1
|
Williams KJ. Inflammation in atherosclerosis: a Big Idea that has underperformed so far. Curr Opin Lipidol 2025; 36:78-87. [PMID: 39846349 PMCID: PMC11888836 DOI: 10.1097/mol.0000000000000973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
PURPOSE OF REVIEW For many years, inflammation has been a major concept in basic research on atherosclerosis and in the development of potential diagnostic tools and treatments. The purpose of this review is to assess the performance of this concept with an emphasis on recent clinical trials. In addition, contemporary literature may help identify new therapeutic targets, particularly in the context of the treatment of early, rather than end-stage, arterial disease. RECENT FINDINGS Newly reported clinical trials cast doubt on the efficacy of colchicine, the sole anti-inflammatory agent currently approved for use in patients with atherosclerotic cardiovascular disease (ASCVD). New analyses also challenge the hypothesis that residual ASCVD event risk after optimal management of lipids, blood pressure, and smoking arises primarily from residual inflammatory risk. Current clinical practice to initiate interventions so late in the course of atherosclerotic arterial disease may be a better explanation. Lipid-lowering therapy in early atherosclerosis, possibly combined with novel add-on agents to specifically accelerate resolution of maladaptive inflammation, may be more fruitful than the conventional approach of testing immunosuppressive strategies in end-stage arterial disease. Also discussed is the ongoing revolution in noninvasive technologies to image the arterial wall. These technologies are changing screening, diagnosis, and treatment of atherosclerosis, including early and possibly reversable disease. SUMMARY The burden of proof that the Big Idea of inflammation in atherosclerosis has clinical value remains the responsibility of its advocates. This responsibility requires convincing trial data but still seems largely unmet. Unfortunately, the focus on inflammation as the source of residual ASCVD event risk has distracted us from the need to screen and treat earlier.
Collapse
Affiliation(s)
- Kevin Jon Williams
- Department of Cardiovascular Sciences and Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Zhang Y, Jia X, Wang Y, Zheng Q. Caveolin-1-mediated LDL transcytosis across endothelial cells in atherosclerosis. Atherosclerosis 2025; 402:119113. [PMID: 39914325 DOI: 10.1016/j.atherosclerosis.2025.119113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/20/2024] [Accepted: 01/26/2025] [Indexed: 03/09/2025]
Abstract
Atherosclerosis is widely recognized as a chronic inflammatory disease of the arterial wall characterized by the progressive accumulation of lipids, inflammatory cells, and fibrous material in the subendothelial space of large arteries. The occurrence and pathogenesis of atherosclerosis are intricately linked to the deposition of low-density lipoprotein (LDL) in the arterial wall. LDL must cross the intact endothelium to reach the subendothelial space, with caveolin-1 assuming a crucial role in this process. Caveolin-1 is a 21-24 kDa membrane protein located in caveolae and highly expressed in endothelial cells. Previous investigations have demonstrated the pivotal role of caveolin-1 in fostering atherosclerosis through its modulation of membrane trafficking, cholesterol metabolism, and cellular signaling. However, how caveolin-1 regulates LDL transcytosis across endothelial cells in atherosclerosis remains unclear. We provide a comprehensive overview of recent research on the interplay between caveolin-1 and atherosclerosis, with a specific focus on elucidating the role of caveolin-1 in mediating LDL transcytosis across endothelial cells. This review furnishes theoretical foundations supporting the pivotal role of caveolin-1 in both the inception and progression of atherosclerosis. It underscores the prospective viability of caveolin-1 as a new therapeutic target for atherosclerosis and introduces novel perspectives for treatment strategies in the early stages of atherosclerosis.
Collapse
Affiliation(s)
- Yifei Zhang
- Department of Cardiovascular Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Xiong Jia
- Department of Cardiovascular Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Yayu Wang
- Department of Cardiovascular Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Qijun Zheng
- Department of Cardiovascular Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China.
| |
Collapse
|
3
|
Borén J, Packard CJ, Binder CJ. Apolipoprotein B-containing lipoproteins in atherogenesis. Nat Rev Cardiol 2025:10.1038/s41569-024-01111-0. [PMID: 39743565 DOI: 10.1038/s41569-024-01111-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
Apolipoprotein B (apoB) is the main structural protein of LDLs, triglyceride-rich lipoproteins and lipoprotein(a), and is crucial for their formation, metabolism and atherogenic properties. In this Review, we present insights into the role of apoB-containing lipoproteins in atherogenesis, with an emphasis on the mechanisms leading to plaque initiation and growth. LDL, the most abundant cholesterol-rich lipoprotein in plasma, is causally linked to atherosclerosis. LDL enters the artery wall by transcytosis and, in vulnerable regions, is retained in the subendothelial space by binding to proteoglycans via specific sites on apoB. A maladaptive response ensues. This response involves modification of LDL particles, which promotes LDL retention and the release of bioactive lipid products that trigger inflammatory responses in vascular cells, as well as adaptive immune responses. Resident and recruited macrophages take up modified LDL, leading to foam cell formation and ultimately cell death due to inadequate cellular lipid handling. Accumulation of dead cells and cholesterol crystallization are hallmarks of the necrotic core of atherosclerotic plaques. Other apoB-containing lipoproteins, although less abundant, have substantially greater atherogenicity per particle than LDL. These lipoproteins probably contribute to atherogenesis in a similar way to LDL but might also induce additional pathogenic mechanisms. Several targets for intervention to reduce the rate of atherosclerotic lesion initiation and progression have now been identified, including lowering plasma lipoprotein levels and modulating the maladaptive responses in the artery wall.
Collapse
Affiliation(s)
- Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Villadangos L, Serrador JM. Subcellular Localization Guides eNOS Function. Int J Mol Sci 2024; 25:13402. [PMID: 39769167 PMCID: PMC11678294 DOI: 10.3390/ijms252413402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Nitric oxide synthases (NOS) are enzymes responsible for the cellular production of nitric oxide (NO), a highly reactive signaling molecule involved in important physiological and pathological processes. Given its remarkable capacity to diffuse across membranes, NO cannot be stored inside cells and thus requires multiple controlling mechanisms to regulate its biological functions. In particular, the regulation of endothelial nitric oxide synthase (eNOS) activity has been shown to be crucial in vascular homeostasis, primarily affecting cardiovascular disease and other pathophysiological processes of importance for human health. Among other factors, the subcellular localization of eNOS plays an important role in regulating its enzymatic activity and the bioavailability of NO. The aim of this review is to summarize pioneering studies and more recent publications, unveiling some of the factors that influence the subcellular compartmentalization of eNOS and discussing their functional implications in health and disease.
Collapse
Affiliation(s)
| | - Juan M. Serrador
- Interactions with the Environment Program, Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas (CSIC)—Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
5
|
Puddu A, Montecucco F, Maggi D. Caveolin-1 and Atherosclerosis: Regulation of LDLs Fate in Endothelial Cells. Int J Mol Sci 2023; 24:ijms24108869. [PMID: 37240214 DOI: 10.3390/ijms24108869] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Caveolae are 50-100 nm cell surface plasma membrane invaginations observed in terminally differentiated cells. They are characterized by the presence of the protein marker caveolin-1. Caveolae and caveolin-1 are involved in regulating several signal transduction pathways and processes. It is well recognized that they have a central role as regulators of atherosclerosis. Caveolin-1 and caveolae are present in most of the cells involved in the development of atherosclerosis, including endothelial cells, macrophages, and smooth muscle cells, with evidence of either pro- or anti-atherogenic functions depending on the cell type examined. Here, we focused on the role of caveolin-1 in the regulation of the LDLs' fate in endothelial cells.
Collapse
Affiliation(s)
- Alessandra Puddu
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa, Italian Cardiovascular Network, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Davide Maggi
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
| |
Collapse
|
6
|
Alidadi M, Hjazi A, Ahmad I, Mahmoudi R, Sarrafha M, Reza Hosseini-Fard S, Ebrahimzade M. Exosomal non-coding RNAs: Emerging therapeutic targets in atherosclerosis. Biochem Pharmacol 2023; 212:115572. [PMID: 37127247 DOI: 10.1016/j.bcp.2023.115572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/09/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Atherosclerosis is an LDL-driven and inflammatory disorder of the sub-endothelial space. Available data have proposed that various factors could affect atherosclerosis pathogenesis, including inflammation, oxidation of LDL particles, endothelial dysfunction, foam cell formation, proliferation, and migration of vascular smooth muscle cells (VSMCs). In addition, other research indicated that the crosstalk among atherosclerosis-induced cells is a crucial factor in modulating atherosclerosis. Extracellular vesicles arenanoparticleswith sizes ranging from 30-150 nm, playing an important role in various pathophysiological situations. Exosomes, asa form of extracellular vesicles, could affect the crosstalk between sub-endothelial cells. They can transport bioactive components like proteins, lipids, RNA, and DNA. As an important cargo in exosomes, noncoding RNAs (ncRNAs) including microRNAs, long noncoding RNAs, and circular RNAs could modulate cellular functions by regulating the transcription, epigenetic alteration, and translation. The current work aimed to investigate the underlying molecular mechanisms of exosomal ncRNA as well as their potential as a diagnostic biomarker and therapeutic target in atherosclerosis.
Collapse
Affiliation(s)
- Mahdi Alidadi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Reza Mahmoudi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Sarrafha
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
7
|
Gokani S, Bhatt LK. Caveolin-1: A promising therapeutic target for diverse diseases. Curr Mol Pharmacol 2021; 15:701-715. [PMID: 34847854 DOI: 10.2174/1874467214666211130155902] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/26/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
The plasma membrane of eukaryotic cells contains small flask-shaped invaginations known as caveolae that are involved in the regulation of cellular signaling. Caveolin-1 is a 21-24kDa protein localized in the caveolar membrane. Caveolin-1 (Cav-1) has been considered as a master regulator among the various signaling molecules. It has been emerging as a chief protein regulating cellular events associated with homeostasis, caveolae formation, and caveolae trafficking. In addition to the physiological role of cav-1, it has a complex role in the progression of various diseases. Caveolin-1 has been identified as a prognosticator in patients with cancer and has a dual role in tumorigenesis. The expression of Cav-1 in hippocampal neurons and synapses is related to neurodegeneration, cognitive decline, and aging. Despite the ubiquitous association of caveolin-1 in various pathological processes, the mechanisms associated with these events are still unclear. Caveolin-1 has a significant role in various events of the viral cycle, such as viral entry. This review will summarize the role of cav-1 in the development of cancer, neurodegeneration, glaucoma, cardiovascular diseases, and infectious diseases. The therapeutic perspectives involving clinical applications of Caveolin-1 have also been discussed. The understanding of the involvement of caveolin-1 in various diseased states provides insights into how it can be explored as a novel therapeutic target.
