni P, Velagapudi S, Yalcinkaya M, Rohrer L, von Eckardstein A. Endocytosis of lipoproteins. Atherosclerosis 2018; 275:273-295. [PMID: 29980055 DOI: 10.1016/j.atherosclerosis.2018.06.881] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/04/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023]
Abstract
During their metabolism, all lipoproteins undergo endocytosis, either to be degraded intracellularly, for example in hepatocytes or macrophages, or to be re-secreted, for example in the course of transcytosis by endothelial cells. Moreover, there are several examples of internalized lipoproteins sequestered intracellularly, possibly to exert intracellular functions, for example the cytolysis of trypanosoma. Endocytosis and the subsequent intracellular itinerary of lipoproteins hence are key areas for understanding the regulation of plasma lipid levels as well as the biological functions of lipoproteins. Indeed, the identification of the low-density lipoprotein (LDL)-receptor and the unraveling of its transcriptional regulation led to the elucidation of familial hypercholesterolemia as well as to the development of statins, the most successful therapeutics for lowering of cholesterol levels and risk of atherosclerotic cardiovascular diseases. Novel limiting factors of intracellular trafficking of LDL and the LDL receptor continue to be discovered and to provide drug targets such as PCSK9. Surprisingly, the receptors mediating endocytosis of high-density lipoproteins or lipoprotein(a) are still a matter of controversy or even new discovery. Finally, the receptors and mechanisms, which mediate the uptake of lipoproteins into non-degrading intracellular itineraries for re-secretion (transcytosis, retroendocytosis), storage, or execution of intracellular functions, are largely unknown.
Collapse
Affiliation(s)
- Paolo Zanoni
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Srividya Velagapudi
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Mustafa Yalcinkaya
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Lucia Rohrer
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Arnold von Eckardstein
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
16
|
|
17
|
Lebedeva A, Vorobyeva D, Vagida M, Ivanova O, Felker E, Fitzgerald W, Danilova N, Gontarenko V, Shpektor A, Vasilieva E, Margolis L. Ex vivo culture of human atherosclerotic plaques: A model to study immune cells in atherogenesis. Atherosclerosis 2017; 267:90-98. [PMID: 29101840 DOI: 10.1016/j.atherosclerosis.2017.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/07/2017] [Accepted: 10/05/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS The mechanisms that drive atherosclerotic plaque progression and destabilization in humans remain largely unknown. Laboratory models are needed to study these mechanisms under controlled conditions. The aim of this study was to establish a new ex vivo model of human atherosclerotic plaques that preserves the main cell types in plaques and the extracellular components in the context of native cytoarchitecture. METHODS Atherosclerotic plaques from carotid arteries of 28 patients undergoing carotid endarterectomy were dissected and cultured. At various time-points, samples were collected and analysed histologically. After enzymatic digestion, single cells were analysed with flow cytometry. Moreover, tissue cytokine production was evaluated. RESULTS We optimised the plaque dissection protocol by cutting plaques into circular segments that we cultured on collagen rafts at the medium-air interface, thus keeping them well oxygenated. With this technique, the relative presence of T and B lymphocytes did not change significantly during culture, and the sizes of lymphocyte subsets remained stable after day 4 of culture. Macrophages, smooth muscle cells, and fibroblasts with collagen fibres, as well as T and B lymphocyte subsets and CD16 natural killer cells, remained largely preserved for 19 days of culture, with a continuous production of inflammatory cytokines and chemokines. CONCLUSIONS Our new model of ex vivo human atherosclerotic plaques, which preserves the main subsets of immune cells in the context of tissue cytoarchitecture, may be used to investigate important aspects of atherogenesis, in particular, the functions of immune cells under controlled laboratory conditions.
Collapse
Affiliation(s)
- Anna Lebedeva
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Daria Vorobyeva
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Murad Vagida
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Oxana Ivanova
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Eugeny Felker
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Wendy Fitzgerald
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Natalya Danilova
- Department of Clinical Pathology, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir Gontarenko
- Department of Vascular Surgery, A.V. Vishnevsky Institute of Surgery, Moscow, Russia
| | - Alexander Shpektor
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Elena Vasilieva
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow, Russia.
| | - Leonid Margolis
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Singh RK, Haka AS, Brumfield A, Grosheva I, Bhardwaj P, Chin HF, Xiong Y, Hla T, Maxfield FR. Ceramide activation of RhoA/Rho kinase impairs actin polymerization during aggregated LDL catabolism. J Lipid Res 2017; 58:1977-1987. [PMID: 28814641 PMCID: PMC5625121 DOI: 10.1194/jlr.m076398] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/11/2017] [Indexed: 01/22/2023] Open
Abstract
Macrophages use an extracellular, hydrolytic compartment formed by local actin polymerization to digest aggregated LDL (agLDL). Catabolism of agLDL promotes foam cell formation and creates an environment rich in LDL catabolites, including cholesterol and ceramide. Increased ceramide levels are present in lesional LDL, but the effect of ceramide on macrophage proatherogenic processes remains unknown. Here, we show that macrophages accumulate ceramide in atherosclerotic lesions. Using macrophages from sphingosine kinase 2 KO (SK2KO) mice to mimic ceramide-rich conditions of atherosclerotic lesions, we show that SK2KO macrophages display impaired actin polymerization and foam cell formation in response to contact with agLDL. C16-ceramide treatment impaired wild-type but not SK2KO macrophage actin polymerization, confirming that this effect is due to increased ceramide levels. We demonstrate that knockdown of RhoA or inhibition of Rho kinase restores agLDL-induced actin polymerization in SK2KO macrophages. Activation of RhoA in macrophages was sufficient to impair actin polymerization and foam cell formation in response to agLDL. Finally, we establish that during catabolism, macrophages take up ceramide from agLDL, and inhibition of ceramide generation modulates actin polymerization. These findings highlight a critical regulatory pathway by which ceramide impairs actin polymerization through increased RhoA/Rho kinase signaling and regulates foam cell formation.
