1
|
Bakalenko N, Kuznetsova E, Malashicheva A. The Complex Interplay of TGF-β and Notch Signaling in the Pathogenesis of Fibrosis. Int J Mol Sci 2024; 25:10803. [PMID: 39409132 PMCID: PMC11477142 DOI: 10.3390/ijms251910803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Fibrosis is a major medical challenge, as it leads to irreversible tissue remodeling and organ dysfunction. Its progression contributes significantly to morbidity and mortality worldwide, with limited therapeutic options available. Extensive research on the molecular mechanisms of fibrosis has revealed numerous factors and signaling pathways involved. However, the interactions between these pathways remain unclear. A comprehensive understanding of the entire signaling network that drives fibrosis is still missing. The TGF-β and Notch signaling pathways play a key role in fibrogenesis, and this review focuses on their functional interplay and molecular mechanisms. Studies have shown synergy between TGF-β and Notch cascades in fibrosis, but antagonistic interactions can also occur, especially in cardiac fibrosis. The molecular mechanisms of these interactions vary depending on the cell context. Understanding these complex and context-dependent interactions is crucial for developing effective strategies for treating fibrosis.
Collapse
Affiliation(s)
| | | | - Anna Malashicheva
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg 194064, Russia; (N.B.); (E.K.)
| |
Collapse
|
2
|
Liu J, Zhang J, Fu X, Yang S, Li Y, Liu J, DiSanto ME, Chen P, Zhang X. The Emerging Role of Cell Adhesion Molecules on Benign Prostatic Hyperplasia. Int J Mol Sci 2023; 24:2870. [PMID: 36769190 PMCID: PMC9917596 DOI: 10.3390/ijms24032870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/01/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is a common disease in elderly men. It is characterized by prostatic enlargement and urethral compression and often causes lower urinary tract symptoms (LUTs) such as urinary frequency, urgency, and nocturia. Existing studies have shown that the pathological process of prostate hyperplasia is mainly related to the imbalance of cell proliferation and apoptosis, inflammation, epithelial-mesenchymal transition (EMT), and growth factors. However, the exact molecular mechanisms remain incompletely elucidated. Cell adhesion molecules (CAMs) are a group of cell surface proteins that mediate cell-cell adhesion and cell migration. Modulating adhesion molecule expression can regulate cell proliferation, apoptosis, EMT, and fibrotic processes, engaged in the development of prostatic hyperplasia. In this review, we went over the important roles and molecular mechanisms of cell adhesion molecules (mainly integrins and cadherins) in both physiological and pathological processes. We also analyzed the mechanisms of CAMs in prostate hyperplasia and explored the potential value of targeting CAMs as a therapeutic strategy for BPH.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Junchao Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xun Fu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shu Yang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yan Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jianmin Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Michael E. DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Ping Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
3
|
SGLT2 inhibitors attenuate nephrin loss and enhance TGF-β 1 secretion in type 2 diabetes patients with albuminuria: a randomized clinical trial. Sci Rep 2022; 12:15695. [PMID: 36127497 PMCID: PMC9489863 DOI: 10.1038/s41598-022-19988-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/07/2022] [Indexed: 11/15/2022] Open
Abstract
To evaluate the effect of SGLT2 inhibitor (SGLT2i) on albuminuria, nephrin (NPH) and transforming-growth-factor-beta1 (TGF-β1) levels in urine and low-grade inflammation in type 2 diabetes (T2D) patients. A randomized, blank-controlled clinical trial included 68 T2D patients and 10 controls. Based on the urinary albumin-to-creatinine ratio (UACR), 68 diabetic patients were stratified into three levels, UACR < 30 mg/g, UACR ≧ 30 mg/g to ≦ 300 mg/g and UACR ˃ 300 mg/g, who were randomized (1:1:1) to receive SGLT2i treatment for 12 weeks. The concentrations of NPH and TGF-β1 in urine were measured as indications of podocyte injury and renal fibrosis. Low-grade inflammation was assessed by the levels of IL-6, TNFα and hsCRP. After 12 weeks of SGLT2i treatment, the levels of UACR and NPH decreased, UTGF-β1 increased in the T2D with microalbuminuria and macroalbuminuria groups, NPH (1.12 [0.59, 1.29] vs. 0.71 [0.41, 1.07] µg/ml, P = 0.022) and (1.29 [0.99, 1.96] vs. 0.93 [0.57, 1.31] µg/ml, P = 0.002), UTGF-β1 (4.88 ± 1.31 vs. 7.27 ± 1.21 pg/ml, P < 0.001) and (4.30 ± 1.34 vs. 6.78 ± 2.59 pg/ml, P < 0.001), respectively. The changes in NPH were positively correlated with the UACR and negatively correlated with UTGF-β1 in T2D with albuminuria. SGLT2i alleviate nephrin loss and enhance TGF-β1 excretion in urine in T2DM with albuminuria. The anti-albuminuric effect of SGLT2i could be attributed to mitigating podocyte apoptosis and attenuating renal fibrosis. Trial registration This clinical trial was registered on 15/10/2019, in ClinicalTrials.gov, and the registry number is NCT04127084.
Collapse
|
4
|
dos Santos Bronel BA, Anauate AC, Maquigussa E, Boim MA, da Silva Novaes A. Determination of reference genes as a quantitative standard for gene expression analysis in mouse mesangial cells stimulated with TGF-β. Sci Rep 2022; 12:15626. [PMID: 36115882 PMCID: PMC9482652 DOI: 10.1038/s41598-022-19548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
Reverse transcription-quantitative polymerase chain reaction (RT-PCR) is the gold standard technique for gene expression analysis, but the choice of quantitative reference genes (housekeeping genes, HKG) remains challenging. Identify the best HKG is essential for estimating the expression level of target genes. Therefore, the aim of this study was to determine the best HKG for an in vitro model with mouse mesangial cells (MMCs) stimulated with 5 ng/mL of TGF-β. Five candidates HKG were selected: Actb, Hprt, Gapdh, 18S and Ppia. After quantitative expression, the best combination of these genes was analyzed in silico using six software programs. To validate the results, the best genes were used to normalize the expression levels of fibronectin, vimentin and α-SMA. In silico analysis revealed that Ppia, Gapdh and 18S were the most stable genes between the groups. GenEX software and Spearman's correlation determined Ppia and Gapdh as the best HKG pair, and validation of the HKG by normalizing fibronectin, vimentin and α-SMA were consistent with results from the literature. Our results established the combination of Ppia and Gapdh as the best HKG pair for gene expression analysis by RT-PCR in this in vitro model using MMCs treated with TGF-β.
