1
|
Sandré F, Moilleron R, Morin C, Garrigue-Antar L. Comprehensive analysis of a widely pharmaceutical, furosemide, and its degradation products in aquatic systems: Occurrence, fate, and ecotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123799. [PMID: 38527585 DOI: 10.1016/j.envpol.2024.123799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/09/2024] [Accepted: 03/13/2024] [Indexed: 03/27/2024]
Abstract
Many pharmaceutical compounds end up in the environment due to incomplete removal by wastewater treatment plants (WWTPs). Some compounds are sometimes present in significant concentrations and therefore represent a risk to the aquatic environment. Furosemide is one of the most widely used drugs in the world. Considered as an essential drug by the World Health Organization, this powerful loop diuretic is used extensively to treat hypertension, heart and kidney failure and many other purposes. However, this important consumption also results in a significant release of furosemide in wastewater and in the receiving environment where concentrations of a few hundred ng/L to several thousand have been found in the literature, making furosemide a compound of great concern. Also, during its transport in wastewater systems and WWTPs, furosemide can be degraded by various processes resulting in the production of more than 74 by-products. Furosemide may therefore present a significant risk to ecosystem health due not only to its direct cytotoxic, genotoxic and hepatotoxic effects in animals, but also indirectly through its transformation products, which are poorly characterized. Many articles classify furosemide as a priority pollutant according to its occurrence in the environment, its persistence, its elimination by WWTPs, its toxicity and ecotoxicity. Here, we present a state-of-the-art review of this emerging pollutant of interest, tracking it, from its consumption to its fate in the aquatic environment. Discussion points include the occurrence of furosemide in various matrices, the efficiency of many processes for the degradation of furosemide, the subsequent production of degradation products following these treatments, as well as their toxicity.
Collapse
Affiliation(s)
- Fidji Sandré
- Leesu, Univ Paris Est Creteil, Ecole des Ponts, Creteil, F-94010, France
| | - Régis Moilleron
- Leesu, Univ Paris Est Creteil, Ecole des Ponts, Creteil, F-94010, France
| | - Christophe Morin
- Leesu, Univ Paris Est Creteil, Ecole des Ponts, Creteil, F-94010, France; IUT - Sénart Fontainebleau, 36 Rue Georges Charpak, 77567, Lieusaint, France
| | | |
Collapse
|
2
|
Verdini F, Abramova A, Boffa L, Calcio Gaudino E, Cravotto G. The unveiling of a dynamic duo: hydrodynamic cavitation and cold plasma for the degradation of furosemide in wastewater. Sci Rep 2024; 14:6805. [PMID: 38514714 PMCID: PMC10957998 DOI: 10.1038/s41598-024-57038-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
The degradation in water of furosemide (FUR), a widely used diuretic drug, was herein reported. The method entails an integrated approach based on the hybridisation of hydrodynamic cavitation (HC) with electrical discharge (ED) plasma technology. This dynamic duo could increase the production of oxidising compounds in water, in particular hydroxyl radicals (OH radicals), by triggering the rapid homolytic decomposition of water molecules and avoiding the addition of external oxidants. This study clearly emphasises the effectiveness of an integrated approach to improve the degradation of pollutants in wastewater originating from active pharmaceutical ingredients (APIs). The results of HC/ED-assisted FUR degradation in the presence of radical scavengers highlight the predominant role of the radical oxidation mechanism at the gas-liquid interface of the cavitation bubble during HC/ED treatment. A comparative analysis of the three technologies-HC alone, HC/ED and UV alone-emphasised the promising potential of hybrid HC/ED as a scalable industrial technology. This is demonstrated by the higher degradation rates (100%, 10 min) when treating large volumes (5L) of wastewater contaminated with FUR (50 mg/L), even in the presence of other APIs.
Collapse
Affiliation(s)
- Federico Verdini
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Giuria 9, 10125, Turin, Italy
| | - Anna Abramova
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prospekt 31, Moscow, Russia, 119991
| | - Luisa Boffa
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Giuria 9, 10125, Turin, Italy
| | - Emanuela Calcio Gaudino
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Giuria 9, 10125, Turin, Italy.
| | - Giancarlo Cravotto
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Giuria 9, 10125, Turin, Italy.
| |
Collapse
|
3
|
Liu Y, M Leonova A, Royall PG, Abdillah Akbar BVEB, Cao Z, Jones SA, Isreb A, Hawcutt DB, Alhnan MA. Laser-cutting: A novel alternative approach for point-of-care manufacturing of bespoke tablets. Int J Pharm 2023; 647:123518. [PMID: 37852311 DOI: 10.1016/j.ijpharm.2023.123518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/02/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
A novel subtractive manufacturing method to produce bespoke tablets with immediate and extended drug release is presented. This is the first report on applying fusion laser cutting to produce bespoke furosemide solid dosage forms based on pharmaceutical-grade polymeric carriers. Cylindric tablets of different sizes were produced by controlling the two-dimensional design of circles of the corresponding diameter. Immediate and extended drug release patterns were achieved by modifying the composition of the polymeric matrix. Thermal analysis and XRD indicated that furosemide was present in an amorphous form. The laser-cut tablets demonstrated no significant drug degradation (<2%) nor the formation of impurities were identified. Multi-linear regression was used to quantify the influences of laser-cutting process parameters (laser energy levels, scan speeds, and the number of laser applications) on the depth of the laser cut. The utility of this approach was exemplified by manufacturing tablets of accurate doses of furosemide. Unlike additive or formative manufacturing, the reported approach of subtractive manufacturing avoids the modification of the structure, e.g., the physical form of the drug or matrix density of the tablet during the production process. Hence, fusion laser cutting is less likely to modify critical quality attributes such as release patterns or drug contents. In a point-of-care manufacturing scenario, laser cutting offers a significant advantage of simplifying quality control and a real-time release of laser-cut products such as solid dosage forms and implants.