Collapse
Affiliation(s)
- Shivani Gokani
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai. India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai. India
| |
Collapse
|
8
|
Kotlyarov S. Diversity of Lipid Function in Atherogenesis: A Focus on Endothelial Mechanobiology. Int J Mol Sci 2021; 22:11545. [PMID: 34768974 PMCID: PMC8584259 DOI: 10.3390/ijms222111545] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is one of the most important problems in modern medicine. Its high prevalence and social significance determine the need for a better understanding of the mechanisms of the disease's development and progression. Lipid metabolism and its disorders are one of the key links in the pathogenesis of atherosclerosis. Lipids are involved in many processes, including those related to the mechanoreception of endothelial cells. The multifaceted role of lipids in endothelial mechanobiology and mechanisms of atherogenesis are discussed in this review. Endothelium is involved in ensuring adequate vascular hemodynamics, and changes in blood flow characteristics are detected by endothelial cells and affect their structure and function.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
9
|
Yang D, Su Z, Wei G, Long F, Zhu YC, Ni T, Liu X, Zhu YZ. H3K4 Methyltransferase Smyd3 Mediates Vascular Smooth Muscle Cell Proliferation, Migration, and Neointima Formation. Arterioscler Thromb Vasc Biol 2021; 41:1901-1914. [PMID: 33827259 DOI: 10.1161/atvbaha.121.314689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
[Figure: see text].
Collapse
MESH Headings
- Animals
- Carotid Arteries/enzymology
- Carotid Arteries/pathology
- Carotid Artery Injuries/enzymology
- Carotid Artery Injuries/genetics
- Carotid Artery Injuries/pathology
- Carotid Stenosis/enzymology
- Carotid Stenosis/genetics
- Carotid Stenosis/pathology
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Histone-Lysine N-Methyltransferase/genetics
- Histone-Lysine N-Methyltransferase/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Neointima
- Rats
- Signal Transduction
- Vascular Remodeling
- Mice
Collapse
Affiliation(s)
- Di Yang
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203 P.R. China (D.Y., Z.H.S., F.L., X.H.L.)
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (D.Y., Y.Z.Z.)
| | - Zhenghua Su
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203 P.R. China (D.Y., Z.H.S., F.L., X.H.L.)
| | - Gang Wei
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 P.R. China (G.W., T.N.)
| | - Fen Long
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203 P.R. China (D.Y., Z.H.S., F.L., X.H.L.)
| | - Yi-Chun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules and Research Center on Aging and Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China (Y.C.Z.)
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, 200438 P.R. China (G.W., T.N.)
| | - Xinhua Liu
- Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203 P.R. China (D.Y., Z.H.S., F.L., X.H.L.)
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (D.Y., Y.Z.Z.)
| |
Collapse
|
10
|
Borén J, Chapman MJ, Krauss RM, Packard CJ, Bentzon JF, Binder CJ, Daemen MJ, Demer LL, Hegele RA, Nicholls SJ, Nordestgaard BG, Watts GF, Bruckert E, Fazio S, Ference BA, Graham I, Horton JD, Landmesser U, Laufs U, Masana L, Pasterkamp G, Raal FJ, Ray KK, Schunkert H, Taskinen MR, van de Sluis B, Wiklund O, Tokgozoglu L, Catapano AL, Ginsberg HN. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 2021; 41:2313-2330. [PMID: 32052833 PMCID: PMC7308544 DOI: 10.1093/eurheartj/ehz962] [Citation(s) in RCA: 854] [Impact Index Per Article: 213.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/10/2019] [Accepted: 01/08/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
Collapse
Affiliation(s)
- Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - M John Chapman
- Endocrinology-Metabolism Division, Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France.,National Institute for Health and Medical Research (INSERM), Paris, France
| | - Ronald M Krauss
- Department of Atherosclerosis Research, Children's Hospital Oakland Research Institute and UCSF, Oakland, CA 94609, USA
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Jacob F Bentzon
- Department of Clinical Medicine, Heart Diseases, Aarhus University, Aarhus, Denmark.,Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Mat J Daemen
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Linda L Demer
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Physiology, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Robert A Hegele
- Department of Medicine, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Stephen J Nicholls
- Monash Cardiovascular Research Centre, Monash University, Melbourne, Australia
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, University of Copenhagen, Denmark
| | - Gerald F Watts
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia.,Department of Cardiology, Lipid Disorders Clinic, Royal Perth Hospital, Perth, Australia
| | - Eric Bruckert
- INSERM UMRS1166, Department of Endocrinology-Metabolism, ICAN - Institute of CardioMetabolism and Nutrition, AP-HP, Hopital de la Pitie, Paris, France
| | - Sergio Fazio
- Departments of Medicine, Physiology and Pharmacology, Knight Cardiovascular Institute, Center of Preventive Cardiology, Oregon Health & Science University, Portland, OR, USA
| | - Brian A Ference
- Centre for Naturally Randomized Trials, University of Cambridge, Cambridge, UK.,Institute for Advanced Studies, University of Bristol, Bristol, UK.,MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Jay D Horton
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ulf Landmesser
- Department of Cardiology, Charité - University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstraße 20, Leipzig, Germany
| | - Luis Masana
- Research Unit of Lipids and Atherosclerosis, IISPV, CIBERDEM, University Rovira i Virgili, C. Sant Llorenç 21, Reus 43201, Spain
| | - Gerard Pasterkamp
- Laboratory of Clinical Chemistry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frederick J Raal
- Carbohydrate and Lipid Metabolism Research Unit, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Kausik K Ray
- Department of Primary Care and Public Health, Imperial Centre for Cardiovascular Disease Prevention, Imperial College London, London, UK
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Faculty of Medicine, Technische Universität München, Lazarettstr, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Marja-Riitta Taskinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Bart van de Sluis
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Olov Wiklund
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lale Tokgozoglu
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, and IRCCS MultiMedica, Milan, Italy
| | - Henry N Ginsberg
- Department of Medicine, Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, USA
| |
Collapse
|
11
|
de Souza GM, de Albuquerque Borborema ME, de Lucena TMC, da Silva Santos AF, de Lima BR, de Oliveira DC, de Azevêdo Silva J. Caveolin-1 (CAV-1) up regulation in metabolic syndrome: all roads leading to the same end. Mol Biol Rep 2020; 47:9245-9250. [PMID: 33123955 DOI: 10.1007/s11033-020-05945-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/22/2020] [Indexed: 01/02/2023]
Abstract
Metabolic syndrome (MS) is a set of clinical conditions such as insulin resistance, hyperglycemia, systemic arterial hypertension (SAH), dyslipidemia, obesity and high abdominal circumference. Some of these clinical characteristics have been associated with caveolin-1, a caveolae structural protein, responsible for insulin activation, storage and degradation of cholesterol, and so on. Herein we assessed CAV-1 mRNA levels in MS patients comparing to healthy controls (HC) and according patients' clinical features. We included 87 patients in the study, 25 patients with MS, 30 patients with at least one clinical condition (diabetes, SAH, dyslipidemia, obesity and high abdominal circumference), 13 with two clinical conditions and 19 HC. CAV-1 mRNA levels from peripheral blood samples were assessed by Real Time qPCR using specific Taqman probe. The analysis was performed using ∆Cq method and the statistical tests Shapiro-Wilk, One-Way ANOVA and Mann-Whitney. We found CAV-1 increased mRNA levels in patients with MS (1.645 FC, p = 9.794 × 10-20) and even higher in patients with only one or two clinical conditions (2.215 FC, p = 1.215 × 10-32 and 1.716 FC, p = 4.197 × 10-05, respectively). When individual clinical conditions were observed, individuals with high abdominal circumference and obesity present a significantly up regulation when compared to HC (2.956 FC, p = 0.0004 and 3.643 FC, p = 0.002, respectively). This work indicates that CAV-1 gene expression from whole blood samples is associated to MS clinical conditions and may become a potential target for MS treatment and prevention.
Collapse
Affiliation(s)
- Gabriela Montenegro de Souza
- Laboratório de Genética e Biologia Molecular Humana, Departamento de Genética, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Recife, Pernambuco, CEP 50760-901, Brazil
| | - Maria Eduarda de Albuquerque Borborema
- Laboratório de Genética e Biologia Molecular Humana, Departamento de Genética, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Recife, Pernambuco, CEP 50760-901, Brazil
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Thays Maria Costa de Lucena
- Laboratório de Genética e Biologia Molecular Humana, Departamento de Genética, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Recife, Pernambuco, CEP 50760-901, Brazil
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Ariane Fernandes da Silva Santos
- Laboratório de Genética e Biologia Molecular Humana, Departamento de Genética, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Recife, Pernambuco, CEP 50760-901, Brazil
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Brenda Regina de Lima
- Laboratório de Genética e Biologia Molecular Humana, Departamento de Genética, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Recife, Pernambuco, CEP 50760-901, Brazil
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Dinaldo Cavalcanti de Oliveira
- Divisão de Cardiologia, Departamento de Medicina Clínica, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Jaqueline de Azevêdo Silva
- Laboratório de Genética e Biologia Molecular Humana, Departamento de Genética, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235, Recife, Pernambuco, CEP 50760-901, Brazil.
