1
|
Helms ML, Finn DA, Nipper MA, Ryabinin AE, Cervera‐Juanes RP. Traumatic stress-enhanced ethanol drinking: Sex, but not stress responsivity, alters sensitivity to the effects of a CRF-R1 antagonist and a GPR39 agonist in mice. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2025; 49:866-882. [PMID: 40070100 PMCID: PMC12012861 DOI: 10.1111/acer.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/21/2025] [Indexed: 04/23/2025]
Abstract
BACKGROUND Predator stress (PS) is used to model trauma leading to post-traumatic stress disorder, and it increases ethanol drinking in a proportion of male and female rodents. The goals of the present studies were to identify male and female mice with prior binge drinking experience that exhibited sensitivity and resilience to PS-enhanced drinking and then to test two target molecules (corticotropin releasing factor receptor 1 [CRF-R1] antagonist NBI-27914 [NBI] and G-protein coupled receptor 39 [GPR39] agonist TC-G 1008 [TC-G]) for their ability to selectively reduce PS-enhanced drinking. METHODS Adult male and female C57BL/6J mice received seven binge ethanol sessions, a period of abstinence, and acclimation to lickometer chambers to examine the effects of NBI or TC-G on stress-associated drinking. Following establishment of stable baseline (BL) drinking and four intermittent PS exposures, mice were classified into "Sensitive" and "Resilient" subgroups, based on the change in ethanol drinking from BL after PS2-4. Then, mice received injections of vehicle or drug (NBI or TC-G) in a within-subjects design. Control studies examined the effects of NBI or TC-G on binge drinking, locomotor activity, and saccharin intake. RESULTS NBI and TC-G significantly suppressed binge drinking in male and female mice in the control studies. However, sensitivity to the ability of the compounds to decrease PS-enhanced drinking did not differ between animals in the "PS-sensitive" versus "PS-resilient" subgroups, and female mice were insensitive to TC-G in the traumatic stress drinking model. Specifically, NBI doses of 5 and 10 mg/kg (males) and 12.5 mg/kg (females) significantly decreased PS-associated drinking in both subgroups. TC-G (7.5 mg/kg) significantly decreased PS-associated drinking in both subgroups of male mice but not in female mice. CONCLUSIONS The present findings suggest that stress sensitivity and subsequent enhanced ethanol drinking in the "Sensitive" subgroup may not increase sensitivity to CRF-R1 antagonism or GPR39 agonism.
Collapse
Affiliation(s)
- Melinda L. Helms
- Department of Research (R&D‐49)VA Portland Health Care SystemPortlandOregonUSA
| | - Deborah A. Finn
- Department of Research (R&D‐49)VA Portland Health Care SystemPortlandOregonUSA
- Department of Behavioral Neuroscience (L‐470)Oregon Health & Science UniversityPortlandOregonUSA
| | - Michelle A. Nipper
- Department of Behavioral Neuroscience (L‐470)Oregon Health & Science UniversityPortlandOregonUSA
| | - Andrey E. Ryabinin
- Department of Behavioral Neuroscience (L‐470)Oregon Health & Science UniversityPortlandOregonUSA
| | - Rita P. Cervera‐Juanes
- Department of Translational NeuroscienceWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Center for Precision MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
2
|
Nipper MA, Helms ML, Finn DA, Ryabinin AE. Stress-enhanced ethanol drinking does not increase sensitivity to the effects of a CRF-R1 antagonist on ethanol intake in male and female mice. Alcohol 2024; 120:73-83. [PMID: 38185336 PMCID: PMC11326135 DOI: 10.1016/j.alcohol.2024.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
Research confirms that stress is associated with alcohol drinking and relapse in males and females and that there are sex differences in the alcohol-related adaptations of stress pathways. The predator stress (PS) model of traumatic stress produces an increase in alcohol drinking or self-administration in a subpopulation of rodents, so it is utilized as an animal model of comorbid alcohol use disorder (AUD) and post-traumatic stress disorder (PTSD). Previous work determined that sensitivity to PS-enhanced drinking produced sex differences in proteins related to stress-regulating systems in the medial prefrontal cortex and hippocampus. The present studies examined whether male and female C57BL/6J mice differ in sensitivity to the ability of the corticotropin releasing factor receptor 1 antagonist CP-376395 to decrease PS-enhanced drinking. In control studies, CP-376395 doses of 5, 10, and 20 mg/kg dose-dependently decreased 4-h ethanol drinking. Next, CP-376395 doses of 5 and 10 mg/kg were tested for effects on ethanol drinking in mice with differential sensitivity to PS-enhanced drinking. Subgroups of "Sensitive" and "Resilient" male and female mice were identified based on changes in ethanol intake in an unrestricted-access ethanol-drinking procedure following four exposures to PS (dirty rat bedding). During the first 2 h post-injection of CP-376395, both doses significantly decreased ethanol licks versus vehicle in the females, with no significant interaction between subgroups, whereas the 10 mg/kg dose significantly decreased ethanol licks versus vehicle in the "Resilient" males. Thus, sensitivity to the suppressive effect of CP-376395 on stress-induced ethanol intake was greater in females versus males, whereas sensitivity and resilience to PS-enhanced drinking produced differential sensitivity to the ability of CP-376395 to decrease ethanol drinking only in male mice. Our results argue against greater efficacy of CRF-R1's ability to decrease ethanol intake in subjects with traumatic stress-enhanced ethanol drinking.
Collapse
Affiliation(s)
- Michelle A Nipper
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States
| | - Melinda L Helms
- Department of Research, VA Portland Health Care System, Portland, OR 97239, United States
| | - Deborah A Finn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States; Department of Research, VA Portland Health Care System, Portland, OR 97239, United States
| | - Andrey E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States.
| |
Collapse
|
3
|
Maddern XJ, Ursich LT, Bailey G, Pearl A, Anversa RG, Lawrence AJ, Walker LC. Sex Differences in Alcohol Use: Is It All About Hormones? Endocrinology 2024; 165:bqae088. [PMID: 39018449 DOI: 10.1210/endocr/bqae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/19/2024]
Abstract
Risky alcohol use and alcohol use disorders (AUD) are a rising problem in women, yet a major disparity in our understanding of what drives alcohol consumption in women remains. Historically biomedical research has focused on male subjects; however, recent increases in reporting of females, have highlighted major differences between the sexes. Here we review the current literature of the effect of gonadal steroid hormones (estrogens, androgens, and progestins), neurosteriods, and neurobiological factors on alcohol use in clinical and preclinical studies of both sexes. Further, we briefly discuss how fundamental sex differences in genetics, metabolism, neuroimmune, and stress responses may influence sex differences in alcohol intake. Comparing the sexes could aid in the discovery of novel therapeutics to treat AUD, and implementation of current treatment options in women.
Collapse
Affiliation(s)
- Xavier J Maddern
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Lauren T Ursich
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Grace Bailey
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Amy Pearl
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
| | - Roberta G Anversa
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia
| |
Collapse
|
4
|
Johnson MC, Zweig JA, Zhang Y, Ryabinin AE. Effects of social housing on alcohol intake in mice depend on the non-social environment. Front Behav Neurosci 2024; 18:1380031. [PMID: 38817806 PMCID: PMC11137225 DOI: 10.3389/fnbeh.2024.1380031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
Background Excessive alcohol consumption leads to serious health problems. Mechanisms regulating the consumption of alcohol are insufficiently understood. Previous preclinical studies suggested that non-social environmental and social environmental complexities can regulate alcohol consumption in opposite directions. However, previous studies did not include all conditions and/or did not include female rodents. Therefore, in this study, we examined the effects of social versus single housing in standard versus non-standard housing conditions in male and female mice. Methods Adult C57BL/6 J mice were housed in either standard shoebox cages or in automated Herdsman 2 (HM2) cages and exposed to a two-bottle choice procedure with 3% or 6% ethanol versus water for 5 days. The HM2 cages use radiotracking devices to measure the fluid consumption of individual mice in an undisturbed and automated manner. In both housing conditions, mice were housed either at one or at four per cage. Results In standard cages, group housing of animals decreased alcohol consumption and water consumption. In HM2 cages, group housing significantly increased ethanol preference and decreased water intake. There were no significant differences in these effects between male and female animals. These observations were similar for 3 and 6% ethanol solutions but were more pronounced for the latter. The effects of social environment on ethanol preference in HM2 cages were accompanied by an increase in the number of approaches to the ethanol solution and a decrease in the number of approaches to water. The differences in ethanol intake could not be explained by differences in locomotor or exploratory activity as socially housed mice showed fewer non-consummatory visits to the ethanol solutions than single-housed animals. In addition, we observed that significant changes in behaviors measuring the approach to the fluid were not always accompanied by significant changes in fluid consumption, and vice versa, suggesting that it is important to assess both measures of motivation to consume alcohol. Conclusion Our results indicate that the direction of the effects of social environment on alcohol intake in mice depends on the non-social housing environment. Understanding mechanisms by which social and non-social housing conditions modulate alcohol intake could suggest approaches to counteract environmental factors enhancing hazardous alcohol consumption.
Collapse
Affiliation(s)
| | | | | | - Andrey E. Ryabinin
- Department of Behavioral Neuroscience, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
5
|
Covault J, Tennen H, Feinn R. Randomized Placebo-Controlled Clinical Trial of Dutasteride for Reducing Heavy Drinking in Men. J Clin Psychopharmacol 2024; 44:223-231. [PMID: 38684046 PMCID: PMC11060692 DOI: 10.1097/jcp.0000000000001849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
BACKGROUND Prior studies indicate that neuroactive steroids mediate some of alcohol's effects. Dutasteride, widely used to treat benign prostatic hypertrophy, is an inhibitor of 5-alpha reductase enzymes, which play a central role in the production of 5α-reduced neuroactive steroids. The purpose of this study was to test dutasteride's tolerability and efficacy for reducing drinking. METHODS Men (n = 142) with heavy drinking (>24 drinks per week) and a goal to either stop or reduce drinking to nonhazardous levels were randomized to placebo or 1 mg dutasteride daily for 12 weeks. We hypothesized that dutasteride-treated patients would be more successful in reducing drinking. RESULTS Generalized linear mixed models that included baseline drinking, treatment, time and their 2-way interaction identified significant interactions of treatment-time, such that dutasteride treatment reduced drinking more than placebo. During the last month of treatment, 25% of dutasteride-treated participants had no hazardous drinking (no heavy drinking days and not more than 14 drinks per week) compared with 6% of placebo-treated participants (P = 0.006; NNT = 6). Sensitivity analysis identified baseline drinking to cope as a factor associated with larger reductions in drinking for dutasteride compared with placebo-treated participants. Dutasteride was well tolerated. Adverse events more common in the dutasteride group were stomach discomfort and reduced libido. CONCLUSION Dutasteride 1 mg daily was efficacious in reducing the number of heavy drinking days and drinks per week in treatment-seeking men. The benefit of dutasteride compared with placebo was greatest for participants with elevated baseline drinking to cope motives.
Collapse
Affiliation(s)
- Jonathan Covault
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT 06030
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
| | - Howard Tennen
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT 06030
- Department of Public Health Sciences, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Richard Feinn
- Frank Netter School of Medicine, Quinnipiac University, Hamden, CT 06518
| |
Collapse
|
6
|
Balan I, Boero G, Chéry SL, McFarland MH, Lopez AG, Morrow AL. Neuroactive Steroids, Toll-like Receptors, and Neuroimmune Regulation: Insights into Their Impact on Neuropsychiatric Disorders. Life (Basel) 2024; 14:582. [PMID: 38792602 PMCID: PMC11122352 DOI: 10.3390/life14050582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Pregnane neuroactive steroids, notably allopregnanolone and pregnenolone, exhibit efficacy in mitigating inflammatory signals triggered by toll-like receptor (TLR) activation, thus attenuating the production of inflammatory factors. Clinical studies highlight their therapeutic potential, particularly in conditions like postpartum depression (PPD), where the FDA-approved compound brexanolone, an intravenous formulation of allopregnanolone, effectively suppresses TLR-mediated inflammatory pathways, predicting symptom improvement. Additionally, pregnane neurosteroids exhibit trophic and anti-inflammatory properties, stimulating the production of vital trophic proteins and anti-inflammatory factors. Androstane neuroactive steroids, including estrogens and androgens, along with dehydroepiandrosterone (DHEA), display diverse effects on TLR expression and activation. Notably, androstenediol (ADIOL), an androstane neurosteroid, emerges as a potent anti-inflammatory agent, promising for therapeutic interventions. The dysregulation of immune responses via TLR signaling alongside reduced levels of endogenous neurosteroids significantly contributes to symptom severity across various neuropsychiatric disorders. Neuroactive steroids, such as allopregnanolone, demonstrate efficacy in alleviating symptoms of various neuropsychiatric disorders and modulating neuroimmune responses, offering potential intervention avenues. This review emphasizes the significant therapeutic potential of neuroactive steroids in modulating TLR signaling pathways, particularly in addressing inflammatory processes associated with neuropsychiatric disorders. It advances our understanding of the complex interplay between neuroactive steroids and immune responses, paving the way for personalized treatment strategies tailored to individual needs and providing insights for future research aimed at unraveling the intricacies of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Irina Balan
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Giorgia Boero
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA;
| | - Samantha Lucenell Chéry
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Neuroscience Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Minna H. McFarland
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Neuroscience Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alejandro G. Lopez
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - A. Leslie Morrow
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (I.B.); (S.L.C.); (M.H.M.); (A.G.L.)