Collapse
Affiliation(s)
- Yujing Liu
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London, UK
| | - Anna M Leonova
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London, UK
| | - Paul G Royall
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London, UK
| | - Bambang V E B Abdillah Akbar
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London, UK
| | - Zhengge Cao
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London, UK
| | - Stuart A Jones
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London, UK
| | - Abdullah Isreb
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Daniel B Hawcutt
- NIHR Alder Hey Clinical Research Facility, Alder Hey Children's NHS Foundation Trust, Liverpool, UK; Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| | - Mohamed A Alhnan
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London, UK.
| |
Collapse
|
4
|
Noritz G, Davidson L, Steingass K. Providing a Primary Care Medical Home for Children and Youth With Cerebral Palsy. Pediatrics 2022; 150:e2022060055. [PMID: 36404756 DOI: 10.1542/peds.2022-060055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cerebral palsy (CP) is the most common motor disorder of childhood, with prevalence estimates ranging from 1.5 to 4 in 1000 live births. This clinical report seeks to provide primary care physicians with guidance to detect children with CP; collaborate with specialists in treating the patient; manage associated medical, developmental, and behavioral problems; and provide general medical care to their patients with CP.
Collapse
Affiliation(s)
- Garey Noritz
- Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio; and
| | - Lynn Davidson
- The Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York
| | - Katherine Steingass
- Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio; and
| |
Collapse
|
5
|
Gawrońska M, Kowalik M, Duch J, Kazimierczuk K, Makowski M. Sulfonamides with hydroxyphenyl moiety: Synthesis, structure, physicochemical properties, and ability to form complexes with Rh(III) ion. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Küng R, Göstl R, Schmidt BM. Release of Molecular Cargo from Polymer Systems by Mechanochemistry. Chemistry 2022; 28:e202103860. [PMID: 34878679 PMCID: PMC9306765 DOI: 10.1002/chem.202103860] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 11/15/2022]
Abstract
The design and manipulation of (multi)functional materials at the nanoscale holds the promise of fuelling tomorrow's major technological advances. In the realm of macromolecular nanosystems, the incorporation of force-responsive groups, so called mechanophores, has resulted in unprecedented access to responsive behaviours and enabled sophisticated functions of the resulting structures and advanced materials. Among the diverse force-activated motifs, the on-demand release or activation of compounds, such as catalysts, drugs, or monomers for self-healing, are sought-after since they enable triggering pristine small molecule function from macromolecular frameworks. Here, we highlight examples of molecular cargo release systems from polymer-based architectures in solution by means of sonochemical activation by ultrasound (ultrasound-induced mechanochemistry). Important design concepts of these advanced materials are discussed, as well as their syntheses and applications.
Collapse
Affiliation(s)
- Robin Küng
- Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstraße 140225DüsseldorfGermany
| | - Robert Göstl
- DWI – Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Bernd M. Schmidt
- Institut für Organische Chemie und Makromolekulare ChemieHeinrich-Heine-Universität DüsseldorfUniversitätsstraße 140225DüsseldorfGermany
| |
Collapse
|
7
|
Clinical Use of Diuretics. Pediatr Nephrol 2022. [DOI: 10.1007/978-3-030-52719-8_115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Gleeson JP, Fein KC, Whitehead KA. Oral delivery of peptide therapeutics in infants: Challenges and opportunities. Adv Drug Deliv Rev 2021; 173:112-124. [PMID: 33774115 PMCID: PMC8178217 DOI: 10.1016/j.addr.2021.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022]
Abstract
The vast majority of drugs are not designed or developed for pediatric and infant populations. Peptide drugs, which have become increasingly relevant in the past several decades, are no exception. Unfortunately, nearly all of the 60+ approved peptide drugs are formulated for injection, a particularly unfriendly mode of administration for infants. Although three peptide drugs were recently approved for oral formulations, this major advance in peptide drug delivery is available only for adults. In this review, we consider the current challenges and opportunities for the oral formulation of peptide therapeutics, specifically for infant populations. We describe the strategies that enable oral protein delivery and the potential impact of infant physiology on those strategies. We also detail the limited but encouraging progress towards 1) adapting conventional drug development and delivery approaches to infants and 2) designing novel infant-centric formulations. Together, these efforts underscore the feasibility of oral peptide delivery in infants and provide motivation to increase attention paid to this underserved area of drug delivery and formulation.
Collapse
Affiliation(s)
- John P Gleeson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Katherine C Fein
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Kathryn A Whitehead
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States.
| |
Collapse
|
9
|
Driano JE, Lteif AN, Creo AL. Vasopressin-Dependent Disorders: What Is New in Children? Pediatrics 2021; 147:peds.2020-022848. [PMID: 33795481 DOI: 10.1542/peds.2020-022848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 11/24/2022] Open
Abstract
Arginine vasopressin (AVP)-mediated osmoregulatory disorders, such as diabetes insipidus (DI) and syndrome of inappropriate secretion of antidiuretic hormone (SIADH) are common in the differential diagnosis for children with hypo- and hypernatremia and require timely recognition and treatment. DI is caused by a failure to concentrate urine secondary to impaired production of or response to AVP, resulting in hypernatremia. Newer methods of diagnosing DI include measuring copeptin levels; copeptin is AVP's chaperone protein and serves as a surrogate biomarker of AVP secretion. Intraoperative copeptin levels may also help predict the risk for developing DI after neurosurgical procedures. Copeptin levels hold diagnostic promise in other pediatric conditions, too. Recently, expanded genotype and phenotype correlations in inherited DI disorders have been described and may better predict the clinical course in affected children and infants. Similarly, newer formulations of synthetic AVP may improve pediatric DI treatment. In contrast to DI, SIADH, characterized by inappropriate AVP secretion, commonly leads to severe hyponatremia. Contemporary methods aid clinicians in distinguishing SIADH from other hyponatremic conditions, particularly cerebral salt wasting. Further research on the efficacy of therapies for pediatric SIADH is needed, although some adult treatments hold promise for pediatrics. Lastly, expansion of home point-of-care sodium testing may transform management of SIADH and DI in children. In this article, we review recent developments in the understanding of pathophysiology, diagnostic workup, and treatment of better outcomes and quality of life for children with these challenging disorders.