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
12
|
Salidroside-Mediated Autophagic Targeting of Active Src and Caveolin-1 Suppresses Low-Density Lipoprotein Transcytosis across Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9595036. [PMID: 32685103 PMCID: PMC7333065 DOI: 10.1155/2020/9595036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/14/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022]
Abstract
Subendothelial retention of apolipoprotein B100-containing lipoprotein, such as low-density lipoprotein (LDL), is the initial step of atherogenesis. Activation of autophagy exhibits beneficial effects for the treatment of atherosclerosis. In our previous study, we demonstrated that hyperglycemia suppressed autophagic degradation of caveolin-1, which in turn resulted in acceleration of caveolae-mediated LDL transcytosis across endothelial cells and lipid retention. Therefore, targeting the crossed pathway in autophagy activation and LDL transcytosis interruption may be a promising antiatherosclerotic strategy. In metabolic diseases, including atherosclerosis, salidroside, a phenylpropanoid glycoside compound (3,5-dimethoxyphenyl) methyl-β-glucopyranoside), is the most important compound responsible for the therapeutic activities of Rhodiola. However, whether salidroside suppresses LDL transcytosis to alleviate atherosclerosis has not yet been elucidated. In the present study, we demonstrated that salidroside significantly decreased LDL transcytosis across endothelial cells. Salidroside-induced effects were dramatically blocked by AMPK (adenosine monophosphate-activated protein kinase) inhibitor (compound c, AMPKα siRNA) and by overexpression of exogenous tyrosine-phosphorylated caveolin-1 using transfected cells with phosphomimicking caveolin-1 on tyrosine 14 mutant plasmids (Y14D). Furthermore, we observed that salidroside promoted autophagosome formation via activating AMPK. Meanwhile, the interaction between caveolin-1 and LC3B-II, as well as the interaction between active Src (indicated by the phosphorylation of Src on tyrosine 416) and LC3B-II, was significantly increased, upon stimulation with salidroside. In addition, both bafilomycin A1 (a lysosome inhibitor) and an AMPK inhibitor (compound c) markedly prevented salidroside-induced autophagic degradation of p-Src and caveolin-1. Moreover, the phosphorylation of caveolin-1 on tyrosine 14 was disrupted due to the downregulation of p-Src and caveolin-1, thereby directly decreasing LDL transcytosis by attenuating the number of caveolae on the cell membrane and by preventing caveolae-mediated LDL endocytosis released from the cell membrane. In ApoE−/− mice, salidroside significantly delayed the formation of atherosclerotic lesions. Meanwhile, a significant increase in LC3B, accompanied by attenuated accumulation of the autophagy substrate SQSTM1, was observed in aortic endothelium of ApoE−/− mice. Taken together, our findings demonstrated that salidroside protected against atherosclerosis by inhibiting LDL transcytosis through enhancing the autophagic degradation of active Src and caveolin-1.
Collapse
|
13
|
Amini MA, Talebi SS, Karimi J. Reactive Oxygen Species Modulator 1 (ROMO1), a New Potential Target for Cancer Diagnosis and Treatment. Chonnam Med J 2019; 55:136-143. [PMID: 31598470 PMCID: PMC6769249 DOI: 10.4068/cmj.2019.55.3.136] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 02/01/2023] Open
Abstract
Today, the incidence of cancer in the world is rising, and it is expected that in the next several decades, the number of people suffering from cancer or (the cancer rate) will double. Cancer is defined as the excessive and uncontrolled growth of cells; of course (in simple terms), cancer is considered to be a set of other diseases that ultimately causes normal cells to be transformed into neoplastic cells. One of the most important causes of the onset and exacerbation of cancer is excessive oxidative stress. One of the most important proteins in the inner membrane of mitochondria is Reactive Oxygen Species (ROS) Modulator 1 (ROMO1) that interferes with the production of ROS, and with increasing the rate of this protein, oxidative stress will increase, which ultimately leads to some diseases, especially cancer. In this overview, we use some global databases to provide information about ROMO1 cellular signaling pathways, their related proteins and molecules, and some of the diseases associated with the mitochondrial protein, especially cancer.
Collapse
Affiliation(s)
- Mohammad Amin Amini
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Saman Talebi
- Department of Internal Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jamshid Karimi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
14
|
Wen J, Lin T, Wu W, Yang Y, Luo C, Zhou C, Wan J, Liu S, Wang D, Wang P, Li J. Tiaopi huxin recipe improved endothelial dysfunction and attenuated atherosclerosis by decreasing the expression of caveolin-1 in ApoE-deficient mice. J Cell Physiol 2019; 234:15369-15379. [PMID: 30729525 DOI: 10.1002/jcp.28184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
The Tiaopi Huxin recipe (TPHXR) is widely used in traditional Chinese medicine for the clinical treatment of coronary heart disease. However, the mechanism of TPHXR treatment of atherosclerosis (AS) has not been fully elucidated. In this study, we have aimed to explore the potential antiatherosclerotic effect of TPHXR and its underlying mechanisms. Male ApoE knockout (ApoE-/- ) mice were fed a high-fat diet for 12 weeks and were randomly divided into four groups: the control group, and the low-dose, medium-dose, and high-dose TPHXR groups. The nitric oxide (NO) levels in arterial tissue and human umbilical vein endothelial cells (HUVECs) were measured by diaminofluorescein-2 diacetate staining. Vasorelaxation of mice aorta was performed by wire myograph. Inflammatory cytokines, including tumor necrosis factor-α (TNF-α), hs-CRP, IL-6, and IL-1β, in mice plasma were analyzed by enzyme-linked immunosorbent assay. Western blot analysis was applied to observe protein expression. Oil Red O staining was utilized for the quantification of atherosclerotic plaques. Results showed that 4 weeks of high- and medium-dose TPHXR treatment by oral gavage reduced atheromatous lesions in ApoE -/- mice. The high- and medium-dose TPHXR treatment, but not the low-dose treatment, promoted eNOS phosphorylation, increased NO levels and improved endothelium-dependent vasorelaxation in ApoE -/- mice. High- and medium-dose TPHXR, but not low-dose TPHXR, decreased the expression of cav-1, NF-κB p50, NF-κB p65, ICAM1, VCAM-1, TNF-α, IL-6, and IL-1β in the vasculature of ApoE -/- mice. Enzyme-linked immunosorbent assay analysis indicated that high- and medium-dose TPHXR decreased the levels of TNF-α, IL-6, hs-CRP, and IL-1β. In conclusion, our findings show that TPHXR improved the endothelial function and reduced atheromatous lesions in ApoE -/- mice. This result may be due to the decreased expression of caveolin-1 and NF-κB and, hence, the attenuated inflammatory response in AS mice vasculature. TPHXR may represent a promising intervention in patients with AS.
Collapse
Affiliation(s)
- Junmao Wen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tong Lin
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Wu
- Department of Cardiovascular Disease, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Yang
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan, People's Republic of China
| | - Chuanjin Luo
- Department of Cardiovascular Disease, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chi Zhou
- Department of Cardiovascular Disease, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jindong Wan
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan, People's Republic of China
| | - Sen Liu
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan, People's Republic of China
| | - Dan Wang
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan, People's Republic of China
| | - Peijian Wang
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan, People's Republic of China
| | - Junzhe Li
- Department of Cardiovascular Disease, Guangdong Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
15
|
Ambient fine particulate matter induce toxicity in lung epithelial-endothelial co-culture models. Toxicol Lett 2019; 301:133-145. [DOI: 10.1016/j.toxlet.2018.11.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/13/2018] [Accepted: 11/22/2018] [Indexed: 01/09/2023]
|
16
|
Maternal chronic intermittent hypoxia in rats causes early atherosclerosis with increased expression of Caveolin-1 in offspring. Sleep Breath 2019; 23:1071-1077. [PMID: 30685852 DOI: 10.1007/s11325-019-01781-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 01/06/2019] [Accepted: 01/12/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The objective of our research was to explore the effects of maternal and postpartum chronic intermittent hypoxia (CIH) exposure on atherosclerosis in adulthood offspring of rats, and the role of Caveolin-1 in the course. METHODS Sixteen rats were assigned to two groups (n = 8), maternal normoxia and CIH group. After delivery, two male pups per litter were selected and breastfed for 1 month, which then randomly received postpartum normoxia or CIH. Thus, 4 groups were created as follows (n = 8): (1) maternal normoxia and postpartum normoxia group, (2) maternal CIH and postpartum normoxia group, (3) maternal CIH and postpartum CIH group, and (4) maternal normoxia and postpartum CIH group. The offspring were weighed at birth and weaning. After the duration of 12-week experiment, morphological changes, the expression of Caveolin-1 and NF-κB p65 in the aorta were detected. RESULTS Maternal CIH resulted in significantly lower body weight and thicker intima (P < 0.001). CIH upregulated the expression of Caveolin-1 and NF-κB p65 significantly (P < 0.01). There was a synergistic effect of maternal and postpartum CIH on the thickening of intima (P < 0.05), also on the expression of Caveolin-1 and NF-κB p65 (P < 0.01). CONCLUSIONS The results demonstrate that maternal CIH exposure causes a postpartum catch-up growth and early atherosclerotic changes followed by upregulating Caveolin-1 expression. Besides, maternal CIH enhances the atherosclerotic changes caused by postpartum CIH. Oxidative stress probably implicates in above effects.