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
Ornelas LC, Boero G, Van Voorhies K, O’Buckley TK, Besheer J, Morrow AL. Pharmacological administration of 3α,5α-THP into the nucleus accumbens core increases 3α,5α-THP expression and reduces alcohol self-administration. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:459-469. [PMID: 36587947 PMCID: PMC10234128 DOI: 10.1111/acer.15008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/16/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Alcohol affects multiple circuits in the brain, mainly disrupting the delicate balance between inhibitory γ-aminobutyric acid (GABA) transmission and excitatory glutamate signaling in brain areas involved in reward circuits. These include the amygdala, nucleus accumbens (Acb), and ventral tegmental area (VTA). This action impairs circuits that regulate behavioral control of craving and alcohol seeking and intake. Studies in both rodent models and postmortem human brain of patients with alcohol use disorder (AUD) have highlighted the association between the loss of GABAergic inhibition and the development of addiction. The neurosteroid (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP) is a potent positive modulator of GABAA receptors. Chronic alcohol consumption reduces 3α,5α-THP levels, resulting in decreased GABA inhibition. We previously demonstrated that enhancing neurosteroid biosynthesis by overexpression of the cholesterol side-chain cleavage enzyme P450scc decreased alcohol intake in male alcohol-preferring rats (P-rats). While most of the evidence of alcohol-induced alterations comes from studies in male subjects, some data show that females are more vulnerable to alcohol's effects than males. METHODS In this study, we investigated the ability of 3α,5α-THP direct infusions in two brain regions that contribute to alcohol reinforcement, the VTA and Acb core (AcbC), to regulate alcohol self-administration in female P-rats. RESULTS Administration of 3α,5α-THP into the AcbC increased 3α,5α-THP-positive cell expression in this area and reduced alcohol self-administration. By contrast, 3α,5α-THP infusion into the VTA did not significantly affect alcohol self-administration, though trends for a reduction were found. CONCLUSIONS Our results show that local increases in 3α,5α-THP in the AcbC may alter mesolimbic activity that drives a reduction in alcohol self-administration.
Collapse
Affiliation(s)
- Laura C. Ornelas
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Giorgia Boero
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Kalynn Van Voorhies
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Todd K. O’Buckley
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Joyce Besheer
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - A. Leslie Morrow
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
8
|
Bortolato M, Coffey BJ, Gabbay V, Scheggi S. Allopregnanolone: The missing link to explain the effects of stress on tic exacerbation? J Neuroendocrinol 2022; 34:e13022. [PMID: 34423500 PMCID: PMC8800948 DOI: 10.1111/jne.13022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022]
Abstract
The neurosteroid allopregnanolone (3α-hydroxy-5α-pregnan-20-one; AP) elicits pleiotropic effects in the central nervous system, ranging from neuroprotective and anti-inflammatory functions to the regulation of mood and emotional responses. Several lines of research show that the brain rapidly produces AP in response to acute stress to reduce the allostatic load and enhance coping. These effects not only are likely mediated by GABAA receptor activation but also result from the contributions of other mechanisms, such as the stimulation of membrane progesterone receptors. In keeping with this evidence, AP has been shown to exert rapid, potent antidepressant properties and has been recently approved for the therapy of moderate-to-severe postpartum depression. In addition to depression, emerging evidence points to the potential of AP as a therapy for other neuropsychiatric disorders, including anxiety, seizures, post-traumatic stress disorder and cognitive problems. Although this evidence has spurred interest in further therapeutic applications of AP, some investigations suggest that this neurosteroid may also be associated with adverse events in specific disorders. For example, our group has recently documented that AP increases tic-like manifestations in several animal models of tic disorders; furthermore, our results indicate that inhibiting AP synthesis and signalling reduces the exacerbation of tic severity associated with acute stress. Although the specific mechanisms of these effects remain partially elusive, our findings point to the possibility that the GABAergic activation by AP may also lead to disinhibitory effects, which could interfere with the ability of patients to suppress their tics. Future studies will be necessary to verify whether these mechanisms may apply to other externalising manifestations, such as impulse-control problems and manic symptoms.
Collapse
Affiliation(s)
- Marco Bortolato
- Department of Pharmacology and ToxicologyCollege of PharmacyUniversity of UtahSalt Lake CityUTUSA
- Research Consortium on NeuroEndocrine Causes of Tics (ReConNECT)
| | - Barbara J. Coffey
- Research Consortium on NeuroEndocrine Causes of Tics (ReConNECT)
- Department of Psychiatry and Behavioral ScienceMiller School of MedicineUniversity of MiamiMiamiFLUSA
| | - Vilma Gabbay
- Research Consortium on NeuroEndocrine Causes of Tics (ReConNECT)
- Department of Psychiatry and Behavioral SciencesAlbert Einstein College of MedicineBronxNYUSA
| | - Simona Scheggi
- Department of Molecular and Developmental MedicineSchool of MedicineUniversity of SienaSienaItaly
| |
Collapse
|
9
|
Cuzon Carlson VC, Aylwin CF, Carlson TL, Ford M, Mesnaoui H, Lomniczi A, Ferguson B, Cervera‐Juanes RP. Neurobeachin, a promising target for use in the treatment of alcohol use disorder. Addict Biol 2022; 27:e13107. [PMID: 34699111 DOI: 10.1111/adb.13107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/23/2021] [Accepted: 09/24/2021] [Indexed: 11/29/2022]
Abstract
Hazardous, heavy drinking increases risk for developing alcohol use disorder (AUD), which affects ~7% of adult Americans. Thus, understanding the molecular mechanisms promoting risk for heavy drinking is essential to developing more effective AUD pharmacotherapies than those currently approved by the FDA. Using genome-wide bisulfate sequencing, we identified DNA methylation (DNAm) signals within the nucleus accumbens core (NAcC) that differentiate nonheavy and heavy ethanol-drinking rhesus macaques. One differentially DNAm region (D-DMR) located within the gene neurobeachin (NBEA), which promotes synaptic membrane protein trafficking, was hypermethylated in heavy drinking macaques. A parallel study identified a similar NBEA D-DMR in human NAcC that distinguished alcoholic and nonalcoholic individuals. To investigate the role of NBEA in heavy ethanol drinking, we engineered a viral vector carrying a short hairpin RNA (shRNA) to reduce the expression of NBEA. Using two murine models of ethanol consumption: 4 days of drinking-in-the-dark and 4 weeks of chronic intermittent access, the knockdown of NBEA expression did not alter average ethanol consumption in either model. However, it did lead to a significant increase in the ethanol preference ratio. Following withdrawal, whole-cell patch clamp electrophysiological experiments revealed that Nbea knockdown led to an increase in spontaneous excitatory postsynaptic current amplitude with no alteration in spontaneous inhibitory postsynaptic currents, suggesting a specific role of NBEA in trafficking of glutamatergic receptors. Together, our findings suggest that NBEA could be targeted to modulate the preference for alcohol use.
Collapse
Affiliation(s)
- Verginia C. Cuzon Carlson
- Division of Neuroscience, Oregon National Primate Research Center Oregon Health & Science University Beaverton Oregon USA
| | - Carlos F. Aylwin
- Division of Genetics, Oregon National Primate Research Center Oregon Health & Science University Beaverton Oregon USA
| | - Timothy L. Carlson
- Division of Neuroscience, Oregon National Primate Research Center Oregon Health & Science University Beaverton Oregon USA
| | - Matthew Ford
- Division of Neuroscience, Oregon National Primate Research Center Oregon Health & Science University Beaverton Oregon USA
| | - Houda Mesnaoui
- Division of Genetics, Oregon National Primate Research Center Oregon Health & Science University Beaverton Oregon USA
| | - Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center Oregon Health & Science University Beaverton Oregon USA
| | - Betsy Ferguson
- Division of Genetics, Oregon National Primate Research Center Oregon Health & Science University Beaverton Oregon USA
| | - Rita P. Cervera‐Juanes
- Division of Genetics, Oregon National Primate Research Center Oregon Health & Science University Beaverton Oregon USA
| |
Collapse
|
10
|
Meredith LR, Burnette EM, Grodin EN, Irwin MR, Ray LA. Immune treatments for alcohol use disorder: A translational framework. Brain Behav Immun 2021; 97:349-364. [PMID: 34343618 PMCID: PMC9044974 DOI: 10.1016/j.bbi.2021.07.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/10/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
While the immune system is essential for survival, an excessive or prolonged inflammatory response, such as that resulting from sustained heavy alcohol use, can damage the host and contribute to psychiatric disorders. A growing body of literature indicates that the immune system plays a critical role in the development and maintenance of alcohol use disorder (AUD). As such, there is enthusiasm for treatments that can restore healthy levels of inflammation as a mechanism to reduce drinking and promote recovery. In this qualitative literature review, we provide a conceptual rationale for immune therapies and discuss progress in medications development for AUD focused on the immune system as a treatment target. This review is organized into sections based on primary signaling pathways targeted by the candidate therapies, namely: (a) toll-like receptors, (b) phosphodiesterase inhibitors, (c) peroxisome proliferator-activated receptors, (d) microglia and astrocytes, (e) other immune pharmacotherapies, and (f) behavioral therapies. As relevant within each section, we examine the basic biological mechanisms of each class of therapy and evaluate preclinical research testing the role of the therapy on mitigating alcohol-related behaviors in animal models. To the extent available, translational findings are reviewed with discussion of completed and ongoing randomized clinical trials and their findings to date. An applied and clinically focused approach is taken to identify the potential clinical applications of the various treatments reviewed. We conclude by delineating the most promising candidate treatments and discussing future directions by considering opportunities for immune treatment development and personalized medicine for AUD.
Collapse
Affiliation(s)
- Lindsay R Meredith
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Elizabeth M Burnette
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Erica N Grodin
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael R Irwin
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA; Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA, USA; Cousins Center for Psychoneuroimmunology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lara A Ray
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Caruso MA, Robins MT, Fulenwider HD, Ryabinin AE. Temporal analysis of individual ethanol consumption in socially housed mice and the effects of oxytocin. Psychopharmacology (Berl) 2021; 238:899-911. [PMID: 33404737 PMCID: PMC7786142 DOI: 10.1007/s00213-020-05741-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/01/2020] [Indexed: 01/31/2023]
Abstract
RATIONALE The majority of preclinical studies assessing treatments for alcohol use disorder use singly housed animals. Because social factors affect ethanol intake, studies investigating such treatments in group-housed animals are needed. OBJECTIVES We investigated the effects of repeated oxytocin treatment on ethanol intake in socially housed male and female C57BL/6J mice. METHODS We used the novel "Herdsman" system implementing radiotracking technology to measure individual ethanol intake in group-housed animals. Mice were housed in same-sex groups of 4 per cage and exposed to 3 and 6% ethanol solutions. After baseline drinking was established, half of the animals in each cage received repeated intraperitoneal injections of 3 mg/kg oxytocin. RESULTS During baseline, females consumed more ethanol than males partly due to greater number of ethanol drinks taken by females. We also observed a gradual development of two peaks of ethanol consumption during the dark phase of the circadian cycle. The effects of oxytocin treatment were short-acting and varied across treatment days. Oxytocin significantly decreased ethanol intake on three out the four treatment days. On the fourth treatment day, oxytocin decreased ethanol intake and water intake. CONCLUSION The greater intake of ethanol in female mice is associated with the number of drinks taken. Oxytocin treatments not only cause an acute decrease in ethanol consumption, but can also change in efficacy over time. While the oxytocin system remains a promising therapeutic target for alcoholism, studies investigating longer periods of repeated oxytocin treatment and those using additional oxytocin receptor agonists are warranted.
Collapse
Affiliation(s)
- Maya A. Caruso
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR 97239 USA
| | - Meridith T. Robins
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR 97239 USA
| | - Hannah D. Fulenwider
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR 97239 USA
| | - Andrey E. Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR 97239 USA
| |
Collapse
|
12
|
Morrow AL, Boero G, Porcu P. A Rationale for Allopregnanolone Treatment of Alcohol Use Disorders: Basic and Clinical Studies. Alcohol Clin Exp Res 2020; 44:320-339. [PMID: 31782169 PMCID: PMC7018555 DOI: 10.1111/acer.14253] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022]
Abstract
For many years, research from around the world has suggested that the neuroactive steroid (3α,5α)-3-hydroxypregnan-20-one (allopregnanolone or 3α,5α-THP) may have therapeutic potential for treatment of various symptoms of alcohol use disorders (AUDs). In this critical review, we systematically address all the evidence that supports such a suggestion, delineate the etiologies of AUDs that are addressed by treatment with allopregnanolone or its precursor pregnenolone, and the rationale for treatment of various components of the disease based on basic science and clinical evidence. This review presents a theoretical framework for understanding how endogenous steroids that regulate the effects of stress, alcohol, and the innate immune system could play a key role in both the prevention and the treatment of AUDs. We further discuss cautions and limitations of allopregnanolone or pregnenolone therapy with suggestions regarding the management of risk and the potential for helping millions who suffer from AUDs.
Collapse
Affiliation(s)
- A. Leslie Morrow
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599
| | - Giorgia Boero
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599
| | - Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| |
Collapse
|
13
|
Bartolomé I, Llidó A, Darbra S, Pallarès M. Early postnatal allopregnanolone levels alteration and adult behavioral disruption in rats: Implication for drug abuse. Neurobiol Stress 2019; 12:100208. [PMID: 32435661 PMCID: PMC7231993 DOI: 10.1016/j.ynstr.2019.100208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/14/2019] [Accepted: 12/23/2019] [Indexed: 02/01/2023] Open
Abstract
Several studies have highlighted the role that early postnatal levels of allopregnanolone play in the development of the CNS and adult behavior. Changes in allopregnanolone levels related to stress have been observed during early postnatal periods, and perinatal stress has been linked to neuropsychiatric disorders. The alteration of early postnatal allopregnanolone levels in the first weeks of life has been proven to affect adult behaviors, such as anxiety-related behaviors and the processing of sensory inputs. This review focuses on the first studies about the possible relationship between the early postnatal allopregnanolone levels and the vulnerability to abuse of drugs such as alcohol in adulthood, given that (1) changes in neonatal allopregnanolone levels affect novelty exploration and novelty seeking has been linked to vulnerability to drug abuse; (2) early postnatal administration of progesterone, the main allopregnanolone precursor, affects the maturation of dopaminergic meso-striatal systems, which have been related to novelty seeking and drug abuse; and (3) alcohol consumption increases plasma and brain allopregnanolone levels in animals and humans. Manipulating neonatal allopregnanolone by administering finasteride, an inhibitor of the 5α-reductase enzyme that participates in allopregnanolone synthesis, increases alcohol consumption and decreases the locomotor stimulant effects of low alcohol doses. At a molecular level, finasteride decreases dopamine and serotonin in ventral striatum and dopamine release in nucleus accumbens. Preliminary results suggest that serotonin 5HT3 receptors could also be affected. Although an in-depth study is necessary, evidence suggests that there is a relation between early postnatal allopregnanolone and vulnerability to drug use/abuse. Early postnatal AlloP levels alteration affects brain maturation and adult behavior. Early stress interacts to AlloP influencing neuropsychiatric disorders vulnerability. Fluctuations in neonatal AlloP levels play a role in alcohol abuse vulnerability. Neonatal finasteride induces novelty-seeking profile and increases ethanol intake.