Collapse
Affiliation(s)
- Rajesh K Singh
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Abigail S Haka
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | | | - Inna Grosheva
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Priya Bhardwaj
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Harvey F Chin
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Yuquan Xiong
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA 02115
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
19
|
Miyazaki T, Miyazaki A. Emerging roles of calpain proteolytic systems in macrophage cholesterol handling. Cell Mol Life Sci 2017; 74:3011-3021. [PMID: 28432377 PMCID: PMC11107777 DOI: 10.1007/s00018-017-2528-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 01/21/2023]
Abstract
Calpains are Ca2+-dependent intracellular proteases that play central roles in the post-translational processing of functional proteins. In mammals, calpain proteolytic systems comprise the endogenous inhibitor calpastatin as well as 15 homologues of the catalytic subunits and two homologues of the regulatory subunits. Recent pharmacological and gene targeting studies in experimental animal models have revealed the contribution of conventional calpains, which consist of the calpain-1 and -2 isozymes, to atherosclerotic diseases. During atherogenesis, conventional calpains facilitate the CD36-dependent uptake of oxidized low-density lipoprotein (LDL), and block cholesterol efflux through ATP-binding cassette transporters in lesional macrophages, allowing the expansion of lipid-enriched atherosclerotic plaques. In addition, calpain-6, an unconventional non-proteolytic calpain, in macrophages reportedly potentiates pinocytotic uptake of native LDL, and attenuates the efferocytic clearance of apoptotic and necrotic cell corpses from the lesions. Herein, we discuss the recent progress that has been made in our understanding of how calpain contributes to atherosclerosis, in particular focusing on macrophage cholesterol handling.
Collapse
Affiliation(s)
- Takuro Miyazaki
- Department of Biochemistry, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| | - Akira Miyazaki
- Department of Biochemistry, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| |
Collapse
|
20
|
Chen S, Sun R, Li X, Liu M, Zeng Y, Zhang P. Recent perspectives of stem cell use in cardiac disorders. Hellenic J Cardiol 2017; 58:105-109. [DOI: 10.1016/j.hjc.2016.11.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/09/2016] [Accepted: 11/09/2016] [Indexed: 11/30/2022] Open
|
21
|
Brophy ML, Dong Y, Wu H, Rahman HNA, Song K, Chen H. Eating the Dead to Keep Atherosclerosis at Bay. Front Cardiovasc Med 2017; 4:2. [PMID: 28194400 PMCID: PMC5277199 DOI: 10.3389/fcvm.2017.00002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/12/2017] [Indexed: 12/22/2022] Open
Abstract
Atherosclerosis is the primary cause of coronary heart disease (CHD), ischemic stroke, and peripheral arterial disease. Despite effective lipid-lowering therapies and prevention programs, atherosclerosis is still the leading cause of mortality in the United States. Moreover, the prevalence of CHD in developing countries worldwide is rapidly increasing at a rate expected to overtake those of cancer and diabetes. Prominent risk factors include the hardening of arteries and high levels of cholesterol, which lead to the initiation and progression of atherosclerosis. However, cell death and efferocytosis are critical components of both atherosclerotic plaque progression and regression, yet, few currently available therapies focus on these processes. Thus, understanding the causes of cell death within the atherosclerotic plaque, the consequences of cell death, and the mechanisms of apoptotic cell clearance may enable the development of new therapies to treat cardiovascular disease. Here, we review how endoplasmic reticulum stress and cholesterol metabolism lead to cell death and inflammation, how dying cells affect plaque progression, and how autophagy and the clearance of dead cells ameliorates the inflammatory environment of the plaque. In addition, we review current research aimed at alleviating these processes and specifically targeting therapeutics to the site of the plaque.
Collapse
Affiliation(s)
- Megan L Brophy
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Karp Family Research Laboratories, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Yunzhou Dong
- Karp Family Research Laboratories, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital , Boston, MA , USA
| | - Hao Wu
- Karp Family Research Laboratories, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital , Boston, MA , USA
| | - H N Ashiqur Rahman
- Karp Family Research Laboratories, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital , Boston, MA , USA
| | - Kai Song
- Karp Family Research Laboratories, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital , Boston, MA , USA
| | - Hong Chen
- Karp Family Research Laboratories, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital , Boston, MA , USA
| |
Collapse
|
22
|
Dubland JA, Francis GA. So Much Cholesterol: the unrecognized importance of smooth muscle cells in atherosclerotic foam cell formation. Curr Opin Lipidol 2016; 27:155-61. [PMID: 26836481 DOI: 10.1097/mol.0000000000000279] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Smooth muscle cells (SMCs) form the thickened intimal layer in atherosclerosis-prone arteries in early life, and provide the initial site for retention and uptake of atherogenic lipoproteins. Here we review current knowledge regarding the importance of SMCs in the deposition of cholesterol in atherosclerotic plaque. RECENT FINDINGS SMCs were found to comprise at least 50% of total foam cells in human coronary artery atherosclerosis, and exhibit a selective loss of expression of the cholesterol efflux promoter ATP-binding cassette transporter A1. Cholesterol loading induced a loss of SMC gene expression and an increase in macrophage and proinflammatory marker expression by cultured mouse and human arterial SMCs, with reversal of these effects upon removal of the excess cholesterol. Mice engineered to track all cells of SMC lineage indicated that, at most, SMCs make up about one-third of total cells in atherosclerotic plaque in these animals. SUMMARY SMCs appear to be the origin of the majority of foam cells in human atherosclerotic plaque. Recent studies suggest a renaissance of research on the role of SMCs in atherosclerosis is needed to make the next leap forward in the prevention and treatment of this disease.
Collapse
Affiliation(s)
- Joshua A Dubland
- Division of Endocrinology and Metabolism, Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
23
|
Aluganti Narasimhulu C, Fernandez-Ruiz I, Selvarajan K, Jiang X, Sengupta B, Riad A, Parthasarathy S. Atherosclerosis--do we know enough already to prevent it? Curr Opin Pharmacol 2016; 27:92-102. [PMID: 26974701 DOI: 10.1016/j.coph.2016.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 02/12/2016] [Indexed: 01/07/2023]
Abstract
In this review, we have briefly summarized the characteristics of lipids and lipoproteins and the atherosclerotic process. The development of atherosclerosis is a continuous process that involves numerous cellular and acellular processes that influence the behavior of each other. These include oxidative stress, lipoprotein modifications, macrophage polarization, macrophage lipid accumulation, generation of pro- and anti-inflammatory components, calcification, cellular growth and proliferation, and plaque rupture. The precise role(s) of many of these are unknown. Understanding the events at each particular stage might shed more light onto the process as a whole and could potentially reveal targets for intervention. Therapeutic modalities that work at one stage may have little to no influence on other stages of the disease.