Collapse
|
5
|
Aranda-Rivera AK, Cruz-Gregorio A, Aparicio-Trejo OE, Ortega-Lozano AJ, Pedraza-Chaverri J. Redox signaling pathways in unilateral ureteral obstruction (UUO)-induced renal fibrosis. Free Radic Biol Med 2021; 172:65-81. [PMID: 34077780 DOI: 10.1016/j.freeradbiomed.2021.05.034] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
Unilateral ureteral obstruction (UUO) is an experimental rodent model that mimics renal fibrosis associated with obstructive nephropathy in an accelerated manner. After UUO, the activation of the renin-angiotensin system (RAS), nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) and mitochondrial dysfunction lead to reactive oxygen species (ROS) overproduction in the kidney. ROS are secondary messengers able to induce post-translational modifications (PTMs) in redox-sensitive proteins, which activate or deactivate signaling pathways. Therefore, in UUO, it has been proposed that ROS overproduction causes changes in said pathways promoting inflammation, oxidative stress, and apoptosis that contribute to fibrosis development. Furthermore, mitochondrial metabolism impairment has been associated with UUO, contributing to renal damage in this model. Although ROS production and oxidative stress have been studied in UUO, the development of renal fibrosis associated with redox signaling pathways has not been addressed. This review focuses on the current information about the activation and deactivation of signaling pathways sensitive to a redox state and their effect on mitochondrial metabolism in the fibrosis development in the UUO model.
Collapse
Affiliation(s)
- Ana Karina Aranda-Rivera
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Laboratorio F-225, Ciudad de México, 04510, Mexico.
| | - Alfredo Cruz-Gregorio
- Laboratorio F-225, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | - Omar Emiliano Aparicio-Trejo
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | - Ariadna Jazmín Ortega-Lozano
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | - José Pedraza-Chaverri
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| |
Collapse
|
6
|
Zhang H, Xing J, Zhao L. Lysine-specific demethylase 1 induced epithelial-mesenchymal transition and promoted renal fibrosis through Jagged-1/Notch signaling pathway. Hum Exp Toxicol 2021; 40:S203-S214. [PMID: 34396798 DOI: 10.1177/09603271211038743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE TGF-β1-induced excessive deposition of extracellular matrix (ECM) and epithelial-mesenchymal transition (EMT) process of tubular epithelial cells play critical roles in the progression of renal fibrosis. We are aimed to explore the effects of lysine-specific demethylase 1 (LSD1) in TGF-β1-treated HK-2 cells and in rats with unilateral ureteral obstruction (UUO), and to investigate the underlying molecular mechanism. METHODS TGF-β1-treated HK-2 cells and UUO-treated rats were used to establish the model of renal fibrosis in vitro and in vivo, respectively. Protein expression of LSD1, E-cadherin, a-smooth muscle actin (a-SMA), Vimentin, Jagged-1, Notch-1 and Notch-2 were detected by Western blot. The concentrations of type I collagen (Col-I) and Fibronectin (FN) were measured by ELISA. Transwell assay were used to assess cell invasion. RESULTS LSD1 was dramatically increased in TGF-β1-stimulated HK-2 cells. Knockdown of LSD1 decreased the TGF-β1-induced secretion of Col-I and FN, and suppressed TGF-β1-induced expression of E-cadherin,α-SMA and Vimentin, while suppressed cell invasion. Consistent with the in vitro data, the severe histopathological damage, collagen deposition and reduced E-cadherin, increased α-SMA induced by UUO was abated by the knockdown of LSD1 in vivo. Moreover, knockdown of LSD1 suppressed TGF-β1-induced expression of Jagged-1, Notch-1 and Notch-2. Furthermore, we found that inhibition of Notch signaling by a γ-secretase inhibitor RO4929097 almost recapitulated the effects of LSD1 knockdown in TGF-β1-induced HK-2 cells, and at least in part reversed the effects of LSD1 overexpression on EMT and ECM deposition in HK-2 cells. CONCLUSIONS Taken together, LSD1 significantly impact on the progression of TGF-β1-mediated EMT and ECM deposition in HK-2 cells, and it may represent novel target for the prevention strategies of renal fibrosis.
