1
|
Tanaka M, Nakamura T. Modeling fusion gene-associated sarcoma: Advantages for understanding sarcoma biology and pathology. Pathol Int 2021; 71:643-654. [PMID: 34265156 DOI: 10.1111/pin.13142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022]
Abstract
Disease-specific gene fusions are reportedly major driver mutations in approximately 30% of bone and soft tissue sarcomas. Most fusion genes encode transcription factors or co-factors that regulate downstream target genes, altering cell growth, lineage commitment, and differentiation. Given the limitations of investigating their functions in vitro, the generation of mouse models expressing fusion genes in the appropriate cellular lineages is pivotal. Therefore, we generated a series of mouse models by introducing fusion genes into embryonic mesenchymal progenitors. This review describes mouse models of Ewing, synovial, alveolar soft part, and CIC-rearranged sarcomas. Furthermore, we describe the similarities between these models and their human counterparts. These models provide remarkable advantages to identify cells-of-origin, specific collaborators of fusion genes, angiogenesis key factors, or diagnostic biomarkers. Finally, we discuss the relationship between fusion proteins and the epigenetic background as well as the possible role of the super-enhancers.
Collapse
Affiliation(s)
- Miwa Tanaka
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takuro Nakamura
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
2
|
The Impact of the Cellular Origin in Acute Myeloid Leukemia: Learning From Mouse Models. Hemasphere 2019; 3:e152. [PMID: 31723801 PMCID: PMC6745939 DOI: 10.1097/hs9.0000000000000152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is a genetically heterogeneous disease driven by a limited number of cooperating mutations. There is a long-standing debate as to whether AML driver mutations occur in hematopoietic stem or in more committed progenitor cells. Here, we review how different mouse models, despite their inherent limitations, have functionally demonstrated that cellular origin plays a critical role in the biology of the disease, influencing clinical outcome. AML driven by potent oncogenes such as mixed lineage leukemia fusions often seem to emerge from committed myeloid progenitors whereas AML without any major cytogenetic abnormalities seem to develop from a combination of preleukemic initiating events arising in the hematopoietic stem cell pool. More refined mouse models may serve as experimental platforms to identify and validate novel targeted therapeutic strategies.
Collapse
|
3
|
A Novel Inducible Mouse Model of MLL-ENL-driven Mixed-lineage Acute Leukemia. Hemasphere 2018; 2:e51. [PMID: 31723780 PMCID: PMC6745998 DOI: 10.1097/hs9.0000000000000051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022] Open
Abstract
Supplemental Digital Content is available in the text Previous retroviral and knock-in approaches to model human t(11;19)+ acute mixed-lineage leukemia in mice resulted in myeloproliferation and acute myeloid leukemia not fully recapitulating the human disease. The authors established a doxycycline (DOX)-inducible transgenic mouse model “iMLL-ENL” in which induction in long-term hematopoietic stem cells, lymphoid primed multipotent progenitor cells, multipotent progenitors (MPP4) but not in more committed myeloid granulocyte-macrophage progenitors led to a fully reversible acute leukemia expressing myeloid and B-cell markers. iMLL-ENL leukemic cells generally expressed lower MLL-ENL mRNA than those obtained after retroviral transduction. Disease induction was associated with iMLL-ENL levels exceeding the endogenous Mll1 at mRNA and protein levels. In leukemic cells from t(11;19)+ leukemia patients, MLL-ENL mRNA also exceeded the endogenous MLL1 levels suggesting a critical threshold for transformation. Expression profiling of iMLL-ENL acute leukemia revealed gene signatures that segregated t(11;19)+ leukemia patients from those without an MLL translocation. Importantly, B220+iMLL-ENL leukemic cells showed a higher in vivo leukemia initiation potential than coexisting B220− cells. Collectively, characterization of a novel transgenic mouse model indicates that the cell-of-origin and the fusion gene expression levels are both critical determinants for MLL-ENL-driven acute leukemia.