Collapse
Affiliation(s)
| | - Irene Fernandez-Ruiz
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, United States
| | - Krithika Selvarajan
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, United States
| | - Xeuting Jiang
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, United States
| | - Bhaswati Sengupta
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, United States
| | - Aladdin Riad
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, United States
| | - Sampath Parthasarathy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, United States.
| |
Collapse
|
24
|
|
25
|
Morita SY. Metabolism and Modification of Apolipoprotein B-Containing Lipoproteins Involved in Dyslipidemia and Atherosclerosis. Biol Pharm Bull 2016; 39:1-24. [DOI: 10.1248/bpb.b15-00716] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shin-ya Morita
- Department of Pharmacy, Shiga University of Medical Science Hospital
| |
Collapse
|
26
|
Boshuizen MCS, Hoeksema MA, Neele AE, van der Velden S, Hamers AAJ, Van den Bossche J, Lutgens E, de Winther MPJ. Interferon-β promotes macrophage foam cell formation by altering both cholesterol influx and efflux mechanisms. Cytokine 2015; 77:220-6. [PMID: 26427927 DOI: 10.1016/j.cyto.2015.09.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 01/25/2023]
Abstract
Foam cell formation is a crucial event in atherogenesis. While interferon-β (IFNβ) is known to promote atherosclerosis in mice, studies on the role of IFNβ on foam cell formation are minimal and conflicting. We therefore extended these studies using both in vitro and in vivo approaches and examined IFNβ's function in macrophage foam cell formation. To do so, murine bone marrow-derived macrophages (BMDMs) and human monocyte-derived macrophages were loaded with acLDL overnight, followed by 6h IFNβ co-treatment. This increased lipid content as measured by Oil red O staining. We next analyzed the lipid uptake pathways of IFNβ-stimulated BMDMs and observed increased endocytosis of DiI-acLDL as compared to controls. These effects were mediated via SR-A, as its gene expression was increased and inhibition of SR-A with Poly(I) blocked the IFNβ-induced increase in Oil red O staining and DiI-acLDL endocytosis. The IFNβ-induced increase in lipid content was also associated with decreased ApoA1-mediated cholesterol efflux, in response to decreased ABCA1 protein and gene expression. To validate our findings in vivo, LDLR(-/-) mice were put on chow or a high cholesterol diet for 10weeks. 24 and 8h before sacrifice mice were injected with IFNβ or PBS, after which thioglycollate-elicited peritoneal macrophages were collected and analyzed. In accordance with the in vitro data, IFNβ increased lipid accumulation. In conclusion, our experimental data support the pro-atherogenic role of IFNβ, as we show that IFNβ promotes macrophage foam cell formation by increasing SR-A-mediated cholesterol influx and decreasing ABCA1-mediated efflux mechanisms.
Collapse
Affiliation(s)
- Marieke C S Boshuizen
- Experimental Vascular Biology, Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Marten A Hoeksema
- Experimental Vascular Biology, Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Annette E Neele
- Experimental Vascular Biology, Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Saskia van der Velden
- Experimental Vascular Biology, Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Anouk A J Hamers
- Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Van den Bossche
- Experimental Vascular Biology, Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Esther Lutgens
- Experimental Vascular Biology, Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany
| | - Menno P J de Winther
- Experimental Vascular Biology, Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Lee SJ, Paeng JC. Nuclear Molecular Imaging for Vulnerable Atherosclerotic Plaques. Korean J Radiol 2015; 16:955-66. [PMID: 26357491 PMCID: PMC4559792 DOI: 10.3348/kjr.2015.16.5.955] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/12/2015] [Indexed: 01/09/2023] Open
Abstract
Atherosclerosis is an inflammatory disease as well as a lipid disorder. Atherosclerotic plaque formed in vessel walls may cause ischemia, and the rupture of vulnerable plaque may result in fatal events, like myocardial infarction or stroke. Because morphological imaging has limitations in diagnosing vulnerable plaque, molecular imaging has been developed, in particular, the use of nuclear imaging probes. Molecular imaging targets various aspects of vulnerable plaque, such as inflammatory cell accumulation, endothelial activation, proteolysis, neoangiogenesis, hypoxia, apoptosis, and calcification. Many preclinical and clinical studies have been conducted with various imaging probes and some of them have exhibited promising results. Despite some limitations in imaging technology, molecular imaging is expected to be used both in the research and clinical fields as imaging instruments become more advanced.
Collapse
Affiliation(s)
- Soo Jin Lee
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul 03080, Korea. ; Department of Nuclear Medicine, National Cancer Center, Goyang 10408, Korea
| | - Jin Chul Paeng
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul 03080, Korea
| |
Collapse
|
28
|
Lillis AP, Muratoglu SC, Au DT, Migliorini M, Lee MJ, Fried SK, Mikhailenko I, Strickland DK. LDL Receptor-Related Protein-1 (LRP1) Regulates Cholesterol Accumulation in Macrophages. PLoS One 2015; 10:e0128903. [PMID: 26061292 PMCID: PMC4463855 DOI: 10.1371/journal.pone.0128903] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 05/03/2015] [Indexed: 11/18/2022] Open
Abstract
Within the circulation, cholesterol is transported by lipoprotein particles and is taken up by cells when these particles associate with cellular receptors. In macrophages, excessive lipoprotein particle uptake leads to foam cell formation, which is an early event in the development of atherosclerosis. Currently, mechanisms responsible for foam cell formation are incompletely understood. To date, several macrophage receptors have been identified that contribute to the uptake of modified forms of lipoproteins leading to foam cell formation, but the in vivo contribution of the LDL receptor-related protein 1 (LRP1) to this process is not known [corrected]. To investigate the role of LRP1 in cholesterol accumulation in macrophages, we generated mice with a selective deletion of LRP1 in macrophages on an LDL receptor (LDLR)-deficient background (macLRP1-/-). After feeding mice a high fat diet for 11 weeks, peritoneal macrophages isolated from Lrp+/+ mice contained significantly higher levels of total cholesterol than those from macLRP1-/- mice. Further analysis revealed that this was due to increased levels of cholesterol esters. Interestingly, macLRP1-/- mice displayed elevated plasma cholesterol and triglyceride levels resulting from accumulation of large, triglyceride-rich lipoprotein particles in the circulation. This increase did not result from an increase in hepatic VLDL biosynthesis, but rather results from a defect in catabolism of triglyceride-rich lipoprotein particles in macLRP1-/- mice. These studies reveal an important in vivo contribution of macrophage LRP1 to cholesterol homeostasis.