Collapse
Affiliation(s)
- Huali Zhang
- Gerontology Department, 586778Gansu Provincial Hospital of TCM, Lanzhou, China
| | - Jiaming Xing
- Gerontology Department, 586778Gansu Provincial Hospital of TCM, Lanzhou, China
| | - Lingwei Zhao
- Nephrology Department, Sichuan Province Forestry Center Hospital, Chengdu, China
| |
Collapse
|
7
|
Micro-vesicles from mesenchymal stem cells over-expressing miR-34a inhibit transforming growth factor-β1-induced epithelial-mesenchymal transition in renal tubular epithelial cells in vitro. Chin Med J (Engl) 2021; 133:800-807. [PMID: 32149762 PMCID: PMC7147664 DOI: 10.1097/cm9.0000000000000720] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The use of microRNAs in the therapy of kidney disease is hampered by the difficulties in their effective delivery. Micro-vesicles (MVs) are known as natural carriers of small RNAs. Our prior research has demonstrated that MVs isolated from mesenchymal stem cells (MSCs) are capable of attenuating kidney injuries induced by unilateral ureteral obstruction and 5/6 sub-total nephrectomy in mice. The present study aimed to evaluate the effects of miR-34a-5p (miR-34a)-modified MSC-MVs on transforming growth factor (TGF)-β1-induced fibrosis and apoptosis in vitro. METHODS Bone marrow MSCs were modified by lentiviruses over-expressing miR-34a, from which MVs were collected for the treatment of human Kidney-2 (HK-2) renal tubular cells exposed to TGF-β1 (6 ng/mL). The survival of HK-2 cells was determined using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) and Annexin V-Light 650/propidium iodide (PI) assays. The expression levels of epithelial markers (tight junction protein 1 [TJP1] and E-cadherin) and mesenchymal markers (smooth muscle actin alpha (α-SMA) and fibronectin) in HK-2 cells were measured using Western blot analysis and an immunofluorescence assay. In addition, changes in Notch-1/Jagged-1 signaling were analyzed using Western blotting. Data were analyzed using a Student's t test or one-way analysis of variance. RESULTS MiR-34a expression increased three-fold in MVs generated by miR-34a-modified MSCs compared with that expressed in control MVs (P < 0.01, t = 16.55). In HK-2 cells, TJP1 and E-cadherin levels decreased to 31% and 37% after treatment with TGF-β1, respectively, and were restored to 62% and 70% by miR-34a-enriched MSC-MVs, respectively. The expression of α-SMA and fibronectin increased by 3.9- and 5.0-fold following TGF-β1 treatment, and decreased to 2.0- and 1.7-fold after treatment of HK-2 cells with miR-34a-enriched MSC-MVs. The effects of miR-34a-enriched MSC-MVs on epithelial-mesenchymal transition (EMT) markers were stronger than control MSC-MVs. The effects of miR-34a-enriched MSC-MVs on these EMT markers were stronger than control MSC-MVs. Notch-1 receptor and Jagged-1 ligand, two major molecules of Notch signaling pathway, are predicted targets of miR-34a. It was further observed that elevation of Notch-1 and Jagged-1 induced by TGF-β1 was inhibited by miR-34a-enriched MSC-MVs. In addition, TGF-β1 exposure also induced apoptosis in HK-2 cells. Although miR-34a-mofidied MSC-MVs were able to inhibit TGF-β1-triggered apoptosis in HK-2 cells, the effects were less significant than control MSC-MVs (control:TGF-β1: miR-nc-MV:miR-34a-MV = 1.3:0.6:1.1:0.9 for MTT assay, 1.8%:23.3%:9.4%:17.4% for apoptosis assay). This phenomenon may be the result of the pro-apoptotic effects of miR-34a. CONCLUSIONS The present study demonstrated that miR-34a-over-expressing MSC-MVs inhibit EMT induced by pro-fibrotic TGF-β1 in renal tubular epithelial cells, possibly through inhibition of the Jagged-1/Notch-1 pathway. Genetic modification of MSC-MVs with an anti-fibrotic molecule may represent a novel strategy for the treatment of renal injuries.
Collapse
|
8
|
Tang R, Xiao X, Lu Y, Li H, Zhou Q, Kwadwo Nuro-Gyina P, Li X. Interleukin-22 attenuates renal tubular cells inflammation and fibrosis induced by TGF-β1 through Notch1 signaling pathway. Ren Fail 2020; 42:381-390. [PMID: 32338120 PMCID: PMC7241524 DOI: 10.1080/0886022x.2020.1753538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/25/2020] [Accepted: 04/02/2020] [Indexed: 12/23/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β1) is a crucial factor implicated in the development of renal inflammation and tubulointerstitial fibrosis (TIF). The cytokine interleukin 22 (IL-22) was previously reported to involve in the pathogenesis of chronic inflammatory diseases, however recent studies showed that IL-22 could reduced inflammatory responses and tissue damage. In the present study, we aim to investigate the role and mechanisms of IL-22 in renal tubular cells inflammation and fibrosis induced by TGF-β1. HK-2 cells were treated with TGF-β1 in the presence of IL-22 or the Notch pathway inhibitor dibenzazepine (DBZ) for 48 h. Collagen I (Col I), fibronectin (FN), α-smooth muscle actin (α-SMA), vimentin and E-Cadherin were detected by western blot, proinflammatory factors (TNF-α, IL-6) and chemokines (MCP-1, RANTES) were evaluated by ELISA. Jagged1, Notch1, NICD1, and Hes1 were also detected by western blot. We found TGF-β1 increased the levels of Col I, FN, α-SMA and vimentin in HK-2 cells compared with control, and decreased E-Cadherin level, however, IL-22 restored their expressions partly. IL-22 reduced overexpression of proinflammatory factors (TNF-α, IL-6) and chemokines (MCP-1, RANTES) levels induced by TGF-β1, along with down-regulation of Jagged1, Notch, NICD1 and Hes1. Fibrosis and inflammation in renal tubular cells induced by TGF-β1 could be attenuated by IL-22, and the effects were similar to DBZ treatment. Collectively, our study shows that IL-22 exerts a protective role in renal fibrotic and inflammatory responses induced by TGF-β1 in vitro, which may be through inhibiting Jagged1/Notch1 signaling pathway activation.