Collapse
Affiliation(s)
- Iris Bartolomé
- Institut de Neurociències, Departament de Psicobiologia I Metodologia en Ciències de La Salut, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Anna Llidó
- Institut de Neurociències, Departament de Psicobiologia I Metodologia en Ciències de La Salut, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Sònia Darbra
- Institut de Neurociències, Departament de Psicobiologia I Metodologia en Ciències de La Salut, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Marc Pallarès
- Institut de Neurociències, Departament de Psicobiologia I Metodologia en Ciències de La Salut, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| |
Collapse
|
14
|
Tomaselli G, Vallée M. Stress and drug abuse-related disorders: The promising therapeutic value of neurosteroids focus on pregnenolone-progesterone-allopregnanolone pathway. Front Neuroendocrinol 2019; 55:100789. [PMID: 31525393 DOI: 10.1016/j.yfrne.2019.100789] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/14/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023]
Abstract
The pregnenolone-progesterone-allopregnanolone pathway is receiving increasing attention in research on the role of neurosteroids in pathophysiology, particularly in stress-related and drug use disorders. These disorders involve an allostatic change that may result from deficiencies in allostasis or adaptive responses, and may be downregulated by adjustments in neurotransmission by neurosteroids. The following is an overview of findings that assess how pregnenolone and/or allopregnanolone concentrations are altered in animal models of stress and after consumption of alcohol or cannabis-type drugs, as well as in patients with depression, anxiety, post-traumatic stress disorder or psychosis and/or in those diagnosed with alcohol or cannabis use disorders. Preclinical and clinical evidence shows that pregnenolone and allopregnanolone, operating according to a different or common pharmacological profile involving GABAergic and/or endocannabinoid system, may be relevant biomarkers of psychiatric disorders for therapeutic purposes. Hence, ongoing clinical trials implicate synthetic analogs of pregnenolone or allopregnanolone, and also modulators of neurosteroidogenesis.
Collapse
Affiliation(s)
- Giovanni Tomaselli
- INSERM U1215, Neurocentre Magendie, Group "Physiopathology and Therapeutic Approaches of Stress-Related Disease", 146 Rue Léo Saignat, 33000 Bordeaux, France; University of Bordeaux, 33000 Bordeaux, France
| | - Monique Vallée
- INSERM U1215, Neurocentre Magendie, Group "Physiopathology and Therapeutic Approaches of Stress-Related Disease", 146 Rue Léo Saignat, 33000 Bordeaux, France; University of Bordeaux, 33000 Bordeaux, France.
| |
Collapse
|
15
|
Correlations between sex-related hormones, alcohol dependence and alcohol craving. Drug Alcohol Depend 2019; 197:183-190. [PMID: 30840924 DOI: 10.1016/j.drugalcdep.2019.01.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/14/2019] [Accepted: 01/20/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Sex-related differences in the susceptibility, progression, and treatment response in alcohol-dependent subjects have been repeatedly reported. In this study, we aimed to investigate the associations of the sex-related hormone/protein levels with alcohol dependence (AD) and alcohol craving in male and female subjects. METHODS Plasma sex-related hormones (estradiol, estrone, total testosterone, progesterone, follicle stimulated hormone [FSH], luteinizing hormone), and sex hormone binding globulin were measured by mass spectrometry or automated immunoassays from 44 recently-abstained subjects (29 males and 15 females; mean age = 45.9 ± 15.6) meeting DSM-IV-TR criteria for AD and 44 age-, sex- and race-matched non-AD controls. Conditional logistic regression was conducted to examine the association of sex-related hormone and protein levels with AD risk, accounting for matching variables. Their associations with alcohol craving scales (Penn Alcohol Craving Scale and Inventory of Drug-Taking Situations) were assessed in AD subjects. RESULTS Plasma FSH level was significantly higher in AD males (10.3 ± 9.8 IU/L) than control males (8.0 ± 15.9 IU/L; p = 0.005, pcorrected = 0.035). We also found a significant inverse correlation of FSH level with propensity to drink in negative emotional situations (Spearman's rho=-.540; p = 0.021) and positive correlations between progesterone level and craving intensity (Spearman's rho=.464; p = 0.020) and between total testosterone level and propensity to drink under temptations (adjusted for no-drinking days; β=6.496; p = 0.041) in AD males. CONCLUSIONS These results suggest that FSH, progesterone, and testosterone levels may be associated with AD and alcohol craving in AD males. Future research is needed to replicate these findings and investigate the underlying biological mechanisms.
Collapse
|
16
|
Erwin LL, Nilges MR, DeLarge AF, Weed PF, Winsauer PJ. Effects of noncontingent ethanol, DHEA, and pregnanolone administration on ethanol self-administration in outbred female rats. Alcohol 2019; 75:67-77. [PMID: 30445249 DOI: 10.1016/j.alcohol.2018.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/27/2018] [Accepted: 05/05/2018] [Indexed: 11/28/2022]
Abstract
Previous research from this laboratory demonstrated that male outbred rats (Long-Evans) can be trained to prefer ethanol (10% v/v) over water during 30-min home-cage sessions and that higher ethanol concentrations (18-32% v/v) can serve as a reinforcer under various operant schedules. Further, we have shown that two neurosteroids, dehydroepiandrosterone (DHEA) and pregnanolone, can readily decrease ethanol self-administration in males. The present study used the same procedures in an attempt to systematically replicate the previous findings in female outbred rats. Rats were first trained to self-administer ethanol in the home cage using a saccharin-fading procedure. Subsequently, a two-bottle preference test was initiated by substituting different ethanol concentrations after subjects reliably consumed 10% ethanol alone. Water was always available during this phase. Next, subjects were transitioned to a fixed-ratio 10 (FR-10) schedule of reinforcement with 0.1 mL of ethanol (18% v/v) serving as the reinforcer so that a concentration-effect curve could be established. Upon completion, subjects were transitioned to an FR-10 FR-20 multiple schedule of ethanol (32% v/v) and food reinforcement to determine whether noncontingent ethanol, DHEA, and pregnanolone could selectively decrease ethanol intake. Not surprisingly, female subjects preferentially consumed ethanol over water at concentrations of 3.2-18% (v/v) during the home-cage procedure, and significantly increased the mean dose of ethanol consumed and blood ethanol concentration (BEC). Similarly, increasing concentrations under an FR-10 schedule significantly increased the dose of ethanol presented and BEC compared to control (water). Finally, under the multiple schedule, noncontingent injections of ethanol (0.32-1.8 g/kg), DHEA (10-100 mg/kg), and pregnanolone (1.8-32 mg/kg) dose-dependently decreased food- and ethanol-maintained responding and the dose of ethanol presented. BEC was significantly decreased by the neurosteroids, but increased by ethanol due to its noncontingent administration. Together, these data replicate only a subset of the data previously obtained in males, suggesting there are sex differences particularly with respect to the effects of DHEA and pregnanolone.
Collapse
Affiliation(s)
- Laura L Erwin
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States.
| | - Mark R Nilges
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States
| | - Alyssa F DeLarge
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States
| | - Peter F Weed
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States; School of Nursing, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States
| | - Peter J Winsauer
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States; Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States
| |
Collapse
|
17
|
Finn DA, Helms ML, Nipper MA, Cohen A, Jensen JP, Devaud LL. Sex differences in the synergistic effect of prior binge drinking and traumatic stress on subsequent ethanol intake and neurochemical responses in adult C57BL/6J mice. Alcohol 2018; 71:33-45. [PMID: 29966824 PMCID: PMC10957143 DOI: 10.1016/j.alcohol.2018.02.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/26/2018] [Accepted: 02/22/2018] [Indexed: 12/13/2022]
Abstract
Alcohol-use disorders (AUDs) are characterized by repeated episodes of binge drinking. Based on reports that exposure to predator odor stress (PS) consistently increases ethanol intake, the present studies examined whether prior binge drinking differentially altered responsivity to PS and subsequent ethanol intake in male and female mice, when compared to mice without prior binge exposure. Initial studies in naïve male and female C57BL/6J mice confirmed that 30-min exposure to dirty rat bedding significantly increased plasma corticosterone (CORT) levels and anxiety-related behavior, justifying the use of dirty rat bedding as PS in the subsequent drinking studies. Next, separate groups of male and female C57BL/6J mice received seven binge ethanol sessions (binge) or drank water (controls), followed by a 1-month period of abstinence. Then, 2-bottle choice ethanol intake (10% or 10E vs. water, 23 h/day) was measured in lickometer chambers for 4 weeks. After baseline intake stabilized, exposure to intermittent PS (2×/week × 2 weeks) significantly enhanced ethanol intake after the 2nd PS in male, but not female, binge mice vs. baseline and vs. the increase in controls. However, in a subgroup of females (with low baselines), PS produced a similar increase in 10E intake in control and binge mice vs. baseline. Analysis of lick behavior determined that the enhanced 10E intake in binge male mice and in the female low baseline subgroup was associated with a significant increase in 10E bout frequency and 10E licks throughout the circadian dark phase. Thus, PS significantly increased 10E intake and had a synergistic interaction with prior binge drinking in males, whereas PS produced a similar significant increase in 10E intake in the low baseline subgroup of binge and control females. Plasma CORT levels were increased significantly in both binge and control animals after PS. CORT levels at 24-h withdrawal from daily 10E intake were highest in the groups with elevated 10E licks (i.e., binge males and control females). At 24-h withdrawal, protein levels of GABAA receptor α1 subunit, corticotropin releasing factor receptor 1, and glucocorticoid receptor in prefrontal cortex (PFC) and hippocampus (HC) were differentially altered in the male and female mice vs. levels in separate groups of age-matched naïve mice, with more changes in HC than in PFC and in females than in males. Importantly, the sexually divergent changes in protein levels in PFC and HC add to evidence for sex differences in the neurochemical systems influenced by stress and binge drinking, and argue for sex-specific pharmacological strategies to treat AUD.
Collapse
Affiliation(s)
- Deborah A Finn
- Department of Behavioral Neuroscience, Oregon Health & Sciences University, Portland, OR, United States; VA Portland Health Care System, Portland, OR, United States.
| | - Melinda L Helms
- Department of Behavioral Neuroscience, Oregon Health & Sciences University, Portland, OR, United States
| | - Michelle A Nipper
- Department of Behavioral Neuroscience, Oregon Health & Sciences University, Portland, OR, United States
| | - Allison Cohen
- VA Portland Health Care System, Portland, OR, United States
| | - Jeremiah P Jensen
- Department of Behavioral Neuroscience, Oregon Health & Sciences University, Portland, OR, United States
| | - Leslie L Devaud
- School of Pharmacy, Pacific University, Hillsboro, OR, United States
| |
Collapse
|
18
|
Early post-natal neuroactive steroid manipulation modulates ondansetron effects on initial periods of alcohol consumption in rats. Physiol Behav 2018; 194:371-379. [PMID: 29935971 DOI: 10.1016/j.physbeh.2018.06.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/11/2018] [Accepted: 06/20/2018] [Indexed: 12/16/2022]
Abstract
Neuroactive steroids (NS) such as allopregnanolone are crucial for brain development and adult behaviour. Early post-natal alterations of NS by administering finasteride induce a decrease in the sensitivity to stimulant effects of low alcohol doses, an increase in alcohol consumption, and a decrease in ventrostriatal dopamine and serotonin levels. The aim of the present study is to observe if the effects of the 5HT3 receptor antagonist ondansetron on initial alcohol consumption are modulated by post-natal NS manipulation. For this purpose, allopregnanolone, finasteride, or vehicle was injected from day 5 to 9. In adulthood, a novel object preference test was carried out in order to detect a possible novelty-seeking pattern in our animals, which has been related to vulnerability to drug abuse. The subjects then had access to two bottles (alcohol or control solutions) one hour daily for two consecutive weeks. Ondansetron (0.01 mg/kg, 0.1 mg/kg or vehicle) was administered before the hour of consumption in the initial phase (days 1, 2, 3) of the procedure, and after prolonged alcohol intake (days 11, 12, 13). Results indicated that finasteride animals showed a higher preference to explore the new object, as well as a higher alcohol consumption than the rest of the groups. Moreover, 0.1 mg/kg of ondansetron decreased alcohol consumption, but only in the post-natal finasteride group, suggesting a possible increase in 5HT3 receptor sensitivity in these animals. In conclusion, NS manipulation in crucial stages of development, such as early post-natal periods, seems to play an important role on the effects of ondansetron on alcohol intake and in the vulnerability to develop drug use or abuse.
