1
|
Taylor J, Patio K, De Rubis G, Morris MB, Evenhuis C, Johnson M, Bebawy M. Membrane to cytosol redistribution of αII-spectrin drives extracellular vesicle biogenesis in malignant breast cells. Proteomics 2021; 21:e2000091. [PMID: 33870651 DOI: 10.1002/pmic.202000091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/04/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
Spectrin is a ubiquitous cytoskeletal protein that provides structural stability and supports membrane integrity. In erythrocytes, spectrin proteolysis leads to the biogenesis of plasma membrane extracellular vesicles (EVs). However, its role in non-erythroid or cancer-derived plasma membrane EVs biogenesis is unknown. This study aims to examine the role of αII-spectrin in malignant and non-malignant plasma membrane vesiculation. We developed a custom, automated cell segmentation plugin for the image processor, Fiji, that provides an unbiased assessment of high resolution confocal microscopy images of the subcellular distribution of αII-spectrin. We show that, in low vesiculating non-malignant MBE-F breast cells, prominent cortical spectrin localises to the cell periphery at rest. In comparison, cortical spectrin is diminished in high vesiculating malignant MCF-7 breast cells at rest. A cortical distribution of spectrin correlates with increased biomechanical stiffness as measured by Atomic Force Microscopy. Furthermore, cortical spectrin can be induced in malignant MCF-7 cells by treatment with known vesiculation modulators including the calcium chelator, BAPTA-AM or the calpain inhibitor II (ALLM). These results demonstrate that the subcellular localisation of spectrin is distinctly different in malignant and non-malignant cells at rest and shows that the redistribution of cortical αII-spectrin to the cytoplasm supports plasma membrane-derived EV biogenesis in malignant cells.
Collapse
Affiliation(s)
- Jack Taylor
- Discipline of Pharmacy, Graduate School of Health, The University of Technology Sydney, Sydney, New South Wales, Australia
| | - Kevin Patio
- Discipline of Pharmacy, Graduate School of Health, The University of Technology Sydney, Sydney, New South Wales, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, The University of Technology Sydney, Sydney, New South Wales, Australia
| | - Micheal B Morris
- Discipline of Physiology and Bosch Institute, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Christian Evenhuis
- School of Life Sciences, The University of Technology Sydney, Sydney, New South Wales, Australia
| | - Michael Johnson
- School of Life Sciences, The University of Technology Sydney, Sydney, New South Wales, Australia
| | - Mary Bebawy
- Discipline of Pharmacy, Graduate School of Health, The University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Kodippili GC, Giger K, Putt KS, Low PS. DARC, Glycophorin A, Band 3, and GLUT1 Diffusion in Erythrocytes: Insights into Membrane Complexes. Biophys J 2020; 119:1749-1759. [PMID: 33069269 DOI: 10.1016/j.bpj.2020.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 11/30/2022] Open
Abstract
Single-particle tracking offers a method to interrogate the organization of transmembrane proteins by measuring their mobilities within a cell's plasma membrane. Using this technique, the diffusion characteristics of the Duffy antigen (DARC), glycophorin A, band 3, and GLUT1 were compared under analogous conditions on intact human erythrocyte membranes. Microscopic diffusion coefficients revealed that the vast majority of all four transmembrane proteins exhibit very restricted movement but are not completely immobile. In fact, only 12% of GLUT1 resolved into a highly mobile subpopulation. Macroscopic diffusion coefficients and compartment sizes were also similar for all four proteins, with movements confined to the approximate dimensions of the "corrals" of the cortical spectrin cytoskeleton. Taken together, these data suggest that almost the entire populations of all four transmembrane proteins are immobilized by either the incorporation within large multiprotein complexes or entrapment within the protein network of the cortical spectrin cytoskeleton.
Collapse
Affiliation(s)
| | - Katie Giger
- Department of Chemistry, Purdue University, West Lafayette, Indiana
| | - Karson S Putt
- Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
| | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, Indiana; Institute for Drug Discovery, Purdue University, West Lafayette, Indiana.
| |
Collapse
|
3
|
Lambert MW. The functional importance of lamins, actin, myosin, spectrin and the LINC complex in DNA repair. Exp Biol Med (Maywood) 2019; 244:1382-1406. [PMID: 31581813 PMCID: PMC6880146 DOI: 10.1177/1535370219876651] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Three major proteins in the nucleoskeleton, lamins, actin, and spectrin, play essential roles in maintenance of nuclear architecture and the integrity of the nuclear envelope, in mechanotransduction and mechanical coupling between the nucleoskeleton and cytoskeleton, and in nuclear functions such as regulation of gene expression, transcription and DNA replication. Less well known, but critically important, are the role these proteins play in DNA repair. The A-type and B-type lamins, nuclear actin and myosin, spectrin and the LINC (linker of nucleoskeleton and cytoskeleton) complex each function in repair of DNA damage utilizing various repair pathways. The lamins play a role in repair of DNA double-strand breaks (DSBs) by nonhomologous end joining (NHEJ) or homologous recombination (HR). Actin is involved in repair of DNA DSBs and interacts with myosin in facilitating relocalization of these DSBs in heterochromatin for HR repair. Nonerythroid alpha spectrin (αSpII) plays a critical role in repair of DNA interstrand cross-links (ICLs) where it acts as a scaffold in recruitment of repair proteins to sites of damage and is important in the initial damage recognition and incision steps of the repair process. The LINC complex contributes to the repair of DNA DSBs and ICLs. This review will address the important functions of these proteins in the DNA repair process, their mechanism of action, and the profound impact a defect or deficiency in these proteins has on cellular function. The critical roles of these proteins in DNA repair will be further emphasized by discussing the human disorders and the pathophysiological changes that result from or are related to deficiencies in these proteins. The demonstrated function for each of these proteins in the DNA repair process clearly indicates that there is another level of complexity that must be considered when mechanistically examining factors crucial for DNA repair.
Collapse
Affiliation(s)
- Muriel W Lambert
- Department of Pathology, Immunology and Laboratory
Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
4
|
The Role of Nonerythroid Spectrin αII in Cancer. JOURNAL OF ONCOLOGY 2019; 2019:7079604. [PMID: 31186638 PMCID: PMC6521328 DOI: 10.1155/2019/7079604] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022]
Abstract
Nonerythroid spectrin αII (SPTAN1) is an important cytoskeletal protein that ensures vital cellular properties including polarity and cell stabilization. In addition, it is involved in cell adhesion, cell-cell contact, and apoptosis. The detection of altered expression of SPTAN1 in tumors indicates that SPTAN1 might be involved in the development and progression of cancer. SPTAN1 has been described in cancer and therapy response and proposed as a potential marker protein for neoplasia, tumor aggressiveness, and therapeutic efficiency. On one hand, the existing data suggest that overexpression of SPTAN1 in tumor cells reflects neoplastic and tumor promoting activity. On the other hand, nuclear SPTAN1 can have tumor suppressing effects by enabling DNA repair through interaction with DNA repair proteins. Moreover, SPTAN1 cleavage products occur during apoptosis and could serve as markers for the efficacy of cancer therapy. Due to SPTAN1's multifaceted functions and its role in adhesion and migration, SPTAN1 can influence tumor growth and progression in both positive and negative directions depending on its specific regulation. This review summarizes the current knowledge on SPTAN1 in cancer and depicts several mechanisms by which SPTAN1 could impact tumor development and aggressiveness.
Collapse
|
5
|
Evidence for three populations of the glucose transporter in the human erythrocyte membrane. Blood Cells Mol Dis 2019; 77:61-66. [PMID: 30974390 DOI: 10.1016/j.bcmd.2019.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 11/23/2022]
Abstract
Glucose transporter 1 (GLUT1) is one of 13 members of the human equilibrative glucose transport protein family and the only glucose transporter thought to be expressed in human erythrocyte membranes. Although GLUT1 has been shown to be anchored to adducin at the junctional spectrin-actin complex of the membrane through interactions with multiple proteins, whether other populations of GLUT1 also exist in the human erythrocyte membrane has not been examined. Because GLUT1 plays such a critical role in erythrocyte biology and since it comprises 10% of the total membrane protein, we undertook to evaluate the subpopulations of erythrocyte GLUT1 using single particle tracking. By monitoring the diffusion of individual AlexaFluor 488-labeled GLUT1 molecules on the surfaces of intact erythrocytes, we are able to identify three distinct subpopulations of GLUT1. While the mobility of the major subpopulation is similar to that of the anion transporter, band 3, both a more mobile and more anchored subpopulation also exist. From these studies, we conclude that ~65% of GLUT1 resides in similar or perhaps the same protein complex as band 3, while the remaining 1/3rd are either freely diffusing or interacting with other cytoskeletally anchored membrane protein complexes.
Collapse
|
6
|
Lambert MW. Spectrin and its interacting partners in nuclear structure and function. Exp Biol Med (Maywood) 2019; 243:507-524. [PMID: 29557213 DOI: 10.1177/1535370218763563] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nonerythroid αII-spectrin is a structural protein whose roles in the nucleus have just begun to be explored. αII-spectrin is an important component of the nucleoskelelton and has both structural and non-structural functions. Its best known role is in repair of DNA ICLs both in genomic and telomeric DNA. αII-spectrin aids in the recruitment of repair proteins to sites of damage and a proposed mechanism of action is presented. It interacts with a number of different groups of proteins in the nucleus, indicating it has roles in additional cellular functions. αII-spectrin, in its structural role, associates/co-purifies with proteins important in maintaining the architecture and mechanical properties of the nucleus such as lamin, emerin, actin, protein 4.1, nuclear myosin, and SUN proteins. It is important for the resilience and elasticity of the nucleus. Thus, αII-spectrin's role in cellular functions is complex due to its structural as well as non-structural roles and understanding the consequences of a loss or deficiency of αII-spectrin in the nucleus is a significant challenge. In the bone marrow failure disorder, Fanconi anemia, there is a deficiency in αII-spectrin and, among other characteristics, there is defective DNA repair, chromosome instability, and congenital abnormalities. One may speculate that a deficiency in αII-spectrin plays an important role not only in the DNA repair defect but also in the congenital anomalies observed in Fanconi anemia , particularly since αII-spectrin has been shown to be important in embryonic development in a mouse model. The dual roles of αII-spectrin in the nucleus in both structural and non-structural functions make this an extremely important protein which needs to be investigated further. Such investigations should help unravel the complexities of αII-spectrin's interactions with other nuclear proteins and enhance our understanding of the pathogenesis of disorders, such as Fanconi anemia , in which there is a deficiency in αII-spectrin. Impact statement The nucleoskeleton is critical for maintaining the architecture and functional integrity of the nucleus. Nonerythroid α-spectrin (αIISp) is an essential nucleoskeletal protein; however, its interactions with other structural and non-structural nuclear proteins and its functional importance in the nucleus have only begun to be explored. This review addresses these issues. It describes αIISp's association with DNA repair proteins and at least one proposed mechanism of action for its role in DNA repair. Specific interactions of αIISp with other nucleoskeletal proteins as well as its important role in the biomechanical properties of the nucleus are reviewed. The consequences of loss of αIISp, in disorders such as Fanconi anemia, are examined, providing insights into the profound impact of this loss on critical processes known to be abnormal in FA, such as development, carcinogenesis, cancer progression and cellular functions dependent upon αIISp's interactions with other nucleoskeletal proteins.