Collapse
Affiliation(s)
- Jane E Driano
- School of Medicine, Creighton University, Omaha, Nebraska; and
| | - Aida N Lteif
- Division of Pediatric Endocrinology and Metabolism, Mayo Clinic, Rochester, Minnesota
| | - Ana L Creo
- Division of Pediatric Endocrinology and Metabolism, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
10
|
Chapa R, Li CY, Basit A, Thakur A, Ladumor MK, Sharma S, Singh S, Selen A, Prasad B. Contribution of Uptake and Efflux Transporters to Oral Pharmacokinetics of Furosemide. ACS OMEGA 2020; 5:32939-32950. [PMID: 33403255 PMCID: PMC7774078 DOI: 10.1021/acsomega.0c03930] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/03/2020] [Indexed: 05/17/2023]
Abstract
Furosemide is a widely used diuretic for treating excessive fluid accumulation caused by disease conditions like heart failure and liver cirrhosis. Furosemide tablet formulation exhibits variable pharmacokinetics (PK) with bioavailability ranging from 10 to almost 100%. To explain the variable absorption, we integrated the physicochemical, in vitro dissolution, permeability, distribution, and the elimination parameters of furosemide in a physiologically-based pharmacokinetic (PBPK) model. Although the intravenous PBPK model reasonably described the observed in vivo PK data, the reported low passive permeability failed to capture the observed data after oral administration. To mechanistically justify this discrepancy, we hypothesized that transporter-mediated uptake contributes to the oral absorption of furosemide in conjunction with passive permeability. Our in vitro results confirmed that furosemide is a substrate of intestinal breast cancer resistance protein (BCRP), multidrug resistance-associated protein 4 (MRP4), and organic anion transporting polypeptide 2B1 (OATP2B1), but it is not a substrate of P-glycoprotein (P-gp) and MRP2. We then estimated the net transporter-mediated intestinal uptake and integrated it into the PBPK model under both fasting and fed conditions. Our in vitro data and PBPK model suggest that the absorption of furosemide is permeability-limited, and OATP2B1 and MRP4 are important for its permeability across intestinal membrane. Further, as furosemide has been proposed as a probe substrate of renal organic anion transporters (OATs) for assessing clinical drug-drug interactions (DDIs) during drug development, the confounding effects of intestinal transporters identified in this study on furosemide PK should be considered in the clinical transporter DDI studies.
Collapse
Affiliation(s)
- Revathi Chapa
- Department
of Pharmaceutics, University of Washington, Seattle, Washington 98195-0005, United States
| | - Cindy Yanfei Li
- Department
of Pharmaceutics, University of Washington, Seattle, Washington 98195-0005, United States
| | - Abdul Basit
- College
of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Aarzoo Thakur
- National
Institute of Pharmaceutical
Education and Research (NIPER), SAS Nagar, Punjab 160062, India
| | - Mayur K Ladumor
- Department
of Pharmaceutics, University of Washington, Seattle, Washington 98195-0005, United States
- National
Institute of Pharmaceutical
Education and Research (NIPER), SAS Nagar, Punjab 160062, India
| | - Sheena Sharma
- College
of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
- National
Institute of Pharmaceutical
Education and Research (NIPER), SAS Nagar, Punjab 160062, India
| | - Saranjit Singh
- National
Institute of Pharmaceutical
Education and Research (NIPER), SAS Nagar, Punjab 160062, India
| | - Arzu Selen
- Office
of Testing and Research, Office of Pharmaceutical Quality, CDER/ FDA, Silver
Spring, Maryland 20903-1058, United States
| | - Bhagwat Prasad
- College
of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| |
Collapse
|
11
|
Freerks L, Sommerfeldt J, Löper PC, Klein S. Safe, swallowable and palatable paediatric mini-tablet formulations for a WHO model list of essential medicines for children compound – A promising starting point for future PUMA applications. Eur J Pharm Biopharm 2020; 156:11-19. [DOI: 10.1016/j.ejpb.2020.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/21/2020] [Accepted: 08/14/2020] [Indexed: 12/24/2022]
|
12
|
Manfredini VA, Cerini C, Clavenna A, Dotta A, Caccamo ML, Staffler A, Massenzi L, Rezzonico RM. Furosemide use in Italian neonatal intensive care units: a national survey. Ital J Pediatr 2020; 46:86. [PMID: 32571386 PMCID: PMC7310123 DOI: 10.1186/s13052-020-00851-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/15/2020] [Indexed: 01/30/2023] Open
Abstract
Abstract Background Furosemide is approved in full term neonates to treat edema associated with congestive heart failure, cirrhosis and renal diseases. It is often administered off-label in premature neonates, to treat respiratory conditions and at doses greater-than-recommended. We conducted a national survey on behalf of the Neonatal Pharmacotherapy Study Group of the Italian Society of Neonatology (SIN), to investigate its use in Italian neonatal intensive care units (NICUs), in conformity with current guidelines. Methods Between December 2016 and June 2017, a 14-item multiple-choice online questionnaire was sent to all NICU directors from the SIN directory. Gestational age, route of administration, posology, indications, referenced guidelines, adverse effects monitoring and the presence of Paediatric Cardiology or Cardiosurgery service on site were assessed. A chi-square test was performed 1) to evaluate differences in the distribution of responses between NICUs administering furosemide at doses higher-than-recommended; 2) to compare the proportion of NICUs administering furosemide at high doses in institutions with versus without a Paediatric Cardiology or Cardiosurgery service. Results The response rate was 50% (57/114). The intravenous and oral routes were chosen primarily; the intravenous administration in single doses predominated over continuous infusion. Its main therapeutic indications were congestive heart failure/overload (94.7%) and oligo-anuria (87.7%) however furosemide was also frequently used for broncopulmonary dysplasia (50.9%) and respiratory distress syndrome and/or transient tachypnea of the newborn (24.6%). In 28/57 NICUs furosemide was administered at doses higher-than-recommended. In most NICUs the same posology was used in term and preterm neonates. Compared to the total sample, a larger proportion of NICUs administering doses greater-than-recommended referenced current literature for reasons to do so (19.3 and 32.1% respectively). The presence of a Paediatric Cardiology or Cardiosurgery service on site did not correlate with the chosen posology. The majority of NICUs performed acoustic test and renal ultrasound for furosemide exposure greater than 2 weeks. Conclusions In Italian NICUs, furosemide is commonly prescribed to term and preterm newborns for label and unlabeled indications. Doses greater-than-recommended are frequently administered. Such use is not necessarily inappropriate. More research is required to assess the efficacy and safety of unlabeled use.