Collapse
|
19
|
Newman EL, Albrechet-Souza L, Andrew PM, Auld JG, Burk KC, Hwa LS, Zhang EY, DeBold JF, Miczek KA. Persistent escalation of alcohol consumption by mice exposed to brief episodes of social defeat stress: suppression by CRF-R1 antagonism. Psychopharmacology (Berl) 2018; 235:1807-1820. [PMID: 29696309 PMCID: PMC6168197 DOI: 10.1007/s00213-018-4905-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
Abstract
RATIONALE Episodic bouts of social stress can precede the initiation, escalation, or relapse to disordered alcohol intake. Social stress may engender neuroadaptations in the hypothalamic-pituitary-adrenal (HPA) axis and in extrahypothalamic stress circuitry to promote the escalation of alcohol intake. OBJECTIVES We aimed to (1) confirm a pattern of escalated drinking in socially defeated mice and to (2) test drugs that target distinct aspects of the HPA axis and extrahypothalamic neural substrates for their effectiveness in reducing murine, stress-escalated drinking. METHODS Male C57BL/6J (B6) mice were socially defeated by resident Swiss-derived males for ten consecutive days receiving 30 bites/day. Ten days after the final defeat, cohorts of B6 mice received continuous or intermittent access to 20% EtOH (w/v) and water. After 4 weeks of drinking, mice were injected with weekly, systemic doses of the CRF-R1 antagonist, CP376395; the glucocorticoid receptor antagonist, mifepristone; the 11-beta-hydroxylase inhibitor, metyrapone; or the 5-alpha-reductase inhibitor, finasteride. RESULTS Prior to drug treatments, defeated mice reliably consumed more EtOH than non-defeated controls, and mice given alcohol intermittently consumed more EtOH than those with continuous access. CP376395 (17-30 mg/kg) reduced continuous, but not intermittent EtOH intake (g/kg) in socially defeated mice. Mifepristone (100 mg/kg), however, increased drinking by defeated mice with intermittent access to alcohol while reducing drinking during continuous access. When administered finasteride (100 mg/kg) or metyrapone (50 mg/kg), all mice reduced their EtOH intake while increasing their water consumption. CONCLUSIONS Mice with a history of episodic social defeat stress were selectively sensitive to the effects of CRF-R1 antagonism, suggesting that CRF-R1 may be a potential target for treating alcohol use disorders in individuals who escalate their drinking after exposure to repeated bouts of psychosocial stress. Future studies will clarify how social defeat stress may alter the expression of extrahypothalamic CRF-R1 and glucocorticoid receptors.
Collapse
Affiliation(s)
- Emily L Newman
- Psychology Department, Tufts University, Bacon Hall, 530 Boston Avenue, Medford, MA, 02155, USA
| | - Lucas Albrechet-Souza
- Psychology Department, Tufts University, Bacon Hall, 530 Boston Avenue, Medford, MA, 02155, USA
| | - Peter M Andrew
- Psychology Department, Tufts University, Bacon Hall, 530 Boston Avenue, Medford, MA, 02155, USA
| | - John G Auld
- Psychology Department, Tufts University, Bacon Hall, 530 Boston Avenue, Medford, MA, 02155, USA
| | - Kelly C Burk
- Psychology Department, Tufts University, Bacon Hall, 530 Boston Avenue, Medford, MA, 02155, USA
| | - Lara S Hwa
- Psychology Department, Tufts University, Bacon Hall, 530 Boston Avenue, Medford, MA, 02155, USA
| | - Eric Y Zhang
- Psychology Department, Tufts University, Bacon Hall, 530 Boston Avenue, Medford, MA, 02155, USA
| | - Joseph F DeBold
- Psychology Department, Tufts University, Bacon Hall, 530 Boston Avenue, Medford, MA, 02155, USA
| | - Klaus A Miczek
- Psychology Department, Tufts University, Bacon Hall, 530 Boston Avenue, Medford, MA, 02155, USA.
- Department of Neuroscience, Sackler School of Graduate Biomedical Sciences, Boston, MA, 02111, USA.
| |
Collapse
|
20
|
Melón LC, Nolan ZT, Colar D, Moore EM, Boehm SL. Activation of extrasynaptic δ-GABA A receptors globally or within the posterior-VTA has estrous-dependent effects on consumption of alcohol and estrous-independent effects on locomotion. Horm Behav 2017; 95:65-75. [PMID: 28765080 PMCID: PMC5623082 DOI: 10.1016/j.yhbeh.2017.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 11/21/2022]
Abstract
Recent reports support higher than expected rates of binge alcohol consumption among women and girls. Unfortunately, few studies have assessed the mechanisms underlying this pattern of intake in females. Studies in males suggest that alcohol concentrations relevant to the beginning stages of binge intoxication may selectively target tonic GABAergic inhibition mediated by GABAA receptor subtypes expressing the δ-subunit protein (δ-GABAARs). Indeed, administration of agonists that interact with these δ-GABAARs prior to alcohol access can abolish binge drinking behavior in male mice. These δ-GABAARs have also been shown to exhibit estrous-dependent plasticity in regions relevant to drug taking behavior, like the hippocampus and periaqueductal gray. The present experiments were designed to determine whether the estrous cycle would alter binge drinking, or our ability to modulate this pattern of alcohol use with THIP, an agonist with high selectivity and efficacy at δ-GABAARs. Using the Drinking-in-the-Dark (DID) binge-drinking model, regularly cycling female mice were given 2h of daily access to alcohol (20%v/v). Vaginal cytology or vaginal impedance was assessed after drinking sessions to track estrous status. There was no fluctuation in binge drinking associated with the estrous cycle. Both Intra-posterior-VTA administration of THIP and systemic administration of the drug was also associated with an estrous cycle dependent reduction in drinking behavior. Pre-treatment with finasteride to inhibit synthesis of 5α-reduced neurosteroids did not disrupt THIP's effects. Analysis of δ-subunit mRNA from posterior-VTA enriched tissue samples revealed that expression of this GABAA receptor subunit is elevated during diestrus in this region. Taken together, these studies demonstrate that δGABAARs in the VTA are an important target for binge drinking in females and confirm that the estrous cycle is an important moderator of the pharmacology of this GABAA receptor subtype.
Collapse
Affiliation(s)
- Laverne C Melón
- Addiction Neuroscience, Department of Psychology, Indiana University/Purdue University-Indianapolis, Indianapolis, IN 46202, USA; Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | - Delphine Colar
- Addiction Neuroscience, Department of Psychology, Indiana University/Purdue University-Indianapolis, Indianapolis, IN 46202, USA
| | - Eileen M Moore
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, CA 92120, USA
| | - Stephen L Boehm
- Addiction Neuroscience, Department of Psychology, Indiana University/Purdue University-Indianapolis, Indianapolis, IN 46202, USA.
| |
Collapse
|
21
|
Giardino WJ, Rodriguez ED, Smith ML, Ford MM, Galili D, Mitchell SH, Chen A, Ryabinin AE. Control of chronic excessive alcohol drinking by genetic manipulation of the Edinger-Westphal nucleus urocortin-1 neuropeptide system. Transl Psychiatry 2017; 7:e1021. [PMID: 28140406 PMCID: PMC5299395 DOI: 10.1038/tp.2016.293] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/25/2016] [Accepted: 12/15/2016] [Indexed: 11/23/2022] Open
Abstract
Midbrain neurons of the centrally projecting Edinger-Westphal nucleus (EWcp) are activated by alcohol, and enriched with stress-responsive neuropeptide modulators (including the paralog of corticotropin-releasing factor, urocortin-1). Evidence suggests that EWcp neurons promote behavioral processes for alcohol-seeking and consumption, but a definitive role for these cells remains elusive. Here we combined targeted viral manipulations and gene array profiling of EWcp neurons with mass behavioral phenotyping in C57BL/6 J mice to directly define the links between EWcp-specific urocortin-1 expression and voluntary binge alcohol intake, demonstrating a specific importance for EWcp urocortin-1 activity in escalation of alcohol intake.
Collapse
Affiliation(s)
- W J Giardino
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - E D Rodriguez
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - M L Smith
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - M M Ford
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - D Galili
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - S H Mitchell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - A Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel,Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - A E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA,Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA. E-mail:
| |
Collapse
|
22
|
Newman EL, Gunner G, Huynh P, Gachette D, Moss S, Smart T, Rudolph U, DeBold JF, Miczek KA. Effects of Gabra2 Point Mutations on Alcohol Intake: Increased Binge-Like and Blunted Chronic Drinking by Mice. Alcohol Clin Exp Res 2016; 40:2445-2455. [PMID: 27717041 PMCID: PMC5073020 DOI: 10.1111/acer.13215] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/11/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Alcohol use disorders are associated with single-nucleotide polymorphisms in GABRA2, the gene encoding the GABAA receptor α2-subunit in humans. Deficient GABAergic functioning is linked to impulse control disorders, intermittent explosive disorder, and to drug abuse and dependence, yet it remains unclear whether α2-containing GABAA receptor sensitivity to endogenous ligands is involved in excessive alcohol drinking. METHODS Male wild-type (Wt) C57BL/6J and point-mutated mice rendered insensitive to GABAergic modulation by benzodiazepines (BZD; H101R), allopregnanolone (ALLO) or tetrahydrodeoxycorticosterone (THDOC; Q241M), or high concentrations of ethanol (EtOH) (S270H/L277A) at α2-containing GABAA receptors were assessed for their binge-like, moderate, or escalated chronic drinking using drinking in the dark, continuous access (CA) and intermittent access (IA) to alcohol protocols, respectively. Social approach by mutant and Wt mice in forced alcohol abstinence was compared to approach by EtOH-naïve controls. Social deficits in forced abstinence were treated with allopregnanolone (0, 3.0, 10.0 mg/kg, intraperitoneal [i.p.]) or midazolam (0, 0.56, 1.0 mg/kg, i.p.). RESULTS Mice with BZD-insensitive α2-containing GABAA receptors (H101R) escalated their binge-like drinking. Mutants harboring the Q241M point substitution in Gabra2 showed blunted chronic intake in the CA and IA protocols. S270H/L277A mutants consumed excessive amounts of alcohol but, unlike wild-types, they did not show forced abstinence-induced social deficits. CONCLUSIONS These findings suggest a role for: (i) H101 in species-typical binge-like drinking, (ii) Q241 in escalated chronic drinking, and (iii) S270 and/or L277 in the development of forced abstinence-associated social deficits. Clinical findings report reduced BZD-binding sites in the cortex of dependent patients; the present findings suggest a specific role for BZD-sensitive α2-containing receptors. In addition, amino acid residue 241 in Gabra2 is necessary for positive modulation and activation of GABAA receptors by ALLO and THDOC; we postulate that neurosteroid action on α2-containing receptor may be necessary for escalated chronic EtOH intake.
Collapse
Affiliation(s)
| | | | | | | | | | - Trevor Smart
- Dept. of Neuroscience, Physiology and Pharmacology, University College London
| | - Uwe Rudolph
- Laboratory of Genetic Neuropharmacology, McLean Hospital,Dept. of Psychiatry, Harvard Medical School
| | | | - Klaus A. Miczek
- Dept. of Psychology, Tufts University,Dept. of Neuroscience, Tufts University
| |
Collapse
|
23
|
Maldonado-Devincci AM, Kampov-Polevoi A, McKinley RE, Morrow DH, O'Buckley TK, Morrow AL. Chronic Intermittent Ethanol Exposure Alters Stress Effects on (3α,5α)-3-hydroxy-pregnan-20-one (3α,5α-THP) Immunolabeling of Amygdala Neurons in C57BL/6J Mice. Front Cell Neurosci 2016; 10:40. [PMID: 26973459 PMCID: PMC4777881 DOI: 10.3389/fncel.2016.00040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/02/2016] [Indexed: 12/02/2022] Open
Abstract
The GABAergic neuroactive steroid (3α,5α)-3-hydroxy-pregnan-20-one (3α,5α-THP, allopregnanolone) is decreased in various brain regions of C57BL/6J mice following exposure to an acute stressor or chronic intermittent ethanol (CIE) exposure and withdrawal. It is well established that there are complex interactions between stress and ethanol drinking, with mixed literature regarding the effects of stress on ethanol intake. However, there is little research examining how chronic ethanol exposure alters stress responses. The present work examined the impact of CIE exposure and withdrawal on changes in brain levels of 3α,5α-THP, as well as hormonal and behavioral responses to forced swim stress (FSS). Adult male C57BL/6J mice were exposed to four cycles of CIE to induce ethanol dependence. Following 8 h or 72 h withdrawal, mice were subjected to FSS for 10 min, and 50 min later brains were collected for immunohistochemical analysis of cellular 3α,5α-THP. Behavioral and circulating corticosterone responses to FSS were quantified. Following 8 h withdrawal, ethanol exposure potentiated the corticosterone response to FSS. Following 72 h withdrawal, this difference was no longer observed. Following 8 h withdrawal, stress-exposed mice showed no differences in immobility, swimming or struggling behavior. However, following 72 h withdrawal, ethanol-exposed mice showed less immobility and greater swimming behavior compared to air-exposed mice. Interestingly, cellular 3α,5α-THP levels were increased in the lateral amygdala 8 h and 72 h post-withdrawal in stressed ethanol-exposed mice compared to ethanol-exposed/non-stressed mice. In the paraventricular nucleus of the hypothalamus, stress exposure decreased 3α,5α-THP levels compared to controls following 72 h withdrawal, but no differences were observed 8 h post-withdrawal. There were no differences in cellular 3α,5α-THP levels in the nucleus accumbens shell at either withdrawal time point. These data suggest that there are different mechanisms mediating hormonal, behavioral, and brain responses to stress following CIE exposure. The lateral amygdala appears to be an extremely sensitive brain region exhibiting changes in cellular 3α,5α-THP levels following CIE and exposure to swim stress. It is likely that these changes in cellular 3α,5α-THP levels in the lateral amygdala contribute to the behavioral effects observed following 72 h withdrawal.