Collapse
Affiliation(s)
- Muriel W Lambert
- Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
7
|
Lambert MW. Nuclear alpha spectrin: Critical roles in DNA interstrand cross-link repair and genomic stability. Exp Biol Med (Maywood) 2016; 241:1621-38. [PMID: 27480253 PMCID: PMC4999628 DOI: 10.1177/1535370216662714] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Non-erythroid alpha spectrin (αIISp) is a structural protein which we have shown is present in the nucleus of human cells. It interacts with a number of nuclear proteins such as actin, lamin, emerin, chromatin remodeling factors, and DNA repair proteins. αIISp's interaction with DNA repair proteins has been extensively studied. We have demonstrated that nuclear αIISp is critical in DNA interstrand cross-link (ICL) repair in S phase, in both genomic (non-telomeric) and telomeric DNA, and in maintenance of genomic stability following ICL damage to DNA. We have proposed that αIISp acts as a scaffold aiding to recruit repair proteins to sites of damage. This involvement of αIISp in ICL repair and telomere maintenance after ICL damage represents new and critical functions for αIISp. These studies have led to development of a model for the role of αIISp in DNA ICL repair. They have been aided by examination of cells from patients with Fanconi anemia (FA), a repair-deficient genetic disorder in which a deficiency in αIISp leads to defective ICL repair in genomic and telomeric DNA, telomere dysfunction, and chromosome instability following DNA ICL damage. We have shown that loss of αIISp in FA cells is due to increased breakdown by the protease, µ-calpain. Importantly, we have demonstrated that this deficiency can be corrected by knockdown of µ-calpain and restoring αIISp levels to normal. This corrects a number of the phenotypic deficiencies in FA after ICL damage. These studies suggest a new and unexplored direction for therapeutically restoring genomic stability in FA cells and for correcting numerous phenotypic deficiencies occurring after ICL damage. Developing a more in-depth understanding of the importance of the interaction of αIISp with other nuclear proteins could significantly enhance our knowledge of the consequences of loss of αIISp on critical nuclear processes.
Collapse
Affiliation(s)
- Muriel W Lambert
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
8
|
Hinrichsen I, Ernst BP, Nuber F, Passmann S, Schäfer D, Steinke V, Friedrichs N, Plotz G, Zeuzem S, Brieger A. Reduced migration of MLH1 deficient colon cancer cells depends on SPTAN1. Mol Cancer 2014; 13:11. [PMID: 24456667 PMCID: PMC3904401 DOI: 10.1186/1476-4598-13-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 01/17/2014] [Indexed: 01/13/2023] Open
Abstract
Introduction Defects in the DNA mismatch repair (MMR) protein MLH1 are frequently observed in sporadic and hereditary colorectal cancers (CRC). Affected tumors generate much less metastatic potential than the MLH1 proficient forms. Although MLH1 has been shown to be not only involved in postreplicative MMR but also in several MMR independent processes like cytoskeletal organization, the connection between MLH1 and metastasis remains unclear. We recently identified non-erythroid spectrin αII (SPTAN1), a scaffolding protein involved in cell adhesion and motility, to interact with MLH1. In the current study, the interaction of MLH1 and SPTAN1 and its potential consequences for CRC metastasis was evaluated. Methods Nine cancer cell lines as well as fresh and paraffin embedded colon cancer tissue from 12 patients were used in gene expression studies of SPTAN1 and MLH1. Co-expression of SPTAN1 and MLH1 was analyzed by siRNA knock down of MLH1 in HeLa, HEK293, MLH1 positive HCT116, SW480 and LoVo cells. Effects on cellular motility were determined in MLH1 deficient HCT116 and MLH1 deficient HEK293T compared to their MLH1 proficient sister cells, respectively. Results MLH1 deficiency is clearly associated with SPTAN1 reduction. Moreover, siRNA knock down of MLH1 decreased the mRNA level of SPTAN1 in HeLa, HEK293 as well as in MLH1 positive HCT116 cells, which indicates a co-expression of SPTAN1 by MLH1. In addition, cellular motility of MLH1 deficient HCT116 and MLH1 deficient HEK293T cells was impaired compared to the MLH1 proficient sister clones. Consequently, overexpression of SPTAN1 increased migration of MLH1 deficient cells while knock down of SPTAN1 decreased cellular mobility of MLH1 proficient cells, indicating SPTAN1-dependent migration ability. Conclusions These data suggest that SPTAN1 levels decreased in concordance with MLH1 reduction and impaired cellular mobility in MLH1 deficient colon cancer cells. Therefore, aggressiveness of MLH1-positive CRC might be related to SPTAN1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Angela Brieger
- Medical Clinic I, Biomedical Research Laboratory, Goethe-University, Frankfurt a,M, Germany.
| |
Collapse
|
9
|
Hill SA, Kwa LG, Shammas SL, Lee JC, Clarke J. Mechanism of Assembly of the Non-Covalent Spectrin Tetramerization Domain from Intrinsically Disordered Partners. J Mol Biol 2014; 426:21-35. [PMID: 24055379 PMCID: PMC9082959 DOI: 10.1016/j.jmb.2013.08.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/24/2013] [Accepted: 08/20/2013] [Indexed: 01/29/2023]
Abstract
Interdomain interactions of spectrin are critical for maintenance of the erythrocyte cytoskeleton. In particular, “head-to-head” dimerization occurs when the intrinsically disordered C-terminal tail of β-spectrin binds the N-terminal tail of α-spectrin, folding to form the “spectrin tetramer domain”. This non-covalent three-helix bundle domain is homologous in structure and sequence to previously studied spectrin domains. We find that this tetramer domain is surprisingly kinetically stable. Using a protein engineering Φ-value analysis to probe the mechanism of formation of this tetramer domain, we infer that the domain folds by the docking of the intrinsically disordered β-spectrin tail onto the more structured α-spectrin tail.
Collapse
Affiliation(s)
- Stephanie A Hill
- University of Cambridge Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK; Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lee Gyan Kwa
- University of Cambridge Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK
| | - Sarah L Shammas
- University of Cambridge Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK
| | - Jennifer C Lee
- Laboratory of Molecular Biophysics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jane Clarke
- University of Cambridge Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
10
|
Zhang P, Herbig U, Coffman F, Lambert MW. Non-erythroid alpha spectrin prevents telomere dysfunction after DNA interstrand cross-link damage. Nucleic Acids Res 2013; 41:5321-40. [PMID: 23571757 PMCID: PMC3664817 DOI: 10.1093/nar/gkt235] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Telomere integrity is critical for telomere function and genomic stability. We previously demonstrated that non-erythroid α-spectrin (αIISp) is present in mammalian cell nuclei where it is important in repair of DNA interstrand cross-links (ICLs) and chromosome stability. We now demonstrate that αIISp is also important for telomere maintenance after ICL damage. It localizes to telomeres in S phase after ICL damage where it has enhanced association with TRF1 and TRF2 and is required for recruitment of the ICL repair protein, XPF, to damage-induced foci at telomeres. In telomerase-positive normal cells depleted of αIISp by siRNA or in Fanconi anemia, complementation group A (FA-A) cells, where αIISp levels are 35–40% of normal, ICL damage results in failure of XPF to localize to telomeres, markedly increased telomere dysfunction-induced foci, followed by catastrophic loss of telomeres. Restoration of αIISp levels to normal in FA-A cells corrects these deficiencies. Our studies demonstrate that αIISp is critical for repair of DNA ICLs at telomeres, likely by facilitating the recruitment of repair proteins similar, but not identical, to its proposed role in repair of DNA ICLs in genomic DNA and that this function in turn is critical for telomere maintenance after DNA ICL damage.
Collapse
Affiliation(s)
- Pan Zhang
- Department of Pathology and Laboratory Medicine, UMDNJ - New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07042, USA
| | | | | | | |
Collapse
|
11
|
Paramanik V, Thakur MK. Estrogen receptor β and its domains interact with casein kinase 2, phosphokinase C, and N-myristoylation sites of mitochondrial and nuclear proteins in mouse brain. J Biol Chem 2012; 287:22305-16. [PMID: 22566700 DOI: 10.1074/jbc.m112.351262] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The localization of estrogen receptor (ER)β in mitochondria suggests ERβ-dependent regulation of genes, which is poorly understood. Here, we analyzed the ERβ interacting mitochondrial as well as nuclear proteins in mouse brain using pull-down assay and matrix-assisted laser desorption ionization mass spectroscopy (MALDI-MS). In the case of mitochondria, ERβ interacted with six proteins of 35-152 kDa, its transactivation domain (TAD) interacted with four proteins of 37-172 kDa, and ligand binding domain (LBD) interacted with six proteins of 37-161 kDa. On the other hand, in nuclei, ERβ interacted with seven proteins of 30-203 kDa, TAD with ten proteins of 31-160 kDa, and LBD with fourteen proteins of 42-179 kDa. For further identification, these proteins were cleaved by trypsin into peptides and analyzed by MALDI-MS using mascot search engine, immunoprecipitation, immunoblotting, and far-Western blotting. To find the consensus binding motifs in interacting proteins, their unique tryptic peptides were analyzed by the motif scan software. All the interacting proteins were found to contain casein kinase (CK) 2, phosphokinase (PK)C phosphorylation, and N-myristoylation sites. These were further confirmed by peptide pull-down assays using specific mutations in the interacting sites. Thus, the present findings provide evidence for the interaction of ERβ with specific mitochondrial and nuclear proteins through consensus CK2, PKC phosphorylation, and N-myristoylation sites, and may represent an essential step toward designing selective ER modulators for regulating estrogen-mediated signaling.