Collapse
|
17
|
Wang J, Bai Y, Zhao X, Ru J, Kang N, Tian T, Tang L, An Y, Li P. oxLDL-mediated cellular senescence is associated with increased NADPH oxidase p47phox recruitment to caveolae. Biosci Rep 2018; 38:BSR20180283. [PMID: 29695496 PMCID: PMC5997791 DOI: 10.1042/bsr20180283] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/05/2018] [Accepted: 04/24/2018] [Indexed: 01/26/2023] Open
Abstract
Atherosclerosis develops as a consequence of inflammation and cell senescence. In critical factors involved in the atherosclerotic changes, reactive oxygen species (ROS) generation is considered a leading cause. While NADPH oxidases, particularly NOX2, are the main sources of ROS, how they are regulated in the disease is incompletely understood. In addition, how caveolae, the membrane structure implicated in oxLDL deposition under vascular endothelia, is involved in the oxLDL-mediated ROS production remains mostly elusive. We report here that macrophages exposed to oxLDL up-regulate its caveolin-1 expression, and the latter in turn up-regulates NOX2 p47phox level. This combination effect results in increased cellular senescence. Interestingly, oxLDL treatment causes the p47phox residing in the cytosol to translocate to the caveolae. Immunoprecipitation assays confirms that cavelin-1 is in high degree association with p47phox. These results suggest caveolin-1 may serve as the membrane target for p47phox and as a switch for ROS production following oxLDL exposure. Our results reveal a previously unknown molecular event in oxLDL-mediated cellular ageing, and may provide a target for clinical intervention for atherosclerosis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Yuzhi Bai
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Xia Zhao
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Jing Ru
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Ning Kang
- Institute for Immunology, Department of Basic Medical Sciences, School of Medicine, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tian Tian
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Liying Tang
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Yun An
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Pei Li
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| |
Collapse
|
18
|
Zulli A, Buxton BF, Black MJ, Ming Z, Cameron A, Hare DL. The Immunoquantification of Caveolin-1 and eNOS in Human and Rabbit Diseased Blood Vessels. J Histochem Cytochem 2016; 54:151-9. [PMID: 16009963 DOI: 10.1369/jhc.5a6677.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, caveolin-1 (cav-1), an inhibitor of endothelial nitric oxide synthase (eNOS), was semi-quantified in diseased human and rabbit blood vessels. New Zealand White rabbits were fed, for 12 weeks, a high methionine diet (to induce intimal hyperplasia), 0.5% cholesterol diet, a normal diet, or the combination of both experimental diets. Excess segments of human internal mammary arteries (IMA) and radial arteries (RA) were obtained from patients undergoing coronary artery bypass surgery. eNOS and cav-1 were localized throughout both human and rabbit vessels. In rabbit arteries, eNOS was significantly increased in the endothelium overlying intimal thickening and atherosclerotic plaques compared with the adjacent endothelium overlying normal media. Interestingly, the endothelial cav-1:eNOS ratio increased 5-fold only in endothelium overlying plaques but decreased in endothelium overlying vessels with neo-intimal thickening. In human tissue, there was no difference between RA and IMA eNOS immunoreactivity in endothelium, intima, or media; however, RA endothelial, intimal, and medial cav-1 immunoreactivity increased 4-fold ( p,<0.02), 8-fold ( p<0.001), and 4-fold ( p<0.004), respectively, compared with IMA. Furthermore, the cav-1:eNOS immunostaining ratio in the media correlated with intimal thickening (r2 = 0.5). Our results suggest a close relationship between increased cav-1 and diseased blood vessels.
Collapse
Affiliation(s)
- Anthony Zulli
- Division of Cardiovascular Research, Department of Cardiology, Austin Health, Heidelberg 3084, Australia.
| | | | | | | | | | | |
Collapse
|
19
|
Chen YH, Lin WW, Liu CS, Hsu LS, Lin YM, Su SL. Caveolin-1 Expression Ameliorates Nephrotic Damage in a Rabbit Model of Cholesterol-Induced Hypercholesterolemia. PLoS One 2016; 11:e0154210. [PMID: 27124120 PMCID: PMC4849769 DOI: 10.1371/journal.pone.0154210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 04/10/2016] [Indexed: 01/14/2023] Open
Abstract
Caveolin-1 (CAV-1) participates in regulating vesicular transport, signal transduction, tumor progression, and cholesterol homeostasis. In the present study, we tested the hypothesis that CAV-1 improves dyslipidemia, inhibits cyclophilin A (CypA)- mediated ROS production, prevents mitochondrial compensatory action and attenuates oxidative stress responses in cholesterol-induced hypercholesterolemia. To determine the role of CAV-1 in mediating oxidative and antioxidative as well as cholesterol homeostasis, hypercholesterolemic rabbits were intravenously administered antenapedia-CAV-1 (AP-CAV-1) peptide for 2 wk. AP-CAV-1 enhanced CAV-1 expression by ˃15%, inhibited CypA expression by ˃50% (P < 0.05) and significantly improved dyslipidemia, thus reducing neutral lipid peroxidation. Moreover, CAV-1 attenuated hypercholesterolemia-induced changes in mitochondrial morphology and biogenesis and preserved mitochondrial respiratory function. In addition, CAV-1 protected against hypercholesterol-induced oxidative stress responses by reducing the degree of oxidative damage and enhancing the expression of antioxidant enzymes. CAV-1 treatment significantly suppressed apoptotic cell death, as evidenced by the reduction in the number of terminal deoxynucleotidyl transferase dUTP nick end-labeling-positive cells. We concluded that CAV-1 plays a critical role in inhibiting CypA-mediated ROS production, improving dyslipidemia, maintaining mitochondrial function, and suppressing oxidative stress responses that are vital for cell survival in hypercholesterol-affected renal organs.
Collapse
Affiliation(s)
- Ya-Hui Chen
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua, Taiwan
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Wei-Wen Lin
- Department of Internal Medicine, Division of Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chin-San Liu
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua, Taiwan
- Graduate Institute of Integrative Medicine, China Medical University, Taichung, Taiwan
| | - Li-Sung Hsu
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Shih-Li Su
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua, Taiwan
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Changhua Christian Hospital, Changhua, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
20
|
Affiliation(s)
- Kevin Jon Williams
- From the Section of Endocrinology, Diabetes, & Metabolism, Temple University School of Medicine, Philadelphia, PA (K.J.W.); Department of Molecular and Clinical Medicine, Sahlgrenska Academy of the University of Gothenburg, Göteborg, Sweden (K.J.W.); Departments of Medicine, Pathology & Cell Biology, and Physiology, Columbia University Medical Center, New York, NY (I.T.); and Department of Medicine (Cardiology), the Marc and Ruti Bell Program in Vascular Biology and The Center for the Prevention of Cardiovascular Disease, NYU School of Medicine, New York, NY (E.A.F.).
| | - Ira Tabas
- From the Section of Endocrinology, Diabetes, & Metabolism, Temple University School of Medicine, Philadelphia, PA (K.J.W.); Department of Molecular and Clinical Medicine, Sahlgrenska Academy of the University of Gothenburg, Göteborg, Sweden (K.J.W.); Departments of Medicine, Pathology & Cell Biology, and Physiology, Columbia University Medical Center, New York, NY (I.T.); and Department of Medicine (Cardiology), the Marc and Ruti Bell Program in Vascular Biology and The Center for the Prevention of Cardiovascular Disease, NYU School of Medicine, New York, NY (E.A.F.)
| | - Edward A Fisher
- From the Section of Endocrinology, Diabetes, & Metabolism, Temple University School of Medicine, Philadelphia, PA (K.J.W.); Department of Molecular and Clinical Medicine, Sahlgrenska Academy of the University of Gothenburg, Göteborg, Sweden (K.J.W.); Departments of Medicine, Pathology & Cell Biology, and Physiology, Columbia University Medical Center, New York, NY (I.T.); and Department of Medicine (Cardiology), the Marc and Ruti Bell Program in Vascular Biology and The Center for the Prevention of Cardiovascular Disease, NYU School of Medicine, New York, NY (E.A.F.)
| |
Collapse
|
21
|
Shin J, Jung YH, Cho DH, Park M, Lee KE, Yang Y, Jeong C, Sung BH, Sohn JH, Park JB, Kweon DH. Display of membrane proteins on the heterologous caveolae carved by caveolin-1 in the Escherichia coli cytoplasm. Enzyme Microb Technol 2015; 79-80:55-62. [DOI: 10.1016/j.enzmictec.2015.06.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 06/20/2015] [Accepted: 06/26/2015] [Indexed: 11/25/2022]
|
22
|
Lin S, Nadeau PE, Mergia A. HIV inhibits endothelial reverse cholesterol transport through impacting subcellular Caveolin-1 trafficking. Retrovirology 2015; 12:62. [PMID: 26169283 PMCID: PMC4501058 DOI: 10.1186/s12977-015-0188-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/06/2015] [Indexed: 01/13/2023] Open
Abstract
Background Human immunodeficiency virus (HIV) infection leads to decreased reverse cholesterol transport (RCT) in macrophages, and Nef mediated down-regulation and redistribution of ATP-binding cassette transporter A1 (ABCA1) are identified as key factors for this effect. This may partially explain the increased risk of atherosclerosis in HIV infected individuals. Since endothelial dysfunction is key in the initial stages of atherosclerosis, we sought to determine whether RCT was affected in human aortic endothelial cells (HAECs). Results We found that apoA-I does not significantly stimulate cholesterol efflux in HAECs while cholesterol efflux to high-density lipoprotein (HDL) was dramatically reduced in HAECs co-cultured with HIV infected cells. Studies with wild type and Nef defective HIV revealed no significant differences suggesting that multiple factors are working perhaps in concert with Nef to affect cholesterol efflux to HDL from HAECs. Interestingly, treating HAECs with recombinant Nef showed similar effect in HDL mediated cholesterol efflux as observed in HAECs co-cultured with HIV infected cells. Using a detergent-free based subcellular fractionation approach, we demonstrated that exposure of HAECs to HIV infected cells or Nef alone disrupts caveolin 1 (Cav-1) subcellular trafficking upon HDL stimulation. Moreover, Nef significantly enhanced tyrosine 14 phosphorylation of Cav-1 which may have an impact on recycling of Cav-1 and caveolae. Conclusion These results suggest that HIV interferes with cholesterol efflux by HDL in HAECs through the disruption of Cav-1s’ cellular distribution and that multiple factors are involved, possibly including Nef, for the inhibition of HDL mediated cholesterol efflux and alteration of cellular distribution of Cav-1. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0188-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shanshan Lin
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL, 32611, USA.
| | - Peter E Nadeau
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL, 32611, USA.
| | - Ayalew Mergia
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
23
|
Caveolin-1 regulates the anti-atherogenic properties of macrophages. Cell Tissue Res 2014; 358:821-31. [PMID: 25322709 DOI: 10.1007/s00441-014-2008-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 09/11/2014] [Indexed: 10/24/2022]
Abstract
Atherosclerosis is a complex disease initiated by the vascular accumulation of lipoproteins in the sub-endothelial space, followed by the infiltration of monocytes into the arterial intima. Caveolin-1 (Cav-1) plays an essential role in the regulation of cellular cholesterol metabolism and of various signaling pathways. In order to study specifically the role of macrophage Cav-1 in atherosclerosis, we used Cav-1 (-/-) Apoe (-/-) mice and transplanted them with bone marrow (BM) cells obtained from Cav-1 (+/+) Apoe (-/-) or Cav-1 (-/-) Apoe (-/-) mice and vice versa. We found that Cav-1 (+/+) mice harboring Cav-1 (-/-) BM-derived macrophages developed significantly larger lesions than Cav-1 (+/+) mice harboring Cav-1 (+/+) BM-derived macrophages. Cav-1 (-/-) macrophages were more susceptible to apoptosis and more prone to induce inflammation. The present study provides clear evidence that the absence of Cav-1 in macrophage is pro-atherogenic, whereas its absence in endothelial cells protects against atherosclerotic lesion formation. These findings demonstrate the cell-specific role of Cav-1 during the development of this disease.