Collapse
Affiliation(s)
| | - Alexander Kampov-Polevoi
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Raechel E McKinley
- Department of Biology, North Carolina Agricultural and Technical State University Greensboro, NC, USA
| | - Danielle H Morrow
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Todd K O'Buckley
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - A Leslie Morrow
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel HillChapel Hill, NC, USA; Department of Psychiatry, University of North Carolina at Chapel HillChapel Hill, NC, USA; Department of Pharmacology, University of North Carolina at Chapel HillChapel Hill, NC, USA
| |
Collapse
|
24
|
Microstructural analysis of rat ethanol and water drinking patterns using a modified operant self-administration model. Physiol Behav 2015; 149:119-30. [PMID: 26037631 DOI: 10.1016/j.physbeh.2015.05.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND Ethanol drinking pattern has emerged as an important factor in the development, maintenance, and health consequences of alcohol use disorders in humans. The goal of these studies was to further our understanding of this important factor through refinement of an operant rodent model of ethanol consumption capable of drinking pattern microstructural analysis. We evaluated measures of total consumption, appetitive behavior, and drinking microstructure for ethanol and water at baseline and assessed alterations induced by two treatments previously shown to significantly alter gross ethanol appetitive and consummatory behaviors in opposing directions. METHODS Male Long-Evans rats were trained on an FR1 operant paradigm which allowed for continuous liquid access until an 8 second pause in consumption resulted in termination of liquid access. Total appetitive and consummatory behaviors were assessed in addition to microstructural drinking pattern for both ethanol and water during a five day baseline drinking period, after chronic intermittent ethanol vapor exposure, and following administration of a cannabinoid receptor antagonist SR141716a. RESULTS As in previous operant studies, ethanol vapor exposure resulted in increases in ethanol-directed responding, total consumption, and rate of intake. Further, striking differential alterations to ethanol and water bout size, duration, and lick pattern occurred consistent with alterations in hedonic evaluation. Vapor additionally specifically reduced the number of ethanol-directed lever presses which did not result in subsequent consumption. SR141716a administration reversed many of these effects. CONCLUSIONS The addition of microstructural analysis to operant self-administration by rodents provides a powerful and translational tool for the detection of specific alterations in ethanol drinking pattern which may enable insights into neural mechanisms underlying specific components of drug consumption.
Collapse
|
25
|
Ford MM, Nickel JD, Kaufman MN, Finn DA. Null mutation of 5α-reductase type I gene alters ethanol consumption patterns in a sex-dependent manner. Behav Genet 2015; 45:341-53. [PMID: 25416204 PMCID: PMC4425631 DOI: 10.1007/s10519-014-9694-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/10/2014] [Indexed: 02/04/2023]
Abstract
The neuroactive steroid allopregnanolone (ALLO) is a positive modulator of GABAA receptors, and manipulation of neuroactive steroid levels via injection of ALLO or the 5α-reductase inhibitor finasteride alters ethanol self-administration patterns in male, but not female, mice. The Srd5a1 gene encodes the enzyme 5α-reductase-1, which is required for the synthesis of ALLO. The current studies investigated the influence of Srd5a1 deletion on voluntary ethanol consumption in male and female wildtype (WT) and knockout (KO) mice. Under a continuous access condition, 6 and 10 % ethanol intake was significantly greater in KO versus WT females, but significantly lower in KO versus WT males. In 2-h limited access sessions, Srd5a1 deletion retarded acquisition of 10 % ethanol intake in female mice, but facilitated it in males, versus respective WT mice. The present findings demonstrate that the Srd5a1 gene modulates ethanol consumption in a sex-dependent manner that is also contingent upon ethanol access condition and concentration.
Collapse
Affiliation(s)
- Matthew M Ford
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA,
| | | | | | | |
Collapse
|
26
|
Ramaker MJ, Strong-Kaufman MN, Ford MM, Phillips TJ, Finn DA. Effect of nucleus accumbens shell infusions of ganaxolone or gaboxadol on ethanol consumption in mice. Psychopharmacology (Berl) 2015; 232:1415-26. [PMID: 25342197 PMCID: PMC4412309 DOI: 10.1007/s00213-014-3777-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 10/10/2014] [Indexed: 01/16/2023]
Abstract
RATIONALE Allopregnanolone (ALLO) is an endogenous neuroactive steroid thought to alter the reinforcement value of alcohol (ethanol) due to its actions as a positive modulator of the GABAA receptor (GABAAR). Extrasynaptic GABAARs may be a particularly sensitive target of ethanol and neuroactive steroids. Previous work showed that systemic injections of an ALLO analog, ganaxolone (GAN), or an extrasynaptic GABAAR agonist (gaboxadol; THIP) decreased ethanol intake in male mice with limited access to ethanol. OBJECTIVES The present studies tested whether activation of GABAARs in the nucleus accumbens (NAc) shell by GAN or THIP was sufficient to reduce ethanol intake. C57BL/6J male mice had 2-h access to 10 % ethanol (10E) and water, and 10E intake was measured following site-specific infusions of GAN or THIP. RESULTS Decreases in limited-access 10E consumption were observed following site-specific bilateral infusions of either drug into the NAc shell. Significant changes in intake were absent when the drugs were infused in a region dorsal to the target site (GAN) or into the lateral ventricle (THIP). Locomotor data confirmed that the decreases in intake were not due to a sedative effect of the drugs. CONCLUSIONS These data demonstrate the sufficiency of GABAAR activation by a positive allosteric modulator or an agonist with selectivity for extrasynaptic GABAARs to decrease ethanol consumption in mice. Importantly, more refined GABAAR-active targets that decrease ethanol intake may enhance our understanding and ability to treat alcohol use disorders.
Collapse
Affiliation(s)
- Marcia J Ramaker
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road (L470), Portland, OR, 97239, USA,
| | | | | | | | | |
Collapse
|
27
|
Hulin MW, Lawrence MN, Amato RJ, Weed PF, Winsauer PJ. Comparison of dehydroepiandrosterone (DHEA) and pregnanolone with existing pharmacotherapies for alcohol abuse on ethanol- and food-maintained responding in male rats. Alcohol 2015; 49:127-38. [PMID: 25620274 DOI: 10.1016/j.alcohol.2014.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/01/2014] [Indexed: 12/24/2022]
Abstract
The present study compared two putative pharmacotherapies for alcohol abuse and dependence, dehydroepiandrosterone (DHEA) and pregnanolone, with two Food and Drug Administration (FDA)-approved pharmacotherapies, naltrexone and acamprosate. Experiment 1 assessed the effects of different doses of DHEA, pregnanolone, naltrexone, and acamprosate on both ethanol- and food-maintained responding under a multiple fixed-ratio (FR)-10 FR-20 schedule, respectively. Experiment 2 assessed the effects of different mean intervals of food presentation on responding for ethanol under a FR-10 variable-interval (VI) schedule, whereas Experiment 3 assessed the effects of a single dose of each drug under a FR-10 VI-80 schedule. In Experiment 1, all four drugs dose-dependently decreased response rate for both food and ethanol, although differences in the rate-decreasing effects were apparent among the drugs. DHEA and pregnanolone decreased ethanol-maintained responding more potently than food-maintained responding, whereas the reverse was true for naltrexone. Acamprosate decreased responding for both reinforcers with equal potency. In Experiment 2, different mean intervals of food presentation significantly affected the number of food reinforcers obtained per session; however, changes in the number of food reinforcements did not significantly affect responding for ethanol. Under the FR-10 VI-80 schedule in Experiment 3, only naltrexone significantly decreased both the dose of alcohol presented and blood ethanol concentration (BEC). Acamprosate and pregnanolone had no significant effects on any of the dependent measures, whereas DHEA significantly decreased BEC, but did not significantly decrease response rate or the dose presented. In summary, DHEA and pregnanolone decreased ethanol-maintained responding more potently than food-maintained responding under a multiple FR-10 FR-20 schedule, and were more selective for decreasing ethanol self-administration than either naltrexone or acamprosate under that schedule. Experiment 2 showed that ethanol intake was relatively independent of the interval of reinforcement in the food-maintained component, and Experiment 3 showed that naltrexone was the most effective drug at the doses tested when the interval for food reinforcement was low and maintained under a variable-interval schedule.
Collapse
|
28
|
Maldonado-Devincci AM, Cook JB, O'Buckley TK, Morrow DH, McKinley RE, Lopez MF, Becker HC, Morrow AL. Chronic intermittent ethanol exposure and withdrawal alters (3α,5α)-3-hydroxy-pregnan-20-one immunostaining in cortical and limbic brain regions of C57BL/6J mice. Alcohol Clin Exp Res 2014; 38:2561-71. [PMID: 25293837 DOI: 10.1111/acer.12530] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 07/15/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND The GABAergic neuroactive steroid (3α,5α)-3-hydroxy-pregnan-20-one (3α,5α-THP; allopregnanolone) has been studied during withdrawal from ethanol (EtOH) in humans, rats, and mice. Serum 3α,5α-THP levels decreased, and brain levels were not altered following acute EtOH administration (2 g/kg) in male C57BL/6J mice; however, the effects of chronic intermittent ethanol (CIE) exposure on 3α,5α-THP levels have not been examined. Given that CIE exposure changes subsequent voluntary EtOH drinking in a time-dependent fashion following repeated cycles of EtOH exposure, we conducted a time-course analysis of CIE effects on 3α,5α-THP levels in specific brain regions known to influence drinking behavior. METHODS Adult male C57BL/6J mice were exposed to 4 cycles of CIE to induce EtOH dependence. All mice were sacrificed and perfused at 1 of 2 time points, 8 or 72 hours following the final exposure cycle. Free-floating brain sections (40 μm; 3 to 5 sections/region/animal) were immunostained and analyzed to determine relative levels of cellular 3α,5α-THP. RESULTS Withdrawal from CIE exposure produced time-dependent and region-specific effects on immunohistochemical detection of 3α,5α-THP levels across cortical and limbic brain regions. A transient reduction in 3α,5α-THP immunoreactivity was observed in the central nucleus of the amygdala 8 hours after withdrawal from CIE (-31.4 ± 9.3%). Decreases in 3α,5α-THP immunoreactivity were observed 72 hours following withdrawal in the medial prefrontal cortex (-25.0 ± 9.3%), nucleus accumbens core (-29.9 ± 6.6%), and dorsolateral striatum (-18.5 ± 6.0%), while an increase was observed in the CA3 pyramidal cell layer of the hippocampus (+42.8 ± 19.5%). Sustained reductions in 3α,5α-THP immunoreactivity were observed at both time points in the lateral amygdala (8 hours -28.3 ± 12.8%; 72 hours -27.5 ± 12.4%) and in the ventral tegmental area (8 hours -26.5 ± 9.9%; 72 hours -31.6 ± 13.8%). CONCLUSIONS These data suggest that specific neuroadaptations in 3α,5α-THP levels may be present in regions of brain that mediate anxiety, stress, and reinforcement relevant to EtOH dependence. The changes that occur at different time points likely modulate neurocircuitry involved in EtOH withdrawal as well as the elevated drinking observed after CIE exposure.
Collapse
Affiliation(s)
- Antoniette M Maldonado-Devincci
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Eastwood EC, Barkley-Levenson AM, Phillips TJ. Methamphetamine drinking microstructure in mice bred to drink high or low amounts of methamphetamine. Behav Brain Res 2014; 272:111-20. [PMID: 24978098 PMCID: PMC4167388 DOI: 10.1016/j.bbr.2014.06.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/18/2014] [Accepted: 06/20/2014] [Indexed: 01/20/2023]
Abstract
Genetic factors likely influence individual sensitivity to positive and negative effects of methamphetamine (MA) and risk for MA dependence. Genetic influence on MA consumption has been confirmed by selectively breeding mouse lines to consume high (MAHDR) or low (MALDR) amounts of MA, using a two-bottle choice MA drinking (MADR) procedure. Here, we employed a lickometer system to characterize the microstructure of MA (20, 40, and 80mg/l) and water intake in MAHDR and MALDR mice in 4-h limited access sessions, during the initial 4hours of the dark phase of their 12:12h light:dark cycle. Licks at one-minute intervals and total volume consumed were recorded, and bout analysis was performed. MAHDR and MALDR mice consumed similar amounts of MA in mg/kg on the first day of access, but MAHDR mice consumed significantly more MA than MALDR mice during all subsequent sessions. The higher MA intake of MAHDR mice was associated with a larger number of MA bouts, longer bout duration, shorter interbout interval, and shorter latency to the first bout. In a separate 4-h limited access MA drinking study, MALDR and MAHDR mice had similar blood MA levels on the first day MA was offered, but MAHDR mice had higher blood MA levels on all subsequent days, which corresponded with MA intake. These data provide insight into the microstructure of MA intake in an animal model of differential genetic risk for MA consumption, which may be pertinent to MA use patterns relevant to genetic risk for MA dependence.