Collapse
Affiliation(s)
- Anna P. Lillis
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, United States of America
| | - Selen Catania Muratoglu
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Dianaly T. Au
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Mary Migliorini
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Mi-Jeong Lee
- Department of Medicine, Section of Endocrinology, Diabetes and Nutrition, Boston University School of Medicine, Boston, MA 02118, United States of America
| | - Susan K. Fried
- Department of Medicine, Section of Endocrinology, Diabetes and Nutrition, Boston University School of Medicine, Boston, MA 02118, United States of America
| | - Irina Mikhailenko
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Dudley K. Strickland
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
- * E-mail:
| |
Collapse
|
29
|
Dubland JA, Francis GA. Lysosomal acid lipase: at the crossroads of normal and atherogenic cholesterol metabolism. Front Cell Dev Biol 2015; 3:3. [PMID: 25699256 PMCID: PMC4313778 DOI: 10.3389/fcell.2015.00003] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/07/2015] [Indexed: 01/01/2023] Open
Abstract
Unregulated cellular uptake of apolipoprotein B-containing lipoproteins in the arterial intima leads to the formation of foam cells in atherosclerosis. Lysosomal acid lipase (LAL) plays a crucial role in both lipoprotein lipid catabolism and excess lipid accumulation as it is the primary enzyme that hydrolyzes cholesteryl esters derived from both low density lipoprotein (LDL) and modified forms of LDL. Evidence suggests that as atherosclerosis progresses, accumulation of excess free cholesterol in lysosomes leads to impairment of LAL activity, resulting in accumulation of cholesteryl esters in the lysosome as well as the cytosol in foam cells. Impaired metabolism and release of cholesterol from lysosomes can lead to downstream defects in ATP-binding cassette transporter A1 regulation, needed to offload excess cholesterol from plaque foam cells. This review focuses on the role LAL plays in normal cholesterol metabolism and how the associated changes in its enzymatic activity may ultimately contribute to atherosclerosis progression.
Collapse
Affiliation(s)
- Joshua A Dubland
- Department of Medicine, Centre for Heart Lung Innovation, Providence Health Care Research Institute at St. Paul's Hospital, University of British Columbia Vancouver, BC, Canada
| | - Gordon A Francis
- Department of Medicine, Centre for Heart Lung Innovation, Providence Health Care Research Institute at St. Paul's Hospital, University of British Columbia Vancouver, BC, Canada
| |
Collapse
|
30
|
Ghosh S, Bie J, Wang J, Yuan Q, Ghosh SS. Cholesterol removal from plaques and elimination from the body: change in paradigm to reduce risk for heart disease. ACTA ACUST UNITED AC 2014. [DOI: 10.2217/clp.14.35] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
31
|
Inflammation and atherosclerosis: disease modulating therapies. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2013; 15:681-95. [PMID: 23979859 DOI: 10.1007/s11936-013-0268-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OPINION STATEMENT Advances in the mechanistic understanding of atheroma initiation, repair, progression, and rupture have solidified the pivotal role played by the immune system in the pathophysiology of atherosclerotic vascular disease. These mechanistic findings have been extended into humans, with a strong evidence basis for the independent association between elevated blood markers of inflammation and future cardiovascular (CV) events. Investigations with statins as well as more conventional anti-inflammatory medications provide indirect evidence to support the concept that modifying immune responses can improve CV outcomes; however, robust evidence to support the use of anti-inflammatory treatment strategies to manage atherosclerotic vascular disease is still lacking. Such evidence may emerge from a new wave of clinical trials directly exploring the effects of targeted immune modulation on CV risk. These trials will provide key additional insights into atherosclerosis and will help determine the fate of immune modulation as a new treatment strategy in atherosclerotic vascular disease.
Collapse
|
32
|
Müller KH, Motskin M, Philpott AJ, Routh AF, Shanahan CM, Duer MJ, Skepper JN. The effect of particle agglomeration on the formation of a surface-connected compartment induced by hydroxyapatite nanoparticles in human monocyte-derived macrophages. Biomaterials 2013; 35:1074-88. [PMID: 24183166 PMCID: PMC3843813 DOI: 10.1016/j.biomaterials.2013.10.041] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/12/2013] [Indexed: 01/03/2023]
Abstract
Agglomeration dramatically affects many aspects of nanoparticle–cell interactions. Here we show that hydroxyapatite nanoparticles formed large agglomerates in biological medium resulting in extensive particle uptake and dose-dependent cytotoxicity in human macrophages. Particle citration and/or the addition of the dispersant Darvan 7 dramatically reduced mean agglomerate sizes, the amount of particle uptake and concomitantly cytotoxicity. More surprisingly, agglomeration governed the mode of particle uptake. Agglomerates were sequestered within an extensive, interconnected membrane labyrinth open to the extracellular space. In spite of not being truly intracellular, imaging studies suggest particle degradation occurred within this surface-connected compartment (SCC). Agglomerate dispersion prevented the SCC from forming, but did not completely inhibit nanoparticle uptake by other mechanisms. The results of this study could be relevant to understanding particle–cell interactions during developmental mineral deposition, in ectopic calcification in disease, and during application of hydroxyapatite nanoparticle vectors in biomedicine.
Collapse
Affiliation(s)
- Karin H Müller
- Cambridge Advanced Imaging Centre, Dept. of Physiology, Development and Neuroscience, Anatomy Building, Cambridge University, Downing Street, Cambridge CB2 3DY, UK
| | | | | | | | | | | | | |
Collapse
|
33
|
Libby P, Lichtman AH, Hansson GK. Immune effector mechanisms implicated in atherosclerosis: from mice to humans. Immunity 2013; 38:1092-104. [PMID: 23809160 DOI: 10.1016/j.immuni.2013.06.009] [Citation(s) in RCA: 510] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 06/12/2013] [Indexed: 02/06/2023]
Abstract
According to the traditional view, atherosclerosis results from a passive buildup of cholesterol in the artery wall. Yet, burgeoning evidence implicates inflammation and immune effector mechanisms in the pathogenesis of this disease. Both innate and adaptive immunity operate during atherogenesis and link many traditional risk factors to altered arterial functions. Inflammatory pathways have become targets in the quest for novel preventive and therapeutic strategies against cardiovascular disease, a growing contributor to morbidity and mortality worldwide. Here we review current experimental and clinical knowledge of the pathogenesis of atherosclerosis through an immunological lens and how host defense mechanisms essential for survival of the species actually contribute to this chronic disease but also present new opportunities for its mitigation.