Collapse
Affiliation(s)
- Rong Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangcheng Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Lu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huihui Li
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiaoling Zhou
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | - Xia Li
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Dou Y, Shang Y, Shen Y, Qu J, Liu C, Cao J. Baicalin alleviates adriamycin-induced focal segmental glomerulosclerosis and proteinuria by inhibiting the Notch1-Snail axis mediated podocyte EMT. Life Sci 2020; 257:118010. [DOI: 10.1016/j.lfs.2020.118010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 01/02/2023]
|
10
|
Zhang Y, Li W, Zhou Y. Identification of hub genes in diabetic kidney disease via multiple-microarray analysis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:997. [PMID: 32953797 PMCID: PMC7475500 DOI: 10.21037/atm-20-5171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease; however, the underlying molecular mechanisms remain unclear. Recently, bioinformatics analysis has provided a comprehensive insight toward the molecular mechanisms of DKD. Here, we re-analyzed three mRNA microarray datasets including a single-cell RNA sequencing (scRNA-seq) dataset, with the aim of identifying crucial genes correlated with DKD and contribute to a better understanding of DKD pathogenesis. Methods Three datasets including GSE131882, GSE30122, and GSE30529 were utilized to find differentially expressed genes (DEGs). The potential functions of DEGs were analyzed by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. A protein-protein interaction (PPI) network was constructed, and hub genes were selected with the top three molecular complex detection (MCODE) score. A correlation analysis between hub genes and clinical indicators was also performed. Results In total, 84 upregulated DEGs and 49 downregulated DEGs were identified. Enriched pathways of the upregulated DEGs included extracellular matrix (ECM) receptor interaction, focal adhesion, human papillomavirus infection, malaria, and cell adhesion molecules. The downregulated DEGs were mainly enriched in ascorbate and aldarate metabolism, arginine and proline metabolism, endocrine- and other factor-regulated calcium reabsorption, mineral absorption and longevity regulating pathway, and multiple species signaling pathway. Seventeen hub genes were identified, and correlation analysis between unexplored hub genes and clinical features of DKD suggested that EGF, KNG1, GADD45B, and CDH2 might have reno-protective roles in DKD. Meanwhile, ATF3, B2M, VCAM1, CLDN4, SPP1, SOX9, JAG1, C3, and CD24 might promote the progression of DKD. Finally, most hub genes were found present in the immune cells of diabetic kidneys, which suggest the important role of inflammation infiltration in DKD pathogenesis. Conclusions In this study, we found seventeen hub genes using a scRNA-seq contained multiple-microarray analysis, which enriched the present understanding of molecular mechanisms underlying the pathogenesis of DKD in cells' level and provided candidate targets for diagnosis and treatment of DKD.
Collapse
Affiliation(s)
- Yumin Zhang
- Department of Endocrinology, Zhongda Hospital, Southeast University, Nanjing, China.,Institute of Diabetes, Medical School, Southeast University, Nanjing, China
| | - Wei Li
- Department of Endocrinology, Zhongda Hospital, Southeast University, Nanjing, China.,Institute of Diabetes, Medical School, Southeast University, Nanjing, China.,Suzhou Hospital Affiliated To Anhui Medical University, Suzhou, China
| | - Yunting Zhou
- Department of Endocrinology, Zhongda Hospital, Southeast University, Nanjing, China.,Institute of Diabetes, Medical School, Southeast University, Nanjing, China.,Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Tan Q, Ma XY, Liu W, Meridew JA, Jones DL, Haak AJ, Sicard D, Ligresti G, Tschumperlin DJ. Nascent Lung Organoids Reveal Epithelium- and Bone Morphogenetic Protein-mediated Suppression of Fibroblast Activation. Am J Respir Cell Mol Biol 2020; 61:607-619. [PMID: 31050552 DOI: 10.1165/rcmb.2018-0390oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Reciprocal epithelial-mesenchymal interactions are pivotal in lung development, homeostasis, injury, and repair. Organoids have been used to investigate such interactions, but with a major focus on epithelial responses to mesenchyme and less attention to epithelial effects on mesenchyme. In the present study, we used nascent organoids composed of human and mouse lung epithelial and mesenchymal cells to demonstrate that healthy lung epithelium dramatically represses transcriptional, contractile, and matrix synthetic functions of lung fibroblasts. Repression of fibroblast activation requires signaling via the bone morphogenetic protein (BMP) pathway. BMP signaling is diminished after epithelial injury in vitro and in vivo, and exogenous BMP4 restores fibroblast repression in injured organoids. In contrast, inhibition of BMP signaling in healthy organoids is sufficient to derepress fibroblast matrix synthetic function. Our results reveal potent repression of fibroblast activation by healthy lung epithelium and a novel mechanism by which epithelial loss or injury is intrinsically coupled to mesenchymal activation via loss of repressive BMP signaling.
Collapse
Affiliation(s)
- Qi Tan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Xiao Yin Ma
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Wei Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Jeffrey A Meridew
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Dakota L Jones
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Andrew J Haak
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Delphine Sicard
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Giovanni Ligresti
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
12
|
Molecular pathways involved in injury-repair and ADPKD progression. Cell Signal 2020; 72:109648. [PMID: 32320858 DOI: 10.1016/j.cellsig.2020.109648] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/29/2022]
Abstract
The major hallmark of Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the formation of many fluid-filled cysts in the kidneys, which ultimately impairs the normal renal structure and function, leading to end-stage renal disease (ESRD). A large body of evidence suggests that injury-repair mechanisms are part of ADPKD progression. Once cysts have been formed, proliferation and fluid secretion contribute to the cyst size increase, which eventually causes stress on the surrounding tissue resulting in local injury and fibrosis. In addition, renal injury can cause or accelerate cyst formation. In this review, we will describe the various mechanisms activated during renal injury and tissue repair and show how they largely overlap with the molecular mechanisms activated during PKD progression. In particular, we will discuss molecular mechanisms such as proliferation, inflammation, cell differentiation, cytokines and growth factors secretion, which are activated following the renal injury to allow the remodelling of the tissue and a proper organ repair. We will also underline how, in a context of PKD-related gene mutations, aberrant or chronic activation of these developmental pathways and repair/remodelling mechanisms results in exacerbation of the disease.
Collapse
|
13
|
Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol 2019; 20:69-84. [PMID: 30459476 DOI: 10.1038/s41580-018-0080-4] [Citation(s) in RCA: 2446] [Impact Index Per Article: 407.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a cellular programme that is known to be crucial for embryogenesis, wound healing and malignant progression. During EMT, cell-cell and cell-extracellular matrix interactions are remodelled, which leads to the detachment of epithelial cells from each other and the underlying basement membrane, and a new transcriptional programme is activated to promote the mesenchymal fate. In the context of neoplasias, EMT confers on cancer cells increased tumour-initiating and metastatic potential and a greater resistance to elimination by several therapeutic regimens. In this Review, we discuss recent findings on the mechanisms and roles of EMT in normal and neoplastic tissues, and the cell-intrinsic signals that sustain expression of this programme. We also highlight how EMT gives rise to a variety of intermediate cell states between the epithelial and the mesenchymal state, which could function as cancer stem cells. In addition, we describe the contributions of the tumour microenvironment in inducing EMT and the effects of EMT on the immunobiology of carcinomas.