Collapse
Affiliation(s)
- Emily C Eastwood
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Rd., Portland, OR 97239, USA.
| | - Amanda M Barkley-Levenson
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Rd., Portland, OR 97239, USA.
| | - Tamara J Phillips
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Rd., Portland, OR 97239, USA; Veterans Affairs Medical Center, 3710 SW US Veterans Hospital Rd., Portland, OR 97239, USA.
| |
Collapse
|
30
|
Effects of the neuroactive steroid allopregnanolone on intracranial self-stimulation in C57BL/6J mice. Psychopharmacology (Berl) 2014; 231:3415-3423. [PMID: 24810108 PMCID: PMC4692244 DOI: 10.1007/s00213-014-3600-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/20/2014] [Indexed: 10/25/2022]
Abstract
RATIONALE The neuroactive steroid (3α,5α)-3-hydroxy-pregnan-20-one (3α,5α-THP, allopregnanolone) has effects on reward-related behaviors in mice and rats that suggest that it may activate brain reward circuits. Intracranial self-stimulation (ICSS) is an operant behavioral technique that detects changes in the sensitivity of brain reward circuitry following drug administration. OBJECTIVE To examine the effects of the neuroactive steroid allopregnanolone on ICSS and to compare these effects to those of cocaine. METHODS Male C57BL/6J mice implanted with stimulating electrodes implanted into the medial forebrain bundle responded for reinforcement by electrical stimulation (brain stimulation reward (BSR)). Mice received cocaine (n = 11, 3.0-30.0 mg/kg, intraperitoneal (i.p.)) or the neuroactive steroid allopregnanolone (n = 11, 3.0-17.0 mg/kg, i.p.). BSR thresholds (θ 0) and maximum (MAX) operant response rates after drug treatments were compared to those after vehicle injections. RESULTS Cocaine and allopregnanolone dose dependently lowered BSR thresholds relative to vehicle injections. Cocaine was maximally effective (80 % reduction) in the second 15 min following the 30 mg/kg dose, while allopregnanolone was maximally effective (30 % reduction) 15-45 min after the 17 mg/kg dose. Neither drug had significant effects on MAX response rates. CONCLUSIONS The effects of allopregnanolone on BSR thresholds are consistent with the previously reported effects of benzodiazepines and alcohol, suggesting that positive modulation of GABAA receptors can facilitate reward-related behaviors in C57BL/6J mice.
Collapse
|
31
|
Effects of different ethanol-administration regimes on mRNA and protein levels of steroid 5α-reductase isozymes in prefrontal cortex of adolescent male rats. Psychopharmacology (Berl) 2014; 231:3273-80. [PMID: 24714925 DOI: 10.1007/s00213-014-3558-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/17/2014] [Indexed: 12/17/2022]
Abstract
RATIONALE Underage drinking is a leading public health problem in developed countries. An increasing proportion of adolescents consume alcoholic beverages every weekend. Increased anxiety, irritability, and depression among adolescents may induce them to seek for the anxiolytic and rewarding properties of alcohol. Allopregnanolone (AlloP) shares rewarding effects of ethanol and modulates ethanol intake. The rate-limiting enzyme in the biosynthesis of AlloP is steroid 5α-reductase (5α-R), which is expressed as three isozymes, 5α-R1, 5α-R2, and 5α-R3. OBJECTIVE The objective of this study was to quantify the expression levels of 5α-R isozymes in prefrontal cortex (PFC) of adolescent male rats after three different regimes of ethanol administration. METHODS Adolescent male Wistar rats were administered with ethanol (4 g/kg) or saline intraperitoneally for 1 day (acute), for 7 days (chronic), or every 72 h for 14 days (chronic intermittent). Messenger (m)RNA and protein levels of 5α-R isozymes were measured by quantitative RT-PCR and Western blot, respectively. RESULTS Ethanol significantly increased mRNA and protein levels of 5α-R1, 5α-R2, and 5α-R3 in the three different regimes of ethanol administration, being higher in the chronic intermittent regime in comparison with the others. CONCLUSIONS The expression of the AlloP-biosynthetic enzyme 5α-Rs increases in the prefrontal cortex of adolescent male rats under acute, chronic, and chronic intermittent regime of ethanol administration. The latter is very interesting because it mimics the teenage drinking behavior.
Collapse
|
32
|
Porcu P, Morrow AL. Divergent neuroactive steroid responses to stress and ethanol in rat and mouse strains: relevance for human studies. Psychopharmacology (Berl) 2014; 231:3257-72. [PMID: 24770626 PMCID: PMC4135033 DOI: 10.1007/s00213-014-3564-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/25/2014] [Indexed: 01/09/2023]
Abstract
RATIONALE Neuroactive steroids are endogenous or synthetic steroids that rapidly alter neuronal excitability via membrane receptors, primarily γ-aminobutyric acid type A (GABAA) receptors. Neuroactive steroids regulate many physiological processes including hypothalamic-pituitary-adrenal (HPA) axis function, ovarian cycle, pregnancy, aging, and reward. Moreover, alterations in neuroactive steroid synthesis are implicated in several neuropsychiatric disorders. OBJECTIVES This review will summarize the pharmacological properties and physiological regulation of neuroactive steroids, with a particular focus on divergent neuroactive steroid responses to stress and ethanol in rats, mice, and humans. RESULTS GABAergic neuroactive steroids exert a homeostatic regulation of the HPA axis in rats and humans, whereby the increase in neuroactive steroid levels following acute stress counteracts HPA axis hyperactivity and restores homeostasis. In contrast, in C57BL/6J mice, acute stress decreases neurosteroidogenesis and neuroactive steroids exert paradoxical excitatory effects upon the HPA axis. Rats, mice, and humans also differ in the neuroactive steroid responses to ethanol. Genetic variation in neurosteroidogenesis may explain the different neuroactive steroid responses to stress or ethanol. CONCLUSIONS Rats and mouse strains show divergent effects of stress and ethanol on neuroactive steroids in both plasma and brain. The study of genetic variation in the various processes that determine neuroactive steroids levels as well as their effects on cell signaling may underlie these differences and may play a relevant role for the potential therapeutic benefits of neuroactive steroids.
Collapse
Affiliation(s)
- Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cittadella Universitaria, 09042, Monserrato, Cagliari, Italy,
| | | |
Collapse
|
33
|
Ramaker MJ, Ford MM, Phillips TJ, Finn DA. Differences in the reinstatement of ethanol seeking with ganaxolone and gaboxadol. Neuroscience 2014; 272:180-7. [PMID: 24814021 PMCID: PMC4122668 DOI: 10.1016/j.neuroscience.2014.04.065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 04/21/2014] [Accepted: 04/24/2014] [Indexed: 10/25/2022]
Abstract
The endogenous neuroactive steroid allopregnanolone (ALLO) has previously been shown to induce reinstatement of ethanol seeking in rodents. ALLO is a positive allosteric modulator at both synaptic and extrasynaptic GABAA receptors. The contribution of each class of GABAA receptors in mediating reinstatement of ethanol seeking is unknown. The first aim of the present study was to determine whether ganaxolone (GAN), a longer-acting synthetic analog of ALLO, also promotes reinstatement of ethanol seeking. The second aim was to examine whether preferentially activating extrasynaptic GABAA receptors with the selective agonist gaboxadol (THIP) was sufficient to reinstate responding for ethanol in mice. Male C57BL/6J mice were trained to lever press for access to a 10% ethanol (v/v) solution (10E), using a sucrose-fading procedure. Following extinction of the lever-pressing behavior, systemic THIP (0, 4 and 6mg/kg) and GAN (0, 10, and 15mg/kg) were tested for their ability to reinstate ethanol-appropriate responding in the absence of 10E access. GAN significantly increased lever pressing on the previously active lever, while THIP did not alter lever-pressing behavior. The results of this study suggest that direct activation of extrasynaptic GABAA receptors at the GABA site is not sufficient to induce ethanol seeking in the reinstatement procedure. Future studies are necessary to elucidate the mechanisms and brain areas by which differences in the pharmacological activity of GAN and THIP at the GABAA receptor contribute to the dissimilarity in their effect on the reinstatement of ethanol seeking. Nonetheless, based on the increased use of these drugs in clinical trials across multiple disease states, the effects of GAN or THIP on alcohol seeking may be an important consideration if these drugs are to be used clinically in a population with a co-occurring alcohol use disorder.
Collapse
Affiliation(s)
- M J Ramaker
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States.
| | - M M Ford
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States
| | - T J Phillips
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States; Department of Veterans Affairs Medical Research, Portland, OR 97239, United States
| | - D A Finn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States; Department of Veterans Affairs Medical Research, Portland, OR 97239, United States
| |
Collapse
|
34
|
Rezvani AH, Levin ED. Assessment of pregnenolone effects on alcohol intake and preference in male alcohol preferring (P) rats. Eur J Pharmacol 2014; 740:53-7. [PMID: 25016089 DOI: 10.1016/j.ejphar.2014.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 01/16/2023]
Abstract
Neuroactive steroids can modulate a variety of neurobehavioral functions via the GABAergic system. This study was conducted to determine the importance of the neurosteroid pregnenolone on the regulation of alcohol intake. The effects of acute and chronic administration of pregnenolone on alcohol intake were assessed in alcohol preferring (P) rats. The rats were injected i.p. with the vehicle or pregnenolone (25, 50 or 75 mg/kg) and their alcohol and water intake were recorded at 2, 4, 6 and 24 h. Also, the chronic effects of 50 mg/kg (i.p.) pregnenolone on alcohol intake were determined. Our results show that although the main effect of i.p. injection of pregnenolone in reducing alcohol intake was not quite significant compared with the vehicle, pregnenolone at 75 mg/kg significantly (P<0.025) reduced alcohol intake. Regarding alcohol preference, acute administration of pregnenolone both at 50 mg/kg (P<0.05) and at 75 mg/kg (P<0.025) significantly reduced alcohol preference. In chronic experiments pregnenolone given for 10 consecutive days did not show a significant effect on alcohol intake and alcohol preference. Overall, although pregnenolone given i.p. acutely and significantly reduced alcohol intake and preference, the fact that chronic treatment did not show an effect diminishes its promise to be considered for the treatment of alcoholism. However, its profile of effects might be different in human alcoholics.
Collapse
Affiliation(s)
- Amir H Rezvani
- Department of Psychiatry and Behavioral Sciences and Department of Psychology and Neuroscience, Duke University Medical Center, Durham, NC 27710, USA.
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences and Department of Psychology and Neuroscience, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
35
|
Cook JB, Nelli SM, Neighbors MR, Morrow DH, O'Buckley TK, Maldonado-Devincci AM, Morrow AL. Ethanol alters local cellular levels of (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP) independent of the adrenals in subcortical brain regions. Neuropsychopharmacology 2014; 39:1978-87. [PMID: 24566803 PMCID: PMC4059907 DOI: 10.1038/npp.2014.46] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 01/14/2014] [Accepted: 02/03/2014] [Indexed: 11/09/2022]
Abstract
The neuroactive steroid (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP or allopregnanolone) is a positive modulator of GABAA receptors synthesized in the brain, adrenal glands, and gonads. In rats, ethanol activates the hypothalamic-pituitary-adrenal axis and elevates 3α,5α-THP in plasma, cerebral cortex, and hippocampus. In vivo, these effects are dependent on both the pituitary and adrenal glands. In vitro, however, ethanol locally increases 3α,5α-THP in hippocampal slices, in the absence of adrenal influence. Therefore, it is not known whether ethanol can change local brain levels of 3α,5α-THP in vivo, independent of the adrenals. To directly address this controversy, we administered ethanol (2 g/kg) or saline to rats that underwent adrenalectomy (ADX) or received sham surgery and performed immunohistochemistry for 3α,5α-THP. In the medial prefrontal cortex (mPFC), ethanol increased 3α,5α-THP after sham surgery, compared with saline controls, with no ethanol-induced change in 3α,5α-THP following ADX. In subcortical regions, 3α,5α-THP was increased independent of adrenals in the CA1 pyramidal cell layer, dentate gyrus polymorphic layer, bed nucleus of the stria terminalis, and paraventricular nucleus of the hypothalamus. Furthermore, ethanol decreased 3α,5α-THP labeling in the nucleus accumbens shore and central nucleus of the amygdala, independent of the adrenal glands. These data indicate that ethanol dynamically regulates local 3α,5α-THP levels in several subcortical regions; however, the adrenal glands contribute to 3α,5α-THP elevations in the mPFC. Using double immunofluorescent labeling we determined that adrenal dependence of 3α,5α-THP induction by ethanol is not due to a lack of colocalization of 3α,5α-THP with the cholesterol transporters steroidogenic acute regulatory protein (StAR) or translocator protein (TSPO).
Collapse
Affiliation(s)
- Jason B Cook
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie M Nelli
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mackenzie R Neighbors
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Danielle H Morrow
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Todd K O'Buckley
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - A Leslie Morrow
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Department of Psychiatry and Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Department of Psychiatry and Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, 3027 Thurston Bowles CB no. 7178, Chapel Hill, NC 27599, USA, Tel: +1 919 966 7682, Fax: +1 919 966 9099, E-mail:
| |
Collapse
|
36
|
Overexpression of the steroidogenic enzyme cytochrome P450 side chain cleavage in the ventral tegmental area increases 3α,5α-THP and reduces long-term operant ethanol self-administration. J Neurosci 2014; 34:5824-34. [PMID: 24760842 DOI: 10.1523/jneurosci.4733-13.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuroactive steroids are endogenous neuromodulators capable of altering neuronal activity and behavior. In rodents, systemic administration of endogenous or synthetic neuroactive steroids reduces ethanol self-administration. We hypothesized this effect arises from actions within mesolimbic brain regions that we targeted by viral gene delivery. Cytochrome P450 side chain cleavage (P450scc) converts cholesterol to pregnenolone, the rate-limiting enzymatic reaction in neurosteroidogenesis. Therefore, we constructed a recombinant adeno-associated serotype 2 viral vector (rAAV2), which drives P450scc expression and neuroactive steroid synthesis. The P450scc-expressing vector (rAAV2-P450scc) or control GFP-expressing vector (rAAV2-GFP) were injected bilaterally into the ventral tegmental area (VTA) or nucleus accumbens (NAc) of alcohol preferring (P) rats trained to self-administer ethanol. P450scc overexpression in the VTA significantly reduced ethanol self-administration by 20% over the 3 week test period. P450scc overexpression in the NAc, however, did not alter ethanol self-administration. Locomotor activity was unaltered by vector administration to either region. P450scc overexpression produced a 36% increase in (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP, allopregnanolone)-positive cells in the VTA, but did not increase 3α,5α-THP immunoreactivity in NAc. These results suggest that P450scc overexpression and the resultant increase of 3α,5α-THP-positive cells in the VTA reduces ethanol reinforcement. 3α,5α-THP is localized to neurons in the VTA, including tyrosine hydroxylase neurons, but not astrocytes. Overall, the results demonstrate that using gene delivery to modulate neuroactive steroids shows promise for examining the neuronal mechanisms of moderate ethanol drinking, which could be extended to other behavioral paradigms and neuropsychiatric pathology.