Collapse
Affiliation(s)
| | - Chiara Cerini
- Children's Hospital Los Angeles, 4650 Sunset Boulevard, Los Angeles, CA, 90027, USA
| | - Antonio Clavenna
- Department of Public Health, Laboratory for Mother and Child Health, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Andrea Dotta
- Department of Medical and Surgical Neonatology, Neonatal Intensive Care Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Maria Letizia Caccamo
- Indipedent researcher, Former director of Neonatal Intensive Care Unit, Sant'Anna Hospital, Como, Italy
| | - Alex Staffler
- Division of Neonatology, Central teaching Hospital of Bolzano, Bozen, Italy
| | - Luca Massenzi
- Neonatology and Neonatal Intensive Care Unit, "San Giovanni Calibita" Fatebenefratelli Hospital, Rome, Italy
| | - Rossano Massimo Rezzonico
- Indipendent researcher, Former director of Neonatal Intensive Care Unit, ASST Rhodense, Via C. Forlanini 95, 20024, Milan, Italy
| | | |
Collapse
|
13
|
Abstract
Pediatric heart failure (PHF) is an important cause of mortality and morbidity. Whereas ischemic heart disease is the most important cause of heart failure in adults, congenital heart diseases (CHD) and cardiomyopathies are important etiologies of PHF. Management of PHF also differs from that of adults. Here authors have reviewed the literature on PHF with respect to etiology, symptoms, investigations and treatment strategies.
Collapse
Affiliation(s)
- Manojkumar Rohit
- Department of Cardiology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Sudhansu Budakoty
- Department of Cardiology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| |
Collapse
|
14
|
Heo JH, Rascati KL, Lopez KN, Moffett BS. Increased Fracture Risk with Furosemide Use in Children with Congenital Heart Disease. J Pediatr 2018; 199:92-98.e10. [PMID: 29753543 PMCID: PMC6733257 DOI: 10.1016/j.jpeds.2018.03.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/11/2018] [Accepted: 03/30/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To determine the association of furosemide therapy with the incidence of bone fractures in children with congenital heart disease. STUDY DESIGN We conducted a retrospective cohort study with data extracted from the 2008-2014 Texas Medicaid databases. Pediatric patients aged <12 years diagnosed with congenital heart disease, cardiomyopathy, or heart failure were included. Patients taking furosemide were categorized into a furosemide-adherent group (medication possession ratio of ≥70%), and a furosemide-nonadherent group (medication possession ratio of <70%). A third group of patients was matched to the furosemide user groups by using propensity score matching. A multivariate logistic regression and Cox proportional hazard model with a Kaplan-Meier plot (time-to-fracture) were used to compare the 3 groups, controlling for baseline demographics and clinical characteristics. RESULTS After matching, 3912 patients (furosemide adherent, n = 254; furosemide nonadherent, n = 724; no furosemide, n = 2934) were identified. The incidence of fractures was highest for the furosemide-adherent group (9.1%; 23 of 254), followed by the furosemide-nonadherent group (7.2%; 52 of 724), which were both higher than for patients who did not receive furosemide (5.0%; 148 of 2934) (P < .001). Using logistic regression, both furosemide groups were more likely to have fractures than the no furosemide group: furosemide-adherent OR of 1.9 (95% CI, 1.17-2.98; P = .009); furosemide nonadherent OR of 1.5 (95% CI, 1.10-2.14; P = .01). In the Cox proportional hazard model, the risk of fractures for the furosemide-adherent group was significantly higher compared with the no furosemide group (HR, 1.6; 95% CI, 1.00-2.42; P = .04). CONCLUSIONS Furosemide therapy, even with nonconsistent dosing, was associated with an increased risk of bone fractures in children with congenital heart disease.
Collapse
Affiliation(s)
| | - Karen L Rascati
- Health Outcomes and Pharmacy Practice, College of Pharmacy, The University of Texas at Austin, Austin, TX
| | - Keila N Lopez
- Department of Pediatrics, Baylor College of Medicine, Houston, TX; Department of Pharmacy, Texas Children's Hospital, Houston, TX
| | - Brady S Moffett
- Department of Pediatrics, Baylor College of Medicine, Houston, TX; Department of Pharmacy, Texas Children's Hospital, Houston, TX
| |
Collapse
|
15
|
Williamson K, Bredin G, Avarello J, Gangadharan S. A Randomized Controlled Trial of a Single Dose Furosemide to Improve Respiratory Distress in Moderate to Severe Bronchiolitis. J Emerg Med 2017; 54:40-46. [PMID: 29174754 DOI: 10.1016/j.jemermed.2017.08.099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 08/07/2017] [Accepted: 08/11/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND Bronchiolitis is one of the most common disorders of the lower respiratory tract in infants. While historically diuretics have been used in severe bronchiolitis, no studies have looked directly at their early use in children in the emergency department. OBJECTIVE The primary objective of this study was to determine whether a single early dose of a diuretic in infants with moderate to severe bronchiolitis would improve respiratory distress. Secondary objectives examined whether it reduced the use of noninvasive ventilation and hospital length of stay. METHODS Patients diagnosed with clinical bronchiolitis were enrolled at a tertiary care, academic children's hospital over a 3-year period. This was a double-blind, randomized controlled trial in which subjects were randomly assigned to either furosemide or placebo. Respiratory rate and oxygen saturation at the time of medication delivery and at 2 and 4 h post-intervention were recorded, as well as other data. Exact logistic regression was used to examine associations. RESULTS There were 46 subjects enrolled and randomized. There was no difference in respiratory rates, measured as a decrease of ≥ 25%, at both 2 and 4 h after intervention between furosemide and placebo groups (odds ratios 1.13 and 1.13, respectively). There was also no difference in oxygen saturation, intensive care unit admission rate, or hospital length of stay between groups. CONCLUSIONS While theoretically a single dose of a diuretic to reduce lung fluid would improve respiratory distress in children with bronchiolitis, our randomized controlled medication trial showed no difference in outcomes. ClinicalTrials.gov ID: NCT02469597.
Collapse
Affiliation(s)
- Kristy Williamson
- Department of Pediatric Emergency Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York
| | - Gabriel Bredin
- Department of Pediatric Critical Care Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York
| | - Jahn Avarello
- Department of Pediatric Emergency Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York
| | - Sandeep Gangadharan
- Department of Pediatric Critical Care Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York
| |
Collapse
|
16
|
Kim GJ, Capparelli E, Romanowski G, Proudfoot JA, Tremoulet AH. Development of Tolerance to Chronic Intermittent Furosemide Therapy in Pediatric Patients. J Pediatr Pharmacol Ther 2017; 22:394-398. [PMID: 29290738 PMCID: PMC5736250 DOI: 10.5863/1551-6776-22.6.394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVES The purpose of this study is to describe whether tolerance develops in pediatric patients receiving chronic intermittent furosemide therapy, to characterize when it occurs and whether age-related variations exist. The effects of increasing total daily dose of furosemide and concurrent diuretics and vasopressors were assessed as secondary aims. METHODS Charts from patients receiving intravenous or oral furosemide for at least 3 consecutive days of therapy between June 1, 2013, and December 31, 2013, were reviewed retrospectively. Daily net fluid balance was used as the objective marker for development of tolerance. Net fluid balance (mL/kg/mg) was defined as the difference in a patient's daily intake and urine output (mL), normalized by weight (kg) and total daily dose of furosemide (mg). RESULTS Sixty-one patients, aged 2 days to 20 years (median 3 years), were included in this study. Median daily dose of furosemide was 1.96 mg/kg/day (range, 0-13.7 mg/kg/day). Average net fluid balance for all patients on the first day and last day of therapy was 6.83 and 26.66 mL/kg/mg, respectively (p = 0.011). Linear regression and Spearman's correlation found no significant relationship between age and difference in net fluid balance between the first and last day. Linear mixed-effects model for net fluid balance with day as covariate found that net fluid balance increases over time (p = 0.002). CONCLUSIONS Pediatric patients appear to develop tolerance to chronic intermittent furosemide therapy.