Collapse
|
24
|
Zhang Y, Yang X, Bian F, Wu P, Xing S, Xu G, Li W, Chi J, Ouyang C, Zheng T, Wu D, Zhang Y, Li Y, Jin S. TNF-α promotes early atherosclerosis by increasing transcytosis of LDL across endothelial cells: Crosstalk between NF-κB and PPAR-γ. J Mol Cell Cardiol 2014; 72:85-94. [DOI: 10.1016/j.yjmcc.2014.02.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 02/21/2014] [Accepted: 02/24/2014] [Indexed: 01/17/2023]
|
25
|
Chen YH, Lin WW, Liu CS, Hsu LS, Lin YM, Su SL. Caveolin-1 provides palliation for adverse hepatic reactions in hypercholesterolemic rabbits. PLoS One 2014; 9:e71862. [PMID: 24475013 PMCID: PMC3901645 DOI: 10.1371/journal.pone.0071862] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 09/21/2013] [Indexed: 12/17/2022] Open
Abstract
Caveolins are an essential component of cholesterol-rich invaginations of the plasma membrane known as caveolae. These flask-shaped, invaginated structures participate in a number of important cellular processes, including vesicular transport, cholesterol homeostasis, and signal transduction. We investigated the effects of CAV-1 on mitochondrial biogenesis and antioxidant enzymes in hypercholesterolemia-affected target organs. A total of eighteen male New Zealand white rabbits were divided into three groups: a normal-diet group, an untreated hypercholesterolemia-induced group, and a hypercholesterolemia-induced group that received intravenous administration of antennapedia-CAV-1 (AP-CAV-1) peptide every 2 days for 2 weeks. Serum biochemistry, CAV-1 distribution, neutral lipid distribution, mitochondrial morphology, biogenesis-mediated protein content, oxidative stress balance, antioxidant enzyme levels, and apoptotic cell death of liver tissue were analysed. Hepatic and circulating cholesterol and low-density lipoprotein cholesterol (LDL-C) levels differed significantly between the three groups (P<0.05). Immunohistochemical staining intensity of CAV-1 was greater in AP-CAV-1-treated rabbits than in untreated rabbits, especially in the vicinity of the liver vasculature. The high levels of neutral lipids, malondialdehyde, peroxisome proliferator-activated receptor-γ coactive 1α (PGC-1α), and nuclear respiratory factor-1 (NRF-1) seen in untreated hypercholesteremic animals were attenuated by administration of AP-CAV-1 (P<0.05). In addition, mitochondria in animals that received treatment exhibited darker electron-dense matrix and integrated cristae. Furthermore, the levels of ROS modulator 1 (Romo1) and superoxide dismutase (SOD)-2, as well as catalase activity were significantly lower in CAV-1-treated hypercholesterolemic rabbits (P<0.05). AP-CAV-1 treatment also restored mitochondrial respiratory chain subunit protein content (OXPHOS complexes I–V), thereby preserving mitochondrial function (P<0.05). Furthermore, AP-CAV-1 treatment significantly suppressed apoptotic cell death, as evidenced by a reduction in the number of TUNEL-positive cells. Our results indirectly indicate that CAV-1 mediates the negative effects of PGC-1α on hepatic mitochondrial respiratory chain function, promotes the antioxidant enzyme defence system, and maintains mitochondrial biogenesis.
Collapse
Affiliation(s)
- Ya-Hui Chen
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua, Taiwan
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Wei-Wen Lin
- Division of Cardiovascular Center, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chin-San Liu
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua, Taiwan
- Graduate Institute of Integrative Medicine, China Medical University, Taichung, Taiwan
| | - Li-Sung Hsu
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Shih-Li Su
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
26
|
Pavlides S, Gutierrez-Pajares JL, Iturrieta J, Lisanti MP, Frank PG. Endothelial caveolin-1 plays a major role in the development of atherosclerosis. Cell Tissue Res 2014; 356:147-57. [PMID: 24390341 DOI: 10.1007/s00441-013-1767-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 11/08/2013] [Indexed: 12/19/2022]
Abstract
Clinical studies have established the important impact of atherosclerotic disease in Western societies. This disease is characterized by the accumulation of lipids and the migration of various cell types in the sub-endothelial space of blood vessels. As demonstrated by many studies, endothelial cells play an essential role in the development of this disease. The endothelium acts as a gatekeeper of blood vessel integrity and cardiovascular health status. For instance, the transfer of lipids via the transport of lipoproteins in the arterial intima is believed to be mediated by endothelial cells through a process termed transcytosis. In addition, lipoproteins that accumulate in the sub-endothelial space may also be modified, in a process that can direct the activation of endothelial cells. These steps are essential for the initiation of an atherosclerotic plaque and may be mediated, at least in part, by caveolae and their associated protein caveolin-1. In the present study, we evaluate the role of caveolin-1/caveolae in the regulation of these two steps in endothelial cells. Our data clearly demonstrate that caveolin-1 is involved in the regulation of lipoprotein transcytosis across endothelial cells and in the regulation of vascular inflammation.
Collapse
Affiliation(s)
- Stephanos Pavlides
- Manchester Breast Centre & Breakthrough Breast Cancer Research Unit; Paterson Institute for Cancer Research; Institute of Cancer Sciences; Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | | | | | | | | |
Collapse
|
27
|
Tang R, Cui XB, Wang JN, Chen SY. CTP synthase 1, a smooth muscle-sensitive therapeutic target for effective vascular repair. Arterioscler Thromb Vasc Biol 2013; 33:2336-44. [PMID: 24008161 DOI: 10.1161/atvbaha.113.301561] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Vascular remodeling as a result of smooth muscle cell (SMC) proliferation and neointima formation is a major medical challenge in cardiovascular intervention. However, antineointima drugs often indistinguishably block re-endothelialization, an essential step toward successful vascular repair, because of their nonspecific effect on endothelial cells (ECs). The objective of this study is to identify a therapeutic target that differentially regulates SMC and EC proliferation. APPROACH AND RESULTS Using both rat balloon injury and mouse wire injury models, we identified CTP synthase 1 (CTPS1) as one of the potential targets that may be used for developing therapeutics for treating neointima-related disorders. CTPS1 was induced in proliferative SMCs in vitro and neointima SMCs in vivo. Blockade of CTPS1 expression by small hairpin RNA or activity by cyclopentenyl cytosine suppressed SMC proliferation and neointima formation. Surprisingly, cyclopentenyl cytosine had much less effect on EC proliferation. Of importance, blockade of CTPS1 in vivo sustained the re-endothelialization as a result of induction of CTP synthesis salvage pathway enzymes nucleoside-diphosphate kinase A and B in ECs. Diphosphate kinase B seemed to preserve EC proliferation via use of extracellular cytidine to synthesize CTP. Indeed, blockade of both CTPS1 and diphosphate kinase B suppressed EC proliferation in vitro and the re-endothelialization in vivo. CONCLUSIONS Our study uncovered a fundamental difference in CTP biosynthesis between SMCs and ECs during vascular remodeling, which provided a novel strategy by using cyclopentenyl cytosine or other CTPS1 inhibitors to selectively block SMC proliferation without disturbing or even promoting re-endothelialization for effective vascular repair after injury.
Collapse
Affiliation(s)
- Rui Tang
- From the Department of Physiology and Pharmacology, University of Georgia, Athens, GA (R.T., X.-B.C., J.-N.W., S.-Y.C.); and Institute of Clinical Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China (J.-N.W., S.-Y.C.)
| | | | | | | |
Collapse
|
28
|
Maurya MR, Gupta S, Li X, Fahy E, Dinasarapu AR, Sud M, Brown HA, Glass CK, Murphy RC, Russell DW, Dennis EA, Subramaniam S. Analysis of inflammatory and lipid metabolic networks across RAW264.7 and thioglycolate-elicited macrophages. J Lipid Res 2013; 54:2525-42. [PMID: 23776196 DOI: 10.1194/jlr.m040212] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies of macrophage biology have been significantly advanced by the availability of cell lines such as RAW264.7 cells. However, it is unclear how these cell lines differ from primary macrophages such as thioglycolate-elicited peritoneal macrophages (TGEMs). We used the inflammatory stimulus Kdo2-lipid A (KLA) to stimulate RAW264.7 and TGEM cells. Temporal changes of lipid and gene expression levels were concomitantly measured and a systems-level analysis was performed on the fold-change data. Here we present a comprehensive comparison between the two cell types. Upon KLA treatment, both RAW264.7 and TGEM cells show a strong inflammatory response. TGEM (primary) cells show a more rapid and intense inflammatory response relative to RAW264.7 cells. DNA levels (fold-change relative to control) are reduced in RAW264.7 cells, correlating with greater downregulation of cell cycle genes. The transcriptional response suggests that the cholesterol de novo synthesis increases considerably in RAW264.7 cells, but 25-hydroxycholesterol increases considerably in TGEM cells. Overall, while RAW264.7 cells behave similarly to TGEM cells in some ways and can be used as a good model for inflammation- and immune function-related kinetic studies, they behave differently than TGEM cells in other aspects of lipid metabolism and phenotypes used as models for various disorders such as atherosclerosis.