Collapse
Affiliation(s)
- Peter Libby
- Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB7, Boston, MA 02115, USA.
| | | | | |
Collapse
|
34
|
Vranic S, Garcia-Verdugo I, Darnis C, Sallenave JM, Boggetto N, Marano F, Boland S, Baeza-Squiban A. Internalization of SiO₂ nanoparticles by alveolar macrophages and lung epithelial cells and its modulation by the lung surfactant substitute Curosurf. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:2761-70. [PMID: 23288678 DOI: 10.1007/s11356-012-1436-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/13/2012] [Indexed: 05/05/2023]
Abstract
Because of an increasing exposure to environmental and occupational nanoparticles (NPs), the potential risk of these materials for human health should be better assessed. Since one of the main routes of entry of NPs is via the lungs, it is of paramount importance to further characterize their impact on the respiratory system. Here, we have studied the uptake of fluorescently labeled SiO₂ NPs (50 and 100 nm) by epithelial cells (NCI-H292) and alveolar macrophages (MHS) in the presence or absence of pulmonary surfactant. The quantification of NP uptake was performed by measuring cell-associated fluorescence using flow cytometry and spectrometric techniques in order to identify the most suitable methodology. Internalization was shown to be time and dose dependent, and differences in terms of uptake were noted between epithelial cells and macrophages. In the light of our observations, we conclude that flow cytometry is a more reliable technique for the study of NP internalization, and importantly, that the hydrophobic fraction of lung surfactant is critical for downregulating NP uptake in both cell types.
Collapse
Affiliation(s)
- Sandra Vranic
- Laboratory of Molecular and Cellular Responses to Xenobiotics, Unit of Functional and Adaptive Biology EAC CNRS 4413, Sorbonne Paris Cité, Univ Paris Diderot, 5 rue Thomas Mann, 75013 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Bazaz R, Marriott HM, Francis SE, Dockrell DH. Mechanistic links between acute respiratory tract infections and acute coronary syndromes. J Infect 2013; 66:1-17. [DOI: 10.1016/j.jinf.2012.09.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 09/22/2012] [Accepted: 09/26/2012] [Indexed: 12/27/2022]
|
36
|
Laguna JC, Alegret M. Regulation of gene expression in atherosclerosis: insights from microarray studies in monocytes/macrophages. Pharmacogenomics 2012; 13:477-95. [PMID: 22380002 DOI: 10.2217/pgs.12.9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Atherosclerosis is a pathological phenomenon in which the walls of large arteries thicken and lose elasticity as a result of the growth of atheromatous lesions. It is a complex, multifactorial disease that involves several cell types and various pathobiological processes. Its genetic basis has not yet been deciphered, but it is related to complex multigene patterns influenced by environmental interactions. In this review, we focus specifically on the application of microarrays to atherosclerosis research using monocytes and monocyte-derived macrophages, as these are key cells in all phases of atherosclerosis, from the formation of foam cells to the destabilization and rupture of the atherosclerotic plaque. These studies have provided relevant information on genes involved in atherosclerosis development, contributing to our understanding of the molecular mechanisms that underlie this complex disease.
Collapse
Affiliation(s)
- Juan C Laguna
- Pharmacology Department, Faculty of Pharmacy & Institute of Biomedicine (IBUB), University of Barcelona, Spain
| | | |
Collapse
|
37
|
Mu Q, Hondow NS, Krzemiński L, Brown AP, Jeuken LJC, Routledge MN. Mechanism of cellular uptake of genotoxic silica nanoparticles. Part Fibre Toxicol 2012; 9:29. [PMID: 22823932 PMCID: PMC3479067 DOI: 10.1186/1743-8977-9-29] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 07/12/2012] [Indexed: 12/30/2022] Open
Abstract
Mechanisms for cellular uptake of nanoparticles have important implications for nanoparticulate drug delivery and toxicity. We have explored the mechanism of uptake of amorphous silica nanoparticles of 14 nm diameter, which agglomerate in culture medium to hydrodynamic diameters around 500 nm. In HT29, HaCat and A549 cells, cytotoxicity was observed at nanoparticle concentrations ≥ 1 μg/ml, but DNA damage was evident at 0.1 μg/ml and above. Transmission electron microscopy (TEM) combined with energy-dispersive X-ray spectroscopy confirmed entry of the silica particles into A549 cells exposed to 10 μg/ml of nanoparticles. The particles were observed in the cytoplasm but not within membrane bound vesicles or in the nucleus. TEM of cells exposed to nanoparticles at 4°C for 30 minutes showed particles enter cells when activity is low, suggesting a passive mode of entry. Plasma lipid membrane models identified physical interactions between the membrane and the silica NPs. Quartz crystal microbalance experiments on tethered bilayer lipid membrane systems show that the nanoparticles strongly bind to lipid membranes, forming an adherent monolayer on the membrane. Leakage assays on large unilamellar vesicles (400 nm diameter) indicate that binding of the silica NPs transiently disrupts the vesicles which rapidly self-seal. We suggest that an adhesive interaction between silica nanoparticles and lipid membranes could cause passive cellular uptake of the particles.
Collapse
Affiliation(s)
- Qingshan Mu
- Centre for Molecular NanoScience (CMNS), University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | |
Collapse
|
38
|
Kzhyshkowska J, Neyen C, Gordon S. Role of macrophage scavenger receptors in atherosclerosis. Immunobiology 2012; 217:492-502. [PMID: 22437077 DOI: 10.1016/j.imbio.2012.02.015] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 02/19/2012] [Indexed: 12/22/2022]
Abstract
Accumulating evidence indicates that atherosclerosis is a chronic inflammatory disease. The key innate immune cells that are involved in the pathogenesis of atherosclerosis are circulating monocytes and plaque macrophages. Complex interplay between immune and metabolic processes results in pathological activity of these cells. The best understood pathological process mediated by macrophages is their inability to process modified lipoproteins properly resulting in the formation of foamy cells, which are a dangerous component of atherosclerotic plaques. Key molecules involved in the recognition and processing of modified lipoproteins are scavenger receptors (SR). This is a large family of surface expressed structurally heterogeneous receptors with a broad spectrum of endogenous and exogenous ligands. The common functional feature of SR is internalisation of extracellular components and targeting them for lysosomal degradation. However, these relatively simple functions can have complex consequences, since they are linked to diverse specific signalling pathways and to other membrane transport pathways. Moreover, scavenger receptors can co-operate with other types of receptors increasing the variability of the macrophage response to multiple extracellular ligands. At least some SRs respond to modified lipoproteins by amplification of inflammation and accumulation of macrophages in the plaque, while some SRs may support tolerogenic reactions. Outcome of different SR activities will be the decision of monocytes and macrophage to guard homeostatic balance, support atherosclerosis progression and plaque instability by inflammatory reactions, or support rapid fibrotic processes in the plaque that stabilise it. Despite the accumulating knowledge about the molecular mechanisms of scavenger receptor action, their role in the progression of atherosclerosis remains controversial. The activities of scavenger receptors that can contribute to each of these processes are a subject of current review.