Collapse
|
37
|
Griffin WC. Alcohol dependence and free-choice drinking in mice. Alcohol 2014; 48:287-93. [PMID: 24530006 DOI: 10.1016/j.alcohol.2013.11.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 11/04/2013] [Accepted: 11/21/2013] [Indexed: 02/04/2023]
Abstract
Alcohol dependence continues to be an important health concern and animal models are critical to furthering our understanding of this complex disease. A hallmark feature of alcoholism is a significant increase in alcohol drinking over time. While several different animal models of excessive alcohol (ethanol) drinking exist for mice and rats, a growing number of laboratories are using a model that combines chronic ethanol exposure procedures with voluntary ethanol drinking with mice as experimental subjects. Primarily, these studies use a chronic intermittent ethanol (CIE) exposure pattern to render mice dependent and a 2-h limited access procedure to evaluate drinking behavior. Compared to non-dependent mice that also drink ethanol, the ethanol-dependent mice demonstrate significant increases in voluntary ethanol drinking. The increased drinking significantly elevates blood and brain ethanol concentrations compared to the non-dependent control mice. Studies report that the increased drinking by dependent mice is driven by neuroadaptations in glutamatergic and corticotropin-releasing factor signaling in different brain regions known to be involved in alcohol-related behaviors. The dysregulation of these systems parallels findings in human alcoholics and treatments that demonstrate efficacy in alcoholics can also reduce drinking in this model. Moreover, preclinical findings have informed the development of human clinical trials, further highlighting the translational potential of the model. As a result of these features, the CIE exposure and free-choice drinking model is becoming more widely used and promises to provide more insight into mechanisms of excessive drinking that may be important for developing treatments for human alcoholics. The salient features and possible future considerations for CIE exposure and free-choice drinking in mice are discussed.
Collapse
|
38
|
Porcu P, Locci A, Santoru F, Berretti R, Morrow AL, Concas A. Failure of acute ethanol administration to alter cerebrocortical and hippocampal allopregnanolone levels in C57BL/6J and DBA/2J mice. Alcohol Clin Exp Res 2014; 38:948-58. [PMID: 24428156 DOI: 10.1111/acer.12329] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/25/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Ethanol (EtOH) administration increases brain allopregnanolone levels in rats, and this increase contributes to sensitivity to EtOH's behavioral effects. However, EtOH's effects on allopregnanolone may differ across species. We investigated the effects of acute EtOH administration on allopregnanolone, progesterone, and corticosterone levels in cerebral cortex and hippocampus of C57BL/6J and DBA/2J mice, 2 inbred strains with different alcohol sensitivity. METHODS Naïve male C57BL/6J and DBA/2J mice received EtOH (1, 2, 3, or 4 g/kg, intraperitoneally [i.p.]) or saline and were euthanized 1 hour later. For the time-course study, mice received EtOH (2 g/kg, i.p.) and were euthanized 15, 30, 60, and 120 minutes later. Steroids were measured by radioimmunoassay. RESULTS Acute EtOH administration did not alter cerebrocortical and hippocampal levels of allopregnanolone and progesterone in these strains at any of the doses and time points examined. Acute EtOH dose-dependently increased cerebrocortical corticosterone levels by 319, 347, and 459% in C57BL/6J mice at the doses of 2, 3, and 4 g/kg, and by 371, 507, 533, and 692% in DBA/2J mice at the doses of 1, 2, 3, and 4 g/kg, respectively. Similar changes were observed in the hippocampus. EtOH's effects on cerebrocortical corticosterone levels were also time dependent in both strains. Moreover, acute EtOH administration time-dependently increased plasma levels of progesterone and corticosterone. Finally, morphine administration increased cerebrocortical allopregnanolone levels in C57BL/6J (+77, +93, and +88% at 5, 10, and 30 mg/kg, respectively) and DBA/2J mice (+81% at 5 mg/kg), suggesting that the impairment in brain neurosteroidogenesis may be specific to EtOH. CONCLUSIONS These results underline important species differences on EtOH-induced brain neurosteroidogenesis. Acute EtOH increases brain and plasma corticosterone levels but does not alter cerebrocortical and hippocampal concentrations of allopregnanolone and progesterone in naïve C57BL/6J and DBA/2J mice.
Collapse
Affiliation(s)
- Patrizia Porcu
- Institute of Neuroscience, National Research Council of Italy (CNR), Cagliari, Italy
| | | | | | | | | | | |
Collapse
|
39
|
Irwig MS. Persistent Sexual and Nonsexual Adverse Effects of Finasteride in Younger Men. Sex Med Rev 2014; 2:24-35. [DOI: 10.1002/smrj.19] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Ford MM, Steele AM, McCracken AD, Finn DA, Grant KA. The relationship between adjunctive drinking, blood ethanol concentration and plasma corticosterone across fixed-time intervals of food delivery in two inbred mouse strains. Psychoneuroendocrinology 2013; 38:2598-610. [PMID: 23827168 PMCID: PMC3812349 DOI: 10.1016/j.psyneuen.2013.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/21/2013] [Accepted: 06/07/2013] [Indexed: 11/26/2022]
Abstract
Schedules of intermittent food delivery induce excessive fluid intake, termed schedule-induced polydipsia (SIP), and hypothalamic-pituitary-adrenal (HPA) axis activation is important for the expression and maintenance of this adjunctive behavior. Previous work has focused on examining the relationship between water intake and plasma corticosterone (CORT) in rats at a single or a limited range of fixed time (FT) intervals. However, little remains known regarding SIP and the corresponding stress response (1) across the bitonic function that epitomizes adjunctive behavior, (2) when ethanol is the available fluid, and (3) when a species other than rat or multiple strains are studied. Here we report the findings from ethanol-preferring C57BL/6J (B6) and non-preferring DBA/2J (D2) mice serially exposed to progressively larger FT intervals (0 → 60 min) and given access to either water or a 5% (v/v) ethanol solution. Following 2 weeks of experience with each schedule, blood samples were collected at the conclusion of the last 60-min session to evaluate CORT and the blood ethanol concentration (BEC) achieved. While both strains exhibited a bitonic function of ethanol intake and BEC that peaked at or near a 5-min interval, only D2 mice showed a similar response with water. In contrast, CORT levels rose monotonically with incremental increases in the FT interval regardless of the strain examined or fluid type offered, indicating that glucocorticoid release likely reflects the aversive aspects of increasing intervals between reinforcement rather than engagement in adjunctive behavior. These findings also caution against the use of a single intensity stressor to evaluate the relationship between stress and ethanol intake, as the magnitude of stress appears to affect ethanol consumption in a non-linear fashion.
Collapse
Affiliation(s)
- Matthew M. Ford
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon U.S.A,Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon U.S.A,Corresponding Author: Matthew M. Ford, Ph.D., Division of Neuroscience, Oregon National Primate Research Center (L-584), Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006; Phone: 503-614-3716; Fax: 503-690-5384;
| | - Andrea M. Steele
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon U.S.A
| | - Aubrey D. McCracken
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon U.S.A
| | - Deborah A. Finn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon U.S.A,Department of Research, Veterans Affairs Medical Center, Portland, Oregon U.S.A
| | - Kathleen A. Grant
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon U.S.A,Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon U.S.A
| |
Collapse
|
41
|
Cook JB, Dumitru AMG, O'Buckley TK, Morrow AL. Ethanol administration produces divergent changes in GABAergic neuroactive steroid immunohistochemistry in the rat brain. Alcohol Clin Exp Res 2013; 38:90-9. [PMID: 23906006 DOI: 10.1111/acer.12223] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/06/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND The 5α-reduced pregnane neuroactive steroid (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP or allopregnanolone) is a potent positive modulator of GABAA receptors capable of modulating neuronal activity. In rats, systemic ethanol (EtOH) administration increases cerebral cortical and hippocampal levels of 3α,5α-THP, but the effects of EtOH on 3α,5α-THP levels in other brain regions are unknown. There is a large body of evidence suggesting that 3α,5α-THP enhances EtOH sensitivity, contributes to some behavioral effects of EtOH, and modulates EtOH reinforcement and motivation to drink. In this study, we used immunohistochemistry (IHC) to determine EtOH-induced changes in cellular 3α,5α-THP expression in brain regions associated with EtOH actions and responses. METHODS Male Wistar rats were administered EtOH (2 g/kg) or saline intraperitoneally and after 60 minutes transcardially perfused. IHC was performed on free-floating sections (3 to 4 sections/animal/brain region) using an affinity purified anti-3α,5α-THP primary antibody, and immunoreactivity was visualized with 3,3'-diaminobenzidine. RESULTS EtOH significantly increased 3α,5α-THP immunoreactivity by 24 ± 6% in the medial prefrontal cortex, 32 ± 12% in the hippocampal Cornu Ammonis area 1 (CA1) pyramidal cell layer, 52 ± 5% in the polymorph cell layer of the dentate gyrus (DG), 44 ± 15% in the bed nucleus of the stria terminalis, and 36 ± 6% in the paraventricular nucleus of the hypothalamus. In contrast, EtOH administration significantly reduced 3α,5α-THP immunoreactivity by 25 ± 5% in the nucleus accumbens "shore" and 21 ± 3% in the central nucleus of the amygdala. No changes were observed in the ventral tegmental area, dorsomedial striatum, granule cell layer of the DG, or the lateral and basolateral amygdala. CONCLUSIONS The results suggest acute EtOH (2 g/kg) produces divergent, brain region specific, effects on cellular 3α,5α-THP levels. Regional differences in the effects of EtOH suggest there may be regional brain synthesis of 3α,5α-THP independent of the adrenal glands and novel mechanisms that reduce cellular 3α,5α-THP. Regional differences in EtOH-induced changes in 3α,5α-THP levels likely contribute to EtOH effects on neuronal function in brain.
Collapse
Affiliation(s)
- Jason B Cook
- Departments of Psychiatry and Pharmacology , Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | |
Collapse
|
42
|
Anacker AMJ, Ryabinin AE. Identification of subpopulations of prairie voles differentially susceptible to peer influence to decrease high alcohol intake. Front Pharmacol 2013; 4:84. [PMID: 23847535 PMCID: PMC3701123 DOI: 10.3389/fphar.2013.00084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/13/2013] [Indexed: 11/13/2022] Open
Abstract
Peer influences are critical in the decrease of alcohol (ethanol) abuse and maintenance of abstinence. We previously developed an animal model of inhibitory peer influences on ethanol drinking using prairie voles and here sought to understand whether this influential behavior was due to specific changes in drinking patterns and to variation in a microsatellite sequence in the regulatory region of the vasopressin receptor 1a gene (avpr1a). Adult prairie voles’ drinking patterns were monitored in a lickometer apparatus that recorded each lick a subject exhibited during continuous access to water and 10% ethanol during periods of isolation, pair housing of high and low drinkers, and subsequent isolation. Analysis of fluid consumption confirmed previous results that high drinkers typically decrease ethanol intake when paired with low drinkers, but that a subset of voles do not decrease. Analysis of bout structure revealed differences in the number of ethanol drinking bouts in the subpopulations of high drinkers when paired with low drinkers. Lickometer drinking patterns analyzed by visual and by cross-correlation analyses demonstrated that pair housing did not increase the rate of subjects drinking in bouts occurring at the same time. The length of the avpr1a microsatellite did not predict susceptibility to peer influence or any other drinking behaviors. In summary, subpopulations of high drinkers were identified, by fluid intake and number of drinking bouts, which did or did not lower their ethanol intake when paired with a low drinking peer, and these subpopulations should be explored for testing the efficacy of treatments to decrease ethanol use in groups that are likely to be responsive to different types of therapy.
Collapse
Affiliation(s)
- Allison M J Anacker
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA
| | | |
Collapse
|
43
|
Irwig MS. Decreased alcohol consumption among former male users of finasteride with persistent sexual side effects: a preliminary report. Alcohol Clin Exp Res 2013; 37:1823-6. [PMID: 23763349 DOI: 10.1111/acer.12177] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/25/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND There is a robust literature in rodents, but not in humans, on the interaction between finasteride and alcohol, particularly as it relates to neurosteroids. Finasteride has been shown to reduce alcohol intake and suppress alcohol preference in male mice. This study examines the role of finasteride in alcohol consumption in humans with male pattern hair loss. METHODS The subjects were 83 otherwise healthy men who developed persistent sexual side effects associated with finasteride, despite the cessation of this medication for at least 3 months. Information from standardized interviews was collected regarding medical histories, sexual function, and alcohol consumption before and after finasteride use. RESULTS Of the 63 men who consumed at least 1 alcoholic beverage/wk prior to starting finasteride, 41 (65%) noted a decrease in their alcohol consumption after stopping finasteride. This reduction typically began before discontinuing finasteride. Twenty men (32%) reported no change in their alcohol consumption, and 2 men (3%) reported an increase in their alcohol consumption. For the 63 consumers of alcohol, the mean number (± SE) of alcoholic beverages/wk declined from 5.2 ± 0.7 before finasteride to 2.0 ± 0.3 after finasteride (p < 0.0001). A major study limitation is the lack of a comparison group. CONCLUSIONS In former male users of finasteride who developed persistent sexual side effects, 65% noticed a decline in their alcohol consumption as compared to baseline. This finding is consistent with finasteride's ability to modulate alcohol intake in rodents. Further research is needed on the central nervous system effects of finasteride in humans.