Collapse
|
4
|
Mll partial tandem duplication and Flt3 internal tandem duplication in a double knock-in mouse recapitulates features of counterpart human acute myeloid leukemias. Blood 2012; 120:1130-6. [PMID: 22674806 DOI: 10.1182/blood-2012-03-415067] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The MLL-partial tandem duplication (PTD) associates with high-risk cytogenetically normal acute myeloid leukemia (AML). Concurrent presence of FLT3-internal tandem duplication (ITD) is observed in 25% of patients with MLL-PTD AML. However, mice expressing either Mll-PTD or Flt3-ITD do not develop AML, suggesting that 2 mutations are necessary for the AML phenotype. Thus, we generated a mouse expressing both Mll-PTD and Flt3-ITD. Mll(PTD/WT):Flt3(ITD/WT) mice developed acute leukemia with 100% penetrance, at a median of 49 weeks. As in human MLL-PTD and/or the FLT3-ITD AML, mouse blasts exhibited normal cytogenetics, decreased Mll-WT-to-Mll-PTD ratio, loss of the Flt3-WT allele, and increased total Flt3. Highlighting the adverse impact of FLT3-ITD dosage on patient survival, mice with homozygous Flt3-ITD alleles, Mll(PTD/WT):Flt3(ITD/ITD), demonstrated a nearly 30-week reduction in latency to overt AML. Here we demonstrate, for the first time, that Mll-PTD contributes to leukemogenesis as a gain-of-function mutation and describe a novel murine model closely recapitulating human AML.
Collapse
|
5
|
Li J, Kent DG, Chen E, Green AR. Mouse models of myeloproliferative neoplasms: JAK of all grades. Dis Model Mech 2011; 4:311-7. [PMID: 21558064 PMCID: PMC3097453 DOI: 10.1242/dmm.006817] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In 2005, several groups identified a single gain-of-function point mutation in the JAK2 kinase that was present in the majority of patients with myeloproliferative neoplasms (MPNs). Since this discovery, much effort has been dedicated to understanding the molecular consequences of the JAK2V617F mutation in the haematopoietic system. Three waves of mouse models have been produced recently (bone marrow transplantation, transgenic and targeted knock-in), which have facilitated the understanding of the molecular pathogenesis of JAK2V617F-positive MPNs, providing potential platforms for designing and validating novel therapies in humans. This Commentary briefly summarises the first two types of mouse models and then focuses on the more recently generated knock-in models.
Collapse
Affiliation(s)
- Juan Li
- Cambridge Institute for Medical Research and Department of Haematology, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | | | | | | |
Collapse
|
6
|
Mullally A, Lane SW, Ball B, Megerdichian C, Okabe R, Al-Shahrour F, Paktinat M, Haydu JE, Housman E, Lord AM, Wernig G, Kharas MG, Mercher T, Kutok JL, Gilliland DG, Ebert BL. Physiological Jak2V617F expression causes a lethal myeloproliferative neoplasm with differential effects on hematopoietic stem and progenitor cells. Cancer Cell 2010; 17:584-96. [PMID: 20541703 PMCID: PMC2909585 DOI: 10.1016/j.ccr.2010.05.015] [Citation(s) in RCA: 323] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 05/09/2010] [Accepted: 05/21/2010] [Indexed: 01/08/2023]
Abstract
We report a Jak2V617F knockin mouse myeloproliferative neoplasm (MPN) model resembling human polycythemia vera (PV). The MPN is serially transplantable and we demonstrate that the hematopoietic stem cell (HSC) compartment has the unique capacity for disease initiation but does not have a significant selective competitive advantage over wild-type HSCs. In contrast, myeloid progenitor populations are expanded and skewed toward the erythroid lineage, but cannot transplant the disease. Treatment with a JAK2 kinase inhibitor ameliorated the MPN phenotype, but did not eliminate the disease-initiating population. These findings provide insights into the consequences of JAK2 activation on HSC differentiation and function and have the potential to inform therapeutic approaches to JAK2V617F-positive MPN.