Collapse
Affiliation(s)
- Gloria J. Kim
- Department of Clinical Pharmacy (GJK, GR, AHT), Rady Children's Hospital San Diego, California, Department of Pediatrics (EC, AHT), University of California, San Diego, Clinical and Translational Research Institute (JAP), University of California, San Diego
| | - Edmund Capparelli
- Department of Clinical Pharmacy (GJK, GR, AHT), Rady Children's Hospital San Diego, California, Department of Pediatrics (EC, AHT), University of California, San Diego, Clinical and Translational Research Institute (JAP), University of California, San Diego
| | - Gale Romanowski
- Department of Clinical Pharmacy (GJK, GR, AHT), Rady Children's Hospital San Diego, California, Department of Pediatrics (EC, AHT), University of California, San Diego, Clinical and Translational Research Institute (JAP), University of California, San Diego
| | - James A. Proudfoot
- Department of Clinical Pharmacy (GJK, GR, AHT), Rady Children's Hospital San Diego, California, Department of Pediatrics (EC, AHT), University of California, San Diego, Clinical and Translational Research Institute (JAP), University of California, San Diego
| | - Adriana H. Tremoulet
- Department of Clinical Pharmacy (GJK, GR, AHT), Rady Children's Hospital San Diego, California, Department of Pediatrics (EC, AHT), University of California, San Diego, Clinical and Translational Research Institute (JAP), University of California, San Diego
| |
Collapse
|
17
|
Abstract
OBJECTIVES Focusing on critically ill children with cardiac disease, we will review common causes of fluid perturbations, clinical recognition, and strategies to minimize and treat fluid-related complications. DATA SOURCE MEDLINE and PubMed. CONCLUSIONS Meticulous fluid management is vital in critically ill children with cardiac disease. Fluid therapy is important to maintain adequate blood volume and perfusion pressure in order to support cardiac output, tissue perfusion, and oxygen delivery. However, fluid overload and acute kidney injury are common and are associated with increased morbidity and mortality. Understanding the etiologies for disturbances in volume status and the pathophysiology surrounding those conditions is crucial for providing optimal care.
Collapse
|
18
|
Abstract
The loop diuretics furosemide and bumetanide are used widely for the management of fluid overload in both acute and chronic disease states. To date, most pharmacokinetic studies in neonates have been conducted with furosemide and little is known about bumetanide. The aim of this article was to review the published data on the pharmacology of furosemide and bumetanide in neonates and infants in order to provide a critical analysis of the literature, and a useful tool for physicians. The bibliographic search was performed electronically using PubMed and EMBASE databases as search engines and March 2011 was the cutoff point. The half-life (t(½)) of both furosemide and bumetanide is considerably longer in neonates than in adults and consequently the clearance (CL) of these drugs is reduced at birth. In healthy volunteers, plasma t(½) of furosemide ranges from 33 to 100 minutes, whereas in neonates it ranges from 8 to 27 hours. The volume of distribution (V(d)) of furosemide undergoes little variation during neonate maturation. The dose of furosemide, administered by intermittent intravenous infusion, is 1 mg/kg and may increase to a maximum of 2 mg/kg every 24 hours in premature infants and every 12 hours in full-term infants. Comparison of continuous infusion versus intermittent infusion of furosemide showed that the diuresis is more controlled with fewer hemodynamic and electrolytic variations during continuous infusion. The appropriate infusion rate of furosemide ranges from 0.1 to 0.2 mg/kg/h and when the diuresis is <1 mL/kg/h the infusion rate may be increased to 0.4 mg/kg/h. Treatment with theophylline before administration of furosemide results in a significant increase of urine flow rate. Bumetanide is more potent than furosemide and its dose after intermittent intravenous infusion ranges from 0.005 to 0.1 mg/kg every 24 hours. The t(½) of bumetanide in neonates ranges from 1.74 to 7.0 hours. Up to now, no data are available on the continuous infusion of bumetanide. Extracorporeal membrane oxygenation (ECMO) is used for a variety of indications including sepsis, persistent pulmonary hypertension, meconium aspiration syndrome, cardiac defects and congenital diaphragmatic hernia. There are two studies of furosemide in neonates undergoing ECMO and only one on the pharmacokinetics of bumetanide under ECMO. When ECMO was conducted for 72 hours, the total amount of furosemide administered was 7.0 mg/kg, and the urine production in the 3 days of treatment was about 6 mL/kg/h, which is the target value. The t(½) of bumetanide in neonates during ECMO was extremely variable. CL, t(½), and V(d) were 0.63 mL/min/kg, 13.2 hours, and 0.45 L/kg, respectively. Furosemide may be administered by inhalation and inhibits the bronco-constrictive effect of exercise, cold air ventilation and antigen challenge. However, inhaled furosemide is not active in infants with viral bronchiolitis and its effect on broncho-pulmonary dysplasia is still uncertain. Furosemide does not significantly increase the risk of failure of patent ductus arteriosus closure when indomethacin or ibuprofen have been co-administered. Infants with low birth weight treated long-term with furosemide are at risk for the development of intra-renal calcification. Furosemide therapy above 10 mg/kg bodyweight cumulative dose had a 48-fold increased risk of nephrocalcinosis. The use of furosemide in combination with indomethacin increased the incidence of acute renal failure. The maturation of the kidney governs the pharmacokinetics of furosemide and bumetanide in the infant. CL and t(½) are influenced by development, and this must be taken into consideration when planning a dosage regimen with these drugs.