Collapse
Affiliation(s)
- Vijay Paramanik
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Banaras Hindu University, Varanasi-221 005, India
| | | |
Collapse
|
12
|
Non-erythroid beta spectrin interacting proteins and their effects on spectrin tetramerization. Cell Mol Biol Lett 2011; 16:595-609. [PMID: 21866423 PMCID: PMC3675649 DOI: 10.2478/s11658-011-0025-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 08/18/2011] [Indexed: 11/20/2022] Open
Abstract
With yeast two-hybrid methods, we used a C-terminal fragment (residues 1697–2145) of non-erythroid beta spectrin (βII-C), including the region involved in the association with alpha spectrin to form tetramers, as the bait to screen a human brain cDNA library to identify proteins interacting with βII-C. We applied stringent selection steps to eliminate false positives and identified 17 proteins that interacted with βII-C (IPβII-C s). The proteins include a fragment (residues 38–284) of “THAP domain containing, apoptosis associated protein 3, isoform CRA g”, “glioma tumor suppressor candidate region gene 2” (residues 1-478), a fragment (residues 74–442) of septin 8 isoform c, a fragment (residues 704–953) of “coatomer protein complex, subunit beta 1, a fragment (residues 146–614) of zinc-finger protein 251, and a fragment (residues 284–435) of syntaxin binding protein 1. We used yeast three-hybrid system to determine the effects of these βII-C interacting proteins as well as of 7 proteins previously identified to interact with the tetramerization region of non-erythroid alpha spectrin (IPαII-N s) [1] on spectrin tetramer formation. The results showed that 3 IPβII-C s were able to bind βII-C even in the presence of αII-N, and 4 IPαII-N s were able to bind αII-N in the presence of βII-C. We also found that the syntaxin binding protein 1 fragment abolished αII-N and βII-C interaction, suggesting that this protein may inhibit or regulate non-erythroid spectrin tetramer formation.
Collapse
|
13
|
Wolgast LR, Cannizzarro LA, Ramesh KH, Xue X, Wang D, Bhattacharyya PK, Gong JZ, McMahon C, Albanese JM, Sunkara JL, Ratech H. Spectrin isoforms: differential expression in normal hematopoiesis and alterations in neoplastic bone marrow disorders. Am J Clin Pathol 2011; 136:300-8. [PMID: 21757604 DOI: 10.1309/ajcpsa5rnm9igfjf] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Spectrins are large, rod-like, multifunctional molecules that participate in maintaining cell structure, signal transmission, and DNA repair. Because little is known about the role of spectrins in normal hematopoiesis and leukemogenesis, we immunohistochemically stained bone marrow biopsy specimens from 81 patients for αI, αII, βI, and βII spectrin isoforms in normal reactive marrow (NRM), myelodysplastic syndrome, myeloproliferative neoplasm, acute myeloid leukemia (AML) with well-characterized cytogenetic abnormalities, acute erythroid leukemia (EryL), and acute megakaryoblastic leukemia (MegL). In NRM, spectrin isoforms were differentially expressed according to cell lineage: αI and βI in erythroid precursors; αII and βII in granulocytes; and βI and βII in megakaryocytes. In contrast, 18 (44%) of 41 AMLs lacked αII spectrin and/or aberrantly expressed βI spectrin (P = .0398; Fisher exact test) and 5 (100%) of 5 EryLs expressed βII spectrin but lacked βI spectrin. The frequent loss and/or gain of spectrin isoforms in AMLs suggests a possible role for spectrin in leukemogenesis.
Collapse
|
14
|
Waller KL, Stubberfield LM, Dubljevic V, Buckingham DW, Mohandas N, Coppel RL, Cooke BM. Interaction of the exported malaria protein Pf332 with the red blood cell membrane skeleton. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:861-71. [PMID: 20132790 DOI: 10.1016/j.bbamem.2010.01.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 01/14/2010] [Accepted: 01/25/2010] [Indexed: 10/19/2022]
Abstract
Intra-erythrocytic Plasmodium falciparum malaria parasites synthesize and export numerous proteins into the red blood cell (RBC) cytosol, where some bind to the RBC membrane skeleton. These interactions are responsible for the altered antigenic, morphological and functional properties of parasite-infected red blood cells (IRBCs). Plasmodium falciparum protein 332 (Pf332) is a large parasite protein that associates with the membrane skeleton and who's function has recently been elucidated. Using recombinant fragments of Pf332 in in vitro interaction assays, we have localised the specific domain within Pf332 that binds to the RBC membrane skeleton to an 86 residue sequence proximal to the C-terminus of Pf332. We have shown that this region partakes in a specific and saturable interaction with actin (K(d)=0.60 microM) but has no detectable affinity for spectrin. The only exported malaria protein previously known to bind to actin is PfEMP3 but here we demonstrate that there is no competition for actin-binding between PfEMP3 and Pf332, suggesting that they bind to different target sequences in actin.
Collapse
Affiliation(s)
- Karena L Waller
- Department of Microbiology, Monash University, VIC 3800, Australia
| | | | | | | | | | | | | |
Collapse
|
15
|
Treviño MA, Rodríguez-Rodríguez M, Correas I, Marcilla M, Albar JP, Rico M, Jiménez MA, Bruix M. NMR characterisation of the minimal interacting regions of centrosomal proteins 4.1R and NuMA1: effect of phosphorylation. BMC BIOCHEMISTRY 2010; 11:7. [PMID: 20109190 PMCID: PMC2834593 DOI: 10.1186/1471-2091-11-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 01/28/2010] [Indexed: 11/17/2022]
Abstract
Background Some functions of 4.1R in non-erythroid cells are directly related with its distinct sub-cellular localisation during cell cycle phases. During mitosis, 4.1R is implicated in cell cycle progression and spindle pole formation, and co-localizes with NuMA1. However, during interphase 4.1R is located in the nucleus and only partially co-localizes with NuMA1. Results We have characterized by NMR the structural features of the C-terminal domain of 4.1R and those of the minimal region (the last 64 residues) involved in the interaction with NuMA1. This subdomain behaves as an intrinsically unfolded protein containing a central region with helical tendency. The specific residues implicated in the interaction with NuMA1 have been mapped by NMR titrations and involve the N-terminal and central helical regions. The segment of NuMA1 that interacts with 4.1R is phosphorylated during mitosis. Interestingly, NMR data indicates that the phosphorylation of NuMA1 interacting peptide provokes a change in the interaction mechanism. In this case, the recognition occurs through the central helical region as well as through the C-terminal region of the subdomain meanwhile the N-terminal region do not interact. Conclusions These changes in the interaction derived from the phosphorylation state of NuMA1 suggest that phosphorylation can act as subtle mechanism of temporal and spatial regulation of the complex 4.1R-NuMA1 and therefore of the processes where both proteins play a role.
Collapse
Affiliation(s)
- Miguel A Treviño
- Departamento de Espectroscopía y Estructura Molecular, Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Wu J, Zhang YC, Suo WH, Liu XB, Shen WW, Tian H, Fu GH. Induction of anion exchanger-1 translation and its opposite roles in the carcinogenesis of gastric cancer cells and differentiation of K562 cells. Oncogene 2010; 29:1987-96. [PMID: 20062076 DOI: 10.1038/onc.2009.481] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Anion exchanger-1 (AE1), an erythroid-specific membrane protein, mediates the Cl(-)/HCO(-)(3) exchange across the plasma membrane and regulates intracellular pH. We have found that AE1 was unexpectedly expressed in gastric cancer cells and participated in the tumorigenesis of the cancer. Here, we focus on the induction of AE1 expression and its role in gastric carcinogenesis as well as in the differentiation of K562 cells. The results show that expression of AE1 is not related to genetic mutation or the mRNA level, but rather, that it is modulated by miR-24. miR-24 decreases the expression of AE1 through binding to the 3'UTR of AE1 mRNA. Transfection of an miR-24 into gastric cancer cells reduced the elevation of the AE1 protein, which resulted in return of AE1-sequestrated p16 to the nucleus, thereby inhibiting proliferation of the cells. Furthermore, the miR-24 inhibitor cooperated with hemin to induce the expression of AE1 in K562 cells and differentiation of the cells, which is consistent with results obtained from the cells cultured at pH 7.6 or from forced stable expression of AE1. These findings establish a novel regulation of miR-24-related AE1 expression in gastric carcinogenesis and erythropoiesis.
Collapse
Affiliation(s)
- J Wu
- Department of Pathology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | | | | | | | | | | | | |
Collapse
|
17
|
McMahon LW, Zhang P, Sridharan DM, Lefferts JA, Lambert MW. Knockdown of alphaII spectrin in normal human cells by siRNA leads to chromosomal instability and decreased DNA interstrand cross-link repair. Biochem Biophys Res Commun 2009; 381:288-93. [PMID: 19217883 DOI: 10.1016/j.bbrc.2009.02.038] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 02/09/2009] [Indexed: 11/18/2022]
Abstract
Nonerythroid alpha-spectrin (alphaIISp) is a structural protein involved in repair of DNA interstrand cross-links and is deficient in cells from patients with Fanconi anemia (FA), which are defective in ability to repair cross-links. In order to further demonstrate the importance of the role that alphaIISp plays in normal human cells and in the repair defect in FA, alphaIISp was knocked down in normal cells using siRNA. Depletion of alphaIISp in normal cells by siRNA resulted in chromosomal instability and cellular hypersensitivity to DNA interstrand cross-linking agents. An increased number of chromosomal aberrations were observed and, following treatment with a DNA interstrand cross-linking agent, mitomycin C, cells showed decreased cell growth and survival and decreased formation of damage-induced alphaIISp and XPF nuclear foci. Thus depletion of alphaIISp in normal cells leads to a number of defects observed in FA cells, such as chromosome instability and a deficiency in cross-link repair.