Collapse
Affiliation(s)
- Mano R Maurya
- Department of Bioengineering, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Trans-resveratrol down-regulates caveolin-1, up-regulates endothelial NO synthase and reduces their interaction in vascular smooth muscle and endothelial cells. FOOD BIOSCI 2013. [DOI: 10.1016/j.fbio.2013.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Atherosclerosis, caveolae and caveolin-1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 729:127-44. [PMID: 22411318 DOI: 10.1007/978-1-4614-1222-9_9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is a disease of the blood vessel characterized by the development of an arterial occlusion containing lipid and cellular deposits. Caveolae are 50-100 nm cell surface plasma membrane invaginations that are believed to play an important role in the regulation of cellular signaling and transport of molecules among others. These organelles are enriched in sphingolipids and cholesterol and are characterized by the presence of the protein caveolin-1. Caveolin-1 and caveolae are present in most of the cells involved in the development of atherosclerosis. The current literature suggests a rather complex role for caveolin-1 in this disease, with evidence of either pro- or anti-atherogenic functions depending on the cell type examined. In the present chapter, the various roles of caveolae and caveolin-1 in the development of atherosclerosis are examined.
Collapse
|
31
|
Lemaire-Ewing S, Lagrost L, Néel D. Lipid rafts: a signalling platform linking lipoprotein metabolism to atherogenesis. Atherosclerosis 2011; 221:303-10. [PMID: 22071358 DOI: 10.1016/j.atherosclerosis.2011.10.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 09/22/2011] [Accepted: 10/12/2011] [Indexed: 01/16/2023]
Abstract
Lipid rafts are microdomains of the plasma membrane which are enriched in cholesterol and sphingolipids. They serve as a platform for signal transduction, in particular during immune and inflammatory responses. As hypercholesterolemia and inflammation are two key elements of atherogenesis, it is conceivable that the cholesterol and cholesterol oxide content of lipid rafts might influence the inflammatory signalling pathways, thus modulating the development of atherosclerosis. In support of this emerging view, lipid rafts have been shown to be involved in several key steps of atherogenesis, such as the oxysterol-mediated apoptosis of vascular cells, the blunted ability of high density lipoproteins (HDL) to exert anti-inflammatory effects, and the exacerbated secretion of pro-inflammatory cytokines by immune cells. Additional studies are now required to address the relative contribution of lipid raft abnormalities to the pathophysiology of atherosclerosis and cardiovascular disease.
Collapse
|
32
|
Sathish V, Abcejo AJ, VanOosten SK, Thompson MA, Prakash YS, Pabelick CM. Caveolin-1 in cytokine-induced enhancement of intracellular Ca(2+) in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2011; 301:L607-14. [PMID: 21803870 DOI: 10.1152/ajplung.00019.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Diseases such as asthma are characterized by airway hyperresponsiveness. Enhanced airway smooth muscle (ASM) intracellular Ca(2+) ([Ca(2+)](i)) response to agonist stimulation leading to increased airway constriction has been suggested to contribute to airway hyperresponsiveness. Caveolae are flask-shaped plasma membrane invaginations that express the scaffolding protein caveolin and contain multiple proteins important in [Ca(2+)](i) signaling (e.g., agonist receptors, ion channels). We recently demonstrated that caveolae and caveolin-1 are important in [Ca(2+)](i) regulation in human ASM. Proinflammatory cytokines such as tumor necrosis factor (TNF)-α and interleukin (IL)-13 modulate [Ca(2+)](i) in ASM. We hypothesized that cytokine upregulation of caveolar signaling in ASM contributes to enhanced agonist-induced [Ca(2+)](i) in inflammation. Enzymatically dissociated human ASM cells were exposed to medium (control), 20 ng/ml TNF-α, or 50 ng/ml IL-13 for 24 h. Caveolae-enriched membrane fractions displayed substantial increase in caveolin-1 and -2 expressions by TNF-α and IL-13. Transfection with caveolin-1-mRed DNA substantially accelerated and increased plasma membrane caveolin-1 expression by TNF-α and to a lesser extent by IL-13. Caveolin-1 enhancement was inhibited by nuclear factor-κB and mitogen-activated protein kinase inhibitors. In fura 2-loaded ASM cells, [Ca(2+)](i) responses to 1 μM ACh, 10 μM histamine, or 10 nM bradykinin were all exaggerated by TNF-α as well as IL-13 exposure. However, disruption of caveolae using caveolin-1 suppression via small-interfering RNA resulted in significant blunting of agonist-induced [Ca(2+)](i) responses of vehicle and TNF-α-exposed cells. These functional data were correlated to the presence of TNFR(1) receptor (but not the IL-4/IL-13 receptor) within caveolae. Overall, these results indicate that caveolin-1 plays an important role in airway inflammation by modulating the effect of specific cytokines on [Ca(2+)](i).
Collapse
|
33
|
Sathish V, Yang B, Meuchel LW, VanOosten SK, Ryu AJ, Thompson MA, Prakash YS, Pabelick CM. Caveolin-1 and force regulation in porcine airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2011; 300:L920-9. [PMID: 21421751 DOI: 10.1152/ajplung.00322.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Caveolae are specialized membrane microdomains expressing the scaffolding protein caveolin-1. We recently demonstrated the presence of caveolae in human airway smooth muscle (ASM) and the contribution of caveolin-1 to intracellular calcium ([Ca(2+)](i)) regulation. In the present study, we tested the hypothesis that caveolin-1 regulates ASM contractility. We examined the role of caveolins in force regulation of porcine ASM under control conditions as well as TNF-α-induced airway inflammation. In porcine ASM strips, exposure to 10 mM methyl-β-cyclodextrin (CD) or 5 μM of the caveolin-1 specific scaffolding domain inhibitor peptide (CSD) resulted in time-dependent decrease in force responses to 1 μM ACh. Overnight exposure to the cytokine TNF-α (50 ng/ml) accelerated and increased caveolin-1 expression and enhanced force responses to ACh. Suppression of caveolin-1 with small interfering RNA mimicked the effects of CD or CSD. Regarding mechanisms by which caveolae contribute to contractile changes, inhibition of MAP kinase with 10 μM PD98059 did not alter control or TNF-α-induced increases in force responses to ACh. However, inhibiting RhoA with 100 μM fasudil or 10 μM Y27632 resulted in significant decreases in force responses, with lesser effects in TNF-α exposed samples. Furthermore, Ca(2+) sensitivity for force generation was substantially reduced by fasudil or Y27632, an effect even more enhanced in the absence of caveolin-1 signaling. Overall, these results indicate that caveolin-1 is a critical player in enhanced ASM contractility with airway inflammation.
Collapse
Affiliation(s)
- Venkatachalem Sathish
- Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Jin Y, Lee SJ, Minshall RD, Choi AMK. Caveolin-1: a critical regulator of lung injury. Am J Physiol Lung Cell Mol Physiol 2010; 300:L151-60. [PMID: 21097526 DOI: 10.1152/ajplung.00170.2010] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Caveolin-1 (cav-1), a 22-kDa transmembrane scaffolding protein, is the principal structural component of caveolae. Cav-1 regulates critical cell functions including proliferation, apoptosis, cell differentiation, and transcytosis via diverse signaling pathways. Abundant in almost every cell type in the lung, including type I epithelial cells, endothelial cells, smooth muscle cells, fibroblasts, macrophages, and neutrophils, cav-1 plays a crucial role in the pathogenesis of acute lung injury (ALI). ALI and its severe form, acute respiratory distress syndrome (ARDS), are responsible for significant morbidity and mortality in intensive care units, despite improvement in ventilation strategies. The pathogenesis of ARDS is still poorly understood, and therapeutic options remain limited. In this article, we summarize recent data regarding the regulation and function of cav-1 in lung biology and pathology, in particular as it relates to ALI. We further discuss the potential molecular and cellular mechanisms by which cav-1 expression contributes to ALI. Investigating the cellular functions of cav-1 may provide new insights for understanding the pathogenesis of ALI and provide novel targets for therapeutic interventions in the future.
Collapse
Affiliation(s)
- Yang Jin
- Division of Pulmonary and Critical Care Medicine, Dept. of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
35
|
Choi YJ, Arzuaga X, Kluemper CT, Caraballo A, Toborek M, Hennig B. Quercetin blocks caveolae-dependent pro-inflammatory responses induced by co-planar PCBs. ENVIRONMENT INTERNATIONAL 2010; 36:931-934. [PMID: 19608276 PMCID: PMC2889233 DOI: 10.1016/j.envint.2009.06.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 01/13/2009] [Accepted: 06/07/2009] [Indexed: 05/28/2023]
Abstract
Polychlorinated biphenyls (PCBs) are widespread environmental contaminants, and co-planar PCBs can induce oxidative stress and activation of pro-inflammatory signaling cascades which are associated with atherosclerosis. The majority of the toxicological effects elicited by the co-planar PCB exposure are associated to the activation of the aryl hydrocarbon receptor (AHR) and subsequent induction of responsive genes. Previous studies from our group have shown that quercetin, a nutritionally relevant flavonoid can significantly reduce PCB77 induction of oxidative stress and expression of the AHR responsive gene cytochrome P450 1A1 (CYP1A1). We also have evidence that membrane domains called caveolae may regulate PCB-induced inflammatory parameters. Thus, we hypothesized that quercetin can modulate PCB-induced endothelial inflammation associated with caveolae. To test this hypothesis, endothelial cells were exposed to co-planar PCBs in combination with quercetin, and the expression of pro-inflammatory genes was analyzed by real-time PCR. Quercetin co-treatment significantly blocked both PCB77 and PCB126 induction of CYP1A1, vascular cell adhesion molecule 1 (VCAM-1), E-selectin and P-selectin. Exposure to PCB77 also induced caveolin-1 protein expression, which was reduced by co-treatment with quercetin. Our results suggest that inflammatory pathways induced by co-planar PCBs can be down-regulated by the dietary flavonoid quercetin through mechanisms associated with functional caveolae.