Collapse
Affiliation(s)
- Ann Mullally
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Primary human AML cells can be isolated and studied in vitro, but many experimental questions can only be addressed using in vivo models. In particular, tractable animal models are needed to test novel therapies. The genetic complexity of human AML poses significant challenges for the generation of reliable animal models. The hematopoietic systems of both zebrafish ( Danio rerio) and Drosophila have been well characterized ( reviewed in [5, 31]) . Both organisms are well suited to forward genetics mutagenesis screens. Although this approach has been useful for identification of mutants with hematopoietic phenotypes ( e.g., cloche), the impact on cancer biology and hematopoietic malignancies in particular has been limited. A zebrafish model of acute lymphoblastic leukemia has been generated [37] and Drosophila models have shed light on the biology of epithelial tumors ( reviewed in [60]). Nonetheless, in vivo modeling of human AML relies most heavily on mice. Most cellular, molecular, and developmental features of the hematopoietic system are well conserved across mammalian species. The availability of the human and mouse genome sequences and the capability of manipulating the mouse genome make mice the most valuable model organism for AML research. Mice have additional practical value because they have a short reproductive cycle and are relatively inexpensive to house.
Collapse
Affiliation(s)
- Julie M Fortier
- Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
8
|
Kennedy JA, Barabé F. Investigating human leukemogenesis: from cell lines to in vivo models of human leukemia. Leukemia 2008; 22:2029-40. [DOI: 10.1038/leu.2008.206] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Chou CJ, Farkas ME, Tsai SM, Alvarez D, Dervan PB, Gottesfeld JM. Small molecules targeting histone H4 as potential therapeutics for chronic myelogenous leukemia. Mol Cancer Ther 2008; 7:769-78. [PMID: 18413791 DOI: 10.1158/1535-7163.mct-08-0130] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We recently identified a polyamide-chlorambucil conjugate, 1R-Chl, which alkylates and down-regulates transcription of the human histone H4c gene and inhibits the growth of several cancer cell lines in vitro and in a murine SW620 xenograft model, without apparent animal toxicity. In this study, we analyzed the effects of 1R-Chl in the chronic myelogenous leukemia cell line K562 and identified another polyamide conjugate, 6R-Chl, which targets H4 genes and elicits a similar cellular response. Other polyamide conjugates that do not target the H4 gene do not elicit this response. In a murine model, both 1R-Chl and 6R-Chl were found to be highly effective in blocking K562 xenograft growth with high-dose tolerance. Unlike conventional and distamycin-based alkylators, little or no cytotoxicities and animal toxicities were observed in mg/kg dosage ranges. These results suggest that these polyamide alkylators may be a viable treatment alternative for chronic myelogenous leukemia.
Collapse
Affiliation(s)
- C James Chou
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA
| | | | | | | | | | | |
Collapse
|
10
|
Chen W, Kumar AR, Hudson WA, Li Q, Wu B, Staggs RA, Lund EA, Sam TN, Kersey JH. Malignant transformation initiated by Mll-AF9: gene dosage and critical target cells. Cancer Cell 2008; 13:432-40. [PMID: 18455126 PMCID: PMC2430522 DOI: 10.1016/j.ccr.2008.03.005] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 12/28/2007] [Accepted: 03/07/2008] [Indexed: 01/28/2023]
Abstract
The pathways by which oncogenes, such as MLL-AF9, initiate transformation and leukemia in humans and mice are incompletely defined. In a study of target cells and oncogene dosage, we found that Mll-AF9, when under endogenous regulatory control, efficiently transformed LSK (Lin(-)Sca1(+)c-kit(+)) stem cells, while committed granulocyte-monocyte progenitors (GMPs) were transformation resistant and did not cause leukemia. Mll-AF9 was expressed at higher levels in hematopoietic stem (HSC) than GMP cells. Mll-AF9 gene dosage effects were directly shown in experiments where GMPs were efficiently transformed by the high dosage of Mll-AF9 resulting from retroviral transduction. Mll-AF9 upregulated expression of 192 genes in both LSK and progenitor cells, but to higher levels in LSKs than in committed myeloid progenitors.