Collapse
|
19
|
Bush PG, Pritchard M, Loqman MY, Damron TA, Hall AC. A key role for membrane transporter NKCC1 in mediating chondrocyte volume increase in the mammalian growth plate. J Bone Miner Res 2010; 25:1594-603. [PMID: 20200963 PMCID: PMC3154001 DOI: 10.1002/jbmr.47] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The mechanisms that underlie growth plate chondrocyte volume increase and hence bone lengthening are poorly understood. Many cell types activate the Na-K-Cl cotransporter (NKCC) to bring about volume increase. We hypothesised that NKCC may be responsible for the volume expansion of hypertrophic chondrocytes. Metatarsals/metacarpals from 16 rat pups (P(7)) were incubated in the presence/absence of the specific NKCC inhibitor bumetanide and measurement of whole-bone lengths and histologic analysis of the growth plate were done after 24 hours. Fluorescent NKCC immunohistochemistry was visualised using a confocal laser scanning microscopy on seven rat tibial growth plates (P(7)). Microarray analysis was performed on mRNA isolated from proliferative and hypertrophic zone cells of tibial growth plates from five rats of each of three ages (P(49/53/58)). Exposure to bumetanide resulted in approximately 35% reduction (paired Student's t test, p < .05) of bone growth in a dose-dependent manner; histologic analysis showed that a reduction in hypertrophic zone height was responsible. Quantification of fluorescence immunohistochemistry revealed a significant (paired Student's t test, p < .05) change in NKCC from the intracellular space of proliferative cells to the cytosolic membrane of hypertrophic zone cells. Further, microarray analysis illustrated an increase in NKCC1 mRNA between proliferative and hypertrophic cells. The increase in NKCC1 mRNA in hypertrophic zone cells, its cellular localization, and reduced bone growth in the presence of the NKCC inhibitor bumetanide implicate NKCC in growth plate hypertrophic chondrocyte volume increase. Further investigation is warranted to determine the regulatory control of NKCC in the mammalian growth plate and the possible detrimental effect on bone growth with chronic exposure to loop diuretics.
Collapse
Affiliation(s)
- Peter G Bush
- Centre for Biomedical and Health Science Research, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK.
| | | | | | | | | |
Collapse
|
20
|
Prolonged hyperthermia from furosemide infusion--a case report. Eur J Clin Pharmacol 2009; 66:215-6. [PMID: 19957078 DOI: 10.1007/s00228-009-0761-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 11/09/2009] [Indexed: 10/20/2022]
|
21
|
Affiliation(s)
- Daphne T. Hsu
- From the Division of Pediatric Cardiology (D.T.H.), Children’s Hospital at Montefiore and Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY; and Heart Development and Structural Diseases Branch (G.D.P.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Gail D. Pearson
- From the Division of Pediatric Cardiology (D.T.H.), Children’s Hospital at Montefiore and Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY; and Heart Development and Structural Diseases Branch (G.D.P.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| |
Collapse
|
22
|
Levillain O, Marescau B, Possemiers I, De Deyn PP. Accumulation of methylguanidine and changes in guanidino compound levels in plasma, urine, and kidneys of furosemide-treated rats. Metabolism 2008; 57:802-10. [PMID: 18502263 DOI: 10.1016/j.metabol.2008.01.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 01/17/2008] [Indexed: 10/22/2022]
Abstract
Antidiuresis and renal diseases alter the levels of guanidino compounds (GCs) in various tissues. Therefore, we hypothesized that diuresis could also disturb GC metabolism, storage, and elimination. In this study, rats were made diuretic to analyze GC levels in plasma, urine, and kidneys. Furosemide was chosen because of its wide use in various human pathologies. Rats were injected intraperitoneally 5 or 10 mg furosemide spread over a 24-hour cycle. Urine was collected over a period of 24 hours before and during furosemide treatment. Plasma was obtained from arterial blood. Renal zones were dissected. The GCs were determined by liquid chromatography. Five milligrams of furosemide provoked a significant increase in plasma and urine levels of GCs compared with those of the controls. The renal distribution and content of GCs were weakly modified by furosemide except for methylguanidine (MG). The level of MG was enhanced by 10 to 16 times in all renal zones. The MG level was 60% higher in renal zones of rats treated with 10 rather than 5 mg furosemide. The fractional excretion of MG was decreased by furosemide. Our data suggest that MG accumulation in kidney and plasma was caused by furosemide, which might induce MG synthesis, and that MG washout from tissue cells into urine by furosemide through the kidney may cause an increase in MG in the kidney.
Collapse
Affiliation(s)
- Olivier Levillain
- Université Claude Bernard Lyon I, Physiologie Intégrative, Cellulaire et Moléculaire, UMR 5123 CNRS, Bâtiment. R. Dubois, Bvd. du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France.