Collapse
Affiliation(s)
- Michael S Irwig
- Center for Andrology and Division of Endocrinology, Medical Faculty Associates, The George Washington University, Washington, District of Columbia
| |
Collapse
|
44
|
Milivojevic V, Covault J. Alcohol exposure during late adolescence increases drinking in adult Wistar rats, an effect that is not reduced by finasteride. Alcohol Alcohol 2013; 48:28-38. [PMID: 22997410 PMCID: PMC3523383 DOI: 10.1093/alcalc/ags105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/18/2012] [Accepted: 07/31/2012] [Indexed: 11/13/2022] Open
Abstract
AIMS We tested whether an exposure to alcohol in late adolescence, an age of rapid increase in neuroactive steroid precursors, would increase voluntary alcohol consumption in adult rats and whether this effect would be modulated by finasteride, an inhibitor of neuroactive steroid synthesis. METHODS In Experiment 1, we exposed male Wistar rats to 8% alcohol during the dark cycle for 1 week during late adolescence [postnatal days (PNDs) 51-58], and then measured voluntary alcohol consumption 1 month later in adulthood (PNDs 91-104). In Experiment 2, finasteride was administered during the forced alcohol exposure in late adolescence and, in Experiment 3, during voluntary alcohol consumption in adulthood. Plasma was collected at the end of each finasteride treatment to confirm the reduction of plasma neuroactive steroid levels. RESULTS We found that a daily 12-h exposure to alcohol for 7 days in late adolescence significantly increased voluntary alcohol consumption (4-fold) a month later during adulthood. Finasteride administration in late adolescence increased group alcohol intake in late adolescence but did not block the effect of adolescent alcohol exposure on increasing alcohol preference in adulthood. There was no effect of finasteride treatment in adulthood on alcohol preference. CONCLUSIONS A daily 12-h exposure to alcohol for 7 days in late adolescence was sufficient to induce chronically increased alcohol preference in adulthood, indicating that this age may be sensitive to the effects of alcohol.
Collapse
Affiliation(s)
- Verica Milivojevic
- Graduate Program in Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Psychiatry, Alcohol Research Center, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Jonathan Covault
- Department of Psychiatry, Alcohol Research Center, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
45
|
Davies DL, Bortolato M, Finn DA, Ramaker MJ, Barak S, Ron D, Liang J, Olsen RW. Recent advances in the discovery and preclinical testing of novel compounds for the prevention and/or treatment of alcohol use disorders. Alcohol Clin Exp Res 2012; 37:8-15. [PMID: 22671690 DOI: 10.1111/j.1530-0277.2012.01846.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 03/26/2012] [Indexed: 11/27/2022]
Abstract
Alcohol abuse and dependence have a staggering socioeconomic impact, yet current therapeutic strategies are largely inadequate to treat these disorders. Thus, the development of new strategies that can effectively prevent alcohol use disorders (AUDs) is of paramount importance. Currently approved medications attempt to deter alcohol intake by blocking ethanol metabolism or by targeting the neurochemical systems downstream of the cascades leading to craving and dependence. Unfortunately, these medications have provided only limited success as indicated by the continued high rates of alcohol abuse and alcoholism. The lack of currently available effective treatment strategies is highlighted by the urgent call by the NIAAA to find new and paradigm-changing therapeutics to either prevent or treat alcohol-related problems. This mini-review highlights recent findings from 4 laboratories with a focus on compounds that have the potential to be novel therapeutic agents that can be developed for the prevention and/or treatment of AUDs.
Collapse
Affiliation(s)
- Daryl L Davies
- School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Ramaker MJ, Strong MN, Ford MM, Finn DA. Effect of ganaxolone and THIP on operant and limited-access ethanol self-administration. Neuropharmacology 2012; 63:555-64. [PMID: 22613838 DOI: 10.1016/j.neuropharm.2012.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/04/2012] [Accepted: 05/06/2012] [Indexed: 11/18/2022]
Abstract
Recent evidence suggests that GABA(A) receptor ligands may regulate ethanol intake via effects at both synaptic and extrasynaptic receptors. For example, the endogenous neurosteroid, allopregnanolone (ALLO) has a similar pharmacological profile as ethanol, and it alters ethanol intake in rodent models. Additionally, recent evidence suggests that δ-subunit-containing extrasynaptic GABA(A) receptors may confer high sensitivity to both ethanol and neurosteroids. The purpose of the present study was to determine the effects of ganaxolone (GAN; an ALLO analog) and gaboxadol (THIP; a GABA(A) receptor agonist with selectivity for the extrasynaptic δ-subunit) on ethanol intake, drinking patterns, and bout characteristics in operant and limited-access self-administration procedures. In separate studies, the effects of GAN (0-10 mg/kg) and THIP (2-16 mg/kg) were tested in C57BL/6J male mice provided with 2-h access to a two-bottle choice of water or 10% ethanol or trained to respond for 30 min of access to 10% ethanol. GAN had no overall significant effect on operant ethanol self-administration, but tended to decrease the latency to consume the first bout. In the limited-access procedure, GAN dose-dependently decreased ethanol intake. THIP dose-dependently decreased ethanol intake in both paradigms, altering both the consummatory and appetitive processes of operant self-administration as well as shifting the drinking patterns in both procedures. These results add to literature suggesting time-dependent effects of neurosteroids to promote the onset, and to subsequently decrease, ethanol drinking behavior, and they support a role for extrasynaptic GABA(A) receptor activation in ethanol reinforcement.
Collapse
Affiliation(s)
- Marcia J Ramaker
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | | |
Collapse
|
47
|
Simms JA, Haass-Koffler CL, Bito-Onon J, Li R, Bartlett SE. Mifepristone in the central nucleus of the amygdala reduces yohimbine stress-induced reinstatement of ethanol-seeking. Neuropsychopharmacology 2012; 37:906-18. [PMID: 22048462 PMCID: PMC3280651 DOI: 10.1038/npp.2011.268] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Chronic ethanol exposure leads to dysregulation of the hypothalamic-pituitary-adrenal axis, leading to changes in glucocorticoid release and function that have been proposed to maintain pathological alcohol consumption and increase vulnerability to relapse during abstinence. The objective of this study was to determine whether mifepristone, a glucocorticoid receptor antagonist, plays a role in ethanol self-administration and reinstatement. Male, Long-Evans rats were trained to self-administer either ethanol or sucrose in daily 30 min operant self-administration sessions using a fixed ratio 3 schedule of reinforcement. Following establishment of stable baseline responding, we examined the effects of mifepristone on maintained responding and yohimbine-induced increases in responding for ethanol and sucrose. Lever responding was extinguished in separate groups of rats and animals were tested for yohimbine-induced reinstatement and corticosterone release. We also investigated the effects of local mifepristone infusions into the central amygdala (CeA) on yohimbine-induced reinstatement of ethanol- and sucrose-seeking. In addition, we infused mifepristone into the basolateral amygdala (BLA) in ethanol-seeking animals as an anatomical control. We show that both systemic and intra-CeA (but not BLA) mifepristone administration suppressed yohimbine-induced reinstatement of ethanol-seeking, while only systemic injections attenuated sucrose-seeking. In contrast, baseline consumption, yohimbine-induced increases in responding, and circulating CORT levels were unaffected. The data indicate that the CeA plays an important role in the effects of mifepristone on yohimbine-induced reinstatement of ethanol-seeking. Mifepristone may be a valuable pharmacotherapeutic strategy for preventing relapse to alcohol use disorders and, as it is FDA approved, may be a candidate for clinical trials in the near future.
Collapse
Affiliation(s)
- Jeffrey A Simms
- Preclinical Development Group, Ernest Gallo Clinic and Research Center at University of California San Francisco, Emeryville, CA, USA
| | - Carolina L Haass-Koffler
- Preclinical Development Group, Ernest Gallo Clinic and Research Center at University of California San Francisco, Emeryville, CA, USA,Clinical Pharmacology and Experimental Therapeutics, University of California San Francisco, Byers Hall, San Francisco, CA, USA
| | - Jade Bito-Onon
- Preclinical Development Group, Ernest Gallo Clinic and Research Center at University of California San Francisco, Emeryville, CA, USA
| | - Rui Li
- Preclinical Development Group, Ernest Gallo Clinic and Research Center at University of California San Francisco, Emeryville, CA, USA
| | - Selena E Bartlett
- Preclinical Development Group, Ernest Gallo Clinic and Research Center at University of California San Francisco, Emeryville, CA, USA,Preclinical Development Group, Ernest Gallo Clinic and Research Center at University of California San Francisco, 5858 Horton Street, Suite 200, Emeryville, CA 94608 USA, Tel: +1 510 985 3133, Fax: +1 510 985 3101, E-mail:
| |
Collapse
|
48
|
Becker HC. Effects of alcohol dependence and withdrawal on stress responsiveness and alcohol consumption. Alcohol Res 2012; 34:448-58. [PMID: 23584111 PMCID: PMC3860383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
A complex relationship exists between alcohol-drinking behavior and stress. Alcohol has anxiety-reducing properties and can relieve stress, while at the same time acting as a stressor and activating the body's stress response systems. In particular, chronic alcohol exposure and withdrawal can profoundly disturb the function of the body's neuroendocrine stress response system, the hypothalamic-pituitary-adrenocortical (HPA) axis. A hormone, corticotropin-releasing factor (CRF), which is produced and released from the hypothalamus and activates the pituitary in response to stress, plays a central role in the relationship between stress and alcohol dependence and withdrawal. Chronic alcohol exposure and withdrawal lead to changes in CRF activity both within the HPA axis and in extrahypothalamic brain sites. This may mediate the emergence of certain withdrawal symptoms, which in turn influence the susceptibility to relapse. Alcohol-related dysregulation of the HPA axis and altered CRF activity within brain stress-reward circuitry also may play a role in the escalation of alcohol consumption in alcohol-dependent individuals. Numerous mechanisms have been suggested to contribute to the relationship between alcohol dependence, stress, and drinking behavior. These include the stress hormones released by the adrenal glands in response to HPA axis activation (i.e., corticosteroids), neuromodulators known as neuroactive steroids, CRF, the neurotransmitter norepinephrine, and other stress-related molecules.
Collapse
|
49
|
Gunn BG, Brown AR, Lambert JJ, Belelli D. Neurosteroids and GABA(A) Receptor Interactions: A Focus on Stress. Front Neurosci 2011; 5:131. [PMID: 22164129 PMCID: PMC3230140 DOI: 10.3389/fnins.2011.00131] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 11/14/2011] [Indexed: 11/13/2022] Open
Abstract
Since the pioneering discovery of the rapid CNS depressant actions of steroids by the "father of stress," Hans Seyle 70 years ago, brain-derived "neurosteroids" have emerged as powerful endogenous modulators of neuronal excitability. The majority of the intervening research has focused on a class of naturally occurring steroids that are metabolites of progesterone and deoxycorticosterone, which act in a non-genomic manner to selectively augment signals mediated by the main inhibitory receptor in the CNS, the GABA(A) receptor. Abnormal levels of such neurosteroids associate with a variety of neurological and psychiatric disorders, suggesting that they serve important physiological and pathophysiological roles. A compelling case can be made to implicate neurosteroids in stress-related disturbances. Here we will critically appraise how brain-derived neurosteroids may impact on the stress response to acute and chronic challenges, both pre- and postnatally through to adulthood. The pathological implications of such actions in the development of psychiatric disturbances will be discussed, with an emphasis on the therapeutic potential of neurosteroids for the treatment of stress-associated disorders.
Collapse
Affiliation(s)
- Benjamin G Gunn
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital and Medical School, Ninewells Hospital, University of Dundee Dundee, UK
| | | | | | | |
Collapse
|
50
|
Ramaker MJ, Ford MM, Fretwell AM, Finn DA. Alteration of ethanol drinking in mice via modulation of the GABA(A) receptor with ganaxolone, finasteride, and gaboxadol. Alcohol Clin Exp Res 2011; 35:1994-2007. [PMID: 21649668 DOI: 10.1111/j.1530-0277.2011.01551.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Neurosteroids and other γ-aminobutyric acid(A) (GABA(A) ) receptor-modulating compounds have been shown to affect ethanol intake, although their mechanism remains unclear. This study examined how patterns of 24-hour ethanol drinking in mice were altered with the synthetic GABAergic neurosteroid ganaxolone (GAN), with an inhibitor of neurosteroid synthesis (finasteride [FIN]), or a GABA(A) receptor agonist with some selectivity at extrasynaptic receptors (gaboxadol HCL [THIP]). METHODS Male C57BL/6J mice had continuous access to a 10% v/v ethanol solution (10E) or water. Using lickometer chambers, drinking patterns were analyzed among mice treated in succession to GAN (0, 5, and 10 mg/kg), FIN (0 or 100 mg/kg), and THIP (0, 2, 4, 8, and 16 mg/kg). RESULTS GAN shifted drinking in a similar but extended manner to previous reports using low doses of the neurosteroid allopregnanolone (ALLO); drinking was increased in hour 1, decreased in hours 2 and 3, and increased in hours 4 and 5 postinjection. THIP (8 mg/kg) and FIN both decreased 10E drinking during the first 5 hours postinjection by 30 and 53%, respectively, while having no effect on or increasing water drinking, respectively. All 3 drugs altered the initiation of drinking sessions in a dose-dependent fashion. FIN increased and GAN decreased time to first lick and first bout. THIP (8 mg/kg) decreased time to first lick but increased time to first bout and attenuated first bout size. CONCLUSIONS The present findings support a role for the modulation of ethanol intake by neurosteroids and GABA(A) receptor-acting compounds and provide hints as to how drinking patterns are shifted. The ability of THIP to alter 10E drinking suggests that extrasynaptic GABA(A) receptors may be involved in the modulation of ethanol intake. Further, the consistent results with THIP to that seen previously with high doses of ALLO suggest that future studies should further examine the relationship between neurosteroids and extrasynaptic GABA(A) receptors, which could provide a better understanding of the mechanism by which neurosteroids influence ethanol intake.
Collapse
Affiliation(s)
- Marcia J Ramaker
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA.
| | | | | | | |
Collapse
|