Collapse
Affiliation(s)
- Weili Chen
- University of Minnesota Cancer Center, University of Minnesota, 420 Delaware Street S.E., Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lee BH, Tothova Z, Levine RL, Anderson K, Buza-Vidas N, Cullen DE, McDowell EP, Adelsperger J, Fröhling S, Huntly BJ, Beran M, Jacobsen SE, Gilliland DG. FLT3 mutations confer enhanced proliferation and survival properties to multipotent progenitors in a murine model of chronic myelomonocytic leukemia. Cancer Cell 2007; 12:367-80. [PMID: 17936561 PMCID: PMC2104473 DOI: 10.1016/j.ccr.2007.08.031] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 07/09/2007] [Accepted: 08/29/2007] [Indexed: 11/27/2022]
Abstract
Despite their known transforming properties, the effects of leukemogenic FLT3-ITD mutations on hematopoietic stem and multipotent progenitor cells and on hematopoietic differentiation are not well understood. We report a mouse model harboring an ITD in the murine Flt3 locus that develops myeloproliferative disease resembling CMML and further identified FLT3-ITD mutations in a subset of human CMML. These findings correlated with an increase in number, cell cycling, and survival of multipotent stem and progenitor cells in an ITD dose-dependent manner in animals that exhibited alterations within their myeloid progenitor compartments and a block in normal B cell development. This model provides insights into the consequences of constitutive signaling by an oncogenic tyrosine kinase on hematopoietic progenitor quiescence, function, and cell fate.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cell Proliferation
- Cell Survival
- Cells, Cultured
- Exons
- Gene Expression Regulation, Neoplastic
- Genotype
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Kaplan-Meier Estimate
- Leukemia, Experimental/metabolism
- Leukemia, Experimental/pathology
- Leukemia, Myelomonocytic, Chronic/genetics
- Leukemia, Myelomonocytic, Chronic/metabolism
- Leukemia, Myelomonocytic, Chronic/mortality
- Leukemia, Myelomonocytic, Chronic/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Multipotent Stem Cells/metabolism
- Multipotent Stem Cells/pathology
- Mutation
- Myeloproliferative Disorders/genetics
- Myeloproliferative Disorders/metabolism
- Myeloproliferative Disorders/pathology
- Phenotype
- Signal Transduction
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
Collapse
Affiliation(s)
- Benjamin H. Lee
- Division of Hematology, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: D. Gary Gilliland, MD, PhD, Karp Family Research Building, 1 Blackfan Circle; 5th Floor, Boston, MA 02115 USA, 617-355-9092 (tel), 617-355-9093 (fax), or Benjamin H. Lee, MD, PhD, Karp Family Research Building, 1 Blackfan Circle; 5th Floor, Boston, MA 02115 USA, 617-355-9085 (tel), 617-355-9093 (fax),
| | - Zuzana Tothova
- Division of Hematology, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ross L. Levine
- Division of Hematology, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kristina Anderson
- Hematopoietic Stem Cell Laboratory, Lund Stem Cell Center, Lund University, Biomedical Center, B10, Klinikgatan 26, 221 84 Lund, Sweden
| | - Natalija Buza-Vidas
- Hematopoietic Stem Cell Laboratory, Lund Stem Cell Center, Lund University, Biomedical Center, B10, Klinikgatan 26, 221 84 Lund, Sweden
| | - Dana E. Cullen
- Division of Hematology, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth P. McDowell
- Division of Hematology, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jennifer Adelsperger
- Division of Hematology, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stefan Fröhling
- Division of Hematology, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Brian J.P. Huntly
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 OXY, UK
| | - Miloslav Beran
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sten Eirik Jacobsen
- Hematopoietic Stem Cell Laboratory, Lund Stem Cell Center, Lund University, Biomedical Center, B10, Klinikgatan 26, 221 84 Lund, Sweden
| | - D. Gary Gilliland
- Division of Hematology, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: D. Gary Gilliland, MD, PhD, Karp Family Research Building, 1 Blackfan Circle; 5th Floor, Boston, MA 02115 USA, 617-355-9092 (tel), 617-355-9093 (fax), or Benjamin H. Lee, MD, PhD, Karp Family Research Building, 1 Blackfan Circle; 5th Floor, Boston, MA 02115 USA, 617-355-9085 (tel), 617-355-9093 (fax),
| |
Collapse
|
12
|
Krueger C, Danke C, Pfleiderer K, Schuh W, Jäck HM, Lochner S, Gmeiner P, Hillen W, Berens C. A gene regulation system with four distinct expression levels. J Gene Med 2006; 8:1037-47. [PMID: 16779863 DOI: 10.1002/jgm.932] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The amount of a particular protein, and not just its presence or absence, frequently determines the outcome of a developmental process or disease progression. These dosage effects can be studied by conditionally expressing such proteins at different levels. With typical gene regulation systems like the Tet-On system, intermediate expression levels can be obtained by varying the effector concentration. However, this strategy is limited to situations in which these concentrations can be precisely controlled and, thus, not suited for animal models or gene therapy approaches. Here, we present a Tet transregulator setup that allows establishment of four levels of promoter activity largely independent of effector concentration. METHODS A newly introduced transsilencer is combined with a reverse transactivator. As the regulators respond differentially to tetracycline derivatives, four expression levels are obtained by adding different effectors. To facilitate integration of the components, we generated versatile all-in-one vectors. Apart from a cassette expressing the transregulators and a selection marker, these vectors encode a bidirectional, regulated promoter driving expression of GFP and the gene of interest. The features of this stepwise regulation system were analyzed by transient and stable transfections of human cell lines. RESULTS We demonstrate in a variety of experimental settings that coexpression of these transregulators leads to robust stepwise regulation. Depending on the respective effectors, four expression levels are achieved with different responsive promoters, cell lines and target genes. CONCLUSIONS This system shows that a promoter can be adjusted to different activities and provides an excellent strategy to investigate protein dosage effects.