| | | | | | | |
Collapse
|
23
|
Johanson CE, Duncan JA, Klinge PM, Brinker T, Stopa EG, Silverberg GD. Multiplicity of cerebrospinal fluid functions: New challenges in health and disease. Cerebrospinal Fluid Res 2008; 5:10. [PMID: 18479516 PMCID: PMC2412840 DOI: 10.1186/1743-8454-5-10] [Citation(s) in RCA: 541] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 05/14/2008] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED This review integrates eight aspects of cerebrospinal fluid (CSF) circulatory dynamics: formation rate, pressure, flow, volume, turnover rate, composition, recycling and reabsorption. Novel ways to modulate CSF formation emanate from recent analyses of choroid plexus transcription factors (E2F5), ion transporters (NaHCO3 cotransport), transport enzymes (isoforms of carbonic anhydrase), aquaporin 1 regulation, and plasticity of receptors for fluid-regulating neuropeptides. A greater appreciation of CSF pressure (CSFP) is being generated by fresh insights on peptidergic regulatory servomechanisms, the role of dysfunctional ependyma and circumventricular organs in causing congenital hydrocephalus, and the clinical use of algorithms to delineate CSFP waveforms for diagnostic and prognostic utility. Increasing attention focuses on CSF flow: how it impacts cerebral metabolism and hemodynamics, neural stem cell progression in the subventricular zone, and catabolite/peptide clearance from the CNS. The pathophysiological significance of changes in CSF volume is assessed from the respective viewpoints of hemodynamics (choroid plexus blood flow and pulsatility), hydrodynamics (choroidal hypo- and hypersecretion) and neuroendocrine factors (i.e., coordinated regulation by atrial natriuretic peptide, arginine vasopressin and basic fibroblast growth factor). In aging, normal pressure hydrocephalus and Alzheimer's disease, the expanding CSF space reduces the CSF turnover rate, thus compromising the CSF sink action to clear harmful metabolites (e.g., amyloid) from the CNS. Dwindling CSF dynamics greatly harms the interstitial environment of neurons. Accordingly the altered CSF composition in neurodegenerative diseases and senescence, because of adverse effects on neural processes and cognition, needs more effective clinical management. CSF recycling between subarachnoid space, brain and ventricles promotes interstitial fluid (ISF) convection with both trophic and excretory benefits. Finally, CSF reabsorption via multiple pathways (olfactory and spinal arachnoidal bulk flow) is likely complemented by fluid clearance across capillary walls (aquaporin 4) and arachnoid villi when CSFP and fluid retention are markedly elevated. A model is presented that links CSF and ISF homeostasis to coordinated fluxes of water and solutes at both the blood-CSF and blood-brain transport interfaces. OUTLINE 1 Overview2 CSF formation2.1 Transcription factors2.2 Ion transporters2.3 Enzymes that modulate transport2.4 Aquaporins or water channels2.5 Receptors for neuropeptides3 CSF pressure3.1 Servomechanism regulatory hypothesis3.2 Ontogeny of CSF pressure generation3.3 Congenital hydrocephalus and periventricular regions3.4 Brain response to elevated CSF pressure3.5 Advances in measuring CSF waveforms4 CSF flow4.1 CSF flow and brain metabolism4.2 Flow effects on fetal germinal matrix4.3 Decreasing CSF flow in aging CNS4.4 Refinement of non-invasive flow measurements5 CSF volume5.1 Hemodynamic factors5.2 Hydrodynamic factors5.3 Neuroendocrine factors6 CSF turnover rate6.1 Adverse effect of ventriculomegaly6.2 Attenuated CSF sink action7 CSF composition7.1 Kidney-like action of CP-CSF system7.2 Altered CSF biochemistry in aging and disease7.3 Importance of clearance transport7.4 Therapeutic manipulation of composition8 CSF recycling in relation to ISF dynamics8.1 CSF exchange with brain interstitium8.2 Components of ISF movement in brain8.3 Compromised ISF/CSF dynamics and amyloid retention9 CSF reabsorption9.1 Arachnoidal outflow resistance9.2 Arachnoid villi vs. olfactory drainage routes9.3 Fluid reabsorption along spinal nerves9.4 Reabsorption across capillary aquaporin channels10 Developing translationally effective models for restoring CSF balance11 Conclusion.
Collapse
Affiliation(s)
- Conrad E Johanson
- Department of Clinical Neurosciences, Warren Alpert Medical School at Brown University, Providence, RI 02903, USA
| | - John A Duncan
- Department of Clinical Neurosciences, Warren Alpert Medical School at Brown University, Providence, RI 02903, USA
| | - Petra M Klinge
- International Neuroscience Institute Hannover, Rudolph-Pichlmayr-Str. 4, 30625 Hannover, Germany
| | - Thomas Brinker
- International Neuroscience Institute Hannover, Rudolph-Pichlmayr-Str. 4, 30625 Hannover, Germany
| | - Edward G Stopa
- Department of Clinical Neurosciences, Warren Alpert Medical School at Brown University, Providence, RI 02903, USA
| | - Gerald D Silverberg
- Department of Clinical Neurosciences, Warren Alpert Medical School at Brown University, Providence, RI 02903, USA
| |
Collapse
|
24
|
Celentano C, Prefumo F, di Vera E, Iannicco A, Gallo DP, Liberati M. Reversible acute fetal renal failure due to maternal exposure to angiotensin receptor blocker. Pediatr Nephrol 2008; 23:333-4. [PMID: 17899204 DOI: 10.1007/s00467-007-0618-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 08/12/2007] [Accepted: 08/13/2007] [Indexed: 10/22/2022]
Abstract
We report on a case of fetal toxicity due to maternal treatment with olmesartan medoxomil. At 29 weeks' gestation, oligohydramnios was found, although the fetus had normal kidneys on ultrasound evaluation. Withdrawal of olmesartan medoxomil, maternal rehydration, and a single dose of furosemide reversed the renal impairment. After term delivery, the neonate was confirmed to have normal renal function. The case suggested that fetal renal impairment due to olmesartan medoxomil may be reversible.
Collapse
Affiliation(s)
- Claudio Celentano
- Department of Obstetrics and Gynecology, University of Chieti, Via Sandro Pertini, 4, 65129, Pescara, Italy.
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Premature infants are more vulnerable to bone fractures than term infants for numerous reasons, directly or indirectly related to prematurity. Although the reported incidence of fractures in this vulnerable population is somewhat inconsistent, the increased risk is clear. Metabolic disorders, genetic disease, accidental trauma, and non-accidental injury can all account for fractures in premature infants, so that determining the etiology is of importance. This increased risk does not appear to continue into childhood. Thus, most of these fractures would be found in children <3 years of age, often within the first year of life. Unfortunately, this is the same age group in which the majority of non-accidental injury (NAI) cases, frequently presenting with fractures, are seen. Further confounding the diagnosis is the possibility of previously undiagnosed fractures from trauma during delivery, and fractures due to bone weakening by metabolic diseases. A multi-dimensional approach using a combination of diagnostic procedures is necessary to properly identify the location of the fractures, the bone structure and characteristics, and the history with regards to family situation and medical treatment. This paper reviews the potential factors related to fractures in premature infants and the differential diagnoses of child abuse fractures.
Collapse
Affiliation(s)
- David M Carroll
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada
| | | | | |
Collapse
|
26
|
van der Vorst MMJ, Kist JE, van der Heijden AJ, Burggraaf J. Diuretics in pediatrics : current knowledge and future prospects. Paediatr Drugs 2006; 8:245-64. [PMID: 16898855 DOI: 10.2165/00148581-200608040-00004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
This review summarizes current knowledge on the pharmacology, pharmacokinetics, pharmacodynamics, and clinical application of the most commonly used diuretics in children. Diuretics are frequently prescribed drugs in children. Their main indication is to reduce fluid overload in acute and chronic disease states such as congestive heart failure and renal failure. As with most drugs used in children, optimal dosing schedules are largely unknown and empirical. This is undesirable as it can potentially result in either under- or over-treatment with the possibility of unwanted effects. The pharmacokinetics of diuretics vary in the different pediatric age groups as well as in different disease states. To exert their action, all diuretics, except spironolactone, have to reach the tubular lumen by glomerular filtration and/or proximal tubular secretion. Therefore, renal maturation and function influence drug delivery and consequently pharmacodynamics. Currently advised doses for diuretics are largely based on adult pharmacokinetic and pharmacodynamic studies. Therefore, additional pharmacokinetic and pharmacodynamic studies for the different pediatric age groups are necessary to develop dosing regimens based on pharmacokinetic and pharmacodynamic models for all routes of administration.