Collapse
Affiliation(s)
- Laura W McMahon
- Department of Pathology and Laboratory Medicine, UMDNJ-New Jersey Medical School and the Graduate School of Biomedical Sciences, 185 South Orange Avenue, Newark, NJ 07103, USA
| | | | | | | | | |
Collapse
|
18
|
Lefferts JA, Wang C, Sridharan D, Baralt M, Lambert MW. The SH3 domain of alphaII spectrin is a target for the Fanconi anemia protein, FANCG. Biochemistry 2009; 48:254-63. [PMID: 19102630 DOI: 10.1021/bi801483u] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The structural protein nonerythroid alpha spectrin (alphaIISp) plays a role in the repair of DNA interstrand cross-links and is deficient in cells from patients with Fanconi anemia (FA), in which there is a defect in ability to repair such cross-links. We have proposed a model in which alphaIISp, whose stability is dependent on FA proteins, acts as a scaffold to aid in recruitment of repair proteins to sites of damage. In order to get a clearer understanding of the proposed role of FA proteins in maintaining stability of alphaIISp, yeast two-hybrid analysis was carried out to determine whether FA proteins directly interact with alphaIISp and, if so, to map the sites of interaction. Four overlapping regions of alphaIISp were constructed. FANCG interacted with one of these regions and specifically with the SH3 domain in this region of alphaIISp. The site of interaction in FANCG was mapped to a motif that binds to SH3 domains and contains a consensus sequence with preference for the SH3 domain of alphaIISp. This site of interaction was confirmed using site-directed mutagenesis. Two FA proteins that did not contain motifs that bind to SH3 domains, FANCC and FANCF, did not interact with the SH3 domain of alphaIISp. These results demonstrate that one of the FA proteins, FANCG, contains a motif that interacts directly with the SH3 domain of alphaIISp. We propose that this binding of FANCG to alphaIISp may be important for the stability of alphaIISp in cells and the role alphaIISp plays in the DNA repair process.
Collapse
Affiliation(s)
- Joel A Lefferts
- Department of Pathology and Laboratory Medicine, UMDNJNew Jersey Medical School and Graduate School of Biomedical Sciences, Newark, New Jersey 07103, USA
| | | | | | | | | |
Collapse
|
19
|
Long F, McElheny D, Jiang S, Park S, Caffrey MS, Fung LWM. Conformational change of erythroid alpha-spectrin at the tetramerization site upon binding beta-spectrin. Protein Sci 2007; 16:2519-30. [PMID: 17905835 PMCID: PMC2211704 DOI: 10.1110/ps.073115307] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We previously determined the solution structures of the first 156 residues of human erythroid alpha-spectrin (SpalphaI-1-156, or simply Spalpha). Spalpha consists of the tetramerization site of alpha-spectrin and associates with a model beta-spectrin protein (Spbeta) with an affinity similar to that of native alpha- and beta-spectrin. Upon alphabeta-complex formation, our previous results indicate that there is an increase in helicity in the complex, suggesting conformational change in either Spalpha or Spbeta or in both. We have now used isothermal titration calorimetry, circular dichroism, static and dynamic light scattering, and solution NMR methods to investigate properties of the complex as well as the conformation of Spalpha in the complex. The results reveal a highly asymmetric complex, with a Perrin shape parameter of 1.23, which could correspond to a prolate ellipsoid with a major axis of about five and a minor axis of about one. We identified 12 residues, five prior to and seven following the partial domain helix in Spalpha that moved freely relative to the structural domain in the absence of Spbeta but when in the complex moved with a mobility similar to that of the structural domain. Thus, it appears that the association with Spbeta induced an unstructured-to-helical conformational transition in these residues to produce a rigid and asymmetric complex. Our findings may provide insight toward understanding different association affinities of alphabeta-spectrin at the tetramerization site for erythroid and non-erythroid spectrin and a possible mechanism to understand some of the clinical mutations, such as L49F of alpha-spectrin, which occur outside the functional partial domain region.
Collapse
Affiliation(s)
- Fei Long
- Department of Chemistry, University of Illinois at Chicago 60607, USA
| | | | | | | | | | | |
Collapse
|
20
|
Oh Y, Fung LWM. Brain proteins interacting with the tetramerization region of non-erythroid alpha spectrin. Cell Mol Biol Lett 2007; 12:604-20. [PMID: 17607528 PMCID: PMC6275721 DOI: 10.2478/s11658-007-0028-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 06/11/2007] [Indexed: 12/24/2022] Open
Abstract
The N-terminal region of non-erythroid alpha spectrin (SpαII) is responsible for interacting with its binding partner, beta spectrin, to form functional spectrin tetramers. We used a yeast-two-hybrid system, with an N-terminal segment of alpha spectrin representing the functional tetramerization site, as a bait to screen human brain c-DNA library for proteins that interact with the alpha spectrin segment. In addition to several beta spectrin isoforms, we identified 14 proteins that interact with SpαII. Seven of the 14 were matched to 6 known proteins: Duo protein, Lysyl-tRNA synthetase, TBP associated factor 1, two isoforms (b and c) of a protein kinase A interacting protein and Zinc finger protein 333 (2 different segments). Four of the 6 proteins are located primarily in the nucleus, suggesting that spectrin plays important roles in nuclear functions. The remaining 7 proteins were unknown to the protein data base. Structural predictions show that many of the 14 proteins consist of a large portion of unstructured regions, suggesting that many of these proteins fold into a rather flexible conformation. It is interesting to note that all but 3 of the 14 proteins are predicted to consist of one to four coiled coils (amphiphilic helices). A mutation in SpαII, V22D, which interferes with the coiled coil bundling of SpαII with beta spectrin, also affects SpαII interaction with Duo protein, TBP associated factor 1 and Lysyl-tRNA synthetase, suggesting that they may compete with beta spectrin for interaction with SpαII. Future structural and functional studies of these proteins to provide interaction mechanisms will no doubt lead to a better understanding of brain physiology and pathophysiology.
Collapse
Affiliation(s)
- Younsang Oh
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, MC 111, Chicago, IL 60607 USA
| | - Leslie W. -M. Fung
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, MC 111, Chicago, IL 60607 USA
| |
Collapse
|
21
|
Hirsch J, Hansen KC, Sapru A, Frank JA, Chalkley RJ, Fang X, Trinidad JC, Baker P, Burlingame AL, Matthay MA. Impact of low and high tidal volumes on the rat alveolar epithelial type II cell proteome. Am J Respir Crit Care Med 2007; 175:1006-13. [PMID: 17363773 PMCID: PMC1899270 DOI: 10.1164/rccm.200605-621oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 03/13/2007] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Mechanical ventilation with high tidal volumes leads to increased permeability, generation of inflammatory mediators, and damage to alveolar epithelial cells (ATII). OBJECTIVES To identify changes in the ATII proteome after two different ventilation strategies in rats. METHODS Rats (n = 6) were ventilated for 5 hours with high- and low tidal volumes (VTs) (high VT: 20 ml/kg; low VT: 6 ml/kg). Pooled nonventilated rats served as control animals. ATII cells were isolated and lysed, and proteins were tryptically cleaved into peptides. Cellular protein content was evaluated by peptide labeling of the ventilated groups with (18)O. Samples were fractionated by cation exchange chromatography and identified using electrospray tandem mass spectrometry. Proteins identified by 15 or more peptides were statistically compared using t tests corrected for the false discovery rate. MEASUREMENTS AND MAIN RESULTS High Vt resulted in a significant increase in airspace neutrophils without an increase in extravascular lung water. Compared with low-VT samples, high-VT samples showed a 32% decrease in the inositol 1,4,5-trisphosphate 3 receptor (p < 0.01), a 34% decrease in Na(+), K(+)-ATPase (p < 0.01), and a significantly decreased content in ATP synthase chains. Even low-VT samples displayed significant changes, including a 66% decrease in heat shock protein 90-beta (p < 0.01) and a 67% increase in mitochondrial pyruvate carboxylase (p < 0.01). Significant differences were found in membrane, acute phase, structural, and mitochondrial proteins. CONCLUSIONS After short-term exposure to high-VT ventilation, significant reductions in membrane receptors, ion channel proteins, enzymes of the mitochondrial energy system, and structural proteins in ATII cells were present. The data supports the two-hit concept that an unfavorable ventilatory strategy may make the lung more vulnerable to an additional insult.
Collapse
Affiliation(s)
- Jan Hirsch
- Cardiovascular Research Institute, University of California, San Francisco, CA 94143-0130, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nunomura W, Takakuwa Y, Cherr GN, Murata K. Characterization of protein 4.1R in erythrocytes of zebrafish (Danio rerio): unique binding properties with transmembrane proteins and calmodulin. Comp Biochem Physiol B Biochem Mol Biol 2007; 148:124-38. [PMID: 17569566 DOI: 10.1016/j.cbpb.2007.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 05/03/2007] [Accepted: 05/05/2007] [Indexed: 11/17/2022]
Abstract
Cytoskeletal protein 4.1R is instrumental in regulating erythrocyte plasticity. 4.1R is comprised of four domains identified after chymotryptic digestion: an N-terminal 30 kDa domain responsible for interaction with membrane proteins, a unique domain, a spectrin-actin binding (SAB) domain, and a C-terminal domain (CTD). 4.1R 30 kDa domain interactions with transmembrane proteins are regulated by the Ca(2+)/calmodulin (CaM) complex. Unlike mature mammalian erythrocytes, fish erythrocytes remain nucleated. Comparing their cytoskeleton architecture and functional properties is therefore of great interest. Here we characterized the recently cloned zebrafish (Danio rerio, ZF) 4.1R and compared its properties with human 4.1R. We identified three ZF4.1R mRNA transcripts in erythrocytes, all characterized by exclusion of the central domains. The major transcript, referred to as BL31, included a full length 30 kDa domain (ZFR30) and parts of the unique region Ua and of CTD. Two minor transcripts, referred to as BL42 and BL56, expressed parts of ZFR30 and of the unique region Ub and full length SAB and CTD domains. Antibodies to ZFR30, ZF4.1R CTD and ZF glycophorin C (GPC) labeled the ZF erythrocyte plasma membrane. ZFR30 bound to CaM in presence or absence of Ca(2+). Resonant mirror detection binding assays revealed that ZFR30 bound to human Band3 with low K((D)) ( approximately 10nM), and to GPC with higher K((D)) ( approximately 1nM). The Ca(2+)/CaM complex did not affect ZFR30 binding to Band3 and GPC. Finally, we confirmed ZFR30 binding to erythrocyte plasma membrane proteins by pulling down ZFR30 with human erythrocyte inside-out vesicles (IOV). This study defines unique structural and functional properties for ZF4.1R.