Collapse
Affiliation(s)
- Christel Krueger
- Department of Microbiology, Institute for Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstr. 5, 91058 Erlangen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Parikh C, Subrahmanyam R, Ren R. Oncogenic NRAS rapidly and efficiently induces CMML- and AML-like diseases in mice. Blood 2006; 108:2349-57. [PMID: 16763213 PMCID: PMC1895567 DOI: 10.1182/blood-2004-08-009498] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activating mutations in RAS, predominantly NRAS, are common in myeloid malignancies. Previous studies in animal models have shown that oncogenic NRAS is unable to induce myeloid malignancies effectively, and it was suggested that oncogenic NRAS might only act as a secondary mutation in leukemogenesis. In this study, we examined the leukemogenicity of NRAS using an improved mouse bone marrow transduction and transplantation model. We found that oncogenic NRAS rapidly and efficiently induced chronic myelomonocytic leukemia (CMML)- or acute myeloid leukemia (AML)- like disease in mice, indicating that mutated NRAS can function as an initiating oncogene in the induction of myeloid malignancies. In addition to CMML and AML, we found that NRAS induced mastocytosis in mice. This result indicates that activation of the RAS pathway also plays an important role in the pathogenesis of mastocytosis. The mouse model for NRAS leukemogenesis established here provides a system for further studying the molecular mechanisms in the pathogenesis of myeloid malignancies and for testing relevant therapies.
Collapse
MESH Headings
- Animals
- Bone Marrow/metabolism
- Disease Models, Animal
- Gene Expression Regulation, Neoplastic
- Genes, ras
- Genetic Vectors
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myelomonocytic, Chronic/genetics
- Leukemia, Myelomonocytic, Chronic/metabolism
- Male
- Mice
- Mice, Inbred BALB C
- Mutation
- NIH 3T3 Cells
- ras Proteins/genetics
- ras Proteins/physiology
Collapse
Affiliation(s)
- Chaitali Parikh
- Rosenstiel Basic Medical Sciences Research Center, MS029, Brandeis University, Waltham, MA 02454-9110, USA
| | | | | |
Collapse
|
14
|
Abstract
Innovative hypothesis-driven clinical trials have achieved major successes over the past several decades in treating children and adolescents with cancer. DNA-damaging cytotoxic agents have cured children with cancer. While the mission is not yet accomplished, chemotherapy has been validated. None of these drugs were designed specifically for a pediatric disease. Continued progress will require new strategies. Now being tested for adult cancers, these strategies include gene therapy, immunotherapy, cancer prevention, and signal transduction inhibitor (STI) therapy. Of these, the most promising is STI therapy, also known as molecular therapeutics or targeted therapy. For this therapy to succeed, components of signal transduction (i.e., candidate drug targets) must be identified, the targets relevant to cancers, and the drugs available for trial. Because STI therapy is biologically driven and because therapy will be tailored depending on the molecular profile of a specific patient's tumor, clinical pediatric oncologists will need to acquire greater understanding of signaling pathways and their therapeutic relevance. With examples drawn from pediatric oncology, the critical steps in the pre-clinical development of targeted therapy are reviewed here.