Collapse
Affiliation(s)
- Anushka Dongre
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Robert A Weinberg
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA. .,MIT Ludwig Center for Molecular Oncology, Cambridge, MA, USA. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
14
|
Epithelial and interstitial Notch1 activity contributes to the myofibroblastic phenotype and fibrosis. Cell Commun Signal 2019; 17:145. [PMID: 31718671 PMCID: PMC6849313 DOI: 10.1186/s12964-019-0455-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022] Open
Abstract
Background Notch1 signalling is a stem-cell-related pathway that is essential for embryonic development, tissue regeneration and organogenesis. However, the role of Notch1 in the formation of myofibroblasts and fibrosis in kidneys following injury remains unknown. Methods The activity of Notch1 signalling was evaluated in fibrotic kidneys in CKD patients and in ureteral obstructive models in vivo and in cultured fibroblasts and TECs in vitro. In addition, the crosstalk of Notch1 with TGF-β1/Smad2/3 signalling was also investigated. Results Notch1 activity was elevated in fibrotic kidneys of rat models and patients with chronic kidney disease (CKD). Further study revealed that epithelial and interstitial Notch1 activity correlated with an α-SMA-positive myofibroblastic phenotype. In vitro, injury stimulated epithelial Notch1 activation and epithelial-mesenchymal transition (EMT), resulting in matrix deposition in tubular epithelial cells (TECs). Additionally, interstitial Notch1 activation in association with fibroblast-myofibroblast differentiation (FMD) in fibroblasts mediated a myofibroblastic phenotype. These TGF-β1/Smad2/3-dependent phenotypic transitions were abolished by Notch1 knockdown or a specific antagonist, DAPT, and were exacerbated by Notch1 overexpression or an activator Jagged-1-Fc chimaera protein. Interestingly, as a major driving force behind the EMT and FMD, TGF-β1, also induced epithelial and interstitial Notch1 activity, indicating that TGF-β1 may engage in crosstalk with Notch1 signalling to trigger fibrogenesis. Conclusion These findings suggest that epithelial and interstitial Notch1 activation in kidneys following injury contributes to the myofibroblastic phenotype and fibrosis through the EMT in TECs and to the FMD in fibroblasts by targeting downstream TGF-β1/Smad2/3 signalling.
Collapse
|
15
|
Mukherjee M, Fogarty E, Janga M, Surendran K. Notch Signaling in Kidney Development, Maintenance, and Disease. Biomolecules 2019; 9:E692. [PMID: 31690016 PMCID: PMC6920979 DOI: 10.3390/biom9110692] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/31/2019] [Accepted: 11/02/2019] [Indexed: 02/06/2023] Open
Abstract
Kidney development involves formation of nephrons intricately aligned with the vasculature and connected to a branched network of collecting ducts. Notch signaling plays multiple roles during kidney development involving the formation of nephrons composed of diverse epithelial cell types arranged into tubular segments, all the while maintaining a nephron progenitor niche. Here, we review the roles of Notch signaling identified from rodent kidney development and injury studies, while discussing human kidney diseases associated with aberrant Notch signaling. We also review Notch signaling requirement in maintenance of mature kidney epithelial cell states and speculate that Notch activity regulation mediates certain renal physiologic adaptations.
Collapse
Affiliation(s)
- Malini Mukherjee
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 East 60th Street North, Sioux Falls, SD 57104, USA.
| | - Eric Fogarty
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA.
| | - Madhusudhana Janga
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 East 60th Street North, Sioux Falls, SD 57104, USA.
| | - Kameswaran Surendran
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 East 60th Street North, Sioux Falls, SD 57104, USA.
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA.
| |
Collapse
|
16
|
Chen W, Wang Z, Ren Y, Zhang L, Sun L, Man Y, Zhou Z. Silencing of keratin 1 inactivates the Notch signaling pathway to inhibit renal interstitial fibrosis and glomerular sclerosis in uremia. J Cell Physiol 2019; 235:1674-1688. [DOI: 10.1002/jcp.29087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/06/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Wen Chen
- Department of Nephrology Linyi People's Hospital Linyi China
| | - Zhi‐Kui Wang
- Department of Nephrology Linyi People's Hospital Linyi China
| | - Yue‐Qin Ren
- Department of Nephrology Linyi People's Hospital Linyi China
| | - Lei Zhang
- Department of Nephrology Linyi People's Hospital Linyi China
| | - Li‐Na Sun
- Department of Nephrology Linyi People's Hospital Linyi China
| | - Yu‐Lin Man
- Department of Nephrology Linyi People's Hospital Linyi China
| | - Zhong‐Qi Zhou
- Department of Nephrology Linyi People's Hospital Linyi China
| |
Collapse
|
17
|
Chen X, Wu Y, Diao Z, Han X, Li D, Ruan X, Liu W. C1q/tumor necrosis factor‐related protein‐3 improves renal fibrosis via inhibiting notch signaling pathways. J Cell Physiol 2019; 234:22352-22364. [PMID: 31074042 DOI: 10.1002/jcp.28801] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/20/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Xinpan Chen
- Department of Nephrology, Beijing Friendship Hospital, Faculty of Kidney Diseases Capital Medical University Beijing China
| | - Yiru Wu
- Department of Nephrology, Beijing Friendship Hospital, Faculty of Kidney Diseases Capital Medical University Beijing China
| | - Zongli Diao
- Department of Nephrology, Beijing Friendship Hospital, Faculty of Kidney Diseases Capital Medical University Beijing China
| | - Xue Han
- Department of Nephrology, Beijing Friendship Hospital, Faculty of Kidney Diseases Capital Medical University Beijing China
| | - Dishan Li
- Department of Nephrology, Beijing Friendship Hospital, Faculty of Kidney Diseases Capital Medical University Beijing China