Collapse
Affiliation(s)
- Wataru Nunomura
- Department of Biochemistry, Tokyo Women's Medical University, Kawada 8-1, Shinjuku, Tokyo 162-8666, Japan.
| | | | | | | |
Collapse
|
23
|
Orlacchio A, Calabresi P, Rum A, Tarzia A, Salvati AM, Kawarai T, Stefani A, Pisani A, Bernardi G, Cianciulli P, Caprari P. Neuroacanthocytosis associated with a defect of the 4.1R membrane protein. BMC Neurol 2007; 7:4. [PMID: 17298666 PMCID: PMC1805452 DOI: 10.1186/1471-2377-7-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2006] [Accepted: 02/13/2007] [Indexed: 11/10/2022] Open
Abstract
Background Neuroacanthocytosis (NA) denotes a heterogeneous group of diseases that are characterized by nervous system abnormalities in association with acanthocytosis in the patients' blood. The 4.1R protein of the erythrocyte membrane is critical for the membrane-associated cytoskeleton structure and in central neurons it regulates the stabilization of AMPA receptors on the neuronal surface at the postsynaptic density. We report clinical, biochemical, and genetic features in four patients from four unrelated families with NA in order to explain the cause of morphological abnormalities and the relationship with neurodegenerative processes. Case presentation All patients were characterised by atypical NA with a novel alteration of the erythrocyte membrane: a 4.1R protein deficiency. The 4.1R protein content was significantly lower in patients (3.40 ± 0.42) than in controls (4.41 ± 0.40, P < 0.0001), reflecting weakened interactions of the cytoskeleton with the membrane. In patients IV:1 (RM23), IV:3 (RM15), and IV:6 (RM16) the 4.1 deficiency seemed to affect the horizontal interactions of spectrin and an impairment of the dimer self-association into tetramers was detected. In patient IV:1 (RM16) the 4.1 deficiency seemed to affect the skeletal attachment to membrane and the protein band 3 was partially reduced. Conclusion A decreased expression pattern of the 4.1R protein was observed in the erythrocytes from patients with atypical NA, which might reflect the expression pattern in the central nervous system, especially basal ganglia, and might lead to dysfunction of AMPA-mediated glutamate transmission.
Collapse
Affiliation(s)
- Antonio Orlacchio
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) – Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy
- Dipartimento di Neuroscienze, Neurologia, Università di Roma "Tor Vergata", Rome, Italy
| | - Paolo Calabresi
- Dipartimento di Specialità Medico-Chirurgiche e Sanità Pubblica, Neurologia, Università di Perugia, Perugia, Italy
- Laboratorio di Neurofisiologia Sperimentale, Centro Europeo di Ricerca sul Cervello (CERC) – Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy
| | - Adriana Rum
- Dipartimento di Neuroscienze, Neurologia, Università di Roma "Tor Vergata", Rome, Italy
| | - Anna Tarzia
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Maria Salvati
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | - Toshitaka Kawarai
- Department of Neurology, Hyogo Brain and Heart Center, Himeji city, Hyogo prefecture, Japan
| | - Alessandro Stefani
- Dipartimento di Neuroscienze, Neurologia, Università di Roma "Tor Vergata", Rome, Italy
| | - Antonio Pisani
- Dipartimento di Neuroscienze, Neurologia, Università di Roma "Tor Vergata", Rome, Italy
- Laboratorio di Neurofisiologia Sperimentale, Centro Europeo di Ricerca sul Cervello (CERC) – Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy
| | - Giorgio Bernardi
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC) – Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy
- Dipartimento di Neuroscienze, Neurologia, Università di Roma "Tor Vergata", Rome, Italy
- Laboratorio di Neurofisiologia Sperimentale, Centro Europeo di Ricerca sul Cervello (CERC) – Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia, Rome, Italy
| | | | - Patrizia Caprari
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
24
|
Simonovic M, Zhang Z, Cianci CD, Steitz TA, Morrow JS. Structure of the calmodulin alphaII-spectrin complex provides insight into the regulation of cell plasticity. J Biol Chem 2006; 281:34333-40. [PMID: 16945920 DOI: 10.1074/jbc.m604613200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
AlphaII-spectrin is a major cortical cytoskeletal protein contributing to membrane organization and integrity. The Ca2+-activated binding of calmodulin to an unstructured insert in the 11th repeat unit of alphaII-spectrin enhances the susceptibility of spectrin to calpain cleavage but abolishes its sensitivity to several caspases and to at least one bacterially derived pathologic protease. Other regulatory inputs including phosphorylation by c-Src also modulate the proteolytic susceptibility of alphaII-spectrin. These pathways, acting through spectrin, appear to control membrane plasticity and integrity in several cell types. To provide a structural basis for understanding these crucial biological events, we have solved the crystal structure of a complex between bovine calmodulin and the calmodulin-binding domain of human alphaII-spectrin (Protein Data Bank ID code 2FOT). The structure revealed that the entire calmodulin-spectrin-binding interface is hydrophobic in nature. The spectrin domain is also unique in folding into an amphiphilic helix once positioned within the calmodulin-binding groove. The structure of this complex provides insight into the mechanisms by which calmodulin, calpain, caspase, and tyrosine phosphorylation act on spectrin to regulate essential cellular processes.
Collapse
Affiliation(s)
- Miljan Simonovic
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
25
|
Bournier O, Kroviarski Y, Rotter B, Nicolas G, Lecomte MC, Dhermy D. Spectrin interacts with EVL (Enabled/vasodilator-stimulated phosphoprotein-like protein), a protein involved in actin polymerization. Biol Cell 2006; 98:279-93. [PMID: 16336193 DOI: 10.1042/bc20050024] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND INFORMATION The alpha- and beta-spectrin chains constitute the filaments of the spectrin-based skeleton, which was first identified in erythrocytes. The discovery of analogous structures at plasma membranes of eukaryotic cells has led to investigations of the role of this spectrin skeleton in many cellular processes. The alphaII-spectrin chain expressed in nucleated cells harbours in its central region several functional motifs, including an SH3 (Src homology 3) domain. RESULTS Using yeast two-hybrid screening, we have identified EVL [Enabled/VASP (vasodilator-stimulated phosphoprotein)-like protein] as a new potential partner of the alphaII-spectrin SH3 domain. In the present study, we investigated the interaction of the alphaII-spectrin SH3 domain with EVL and compared this with other proteins related to EVL [Mena (mammalian Enabled) and VASP]. We confirmed the in vitro interaction between EVL and the alphaII-spectrin SH3 domain by GST (glutathione S-transferase) pull-down assays, and showed that the co-expression of EVL with the alphaII-spectrin SH3 domain in COS-7 cells resulted in the partial delocalization of the SH3 domain from cytoplasm to filopodia and lamellipodia, where it was co-localized with EVL. In kidney epithelial and COS-7 cells, we demonstrated the co-immunoprecipitation of the alphaII-spectrin chain with over-expressed EVL. Immunofluorescence studies showed that the over-expression of EVL in COS-7 cells promoted the formation of filopodia and lamellipodia, and the expressed EVL was detected in filopodial tips and the leading edge of lamellipodia. In these cells over-expressing EVL, the alphaII-spectrin membrane labelling lagged behind EVL staining in lamellipodia and filopodia, with co-localization of these two stains in the contact area. In kidney epithelial cell lines, focused co-localization of spectrin with expressed EVL was observed in the membrane of the lateral domain, where the cell-cell contacts are reinforced. CONCLUSIONS The possible link between the spectrin-based skeleton and actin via the EVL protein suggests a new way of integrating the spectrin-based skeleton in areas of dynamic actin reorganization.
Collapse
|
26
|
Sumandea CA, Fung LWM. Mutational effects at the tetramerization site of nonerythroid alpha spectrin. ACTA ACUST UNITED AC 2005; 136:81-90. [PMID: 15893590 DOI: 10.1016/j.molbrainres.2005.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 11/18/2004] [Accepted: 01/08/2005] [Indexed: 10/25/2022]
Abstract
Spectrin, a prominent cytoskeletal protein, exerts its fundamental role in cellular function by forming a sub-membrane filamentous network. An essential aspect of spectrin network formation is the tetramerization of spectrin alphabeta heterodimers. We used laboratory methods, the yeast two-hybrid system and random mutagenesis, to investigate, for the first time, effects of amino acid mutations on tetramerization of nonerythroid (brain) spectrin (fodrin). Based on high sequence homology with erythroid spectrin, we assume the putative tetramerization region of nonerythroid alpha-spectrin at the N-terminal region. We introduced mutations in the region consisting of residues 1-45 and studied mutational effects on spectrin alphabeta association to form tetramers. We detected single, double, and triple mutations involving 24 residues in this region. These amino acid mutations of nonerythroid alpha-spectrin exhibit full, partial, or no effect on the association with nonerythroid beta-spectrin. Single amino acid mutations in the region of residues 1-9 (D2Y, G5V, V6D, and V8M) did not affect the association. However, seven single mutations (I15F, I15N, R18G, V22D, R25P, Y26N, and R28P) affected the alphabeta association. These mutations were clustered in the region predicted by sequence alignment to be crucial in nonerythroid alpha-spectrin for tetramerization, a region that spanned residues 12-36, corresponding to the partial domain Helix C' (residues 21-45) in erythroid alpha-spectrin. In addition, two other mutations, one upstream and one downstream of this region at positions 10 (E10D) and 37 (R37P), also affected the alphabeta association. Our results implied nonerythroid alpha-spectrin partial domain helix may be longer than Helix C' (residues 21-45 and a total of 25 residues) in erythroid alpha-spectrin and spanned at least residues 10-37. It is interesting to note that seven out of these nine single mutations (I15F, I15N, R18G, V22D, R25P, Y26N, R37P) were at the a, d, e or g heptad positions based on sequence alignment with erythroid alpha-spectrin. Four of the mutated residues (I15, R18, V22, R25) are conserved in both erythroid and nonerythroid spectrin. These positions were previously identified as hot spots in erythroid alpha-spectrin that lead to severe hematological symptoms. This study clearly demonstrated that single mutation in a region predicted to be critical functionally in nonerythroid alpha-spectrin indeed leads to functional abnormalities and may lead to neurological disorders.