Collapse
Affiliation(s)
- Yean Jung Choi
- Molecular and Cell Nutrition Laboratory, College of Agriculture, University of Kentucky, Lexington, USA
| | - Xabier Arzuaga
- Molecular and Cell Nutrition Laboratory, College of Agriculture, University of Kentucky, Lexington, USA
| | | | - Adelka Caraballo
- Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico
| | - Michal Toborek
- Department of Neurosurgery, University of Kentucky, Lexington, USA
| | - Bernhard Hennig
- Molecular and Cell Nutrition Laboratory, College of Agriculture, University of Kentucky, Lexington, USA
- Graduate Center for Toxicology, University of Kentucky, Lexington, USA
| |
Collapse
|
36
|
Daxx Mediates Oxidized Low-density Lipoprotein-Induced Cholesterol Accumulation and Apoptosis in Macrophages by Upregulating Caveolin-1 Expression*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2010.00153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Fernández-Hernando C, Yu J, Dávalos A, Prendergast J, Sessa WC. Endothelial-specific overexpression of caveolin-1 accelerates atherosclerosis in apolipoprotein E-deficient mice. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:998-1003. [PMID: 20581061 DOI: 10.2353/ajpath.2010.091287] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Caveolin-1 (Cav-1) is the major structural protein essential to the formation of the caveolae in endothelial cells. Genetic ablation of Cav-1 on an apolipoprotein E knockout background inhibits the progression of atherosclerosis, whereas re-expression of Cav-1 in the endothelium promotes lesion expansion. Although Cav-1-null mice are useful to delineate the importance of caveolae in atherosclerosis, there are additional problems that are difficult to dissect because loss of Cav-1 abolishes both the caveolae organelle as well as the Cav-1-mediated signaling pathways. To study how Cav-1 influences the progression of atherosclerosis in mice with caveolae, we generated a transgenic mouse that overexpresses Cav-1 in the endothelial cells in an apolipoprotein E-deficient background. We found that endothelial-specific overexpression of Cav-1 enhanced the progression of atherosclerosis in mice. Mechanistically, overexpression of Cav-1 reduced endothelial cell proliferation, migration, and nitric oxide production in vitro and increased expression of vascular cell adhesion molecule-1 in vivo.
Collapse
Affiliation(s)
- Carlos Fernández-Hernando
- Department of Pharmacology and Vascular Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | |
Collapse
|
38
|
Frank PG. Endothelial caveolae and caveolin-1 as key regulators of atherosclerosis. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:544-6. [PMID: 20581059 DOI: 10.2353/ajpath.2010.100247] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This commentary discusses the role of caveolin-1 in atherosclerosis.
Collapse
Affiliation(s)
- Philippe G Frank
- Kimmel Cancer Center, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
39
|
Luo DX, Cheng J, Xiong Y, Li J, Xia C, Xu C, Wang C, Zhu B, Hu Z, Liao DF. Static pressure drives proliferation of vascular smooth muscle cells via caveolin-1/ERK1/2 pathway. Biochem Biophys Res Commun 2010; 391:1693-7. [DOI: 10.1016/j.bbrc.2009.12.132] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 12/23/2009] [Indexed: 10/20/2022]
|
40
|
Truong TQ, Brodeur MR, Falstrault L, Rhainds D, Brissette L. Expression of caveolin-1 in hepatic cells increases oxidized LDL uptake and preserves the expression of lipoprotein receptors. J Cell Biochem 2009; 108:906-15. [DOI: 10.1002/jcb.22321] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Chang SH, Feng D, Nagy JA, Sciuto TE, Dvorak AM, Dvorak HF. Vascular permeability and pathological angiogenesis in caveolin-1-null mice. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1768-76. [PMID: 19729487 DOI: 10.2353/ajpath.2009.090171] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Caveolin-1, the signature protein of endothelial cell caveolae, has many important functions in vascular cells. Caveolae are thought to be the transcellular pathway by which plasma proteins cross normal capillary endothelium, but, unexpectedly, cav-1(-/-) mice, which lack caveolae, have increased permeability to plasma albumin. The acute increase in vascular permeability induced by agents such as vascular endothelial growth factor (VEGF)-A occurs through venules, not capillaries, and particularly through the vesiculo-vacuolar organelle (VVO), a unique structure composed of numerous interconnecting vesicles and vacuoles that together span the venular endothelium from lumen to ablumen. Furthermore, the hyperpermeable blood vessels found in pathological angiogenesis, mother vessels, are derived from venules. The present experiments made use of cav-1(-/-) mice to investigate the relationship between caveolae and VVOs and the roles of caveolin-1 in VVO structure in the acute vascular hyperpermeability induced by VEGF-A and in pathological angiogenesis and associated chronic vascular hyperpermeability. We found that VVOs expressed caveolin-1 variably but, in contrast to caveolae, were present in normal numbers and with apparently unaltered structure in cav-1(-/-) mice. Nonetheless, VEGF-A-induced hyperpermeability was strikingly reduced in cav-1(-/-) mice, as was pathological angiogenesis and associated chronic vascular hyperpermeability, whether induced by VEGF-A(164) or by a tumor. Thus, caveolin-1 is not necessary for VVO structure but may have important roles in regulating VVO function in acute vascular hyperpermeability and angiogenesis.
Collapse
Affiliation(s)
- Sung-Hee Chang
- Center for Vascular Biology Research and the Departments of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
42
|
Fernández-Hernando C, Yu J, Suárez Y, Rahner C, Dávalos A, Lasunción MA, Sessa WC. Genetic evidence supporting a critical role of endothelial caveolin-1 during the progression of atherosclerosis. Cell Metab 2009; 10:48-54. [PMID: 19583953 PMCID: PMC2735117 DOI: 10.1016/j.cmet.2009.06.003] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 05/13/2009] [Accepted: 06/04/2009] [Indexed: 01/08/2023]
Abstract
The accumulation of LDL-derived cholesterol in the artery wall is the initiating event that causes atherosclerosis. However, the mechanisms that lead to the initiation of atherosclerosis are still poorly understood. Here, by using endothelial cell-specific transgenesis of the caveolin-1 (Cav-1) gene in mice, we show the critical role of Cav-1 in promoting atherogenesis. Mice were generated lacking Cav-1 and apoE but expressing endothelial-specific Cav-1 in the double knockout background. Genetic ablation of Cav-1 on an apoE knockout background inhibits the progression of atherosclerosis, while re-expression of Cav-1 in the endothelium promotes lesion expansion. Mechanistically, the loss of Cav-1 reduces LDL infiltration into the artery wall, promotes nitric oxide production, and reduces the expression of leukocyte adhesion molecules, effects completely reversed in transgenic mice. In summary, this unique model provides physiological evidence supporting the important role of endothelial Cav-1 expression in regulating the entry of LDL into the vessel wall and the initiation of atherosclerosis.
Collapse
Affiliation(s)
- Carlos Fernández-Hernando
- Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jun Yu
- Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yajaira Suárez
- Department of Immunobiology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Christoph Rahner
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Alberto Dávalos
- Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Miguel A. Lasunción
- Servcio de Bioquímica-Investigación, Hospital Ramón y Cajal, Madrid; Universidad de Alcalá, and CIBER Fisiología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III
| | - William C. Sessa
- Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
43
|
Penumathsa SV, Maulik N. Resveratrol: a promising agent in promoting cardioprotection against coronary heart diseaseThis article is one of a selection of papers from the NATO Advanced Research Workshop on Translational Knowledge for Heart Health (published in part 2 of a 2-part Special Issue). Can J Physiol Pharmacol 2009; 87:275-86. [DOI: 10.1139/y09-013] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The inverse association between alcohol intake and coronary heart disease has been consistently reported in cross-culture, case–control, and cohort studies. Over the past couple of decades, however, many studies have explained promising health benefits associated with wine consumption. Some studies suggest that red wine is more cardioprotective than white wine, possibly due to the increased content of flavanoid antioxidants found in red wine. Several experimental studies, including ours, support the evidence that these beneficial effects are due to resveratrol, the polyphenolic compound present in red wine. Many studies have provided evidence that resveratrol possesses antioxidant and antiapoptotic effects apart from activation of longevity proteins (such as SIRT-1). We have recently reported the angiogenic, antihypercholesterolemic, and antidiabetic effects of resveratrol and the mechanisms involved in reduced ventricular remodeling and increased cardiac functions. We have also shown different strategic target molecules involved in resveratrol-mediated cardioprotection. Therefore, this review discusses the potential effect of resveratrol and the mechanisms involved in resveratrol-mediated cardioprotection during myocardial infarction, hypercholesterolemia, and diabetes rendering its beneficial effects during health and disease.
Collapse
Affiliation(s)
- Suresh Varma Penumathsa
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-1110, USA
| | - Nilanjana Maulik
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-1110, USA
| |
Collapse
|
44
|
Penumathsa SV, Koneru S, Samuel SM, Maulik G, Bagchi D, Yet SF, Menon VP, Maulik N. Strategic targets to induce neovascularization by resveratrol in hypercholesterolemic rat myocardium: role of caveolin-1, endothelial nitric oxide synthase, hemeoxygenase-1, and vascular endothelial growth factor. Free Radic Biol Med 2008; 45:1027-34. [PMID: 18694817 PMCID: PMC2587496 DOI: 10.1016/j.freeradbiomed.2008.07.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 06/21/2008] [Accepted: 07/10/2008] [Indexed: 11/17/2022]
Abstract
Endothelial dysfunction and impaired angiogenesis constitute a hallmark of hypercholesterolemia. This study was designed to examine the effects of resveratrol, an antioxidant with lipid-lowering properties similar to those of statins, on neovascularization along with caveolar interaction with proangiogenic molecules in hypercholesterolemic rats. Animals were divided into: rats maintained on a normal diet (control group); rats maintained on a 5% high-cholesterol diet for 8 weeks (HC group); and rats maintained on a 5% high-cholesterol diet for 8 weeks and administered resveratrol (20 mg/kg) orally for 2 weeks (HCR group). Myocardial infarction was induced by ligating the left anterior descending artery. Herein we examined a novel method for stimulating myocardial angiogenesis by pharmacological preconditioning with resveratrol at both the capillary and arteriolar levels and the potential role of hemeoxygenase-1, endothelial nitric oxide synthase and caveolin-1 in mediating such a response. We also investigated the functional relevance of such treatment by assessing whether the induced neovascularization can help preserve left ventricle-contractile functional reserve in the setting of a chronic hypercholesterolemic condition. Four weeks after sham surgery and left anterior descending artery occlusion, rats underwent echocardiographic evaluation, which revealed improvement in ejection fraction and fractional shortening in the HCR group compared with the HC group. Left ventricular tissue sections displayed increased capillary and arteriolar density in the HCR group compared with the HC group. Western blot analysis revealed downregulation of vascular endothelial growth factor and hemeoxygenase-1 and increased association of caveolin-1 eNOS in the HC group, decreasing the availability of eNOS to the system; which was reversed with resveratrol treatment in the HCR group. This study was further validated in cardiac-specific hemeoxygenase-1-overexpressed mice assuming molecular cross-talk between the targets. Hence, our data identified potential regulators that primarily attenuate endothelial dysfunction by resveratrol therapy in hypercholesterolemic myocardium.