| | - Xiongzhong Ruan
- Department of Nephrology, John Moorhead Research Laboratory, University College London Medical School, Royal Free Campus University College London London United Kingdom
| | - Wenhu Liu
- Department of Nephrology, Beijing Friendship Hospital, Faculty of Kidney Diseases Capital Medical University Beijing China
| |
Collapse
|
18
|
Zhou H, Gao L, Yu Z, Hong S, Zhang Z, Qiu Z. LncRNA HOTAIR promotes renal interstitial fibrosis by regulating Notch1 pathway via the modulation of miR‐124. Nephrology (Carlton) 2019; 24:472-480. [PMID: 29717517 DOI: 10.1111/nep.13394] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Hao Zhou
- Department of UrologyThe Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine (The People's Hospital of Fujian Province) Fuzhou China
| | - Lin Gao
- Department of UrologyThe Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine (The People's Hospital of Fujian Province) Fuzhou China
| | - Zuo‐hua Yu
- Department of UrologyThe Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine (The People's Hospital of Fujian Province) Fuzhou China
| | - Shi‐jun Hong
- Department of UrologyThe Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine (The People's Hospital of Fujian Province) Fuzhou China
| | - Zhi‐wei Zhang
- Department of ResearchBeijing Zhong Jian Dong Ke Company Beijing China
| | - Zhen‐zhen Qiu
- Department of Physical EducationMinjiang University Fuzhou China
| |
Collapse
|
19
|
Transforming growth factor β (TGFβ) and related molecules in chronic kidney disease (CKD). Clin Sci (Lond) 2019; 133:287-313. [DOI: 10.1042/cs20180438] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/04/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
|
20
|
Soni H, Matthews AT, Pallikkuth S, Gangaraju R, Adebiyi A. γ-secretase inhibitor DAPT mitigates cisplatin-induced acute kidney injury by suppressing Notch1 signaling. J Cell Mol Med 2018; 23:260-270. [PMID: 30407728 PMCID: PMC6307805 DOI: 10.1111/jcmm.13926] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/16/2018] [Accepted: 08/30/2018] [Indexed: 12/22/2022] Open
Abstract
Organ toxicity, including kidney injury, limits the use of cisplatin for the treatment of multiple human cancers. Hence, interventions to alleviate cisplatin-induced nephropathy are of benefit to cancer patients. Recent studies have demonstrated that pharmacological inhibition of the Notch signaling pathway enhances cisplatin efficacy against several cancer cells. However, whether augmentation of the anti-cancer effect of cisplatin by Notch inhibition comes at the cost of increased kidney injury is unclear. We show here that treatment of mice with cisplatin resulted in a significant increase in Notch ligand Delta-like 1 (Dll1) and Notch1 intracellular domain (N1ICD) protein expression levels in the kidneys. N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), a γ-secretase inhibitor reversed cisplatin-induced increase in renal N1ICD expression and plasma or urinary levels of predictive biomarkers of acute kidney injury (AKI). DAPT also mitigated cisplatin-induced tubular injury and reduction in glomerular filtration rate. Real-time multiphoton microscopy revealed marked necrosis and peritubular vascular dysfunction in the kidneys of cisplatin-treated mice which were abrogated by DAPT. Cisplatin-induced Dll1/Notch1 signaling was recapitulated in a human proximal tubule epithelial cell line (HK-2). siRNA-mediated Dll1 knockdown and DAPT attenuated cisplatin-induced Notch1 cleavage and cytotoxicity in HK-2 cells. These data suggest that Dll1-mediated Notch1 signaling contributes to cisplatin-induced AKI. Hence, the Notch signaling pathway could be a potential therapeutic target to alleviate renal complications associated with cisplatin chemotherapy.
Collapse
Affiliation(s)
- Hitesh Soni
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Anberitha T Matthews
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Sandeep Pallikkuth
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Rajashekhar Gangaraju
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee.,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Adebowale Adebiyi
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
21
|
Marquez-Exposito L, Cantero-Navarro E, Lavoz C, Fierro-Fernández M, Poveda J, Rayego-Mateos S, Rodrigues-Diez RR, Morgado-Pascual JL, Orejudo M, Mezzano S, Ruiz-Ortega M. Análisis de la vía Notch como una posible diana terapéutica en la patología renal. Nefrologia 2018; 38:466-475. [DOI: 10.1016/j.nefro.2017.11.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/09/2017] [Accepted: 11/09/2017] [Indexed: 12/18/2022] Open
|
22
|
Gad AM. Study on the influence of caffeic acid against sodium valproate-induced nephrotoxicity in rats. J Biochem Mol Toxicol 2018; 32:e22175. [PMID: 29968957 DOI: 10.1002/jbt.22175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/22/2018] [Accepted: 06/15/2018] [Indexed: 02/05/2023]
Abstract
Renal injury is a hallmark adverse reaction to sodium valproate (SVP), and caffeic acid (CAFF) is a phenolic compound that has anti-inflammatory and antioxsidant properties. So, this investigation was assessed to evaluate the nephrotoxic potential of SVP and the defensive impact of CAFF against SVP nephrotoxicity. SVP was given at a dose of 500 mg/kg (i.p.) once daily for 2 weeks, while CAFF was given at a dose of 50 mg/kg (orally), simultaneously with SVP. Concurrent treatment with CAFF reduced urea and creatinine, lipid peroxidation (malondialdehyde), tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), nuclear factor kappa B (NF-κB/p65), and transforming growth factor β (TGF-β) levels. However, with increased glutathione content, CAFF also halted the activated Notch signaling cascade. Furthermore, CAFF suppressed caspase-3 and inducible nitric oxide synthase expressions. To conclude, on the basis of the results obtained, CAFF proved to protect against SVP-induced nephrotoxicity via its antioxidant, anti-inflammatory, and antiapoptotic properties.