Collapse
Affiliation(s)
- Julia Kzhyshkowska
- Department of Dermatology, Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg, Germany.
| | | | | |
Collapse
|
39
|
Allahverdian S, Pannu PS, Francis GA. Contribution of monocyte-derived macrophages and smooth muscle cells to arterial foam cell formation. Cardiovasc Res 2012; 95:165-72. [PMID: 22345306 DOI: 10.1093/cvr/cvs094] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Smooth muscle cells (SMCs) are the main cell type in intimal thickenings and some stages of human atherosclerosis. Like monocyte-derived macrophages, SMCs accumulate excess lipids and contribute to the total intimal foam cell population. In contrast, apolipoprotein (Apo)E-deficient and LDL receptor-deficient mice develop atherosclerotic lesions that are macrophage- as opposed to SMC-rich. The lesser contribution of SMCs to lesion development in these mouse models has distracted attention away from the importance of SMC cholesterol homeostasis in the artery wall. Intimal SMCs accumulate excess amounts of cholesteryl esters when compared with medial layer SMCs, possibly explained by reduced ATP-binding cassette transporter A1 expression and ApoA-I binding to intimal-type SMCs. The aim of this review is to compare the relative contribution of monocyte-derived macrophages and SMCs to human vs. mouse atherosclerosis, and describe what is known about lipid uptake and removal mechanisms contributing to arterial macrophage and SMC foam cell formation. An increased understanding of the contribution of these cell types to lesion development will help to delineate their relative importance in atherogenesis and as potential therapeutic targets.
Collapse
Affiliation(s)
- Sima Allahverdian
- Department of Medicine, UBC James Hogg Research Centre, Providence Heart + Lung Institute at St Paul's Hospital, Room 166, Burrard Building, 1081 Burrard Street, Vancouver, BC, Canada V6Z 1Y6
| | | | | |
Collapse
|
40
|
Motskin M, Müller KH, Genoud C, Monteith AG, Skepper JN. The sequestration of hydroxyapatite nanoparticles by human monocyte-macrophages in a compartment that allows free diffusion with the extracellular environment. Biomaterials 2011; 32:9470-82. [PMID: 21889202 DOI: 10.1016/j.biomaterials.2011.08.060] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 08/18/2011] [Indexed: 11/30/2022]
Abstract
Calcium phosphate and hydroxyapatite nanoparticles are extensively researched for medical applications, including bone implant materials, DNA and SiRNA delivery vectors and slow release vaccines. Elucidating the mechanisms by which cells internalize nanoparticles is fundamental for their long-term exploitation. In this study, we demonstrate that hydrophilic hydroxyapatite nanoparticles are sequestered within a specialized compartment called SCC (surface-connected compartment). This membrane-bound compartment is an elaborate labyrinth-like structure directly connected to the extracellular space. This continuity is demonstrated by in vivo 2-photon microscopy of ionic calcium using both cell-permeable and cell-impermeable dyes and by 3-D reconstructions from serial block-face SEM of fixed cells. Previously, this compartment was thought to be initiated specifically by exposure of macrophages to hydrophobic nanoparticles. However, we show that the SCC can be triggered by a much wider range of nanoparticles. Furthermore, we demonstrate its formation in A549 human lung epithelial cells, which are considerably less phagocytic than macrophages. EDX shows that extensive amounts of hydroxyapatite nanoparticles can be sequestered in this manner. We propose that SCC formation may be a means to remove large amounts of foreign material from the extracellular space, followed by slow degradation, may be to avoid excessive damage to surrounding cells or tissues.
Collapse
Affiliation(s)
- Michael Motskin
- Multi-Imaging Centre, Dept. of Physiology, Development and Neuroscience, Anatomy Building, Cambridge University, Cambridge CB2 3DY, UK
| | | | | | | | | |
Collapse
|
41
|
Eicosapentaenoic Acid and Docosahexaenoic Acid Regulate Modified LDL Uptake and Macropinocytosis in Human Macrophages. Lipids 2011; 46:1053-61. [DOI: 10.1007/s11745-011-3598-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 07/13/2011] [Indexed: 11/26/2022]
|
42
|
Ghosh S. Macrophage cholesterol homeostasis and metabolic diseases: critical role of cholesteryl ester mobilization. Expert Rev Cardiovasc Ther 2011; 9:329-40. [PMID: 21438812 DOI: 10.1586/erc.11.16] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Atherogenic dyslipidemia, including low HDL levels, is the major contributor of residual risk of cardiovascular disease that remains even after aggressive statin therapy to reduce LDL-cholesterol. Currently, distinction is not made between HDL-cholesterol and HDL, which is a lipoprotein consisting of several proteins and a core containing cholesteryl esters (CEs). The importance of assessing HDL functionality, specifically its role in facilitating cholesterol efflux from foam cells, is relevant to atherogenesis. Since HDLs can only remove unesterified cholesterol from macrophages while cholesterol is stored as CEs within foam cells, intracellular CE hydrolysis by CE hydrolase is vital. Reduction in macrophage lipid burden not only attenuates atherosclerosis but also reduces inflammation and linked pathologies such as Type 2 diabetes and chronic kidney disease. Targeting reduction in macrophage CE levels and focusing on enhancing cholesterol flux from peripheral tissues to liver for final elimination is proposed.
Collapse
Affiliation(s)
- Shobha Ghosh
- Department of Internal Medicine, Division of Pulmonary and Critical Care, VCU Medical Center, Richmond, VA 23298-0050, USA.
| |
Collapse
|
43
|
Saggini A, Anogeianaki A, Maccauro G, Teté S, Salini V, Caraffa A, Conti F, Fulcheri M, Galzio R, Shaik-Dasthagirisaheb Y. Cholesterol, Cytokines and Diseases. Int J Immunopathol Pharmacol 2011; 24:567-81. [DOI: 10.1177/039463201102400303] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A high level of cholesterol is associated with obesity, cardiovascular diseases and atherosclerosis. Immune response in atherosclerosis is mediated by chemokines which attract monocytes, leading to the innate immune response characterised by the production of cytokines. The immunoregulatory cytokines are an important bridge between innate and adductive immunity. TH1 cytokines are involved as effector T cells in inflammatory response, while TH2 cytokines can be anti-inflammatory such as IL-10 and IL-4. It is well known that statins enhance the production of TH2 cytokines whereas the secretion of TH1 cytokines is suppressed. For this purpose, we studied the significance of anti-inflammatory effect and suppression of inflammation by statins. In this paper we revisited the role of cholesterol and cytokines IL-18, IL-10, IL-12, TNF-α, interferon-γ, and chemokines in inflammatory diseases.