Collapse
|
27
|
Kubota T, Namba N, Kurotobi S, Kogaki S, Hirai H, Kitaoka T, Nakajima S, Ozono K. Beneficial Effect of Oral Bisphosphonate Treatment on Bone Loss Induced by Chronic Administration of Furosemide without Alteration of Its Administration and Urinary Calcium Loss. Clin Pediatr Endocrinol 2006; 15:101-7. [PMID: 24790329 PMCID: PMC4004841 DOI: 10.1297/cpe.15.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 04/25/2006] [Indexed: 11/29/2022] Open
Abstract
Bisphosphonate is widely used to treat patients with primary and secondary osteoporosis.
The chronic administration of furosemide is considered a risk factor for osteoporosis
mainly due to the increased urinary excretion of calcium, leading to a long-term negative
balance of calcium. We describe two patients with mild heart failure who took furosemide
for more than 5 yr and developed hyperparathyroidism and lumbago associated with low bone
mineral density. Their serum levels of intact parathyroid hormone and bone mineral density
(BMD) of the lumbar spine (L2-L4) were 180.8 and 144.3 pg/ml, and 71% and 80% of the mean
of healthy women, respectively. The oral administration of alendronate or risedronate was
effective for lumbago and improved BMD, although the urinary excretion of calcium and
hyperparathyroidism were not changed. For the medical treatment of lumbago and decreased
bone mass secondary to the long-term administration of furosemide, bisphosphonate is
proposed when the dose of furosemide cannot be reduced. However, it may be important to
give sufficient calcium and vitamin D to patients to improve secondary
hyperparathyroidism.
Collapse
Affiliation(s)
- Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Noriyuki Namba
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan ; The First Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Shunji Kurotobi
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shigetoyo Kogaki
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Haruhiko Hirai
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Taichi Kitaoka
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shigeo Nakajima
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
28
|
Abstract
Hydrocephalus is an excess accumulation of cerebrospinal fluid in or around the brain that can be produced by a broad spectrum of disorders. It can develop at any age and its incidence is increasing, both in infants and adults. Although the standard treatment of hydrocephalus is cerebrospinal fluid shunting, there are certain circumstances in which medical treatment, alone or in combination with shunting, has been suggested as an alternative. This review aims to present and discuss the indications for pharmacological treatment in the medical management of hydrocephalus, and the drugs most frequently used. Carbonic anhydrase inhibitors, loop diuretic agents, osmotic agents and fibrinolytic therapy are discussed. The most suitable drug seems to be acetazolamide, alone or in combination with furosemide. At present, osmotic agents are no longer used in the treatment of hydrocephalus. Fibrinolytic therapy administered directly into the ventricular system may not avoid the need for shunt placement, but may help in the management of hydrocephalus by preventing or reducing the rate of catheter obstruction and accelerating clot resolution.
Collapse
Affiliation(s)
- Maria A Poca
- Department of Neurosurgery, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.
| | | |
Collapse
|
29
|
|
30
|
|
31
|
Prandota J. Furosemide: progress in understanding its diuretic, anti-inflammatory, and bronchodilating mechanism of action, and use in the treatment of respiratory tract diseases. Am J Ther 2002; 9:317-28. [PMID: 12115021 DOI: 10.1097/00045391-200207000-00009] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Accumulated experimental and clinical data suggest that adrenocorticosteroids and/or endogenous ouabain-like substances may play an important role in the mechanism of furosemide diuretic action. It was reported that the drug is highly bound in the adrenals, lungs, kidney, spleen, and liver. In patients with liver cirrhosis, furosemide exerted a markedly decreased natriuretic effect compared with normal subjects, and the plasma levels of circulating endothelin and atrial natriuretic factor (ANF) were significantly elevated. In neonates, after administration of furosemide, the urinary excretion of endothelin-1 and aldosterone increased markedly, and it is known that endothelin may release ANF and aldosterone in a dose-dependent manner. Furosemide was used to stimulate zona glomerulosa, whereas ANF decreased the production of steroids in zona glomerulosa and fasciculata cell culture owing to stimulation by various factors. Because the concomitant use of ANF and furosemide appeared to be diuretically effective in newborns after cardiac surgery, one may suggest that furosemide competes with ANF for its effects on the adrenals. Furosemide administered by inhalation exerted a protective effect on allergic and perennial nonallergic rhinitis and was effective in preventing the postsurgical recurrence of nasal polyposis. The drug can also be used as an antiasthmatic agent. In preterm ventilator-dependent infants with chronic lung disease, aerosolized furosemide improved pulmonary function with no marked effect on diuresis. In adults and children with asthma, furosemide exerted a protective effect against bronchoconstriction induced by several indirect stimuli similar to that of disodium cromoglycate or nedocromil. Aerosolized furosemide had a preventive effect also on bronchoconstriction induced by inhaled lysine acetylsalicylate in patients with aspirin-sensitive asthma. In high-dose beclomethasone-dependent asthma, inhaled lysine acetylsalicylate and furosemide exerted a mutually potentiating antiasthmatic activity, allowing considerable sparing of the inhaled steroid. It is proposed that this effect may be explained by the corticosteroid-sparing action of lysine released from the lysine acetylsalicylate molecule because similar beneficial effects were also obtained after the concomitant use of epsilon-aminocaproic acid (whose chemical structure is almost the same as that of lysine) and prednisone. Furosemide exhibited an anti-inflammatory effect through inhibition of production and release of cytokines interleukin (IL)-6, IL-8, and tumor necrosis factor-alpha from peripheral mononuclear cells, which may have a beneficial effect on local inflamed tissue imbalance in the ratio of different cytokines, thus improving the sensitivity of target cells to endogenous glucocorticosteroids.
Collapse
Affiliation(s)
- Joseph Prandota
- Department of Pediatrics, Korczak Memorial Children's Hospital, Wroclaw, Poland
| |
Collapse
|