Collapse
Affiliation(s)
- Amany M Gad
- Department of Pharmacology, National Organization for Drug Control and Research, Cairo, Egypt
| |
Collapse
|
23
|
Sun Y, Fu J, Xue X, Yang H, Wu L. BMP7 regulates lung fibroblast proliferation in newborn rats with bronchopulmonary dysplasia. Mol Med Rep 2018; 17:6277-6284. [PMID: 29512787 PMCID: PMC5928605 DOI: 10.3892/mmr.2018.8692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 10/03/2017] [Indexed: 01/04/2023] Open
Abstract
The present study investigated the expression of bone morphogenetic protein (BMP) 7 in a newborn rat model of bronchopulmonary dysplasia (BPD) and the biological effects of BMP7 on newborn rat lung fibroblast (LF) cells. For this purpose, a total of 196 newborn rats were randomly and equally assigned to a model group and a control group. Lung tissue was collected at days 3, 7, 14 and 21 for histological analysis. The location and expression of BMP7 was examined by immunohistochemical staining and reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analysis. A total of 38 full‑term newborn rats on the day of birth were sacrificed and LF cells were isolated and treated with BMP7. The biological effects of BMP7 on LF cells were assessed by cell proliferation and cell cycle analysis. The findings demonstrated that abnormal alveolar development due to BPD was gradually intensified in the model group over time. Immunohistochemical staining revealed that the location of BMP7 in lung tissue was altered. Immunohistochemistry and RT‑qPCR assays demonstrated a gradual decrease in BMP7 expression in the model group induced by hyperoxia. MTT assays demonstrated that BMP7 inhibited LF cells and the inhibitory effect was dose‑dependent and time‑dependent. Flow cytometry revealed that the inhibitory effect of BMP7 in LF cells was causing cell cycle arrest at the G1 phase. The present study demonstrated that BMP7 may serve an important role in alveolar development in a BPD model. BMP7 may be involved in abnormal alveolar development through the regulation of LF proliferation.
Collapse
Affiliation(s)
- Yanli Sun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xindong Xue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Haiping Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Linlin Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
24
|
Zhao S, Xiao X, Sun S, Li D, Wang W, Fu Y, Fan F. MicroRNA-30d/JAG1 axis modulates pulmonary fibrosis through Notch signaling pathway. Pathol Res Pract 2018; 214:1315-1323. [PMID: 30029934 DOI: 10.1016/j.prp.2018.02.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/27/2018] [Accepted: 02/14/2018] [Indexed: 12/12/2022]
Abstract
Pulmonary fibrosis (PF) is a fibroproliferative disease which can finally end up fatal lung failure. PF is characterized by abnormal proliferation of fibroblast, dysregulated fibroblast differentiation to myofibroblast and disorganized collagen and extracellular matrix (ECM) production, deposition and degradation. JAG1/Notch signaling has been reported to play a key role in tissue fibrosis including PF. Herein, we confirmed the abnormal upregulation of JAG1 mRNA expression and protein levels in PF tissue specimens; JAG1 knockdown reduced TGF-β1-induced α-SMA and Collagen I protein levels. From the aspect of miRNA regulation, we searched for candidate miRNAs which might target JAG1 to inhibit its expression. Among the selected miRNAs, miR-30d expression was downregulated in PF tissues; miR-30d overexpression attenuated TGF-β1-induced primary normal human lung fibroblast (NHLF) proliferation, as well as α-SMA and Collagen I protein levels. Through directly binding to the 3'-UTR of JAG1, miR-30d significantly inhibited JAG1 mRNA expression and protein level. Furthermore, JAG1 overexpression partially reversed the effect of miR-30d on NHLF proliferation and α-SMA and Collagen I proteins upon TGF-β1 stimulation; miR-30d could suppress TGF-β1 function on NHLFs through blocking JAG1/Notch signaling. Rescuing miR-30d expression to suppress TGF-β1-induced activation of JAG1/Notch signaling may present a promising strategy for PF treatment.
Collapse
Affiliation(s)
- Silin Zhao
- Department of Respiratory Medicine, the First Affiliated Hospital of Hunan Hospital of Hunan University of Chinese Medicine, China
| | - Xuefei Xiao
- Department of Respiratory Medicine, the First Affiliated Hospital of Hunan Hospital of Hunan University of Chinese Medicine, China
| | - Shuang Sun
- Department of Respiratory Medicine, the First Affiliated Hospital of Hunan Hospital of Hunan University of Chinese Medicine, China
| | - Da Li
- Department of Respiratory Medicine, the First Affiliated Hospital of Hunan Hospital of Hunan University of Chinese Medicine, China
| | - Wei Wang
- Department of Respiratory Medicine, the First Affiliated Hospital of Hunan Hospital of Hunan University of Chinese Medicine, China
| | - Yan Fu
- Department of Respiratory Medicine, the First Affiliated Hospital of Hunan Hospital of Hunan University of Chinese Medicine, China
| | - Fuyuan Fan
- Department of Respiratory Medicine, the First Affiliated Hospital of Hunan Hospital of Hunan University of Chinese Medicine, China.