Collapse
Affiliation(s)
- A. Saggini
- Department of Dermatology, University of Rome Tor Vergata, Rome, Italy
| | - A. Anogeianaki
- Physiology Department, School of Medicine, Aristotle University of Thessaloniki, Greece
| | - G. Maccauro
- Department of Orthopaedics, Catholic University of Rome, Rome, Italy
| | - S. Teté
- School of Dentistry, University of Chieti, Italy
| | - V. Salini
- Orthopaedics Division, University of Chieti, Chieti, Italy
| | - A. Caraffa
- Orthopaedics Division, University of Perugia, Perugia, Italy
| | - F. Conti
- Department of Gyneacology, “Santo Spirito” Hospital, Pescara, Italy
| | - M. Fulcheri
- Department of Clinical Psychology, University of Chieti, Italy
| | - R. Galzio
- Department of Health Sciences, University of L'Aquila, Italy
| | | |
Collapse
|
44
|
McLaren JE, Michael DR, Ashlin TG, Ramji DP. Cytokines, macrophage lipid metabolism and foam cells: implications for cardiovascular disease therapy. Prog Lipid Res 2011; 50:331-47. [PMID: 21601592 DOI: 10.1016/j.plipres.2011.04.002] [Citation(s) in RCA: 278] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/14/2011] [Accepted: 04/14/2011] [Indexed: 12/23/2022]
Abstract
Cardiovascular disease is the biggest killer globally and the principal contributing factor to the pathology is atherosclerosis; a chronic, inflammatory disorder characterized by lipid and cholesterol accumulation and the development of fibrotic plaques within the walls of large and medium arteries. Macrophages are fundamental to the immune response directed to the site of inflammation and their normal, protective function is harnessed, detrimentally, in atherosclerosis. Macrophages contribute to plaque development by internalizing native and modified lipoproteins to convert them into cholesterol-rich foam cells. Foam cells not only help to bridge the innate and adaptive immune response to atherosclerosis but also accumulate to create fatty streaks, which help shape the architecture of advanced plaques. Foam cell formation involves the disruption of normal macrophage cholesterol metabolism, which is governed by a homeostatic mechanism that controls the uptake, intracellular metabolism, and efflux of cholesterol. It has emerged over the last 20 years that an array of cytokines, including interferon-γ, transforming growth factor-β1, interleukin-1β, and interleukin-10, are able to manipulate these processes. Foam cell targeting, anti-inflammatory therapies, such as agonists of nuclear receptors and statins, are known to regulate the actions of pro- and anti-atherogenic cytokines indirectly of their primary pharmacological function. A clear understanding of macrophage foam cell biology will hopefully enable novel foam cell targeting therapies to be developed for use in the clinical intervention of atherosclerosis.
Collapse
Affiliation(s)
- James E McLaren
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | | | | | | |
Collapse
|
45
|
Borrell-Pagès M, Romero JC, Juan-Babot O, Badimon L. Wnt pathway activation, cell migration, and lipid uptake is regulated by low-density lipoprotein receptor-related protein 5 in human macrophages. Eur Heart J 2011; 32:2841-50. [PMID: 21398644 DOI: 10.1093/eurheartj/ehr062] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
AIMS Atherosclerosis plaque development includes infiltration of inflammatory cells, accumulation of lipids and fibrous cap formation. Low-density lipoprotein receptor-related protein 1 (LRP1) is expressed on atherosclerotic lesions associated with macrophages and vascular smooth muscle cells. The aim of this work is to analyse the role in atherosclerosis lesion progression of another member of the LDL receptor protein family, low-density lipoprotein receptor-related protein 5 (LRP5), a co-receptor with Frizzled known to activate the Wnt signalling pathway in several cell types. METHODS AND RESULTS LRP5 is expressed in human vascular and innate inflammatory cells. LRP5 is transcriptionally regulated by aggregated LDL (agLDL), participating in the lipid uptake and transformation of macrophages into foam cells, a critical step in atherosclerosis progression. AgLDL-treated macrophages show up-regulated expression of β-catenin, LEF1, c-jun, cyclinD1, bone morphogenetic protein 2 (BMP2), and osteopontin (OPN), proteins and targets of the Wnt signalling pathway, whereas LRP5-silenced macrophages show a significant down-regulation of OPN and BMP2 expression. Furthermore, LRP5-deficient macrophages exhibit an impaired migration both in wound-repair and modified Boyden chambers models. CONCLUSION These results demonstrate the involvement of LRP5 in the innate inflammatory reaction to lipid infiltration in atherosclerosis.
Collapse
Affiliation(s)
- Maria Borrell-Pagès
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, UAB, Barcelona, Spain
| | | | | | | |
Collapse
|
46
|
Abstract
Cholesterol-engorged macrophage foam cells are a critical component of the atherosclerotic lesion. Reducing the sterol deposits in lesions reduces clinical events. Sterol accumulations within lysosomes have proven to be particularly hard to mobilize out of foam cells. Moreover, excess sterol accumulation in lysosomes has untoward effects, including a complete disruption of lysosome function. Recently, we demonstrated that treatment of sterol-engorged macrophages in culture with triglyceride-containing particles can reverse many of the effects of cholesterol on lysosomes and dramatically reduce the sterol burden in these cells. This article describes what is known about lysosomal sterol engorgement, discusses the possible mechanisms by which triglyceride could produce its effects, and evaluates the possible positive and negative effects of reducing the lysosomal cholesterol levels in foam cells.