Collapse
Affiliation(s)
- Seth J Corey
- Division of Pediatrics, UT-MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
15
|
Rosenbauer F, Koschmieder S, Steidl U, Tenen DG. Effect of transcription-factor concentrations on leukemic stem cells. Blood 2005; 106:1519-24. [PMID: 15914558 PMCID: PMC1895222 DOI: 10.1182/blood-2005-02-0717] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Increasing evidence suggests that leukemias are sustained by leukemic stem cells. However, the molecular pathways underlying the transformation of normal cells into leukemic stem cells are still poorly understood. The involvement of a small group of key transcription factors into this process was suggested by their frequent mutation or down-regulation in patients with acute myeloid leukemia (AML). Recent findings in mice with hypomorphic transcription-factor genes demonstrated that leukemic stem-cell formation in AML could directly be caused by reduced transcription-factor activity beyond a critical threshold. Most interestingly, those experimental models and the paucity of biallelic null mutations or deletions in transcription-factor genes in patients suggest that AML is generally associated with graded down-regulation rather than complete disruption of transcription factors. Here, we discuss the effects of transcription-factor concentrations on hematopoiesis and leukemia, with a focus on the regulation of transcription-factor gene expression as a major mechanism that alters critical threshold levels during blood development and cancer.
Collapse
Affiliation(s)
- Frank Rosenbauer
- Harvard Institutes of Medicine, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
16
|
Abstract
Imatinib, a potent inhibitor of the oncogenic tyrosine kinase BCR-ABL, has shown remarkable clinical activity in patients with chronic myelogenous leukaemia (CML). However, this drug does not completely eradicate BCR-ABL-expressing cells from the body, and resistance to imatinib emerges. Although BCR-ABL remains an attractive therapeutic target, it is important to identify other components involved in CML pathogenesis to overcome this resistance. What have clinical trials of imatinib and studies using mouse models for BCR-ABL leukaemogenesis taught us about the functions of BCR-ABL beyond its kinase activity, and how these functions contribute to CML pathogenesis?
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Benzamides
- Cell Transformation, Neoplastic
- Disease Models, Animal
- Gene Expression Regulation, Neoplastic
- Genes, abl
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/physiopathology
- Mice
- Oncogene Proteins v-abl/pharmacology
- Piperazines/pharmacology
- Proto-Oncogene Proteins c-abl/pharmacology
- Pyrimidines/pharmacology
Collapse
Affiliation(s)
- Ruibao Ren
- Rosenstiel Basic Medical Sciences Research Center, MS029, Brandeis University, 415 South Street, Waltham, Massachusetts 02454-9110, USA.
| |
Collapse
|
17
|
Fenske TS, Pengue G, Mathews V, Hanson PT, Hamm SE, Riaz N, Graubert TA. Stem cell expression of the AML1/ETO fusion protein induces a myeloproliferative disorder in mice. Proc Natl Acad Sci U S A 2004; 101:15184-9. [PMID: 15477599 PMCID: PMC524043 DOI: 10.1073/pnas.0400751101] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The t(8;21)(q22;q22) translocation, present in 10-15% of acute myeloid leukemia (AML) cases, generates the AML1/ETO fusion protein. To study the role of AML1/ETO in the pathogenesis of AML, we used the Ly6A locus that encodes the well characterized hematopoietic stem cell marker, Sca1, to target expression of AML1/ETO to the hematopoietic stem cell compartment in mice. Whereas germ-line expression of AML1/ETO from the AML1 promoter results in embryonic lethality, heterozygous Sca1(+/AML1-ETO ires EGFP) (abbreviated Sca(+/AE)) mutant mice are born in Mendelian ratios with no apparent abnormalities in growth or fertility. Hematopoietic cells from Sca(+/AE) mice have markedly extended survival in vitro and increasing myeloid clonogenic progenitor output over time. Sca(+/AE) mice develop a spontaneous myeloproliferative disorder with a latency of 6 months and a penetrance of 82% at 14 months. These results reinforce the notion that the phenotype of murine transgenic models of human leukemia is critically dependent on the cellular compartment targeted by the transgene. This model should provide a useful platform to analyze the effect of AML1/ETO on hematopoiesis and its potential cooperation with other mutations in the pathogenesis of leukemia.
Collapse
Affiliation(s)
- Timothy S Fenske
- Stem Cell Biology Section, Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|