Collapse
Affiliation(s)
- Suresh Varma Penumathsa
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, Farmington, CT, USA
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, TN, India
| | - Srikanth Koneru
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, Farmington, CT, USA
| | - Samson Mathews Samuel
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, Farmington, CT, USA
| | - Gautam Maulik
- Department of Thoracic Surgery, Harvard Medical School, Boston, MA, USA
| | | | - Shaw-Fang Yet
- National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
- Department of Medicine, Brigham and Women’s Hospital, Boston, USA
| | - Venogopal P. Menon
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, TN, India
| | - Nilanjana Maulik
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, Farmington, CT, USA
- Address correspondence to: Nilanjana Maulik, Ph.D., FACN, FICA, Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-1110, USA, Phone No: (860) 679-2857; Fax No: (860) 679-2825,
| |
Collapse
|
45
|
Caveolae and transcytosis in endothelial cells: role in atherosclerosis. Cell Tissue Res 2008; 335:41-7. [DOI: 10.1007/s00441-008-0659-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 06/03/2008] [Indexed: 10/21/2022]
|
46
|
Rodriguez-Feo JA, Hellings WE, Moll FL, De Vries JPPM, van Middelaar BJ, Algra A, Sluijter J, Velema E, van der Broek T, Sessa WC, De Kleijn DPV, Pasterkamp G. Caveolin-1 influences vascular protease activity and is a potential stabilizing factor in human atherosclerotic disease. PLoS One 2008; 3:e2612. [PMID: 18596970 PMCID: PMC2432041 DOI: 10.1371/journal.pone.0002612] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 05/30/2008] [Indexed: 11/19/2022] Open
Abstract
Caveolin-1 (Cav-1) is a regulatory protein of the arterial wall, but its role in human atherosclerosis remains unknown. We have studied the relationships between Cav-1 abundance, atherosclerotic plaque characteristics and clinical manisfestations of atherosclerotic disease.We determined Cav-1 expression by western blotting in atherosclerotic plaques harvested from 378 subjects that underwent carotid endarterectomy. Cav-1 levels were significantly lower in carotid plaques than non-atherosclerotic vascular specimens. Low Cav-1 expression was associated with features of plaque instability such as large lipid core, thrombus formation, macrophage infiltration, high IL-6, IL-8 levels and elevated MMP-9 activity. Clinically, a down-regulation of Cav-1 was observed in plaques obtained from men, patients with a history of myocardial infarction and restenotic lesions. Cav-1 levels above the median were associated with absence of new vascular events within 30 days after surgery [0% vs. 4%] and a trend towards lower incidence of new cardiovascular events during longer follow-up. Consistent with these clinical data, Cav-1 null mice revealed elevated intimal hyperplasia response following arterial injury that was significantly attenuated after MMP inhibition. Recombinant peptides mimicking Cav-1 scaffolding domain (Cavtratin) reduced gelatinase activity in cultured porcine arteries and impaired MMP-9 activity and COX-2 in LPS-challenged macrophages. Administration of Cavtratin strongly impaired flow-induced expansive remodeling in mice.This is the first study that identifies Cav-1 as a novel potential stabilizing factor in human atherosclerosis. Our findings support the hypothesis that local down-regulation of Cav-1 in atherosclerotic lesions contributes to plaque formation and/or instability accelerating the occurrence of adverse clinical outcomes. Therefore, given the large number of patients studied, we believe that Cav-1 may be considered as a novel target in the prevention of human atherosclerotic disease and the loss of Cav-1 may be a novel biomarker of vulnerable plaque with prognostic value.
Collapse
Affiliation(s)
- Juan A. Rodriguez-Feo
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center, Utrecht, The Netherlands
| | - Willem E. Hellings
- Department of Vascular Surgery, University Medical Center, Utrecht, The Netherlands
| | - Frans L. Moll
- Department of Vascular Surgery, University Medical Center, Utrecht, The Netherlands
| | | | - Ben J. van Middelaar
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center, Utrecht, The Netherlands
| | - Ale Algra
- Julius Center for Health Sciences and Primary Care, University Medical Center, Utrecht, The Netherlands
- Department of Neurology, Rudolf Magnus Institute, UMC Utrecht, Utrecht, The Netherlands
| | - Joost Sluijter
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center, Utrecht, The Netherlands
| | - Evelyn Velema
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center, Utrecht, The Netherlands
| | - Theo van der Broek
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center, Utrecht, The Netherlands
| | - William C. Sessa
- Department of Pharmacology, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Dominique P. V. De Kleijn
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center, Utrecht, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands
| | - Gerard Pasterkamp
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
47
|
Zhang J, Chu W, Crandall I. Lipoprotein binding preference of CD36 is altered by filipin treatment. Lipids Health Dis 2008; 7:23. [PMID: 18582374 PMCID: PMC2483703 DOI: 10.1186/1476-511x-7-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 06/26/2008] [Indexed: 11/30/2022] Open
Abstract
The class B scavenger receptor CD36 binds multiple ligands, including oxidized and native lipoprotein species. CD36 and the related receptor SR-B1 have been localized to caveolae, domains that participate in cell signaling, transcytosis, and regulation of cellular cholesterol homeostasis. Previous work has indicated that the ligand preference of CD36 may depend on the cell type in which it is expressed. To determine if the presence or absence of caveolae is the determining factor for lipoprotein preference, we treated CHO-CD36 and C32 cells with filipin. Filipin treatment rapidly increased the binding capacity of CD36 for the native lipoproteins HDL and LDL, but did not affect the binding capacity of CD36 for oxidized LDL. Filipin treatment affected the distribution of caveolin and CD36 suggesting that the presence caveolae may modulate the ligand preference of CD36. However, its molecular mechanism how CD36 and caveolin interaction in regulating lipoprotein transport remains to be further studied.
Collapse
Affiliation(s)
- Jianshe Zhang
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, Hunan, PR China.
| | | | | |
Collapse
|
48
|
Frank PG, Pavlides S, Cheung MWC, Daumer K, Lisanti MP. Role of caveolin-1 in the regulation of lipoprotein metabolism. Am J Physiol Cell Physiol 2008; 295:C242-8. [PMID: 18508910 DOI: 10.1152/ajpcell.00185.2008] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Lipoprotein metabolism plays an important role in the development of several human diseases, including coronary artery disease and the metabolic syndrome. A good comprehension of the factors that regulate the metabolism of the various lipoproteins is therefore key to better understanding the variables associated with the development of these diseases. Among the players identified are regulators such as caveolins and caveolae. Caveolae are small plasma membrane invaginations that are observed in terminally differentiated cells. Their most important protein marker, caveolin-1, has been shown to play a key role in the regulation of several cellular signaling pathways and in the regulation of plasma lipoprotein metabolism. In the present paper, we have examined the role of caveolin-1 in lipoprotein metabolism using caveolin-1-deficient (Cav-1(-/-)) mice. Our data show that, while Cav-1(-/-) mice show increased plasma triglyceride levels, they also display reduced hepatic very low-density lipoprotein (VLDL) secretion. Additionally, we also found that a caveolin-1 deficiency is associated with an increase in high-density lipoprotein (HDL), and these HDL particles are enriched in cholesteryl ester in Cav-1(-/-) mice when compared with HDL obtained from wild-type mice. Finally, our data suggest that a caveolin-1 deficiency prevents the transcytosis of LDL across endothelial cells, and therefore, that caveolin-1 may be implicated in the regulation of plasma LDL levels. Taken together, our studies suggest that caveolin-1 plays an important role in the regulation of lipoprotein metabolism by controlling their plasma levels as well as their lipid composition. Thus caveolin-1 may also play an important role in the development of atherosclerosis.
Collapse
Affiliation(s)
- Philippe G Frank
- Kimmel Cancer Center, Department of Cancer Biology, and Biochemistry and Molecular Biology, and Stem Cell Biology and Regenerative Medicine Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | |
Collapse
|
49
|
Desjardins F, Lobysheva I, Pelat M, Gallez B, Feron O, Dessy C, Balligand JL. Control of blood pressure variability in caveolin-1-deficient mice: role of nitric oxide identified in vivo through spectral analysis. Cardiovasc Res 2008; 79:527-36. [DOI: 10.1093/cvr/cvn080] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
50
|
Ingueneau C, Huynh-Do U, Thiers JC, Nègre-Salvayre A, Salvayre R, Vindis C. Caveolin-1 sensitizes vascular smooth muscle cells to mildly oxidized LDL-induced apoptosis. Biochem Biophys Res Commun 2008; 369:889-93. [PMID: 18328807 DOI: 10.1016/j.bbrc.2008.02.134] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 02/23/2008] [Indexed: 12/01/2022]
Abstract
Oxidized low-density lipoprotein (oxLDL)-induced apoptosis of vascular cells may participate to plaque instability and rupture. Caveolin-1 has emerged as an important regulator of several signal transduction pathways and processes that play a role in atherosclerosis. In this study we examined the potential role of caveolin-1 in the regulation of oxLDL-induced Ca(2+) signaling and apoptosis in vascular smooth muscle cells (VSMC). Cells expressing caveolin-1 were more susceptible to oxLDL-induced apoptosis, and this was correlated with enhanced Ca(2+) entry and pro-apoptotic events. Moreover, caveolin-1 silencing by small interfering RNA decreased the level of apoptotic cells after oxLDL treatment. These findings provide new insights about the potential role of caveolin-1 in the regulation of oxLDL-induced apoptosis in vascular cells and its contribution to the instability of the plaque.
Collapse
Affiliation(s)
- Cécile Ingueneau
- INSERM U-858/I2MR, Department of Vascular Biology, IFR-31, CHU Rangueil, 1 Avenue Jean Poulhes, BP 84225, 31432 Toulouse Cedex 4, France
| | | | | | | | | | | |
Collapse
|