Collapse
Affiliation(s)
- W Gray Jerome
- Department of Pathology, U-2206 Medical Center North Vanderbilt University School of Medicine 1161 21st Avenue, South Nashville, TN 37232-32561, USA, Tel.: +1 615 322 5530
| |
Collapse
|
47
|
Walters MJ, Wrenn SP. Size-selective uptake of colloidal low density lipoprotein aggregates by cultured white blood cells. J Colloid Interface Sci 2010; 350:494-501. [PMID: 20667542 DOI: 10.1016/j.jcis.2010.06.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 06/25/2010] [Accepted: 06/29/2010] [Indexed: 11/18/2022]
Abstract
This paper illustrates how principles of colloid science are useful in studying atherosclerosis. Accumulation of foam cells in the arterial intima is a key step in atherogenesis. The extent of foam cell formation is enhanced by low density lipoprotein (LDL) aggregates, and we have previously shown that the size of sphingomyelinase (Smase)-hydrolysis-induced aggregates depends directly on the concentration of ceramide generated in the LDL phospholipid monolayer, mediated by the hydrophobic effect. Here, we focus on the effect of LDL aggregate particle sizes on their subsequent uptake by macrophages. Our data show the first direct measurement of uptake as a function of aggregate size and the first direct comparison of uptake after Smase-catalyzed and vortex-mixing-mediated aggregation. Vortex-mixed aggregates with radii 20-77 nm showed maximal uptake approximately 118 microg sterol/mg protein at a 53 nm intermediate size, consistent with a mathematical model describing competition between aggregate surface area and volume. Smase-treated aggregates with radii 25-211 nm also showed maximal uptake at an intermediate size, approximately 58 microg sterol/mg protein for 132 nm particles, and fit a modified model that incorporated ceramide concentration expressed as aggregate size. This study shows that particle size is significant and composition may also be a factor in LDL uptake.
Collapse
Affiliation(s)
- Michael J Walters
- Drexel University, Department of Chemical and Biological Engineering, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | | |
Collapse
|
48
|
Benaroch P, Billard E, Gaudin R, Schindler M, Jouve M. HIV-1 assembly in macrophages. Retrovirology 2010; 7:29. [PMID: 20374631 PMCID: PMC2861634 DOI: 10.1186/1742-4690-7-29] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 04/07/2010] [Indexed: 12/31/2022] Open
Abstract
The molecular mechanisms involved in the assembly of newly synthesized Human Immunodeficiency Virus (HIV) particles are poorly understood. Most of the work on HIV-1 assembly has been performed in T cells in which viral particle budding and assembly take place at the plasma membrane. In contrast, few studies have been performed on macrophages, the other major target of HIV-1. Infected macrophages represent a viral reservoir and probably play a key role in HIV-1 physiopathology. Indeed macrophages retain infectious particles for long periods of time, keeping them protected from anti-viral immune response or drug treatments. Here, we present an overview of what is known about HIV-1 assembly in macrophages as compared to T lymphocytes or cell lines. Early electron microscopy studies suggested that viral assembly takes place at the limiting membrane of an intracellular compartment in macrophages and not at the plasma membrane as in T cells. This was first considered as a late endosomal compartment in which viral budding seems to be similar to the process of vesicle release into multi-vesicular bodies. This view was notably supported by a large body of evidence involving the ESCRT (Endosomal Sorting Complex Required for Transport) machinery in HIV-1 budding, the observation of viral budding profiles in such compartments by immuno-electron microscopy, and the presence of late endosomal markers associated with macrophage-derived virions. However, this model needs to be revisited as recent data indicate that the viral compartment has a neutral pH and can be connected to the plasma membrane via very thin micro-channels. To date, the exact nature and biogenesis of the HIV assembly compartment in macrophages remains elusive. Many cellular proteins potentially involved in the late phases of HIV-1 cycle have been identified; and, recently, the list has grown rapidly with the publication of four independent genome-wide screens. However, their respective roles in infected cells and especially in macrophages remain to be characterized. In summary, the complete process of HIV-1 assembly is still poorly understood and will undoubtedly benefit from the ongoing explosion of new imaging techniques allowing better time-lapse and quantitative studies.
Collapse
Affiliation(s)
- Philippe Benaroch
- Institut Curie, Centre de Recherche, Paris, F-75248 France; INSERM U932, Paris, F-75248 France.
| | | | | | | | | |
Collapse
|
49
|
Abstract
Atherosclerosis and thrombosis associated with the rupture of vulnerable plaque are the main causes of cardiovascular events, including acute coronary syndrome. Low-density lipoprotein (LDL) plays a key role in the pathogenesis of atherothrombotic processes. LDLs modify the antithrombotic properties of the vascular endothelium and change vessel contractility by reducing the availability of endothelial nitric oxide and activating proinflammatory signaling pathways. In addition, LDLs also influence the functions and interactions of cells present in atherosclerotic lesions, whether they come from the circulation or are resident in vessel walls. In fact, LDLs entering affected vessels undergo modifications (e.g. oxidation, aggregation and glycosylation) that potentiate their atherogenic properties. Once modified, these intravascular LDLs promote the formation of foam cells derived from smooth muscle cells and macrophages, thereby increasing the vulnerability of atherosclerotic plaque. Moreover, they also increase the thrombogenicity of both plaque and blood, in which circulating tissue factor levels are raised and platelet reactivity is enhanced. This review focuses on the importance of native and modified LDL for the pathogenesis of atherothrombosis. It also discusses current studies on LDL and its effects on the actions of vascular cells and blood cells, particularly platelets, and considers novel potential therapeutic targets.
Collapse
Affiliation(s)
- Lina Badimón
- Centro de Investigación Cardiovascular, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau Barcelona, España.
| | | | | |
Collapse
|
50
|
Miller YI, Choi SH, Fang L, Tsimikas S. Lipoprotein modification and macrophage uptake: role of pathologic cholesterol transport in atherogenesis. Subcell Biochem 2010; 51:229-51. [PMID: 20213546 DOI: 10.1007/978-90-481-8622-8_8] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Low-density lipoprotein (LDL) is a major extracellular carrier of cholesterol and, as such, plays important physiologic roles in cellular function and regulation of metabolic pathways. However, under pathologic conditions of hyperlipidemia, oxidative stress and/or genetic disorders, specific components of LDL become oxidized or otherwise modified, and the transport of cholesterol by modified LDL is diverted from its physiologic targets toward excessive cholesterol accumulation in macrophages and the formation of macrophage "foam" cells in the vascular wall. This pathologic deposition of modified lipoproteins and the attendant pro-inflammatory reactions in the artery wall lead to the development of atherosclerotic lesions. Continued accumulation of immunogenic modified lipoproteins and a pro-inflammatory milieu result in the progression of atherosclerotic lesions, which may obstruct the arterial lumen and/or eventually rupture and thrombose, causing myocardial infarction or stroke. In this review, we survey mechanisms of LDL modification and macrophage lipoprotein uptake, including results of recent in vivo experiments, and discuss unresolved problems and controversial issues in this growing field. Future directions in studying foam cell formation may include introducing novel animal models, such as hypercholesterolemic zebrafish, enabling dynamic in vivo observation of macrophage lipid uptake.
Collapse
Affiliation(s)
- Yury I Miller
- Department of Medicine, University of California, San Diego, La Jolla, CA 92037-0682, USA.
| | | | | | | |
Collapse
|