Collapse
Affiliation(s)
- Claudia A Sumandea
- Loyola University of Chicago, Department of Chemistry, 6525 N Sheridan Road, Chicago, IL 60626, USA
| | | |
Collapse
|
27
|
Terada N, Ohno N, Yamakawa H, Baba T, Fujii Y, Ohara O, Ohno S. Immunolocalization of protein 4.1B in the rat digestive system. J Mol Histol 2005; 35:347-53. [PMID: 15503808 DOI: 10.1023/b:hijo.0000039848.86488.74] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Protein 4.1 family proteins are thought to interact with membrane proteins and also membrane skeletons. In this study, immunohistochemical studies by light and electron microscopy were performed with a specific antibody against protein 4.1B. Specific protein 4.1B immunolabeling was observed in simple columnar epithelium in the adult rat large intestine, small intestine and stomach. Protein 4.1B immunolabeling was localized along the membranes facing the adjacent cells (lateral portion) and also facing the extracellular matrix (basal portion). Moreover, a spatial protein 4.1B expression gradient was observed along the crypt-villus axis of the rat small and large intestinal epithelium: strong protein 4.1B expression was present within the villus, with the crypt showing barely any detectable protein 4.1B. The expression of protein 4.1B was not detected in the stratified squamous epithelium in the forestomach or the esophagus. By immunoelectron microscopy, the immunolabeling of the cells was observed to be restricted to the cytoplasmic side just beneath the plasma membrane, including the membranes adjacent to the next cells, except for the tight junctions. We conclude that the protein 4.1B expression pattern is related to the maturation of simple columnar epithelium in the rat digestive system, probably by the effect of adhesion.
Collapse
Affiliation(s)
- Nobuo Terada
- Department of Anatomy, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Tamaho, Japan.
| | | | | | | | | | | | | |
Collapse
|
28
|
Taylor-Harris PM, Keating LA, Maggs AM, Phillips GW, Birks EJ, Franklin RCG, Yacoub MH, Baines AJ, Pinder JC. Cardiac muscle cell cytoskeletal protein 4.1: Analysis of transcripts and subcellular location?relevance to membrane integrity, microstructure, and possible role in heart failure. Mamm Genome 2005; 16:137-51. [PMID: 15834631 DOI: 10.1007/s00335-004-2436-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Accepted: 10/26/2004] [Indexed: 11/27/2022]
Abstract
The spectrin-based cytoskeleton assembly has emerged as a major player in heart functioning; however, cardiac protein 4.1, a key constituent, is uncharacterized. Protein 4.1 evolved to protect cell membranes against mechanical stresses and to organize membrane microstructure. 4.1 Proteins are multifunctional and, among other activities, link integral/signaling proteins on the plasma and internal membranes with the spectrin-based cytoskeleton. Four genes, EPB41, EPB41L1, EPB41L2, and EPB41L3 encode proteins 4.1R, 4.1N, 4.1G, and 4.1B, respectively. All are extensively spliced. Different isoforms are expressed according to tissue and developmental state, individual function being controlled through inclusion/exclusion of interactive domains. We have defined mouse and human cardiac 4.1 transcripts; other than 4. 1B in humans, all genes show activity. Cardiac transcripts constitutively include conserved FERM and C-terminal domains; both interact with membrane-bound signaling/transport/cell adhesion molecules. Variable splicing within and adjacent to the central spectrin/actin-binding domain enables regulation of cytoskeleton-binding activity. A novel heart-specific exon occurs in human 4.1G, but not in mouse. Immunofluorescence reveals 4.1 staining within mouse cardiomyocytes; thus, both at the plasma membrane and, interdigitated with sarcomeric myosin, across myofibrils in regions close to the sarcoplasmic reticulum. These are all regions to which spectrin locates. 4.1R in human heart shows similar distribution; however, there is limited plasma membrane staining. We conclude that cardiac 4.1s are highly regulated in their ability to crosslink plasma/integral cell membranes with the spectrin-actin cytoskeleton. We speculate that over the repetitive cycles of heart muscle contraction and relaxation, 4.1s are likely to locate, support, and coordinate functioning of key membrane-bound macromolecular assemblies.
Collapse
Affiliation(s)
- Pamela M Taylor-Harris
- Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
De Rycker M, Price CM. Tankyrase polymerization is controlled by its sterile alpha motif and poly(ADP-ribose) polymerase domains. Mol Cell Biol 2004; 24:9802-12. [PMID: 15509784 PMCID: PMC525485 DOI: 10.1128/mcb.24.22.9802-9812.2004] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tankyrases are novel poly(ADP-ribose) polymerases that have SAM and ankyrin protein-interaction domains. They are found at telomeres, centrosomes, nuclear pores, and Golgi vesicles and have been shown to participate in telomere length regulation. Their other function(s) are unknown, and it has been difficult to envision a common role at such diverse cellular locations. We have shown that tankyrase 1 polymerizes through its sterile alpha motif (SAM) domain to assemble large protein complexes. In vitro polymerization is reversible and still allows interaction with ankyrin-domain binding proteins. Polymerization can also occur in vivo, with SAM-dependent association of overexpressed tankyrase leading to formation of large tankyrase-containing vesicles, disruption of Golgi structure, and inhibition of apical secretion. Finally, tankyrase polymers are dissociated efficiently by poly(ADP-ribosy)lation. This disassembly is prevented by mutation of the PARP domain. Our findings indicate that tankyrase 1 has the unique capacity to promote both assembly and disassembly of large protein complexes. Thus, tankyrases appear to be master scaffolding proteins that regulate the formation of dynamic protein networks at different cellular locations. This implies a common scaffolding function for tankyrases at each location, with specific tankyrase interaction partners conferring location-specific roles to each network, e.g., telomere compaction or regulation of vesicle trafficking.
Collapse
Affiliation(s)
- Manu De Rycker
- Department of Molecular Genetics, Biochemistry & Microbiology, College of Medicine, University of Cincinnati, ML0524, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | | |
Collapse
|
30
|
Gascard P, Parra MK, Zhao Z, Calinisan VR, Nunomura W, Rivkees SA, Mohandas N, Conboy JG. Putative tumor suppressor protein 4.1B is differentially expressed in kidney and brain via alternative promoters and 5' alternative splicing. ACTA ACUST UNITED AC 2004; 1680:71-82. [PMID: 15488987 DOI: 10.1016/j.bbaexp.2004.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 08/03/2004] [Accepted: 08/10/2004] [Indexed: 10/26/2022]
Abstract
Protein 4.1B has been reported as a tumor suppressor in brain, but not in kidney, despite high expression in both tissues. Here we demonstrate that N-terminal variability in kidney and brain 4.1B isoforms arises through an unusual coupling of RNA processing events in the 5' region of the gene. We describe two transcriptional promoters at far upstream alternative exons 1A and 1B, and show that their respective transcripts splice differentially to exon 2'/2 in a manner that determines mRNA coding capacity. The consequence of this unique processing is that exon 1B transcripts initiate translation at AUG1 (in exon 2') and encode larger 4.1B isoforms with an N-terminal extension; exon 1A transcripts initiate translation at AUG2 (in exon 4) and encode smaller 4.1B isoforms. Tissue-specific differences in promoter utilization may thus explain the abundance of larger 4.1B isoforms in brain but not in kidney. In cell studies, differentiation of PC12 cells was accompanied by translocation of large protein 4.1B isoforms into the nucleus. We propose that first exon specification is coupled to downstream splicing events, generating 4.1B isoforms with diverse roles in kidney and brain physiology, and potentially unique functions in cell proliferation and tumor suppression.
Collapse
Affiliation(s)
- Philippe Gascard
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Mail stop 74-157, Berkeley CA 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Rotter B, Kroviarski Y, Nicolas G, Dhermy D, Lecomte MC. AlphaII-spectrin is an in vitro target for caspase-2, and its cleavage is regulated by calmodulin binding. Biochem J 2004; 378:161-8. [PMID: 14599290 PMCID: PMC1223933 DOI: 10.1042/bj20030955] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2003] [Revised: 11/04/2003] [Accepted: 11/05/2003] [Indexed: 12/13/2022]
Abstract
The spectrin-actin scaffold underlying the lipid bilayer is considered to participate in cell-shape stabilization and in the organization of specialized membrane subdomains. These structures are dynamic and likely to undergo frequent remodelling during changes in cell shape. Proteolysis of spectrin, which occurs during apoptosis, leads to destabilization of the scaffold. It is also one of the major processes involved in membrane remodelling. Spectrins, the main components of the membrane skeleton, are the targets for two important protease systems: m- and micro-calpains (Ca2+-activated proteases) and caspase-3 (activated during apoptosis). In this paper, we show that caspase-2 also targets spectrin in vitro, and we characterize Ca2+/calmodulin-dependent regulation of spectrin cleavage by caspases. Yeast two-hybrid screening reveals that the large isoform (1/L) of procaspase-2 specifically binds to alphaII-spectrin, while the short isoform does not. Like caspase-3, caspase-2 cleaves alphaII-spectrin in vitro at residue Asp-1185. This study emphasizes a role of executioner caspase for caspase-2. We also demonstrated that the executioner caspase-7 but not caspase-6 cleaves spectrin at residue Asp-1185 in vitro. This spectrin cleavage by caspases 2, 3 and 7 is inhibited by the Ca2+-dependent binding of calmodulin to spectrin. In contrast, calmodulin binding enhances spectrin cleavage by calpain at residue Tyr-1176. These results indicate that alphaII-spectrin cleavage is highly influenced by Ca2+ homoeostasis and calmodulin, which therefore represent potential regulators of the stability and the plasticity of the spectrin-based skeleton.
Collapse
Affiliation(s)
- Björn Rotter
- INSERM U409, Faculté de Médecine Bichat-Association Claude Bernard, 16 rue Henri Huchard, BP416, 75870 Paris, France
| | | | | | | | | |
Collapse
|
32
|
Lu D, Yan H, Othman T, Turner CP, Woolf T, Rivkees SA. Cytoskeletal protein 4.1G binds to the third intracellular loop of the A1 adenosine receptor and inhibits receptor action. Biochem J 2004; 377:51-9. [PMID: 12974671 PMCID: PMC1223836 DOI: 10.1042/bj20030952] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2003] [Revised: 09/08/2003] [Accepted: 09/16/2003] [Indexed: 01/24/2023]
Abstract
To identify binding partners of the A1AR (A1 adenosine receptor), yeast two-hybrid screening of a rat embryonic cDNA library was performed. This procedure led to the identification of erythrocyte membrane cytoskeletal protein (represented as 4.1G) as an A1AR-binding partner. Truncation studies revealed that the C-terminal domain of 4.1G was essential for binding to A1ARs and that the C-terminal domain of 4.1G and the third intracellular loop of A1ARs interacted. A1AR-4.1G interaction was also confirmed in studies using brain tissue. Studies in HEK-293 (human embryonic kidney 293) cells and Chinese-hamster ovary cells showed that 4.1G interfered with A1AR signal transduction, as 4.1G reduced A1AR-mediated inhibition of cAMP accumulation and intracellular calcium release. 4.1G also altered cell-surface A1AR expression. These observations identify 4.1G as a novel A1AR-binding partner that can regulate adenosine action.
Collapse
Affiliation(s)
- Dongcheng Lu
- Department of Pediatrics, Yale Child Health Research Center, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | |
Collapse
|
33
|
Waller KL, Nunomura W, An X, Cooke BM, Mohandas N, Coppel RL. Mature parasite-infected erythrocyte surface antigen (MESA) of Plasmodium falciparum binds to the 30-kDa domain of protein 4.1 in malaria-infected red blood cells. Blood 2003; 102:1911-4. [PMID: 12730097 DOI: 10.1182/blood-2002-11-3513] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Plasmodium falciparum mature parasite-infected erythrocyte surface antigen (MESA) is exported from the parasite to the infected red blood cell (IRBC) membrane skeleton, where it binds to protein 4.1 (4.1R) via a 19-residue MESA sequence. Using purified RBC 4.1R and recombinant 4.1R fragments, we show MESA binds the 30-kDa region of RBC 4.1R, specifically to a 51-residue region encoded by exon 10 of the 4.1R gene. The 3D structure of this region reveals that the MESA binding site overlaps the region of 4.1R involved in the p55, glycophorin C, and 4.1R ternary complex. Further binding studies using p55, 4.1R, and MESA showed competition between p55 and MESA for 4.1R, implying that MESA bound at the IRBC membrane skeleton may modulate normal 4.1R and p55 interactions in vivo. Definition of minimal binding domains involved in critical protein interactions in IRBCs may aid the development of novel therapies for falciparum malaria.
Collapse
Affiliation(s)
- Karena L Waller
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Brock A, Huang S, Ingber DE. Identification of a distinct class of cytoskeleton-associated mRNAs using microarray technology. BMC Cell Biol 2003; 4:6. [PMID: 12848903 PMCID: PMC167255 DOI: 10.1186/1471-2121-4-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2003] [Accepted: 07/08/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Interactions between mRNA and the cytoskeleton are critical for the localization of a number of transcripts in eukaryotic somatic cells. To characterize additional transcripts that may be subject to this form of regulation, we developed a two-step approach that utilizes biochemical fractionation of cells to isolate transcripts from different subcellular compartments followed by microarray analysis to examine and compare these subpopulations of transcripts in a massively-parallel manner. RESULTS Using this approach, mRNA was extracted from the cytoskeleton-rich and the cytosolic fractions of the promyelocytic HL-60 cell line. We identify a subset of 22 transcripts that are significantly enriched in the cytoskeleton-associated population. The majority of these encode structural proteins and/or proteins known to interact with elements of the cytoskeleton. Localization required an intact actin cytoskeleton and was largely conserved upon differentiation of precursor HL-60 cells to a macrophage-like phenotype. CONCLUSIONS We conclude that the association of transcripts with the actin cytoskeleton in somatic cells may be a critical post-transcriptional regulatory event that controls a larger class of genes than has previously been recognized.
Collapse
Affiliation(s)
- Amy Brock
- Vascular Biology Program, Departments of Pathology and Surgery, Harvard Medical School and Children's Hospital, Enders 1007, 300 Longwood Ave, Boston, MA 02115, USA
| | - Sui Huang
- Vascular Biology Program, Departments of Pathology and Surgery, Harvard Medical School and Children's Hospital, Enders 1007, 300 Longwood Ave, Boston, MA 02115, USA
| | - Donald E Ingber
- Vascular Biology Program, Departments of Pathology and Surgery, Harvard Medical School and Children's Hospital, Enders 1007, 300 Longwood Ave, Boston, MA 02115, USA
| |
Collapse
|
35
|
Park S, Caffrey MS, Johnson ME, Fung LWM. Solution structural studies on human erythrocyte alpha-spectrin tetramerization site. J Biol Chem 2003; 278:21837-44. [PMID: 12672815 DOI: 10.1074/jbc.m300617200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have determined the solution NMR structure of a recombinant peptide that consists of the first 156 residues of erythroid alpha-spectrin. The first 20 residues preceding the first helix (helix C') are in a disordered conformation. The subsequent three helices (helices A1, B1, and C1) form a triple helical bundle structural domain that is similar, but not identical, to previously published structures for spectrin from Drosophila and chicken brain. Paramagnetic spin label-induced NMR resonance broadening shows that helix C', the partial domain involved in alpha- and beta-spectrin association, exhibits little interaction with the structural domain. Surprisingly, helix C' is connected to helix A1 of the structural domain by a segment of 7 residues (the junction region) that exhibits a flexible disordered conformation, in contrast to the predicted rigid helical structure. We suggest that the flexibility of this particular junction region may play an important role in modulating the association affinity of alpha- and beta-spectrin at the tetramerization site of different isoforms, such as erythroid spectrin and brain spectrin. These findings may provide insight for explaining various physiological and pathological conditions that are a consequence of varying alpha- and beta-subunit self-association affinities in their formation of the various spectrin tetramers.
Collapse
Affiliation(s)
- Sunghyouk Park
- Center for Pharmaceutical Biotechnology, University of Illinois, 900 S. Ashland, Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
36
|
Ramez M, Blot-Chabaud M, Cluzeaud F, Chanan S, Patterson M, Walensky LD, Marfatia S, Baines AJ, Chasis JA, Conboy JG, Mohandas N, Gascard P. Distinct distribution of specific members of protein 4.1 gene family in the mouse nephron. Kidney Int 2003; 63:1321-37. [PMID: 12631349 DOI: 10.1046/j.1523-1755.2003.00870.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Protein 4.1 is an adapter protein that links the actin cytoskeleton to various transmembrane proteins. These 4.1 proteins are encoded by four homologous genes, 4.1R, 4.1G, 4.1N, and 4.1B, which undergo complex alternative splicing. Here we performed a detailed characterization of the expression of specific 4.1 proteins in the mouse nephron. METHODS Distribution of renal 4.1 proteins was investigated by staining of paraformaldehyde-fixed mouse kidney sections with antibodies highly specific for each 4.1 protein. Major 4.1 splice forms, amplified from mouse kidney marathon cDNA, were expressed in transfected COS-7 cells in order to assign species of known exon composition to proteins detected in kidney. RESULTS A 105 kD 4.1R splice form, initiating at ATG-2 translation initiation site and lacking exon 16, but including exon 17B, was restricted to thick ascending limb of Henle's loop. A 95 kD 4.1N splice form, lacking exons 15 and 17D, was expressed in either descending or ascending thin limb of Henle's loop, distal convoluted tubule, and all regions of the collecting duct system. A major 108 kD 4.1B splice form, initiating at a newly characterized ATG translation initiation site, and lacking exons 15, 17B, and 21, was present only in Bowman's capsule and proximal convoluted tubule (PCT). There was no expression of 4.1G in kidney. CONCLUSION Distinct distribution of 4.1 proteins along the nephron suggests their involvement in targeting of selected transmembrane proteins in kidney epithelium and, therefore, in regulation of specific kidney functions.
Collapse
Affiliation(s)
- Mohamed Ramez
- Department of Subcellular Structure, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Krauss SW, Heald R, Lee G, Nunomura W, Gimm JA, Mohandas N, Chasis JA. Two distinct domains of protein 4.1 critical for assembly of functional nuclei in vitro. J Biol Chem 2002; 277:44339-46. [PMID: 12171917 DOI: 10.1074/jbc.m204135200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein 4.1R, a multifunctional structural protein, acts as an adaptor in mature red cell membrane skeletons linking spectrin-actin complexes to plasma membrane-associated proteins. In nucleated cells protein 4.1 is not associated exclusively with plasma membrane but is also detected at several important subcellular locations crucial for cell division. To identify 4.1 domains having critical functions in nuclear assembly, 4.1 domain peptides were added to Xenopus egg extract nuclear reconstitution reactions. Morphologically disorganized, replication deficient nuclei assembled when spectrin-actin-binding domain or NuMA-binding C-terminal domain peptides were present. However, control variant spectrin-actin-binding domain peptides incapable of binding actin or mutant C-terminal domain peptides with reduced NuMA binding had no deleterious effects on nuclear reconstitution. To test whether 4.1 is required for proper nuclear assembly, 4.1 isoforms were depleted with spectrin-actin binding or C-terminal domain-specific antibodies. Nuclei assembled in the depleted extracts were deranged. However, nuclear assembly could be rescued by the addition of recombinant 4.1R. Our data establish that protein 4.1 is essential for nuclear assembly and identify two distinct 4.1 domains, initially characterized in cytoskeletal interactions, that have crucial and versatile functions in nuclear assembly.
Collapse
Affiliation(s)
- Sharon Wald Krauss
- Department of Subcellular Structure, Life Sciences Division, University of California, Lawrence Berkeley National Laboratory, 94720, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Bassères DS, Tizzei EV, Duarte AAS, Costa FF, Saad STO. ARHGAP10, a novel human gene coding for a potentially cytoskeletal Rho-GTPase activating protein. Biochem Biophys Res Commun 2002; 294:579-85. [PMID: 12056806 DOI: 10.1016/s0006-291x(02)00514-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Rho-GTPase activating proteins (Rho-GAPs) are negative regulators of Rho-GTPase signaling pathways related to actin cytoskeleton dynamics, cell proliferation, and differentiation. We have identified a novel human gene, termed ARHGAP10, that codes for a 1957-aminoacid Rho-GAP, containing a PDZ, a PH, and a Rho-GAP domain. The cDNA is 7118 bp long and has an open reading frame of 5874 bp. A computational analysis located this gene on chromosome 10 band 10p12.32 suggesting that it is composed of 25 exons. Northern analysis revealed that it is widely expressed, with high levels in brain and muscle. Real-time quantitative PCR analysis confirmed an increase in ARHGAP10 expression during differentiation of HL-60 cells with all-trans-retinoic acid and hematopoietic stem cells with erythropoietin, suggesting that this gene could play a role in normal hematopoiesis. The fact that this gene is highly expressed in muscle and brain, which are highly differentiated tissues, further supports the hypothesis that ARHGAP10 is important for cell differentiation.
Collapse
Affiliation(s)
- Daniela Sanchez Bassères
- Centro de Hematologia e Hemoterapia, Universidade Estadual de Campinas, Campinas, SP 13083-970, Brazil.
| | | | | | | | | |
Collapse
|
39
|
Nicolas G, Fournier CM, Galand C, Malbert-Colas L, Bournier O, Kroviarski Y, Bourgeois M, Camonis JH, Dhermy D, Grandchamp B, Lecomte MC. Tyrosine phosphorylation regulates alpha II spectrin cleavage by calpain. Mol Cell Biol 2002; 22:3527-36. [PMID: 11971983 PMCID: PMC133798 DOI: 10.1128/mcb.22.10.3527-3536.2002] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spectrins, components of the membrane skeleton, are implicated in various cellular functions. Understanding the diversity of these functions requires better characterization of the interacting domains of spectrins, such as the SH3 domain. Yeast two-hybrid screening of a kidney cDNA library revealed that the SH3 domain of alpha II-spectrin binds specifically isoform A of low-molecular-weight phosphotyrosine phosphatase (LMW-PTP). The alpha II-spectrin SH3 domain does not interact with LMW-PTP B or C nor does LMW-PTP A interact with the alpha I-spectrin SH3 domain. The interaction of spectrin with LMW-PTP A led us to look for a tyrosine-phosphorylated residue in alpha II-spectrin. Western blotting showed that alpha II-spectrin is tyrosine phosphorylated in vivo. Using mutagenesis on recombinant peptides, we identified the residue Y1176 located in the calpain cleavage site of alpha II-spectrin, near the SH3 domain, as an in vitro substrate for Src kinase and LMW-PTP A. This Y1176 residue is also an in vivo target for kinases and phosphatases in COS cells. Phosphorylation of this residue decreases spectrin sensitivity to calpain in vitro. Similarly, the presence of phosphatase inhibitors in cell culture is associated with the absence of spectrin cleavage products. This suggests that the Y1176 phosphorylation state could modulate spectrin cleavage by calpain and may play an important role during membrane skeleton remodeling.
Collapse
Affiliation(s)
- Gaël Nicolas
- INSERM U409, Faculté de Médecine Xavier Bichat-Association Claude Bernard, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chang LS, Akhmametyeva EM, Wu Y, Zhu L, Welling DB. Multiple transcription initiation sites, alternative splicing, and differential polyadenylation contribute to the complexity of human neurofibromatosis 2 transcripts. Genomics 2002; 79:63-76. [PMID: 11827459 DOI: 10.1006/geno.2001.6672] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Northern blot analysis has shown that the human neurofibromatosis type 2 (NF2) cDNA hybridizes to multiple RNA species. To examine whether these hybridizing RNA species represent NF2 transcripts, we cloned the complete NF2 cDNA by a combination of techniques: 5' and 3' rapid amplification of cDNA ends, RT-PCR, and searching and sequencing the NF2-related cDNA clones from the IMAGE consortium. We showed that human NF2 transcripts initiate at multiple positions. Analogous to those reported previously, NF2 transcripts undergo alternative splicing in the coding exons. We isolated eight alternatively spliced NF2 cDNA isoforms, including one that contains a new exon termed exon 2', which potentially could encode proteins of different sizes. We assembled the overlapping cDNA fragments, and the longest NF2 cDNA, containing all 17 exons, consists of 6067 nucleotides, which is consistent with the size of the major RNA species hybridized to the NF2 probe. The cDNA has a 425-nucleotide 5' untranslated region upstream from the ATG start codon, and a long 3' untranslated region of 3869 nucleotides. We also isolated two shorter NF2 cDNAs that were terminated by different polyadenylation signal sequences, which indicates that differential usage of multiple polyadenylation sites also contributes to the complexity of human NF2 transcripts. By reference to the transcription initiation site mapped, we analyzed the 5' flanking sequence of the human NF2 gene. Transient transfection analysis in human 293 kidney, SK-N-AS neuroblastoma, and NT2/D1 teratocarcinoma cells with NF2 promoter-luciferase chimeric constructs revealed a core promoter region extending 400 base pairs from the major transcription initiation site. Although multiple regions are required for full promoter activity, a site-directed mutagenesis experiment identified a GC-rich sequence (position -58 to -46), which could be bound by transcription factor Sp1, as a positive cis-acting regulatory element. Cotransfection studies in Drosophila melanogaster SL2 cells showed that Sp1 could activate the NF2 promoter through the GC-rich sequence.
Collapse
Affiliation(s)
- Long-Sheng Chang
- Children's Research Institute, Children's Hospital, The Ohio State University College of Medicine and Public Health, Columbus, OH 43205, USA.
| | | | | | | | | |
Collapse
|
41
|
Kontrogianni-Konstantopoulos A, Frye CS, Benz EJ, Huang SC. The prototypical 4.1R-10-kDa domain and the 4.1g-10-kDa paralog mediate fodrin-actin complex formation. J Biol Chem 2001; 276:20679-87. [PMID: 11274145 DOI: 10.1074/jbc.m010581200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A complex family of 4.1R isoforms has been identified in non-erythroid tissues. In this study we characterized the exonic composition of brain 4.1R-10-kDa or spectrin/actin binding (SAB) domain and identified the minimal sequences required to stimulate fodrin/F-actin association. Adult rat brain expresses predominantly 4.1R mRNAs that carry an extended SAB, consisting of the alternative exons 14/15/16 and part of the constitutive exon 17. Exon 16 along with sequences carried by exon 17 is necessary and sufficient to induce formation of fodrin-actin-4.1R ternary complexes. The ability of the respective SAB domains of 4.1 homologs to sediment fodrin/actin was also investigated. 4.1G-SAB stimulates association of fodrin/actin, although with an approximately 2-fold reduced efficiency compared with 4.1R-10-kDa, whereas 4.1N and 4.1B do not. Sequencing of the corresponding domains revealed that 4.1G-SAB carries a cassette that shares significant homology with 4.1R exon 16, whereas the respective sequence is divergent in 4.1N and absent from brain 4.1B. An approximately 150-kDa 4.1R and an approximately 160-kDa 4.1G isoforms are present in PC12 lysates that occur in vivo in a supramolecular complex with fodrin and F-actin. Moreover, proteins 4.1R and 4.1G are distributed underneath the plasma membrane in PC12 cells. Collectively, these observations suggest that brain 4.1R and 4.1G may modulate the membrane mechanical properties of neuronal cells by promoting fodrin/actin association.
Collapse
|
42
|
Baird JW, Ryan KM, Hayes I, Hampson L, Heyworth CM, Clark A, Wootton M, Ansell JD, Menzel U, Hole N, Graham GJ. Differentiating embryonal stem cells are a rich source of haemopoietic gene products and suggest erythroid preconditioning of primitive haemopoietic stem cells. J Biol Chem 2001; 276:9189-98. [PMID: 11106657 DOI: 10.1074/jbc.m008354200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The difficulties associated with studying molecular mechanisms important in hemopoietic stem cell (HSC) function such as the problems of purifying homogeneous stem cell populations, have prompted us to adapt the murine ES cell system as an in vitro model of HSC generation and function. We now report that careful analysis of the time course of HSC generation in differentiating ES cells allows them to be used as a source of known and novel hemopoietic gene products. We have generated a subtracted library using cDNA from ES cells collected just prior to and just following the emergence of HSCs. Analysis of this library shows it to be a rich source of known hemopoietic and hemopoietic related gene products with 44% of identifiable cDNAs falling into these camps. We have demonstrated the value of this system as a source of novel genes of relevance to HSC function by characterizing a novel membrane protein encoding cDNA that is preferentially expressed in primitive hemopoietic cells. Intriguingly, further analysis of the known components of the subtracted library is suggestive of erythroid preconditioning of the ES cell-derived HSC. We have used dot-blot and in situ analysis to indicate that this erythroid preconditioning is probably restricted to primitive but not definitive HSC.
Collapse
Affiliation(s)
- J W Baird
- Beatson Institute for Cancer Research, Cancer Research Campaign Beatson Laboratories, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
This article presents new insights into the molecular mechanism for regulating red cell membrane protein interactions that are responsible for erythrocyte membrane mechanical properties. For various skeletal proteins, structure-function correlations of protein 4.1R have been studied in detail. Kinetic analysis with the resonant mirror detection method has determined the nature of 4.1R interactions with various binding partners such as band 3, glycophorin C, and p55, and their binding sites. More importantly, calmodulin (CaM) binds to 4.1R in a Ca2+-independent manner to modulate the 4.1R interactions in the presence of Ca2+ at microM. Crystal structure of the 30-kD domain of 4.1R has a cloverleaf-like architecture with three lobes, each of which contains a binding region specific for binding partners. CaM binds to the grooves situated in two regions between the three lobes, possibly leading to conformational changes of the three lobes with a consequent alteration in the capacity of 4.1R to bind to its partners. The present findings on erythrocyte 4.1R should provide a basis for better understanding the membrane functions of nonerythroid cells.
Collapse
Affiliation(s)
- Y Takakuwa
- Tokyo Women's Medical University, School of Medicine, Department of Biochemistry, Tokyo, Japan.
| |
Collapse
|
44
|
Huang CH, Liu PZ. New Insights into the Rh Superfamily of Genes and Proteins in Erythroid Cells and Nonerythroid Tissues. Blood Cells Mol Dis 2001; 27:90-101. [PMID: 11358367 DOI: 10.1006/bcmd.2000.0355] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The past decade has seen extensive studies of the erythrocyte Rh30 polypeptides and Rh-associated glycoprotein, which specify the clinically important Rh blood group system. Here we consider recent advances on these and other Rh homologues in the context of gene organization, molecular evolution, tissue-specific expression, protein structure, and potential biological functions. The Rh family is now known to contain a large number of homologues that form a unique branch in the eucarya life domain. The ancient origin and broad distribution imply central roles for the various Rh proteins in maintaining normal cellular and organismal homeostatic conditions. Rh homologues occur in the form of multiple chromosomal loci in mice and humans, but as single-copy genes in unicellular organisms (e.g., green alga and slime mold). While primitive Rh genes vary largely in exon/intron design, the mammalian Rh homologues bear a similar genomic organization. Sequence comparisons have revealed the signatures and a consensus 12-transmembrane fold characteristic of the Rh family. Phylogenetic analysis has placed all Rh homologues as a related cluster that intercepts ammonium transporter (Amt) clusters, indicating an intimate evolutionary and structural relationship between the Rh and Amt families. The biochemical identification and epithelial expression of RhBG and RhCG orthologues in mammalian kidney, liver, skin, testis, and brain suggest that they serve as transporters likely participating in ammonia homeostasis. Further inquires into the structure, function, biosynthesis, and interaction of Rh proteins will shed new light on ammonia homeostasis in a wide range of human physiological and pathological states.
Collapse
Affiliation(s)
- C H Huang
- Laboratory of Biochemistry and Molecular Genetics, New York Blood Center, New York, New York 10021, USA.
| | | |
Collapse
|