| |
Collapse
|
25
|
Notch-mediated Sox9 + cell activation contributes to kidney repair after partial nephrectomy. Life Sci 2017; 193:104-109. [PMID: 29198839 DOI: 10.1016/j.lfs.2017.11.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/16/2017] [Accepted: 11/26/2017] [Indexed: 12/25/2022]
Abstract
AIMS Partial nephrectomy is a surgical technique as an alternative for traditional radical nephrectomy. The advantage of partial nephrectomy technique is nephron-sparing, however, whether the remaining kidney tissue could regenerate the lost nephron is still unknown. The current work is to investigate the kidney tissue repair process and the related cellular and molecular mechanism. MAIN METHODS We used a novel unilateral partial nephrectomy mouse model to study kidney repair, and focused on a population of Sox9+ progenitor cells to study their pivotal role in the regenerative process. Kidney function after nephrectomy was measured using creatinine and urea nitrogen assay kit. Wound healing was assessed by Masson Trichrome Staining. Tissue regeneration was tested by Sox9+ cells immunofluorescence staining. The differentiation potential of Sox9+ cells were assessed by immunoanalysis with various tubular cell markers. Notch activation was determined by qPCR and Western blotting. KEY FINDINGS After partial nephrectomy, we found that massive Sox9+ cells emerged one day after the surgery and lasted for up to 20days. The Sox9+ cells had proliferative capacity and could give rise to epithelial cells of proximal tubule, Henle's loop, distal tubule, collecting duct, and the parietal layer of glomerulus. We also found that the activation of Sox9+ cells was mediated by Notch signaling pathway. SIGNIFICANCE The current study reveals that Notch-mediated Sox9+ cell activation can contribute to kidney tubule regeneration after unilateral partial nephrectomy in mice.
Collapse
|
26
|
Matoba K, Kawanami D, Nagai Y, Takeda Y, Akamine T, Ishizawa S, Kanazawa Y, Yokota T, Utsunomiya K. Rho-Kinase Blockade Attenuates Podocyte Apoptosis by Inhibiting the Notch Signaling Pathway in Diabetic Nephropathy. Int J Mol Sci 2017; 18:ijms18081795. [PMID: 28820432 PMCID: PMC5578183 DOI: 10.3390/ijms18081795] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 12/12/2022] Open
Abstract
Podocyte apoptosis is a key process in the onset of diabetic nephropathy. A significant body of evidence shows that the Notch signaling pathway plays a central role in this process. We found that Rho-kinase mediates transforming growth factor β (TGF-β)-induced Notch ligand Jag1 expression. Importantly, TGF-β-mediated podocyte apoptosis was attenuated by Rho-kinase inhibition. Mechanistically, Rho-kinase regulated Jag1 induction via the extracellular signal-regulated kinase (ERK) 1/2 and c-Jun N-terminal kinase (JNK) but not Smad pathways. Consistently, the Rho-kinase inhibitor fasudil prevented albuminuria and the urinary excretion of nephrin in db/db mice and reduced the prevalence of podocyte apoptosis and Jag1 expression. Finally, the expression of Jag1 and apoptosis markers such as Bax and cyclin-dependent kinase inhibitor 1A (CDKN1A) was decreased in podocytes derived from db/db mice treated with fasudil. The present study provides evidence that Rho-kinase plays a key role in podocyte apoptosis. Rho-kinase is an attractive therapeutic target for diabetic nephropathy.
Collapse
Affiliation(s)
- Keiichiro Matoba
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan.
| | - Daiji Kawanami
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan.
| | - Yosuke Nagai
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan.
| | - Yusuke Takeda
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan.
| | - Tomoyo Akamine
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan.
| | - Sho Ishizawa
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan.
| | - Yasushi Kanazawa
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan.
| | - Tamotsu Yokota
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan.
| | - Kazunori Utsunomiya
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo 105-8461, Japan.
| |
Collapse
|
27
|
Mazzei L, Cuello-Carrión FD, Docherty N, Manucha W. Heat shock protein 70/nitric oxide effect on stretched tubular epithelial cells linked to WT-1 cytoprotection during neonatal obstructive nephropathy. Int Urol Nephrol 2017; 49:1875-1892. [PMID: 28711961 DOI: 10.1007/s11255-017-1658-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/10/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND Mechanical stress is a key pathogenic driver of apoptosis in the tubular epithelium in obstructive nephropathy. Heat shock protein 70 (Hsp70) and Wilms' tumor (WT-1) have been proposed to represent linked downstream effectors of the cytoprotective properties of NO. In the present study, we sought to evaluate whether the cytoprotective effects of L-arginine in neonatal obstructive nephropathy may be associated with NO-dependent increases in WT-1 and Hsp70 expression. METHODS Neonatal Wistar-Kyoto rats were submitted to complete unilateral ureteral obstruction (UUO) and treated thereafter with vehicle, L-NAME or L-arginine by daily gavage for 14 days to block or augment NO levels, respectively. Normal rat kidney epithelial cells by NRK-52E were exposed to mechanical stress in vitro in the presence or absence of L-NAME, L-arginine, sodium nitroprusside (SNP), L-arginine + SNP or L-arginine/L-NAME. Induction of apoptosis and the mRNA expression of WT-1 and Hsp70 genes were assessed. RESULTS WT-1 and Hsp70 genes expression decreased in the presence of L-NAME and following UUO coincident with increased tubular apoptosis. L-arginine treatment increased NO levels, reduced apoptosis and restored expression levels of WT-1 and Hsp70 to control levels. L-arginine treatment in vitro reduced basal apoptotic rates and prevented apoptosis in response to mechanical strain, an effect enhanced by SNP co-incubation. L-NAME increased apoptosis and prevented the anti-apoptotic action of L-arginine. CONCLUSIONS L-arginine treatment in experimental neonatal UUO reduces apoptosis coincident with restoration of WT-1 and Hsp70 expression levels and directly inhibits mechanical strain-induced apoptosis in an NO-dependent manner in vitro. This potentially implicates an NO-Hsp70-WT-1 axis in the cytoprotective effects of L-arginine.
Collapse
Affiliation(s)
- Luciana Mazzei
- Laboratorio de Farmacología Experimental Básica y Traslacional. IMBECU-CONICET (National Council of Scientific and Technical Research of Argentina), Buenos Aires, Argentina.,Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Fernando Darío Cuello-Carrión
- Laboratorio de Farmacología Experimental Básica y Traslacional. IMBECU-CONICET (National Council of Scientific and Technical Research of Argentina), Buenos Aires, Argentina
| | - Neil Docherty
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Walter Manucha
- Laboratorio de Farmacología Experimental Básica y Traslacional. IMBECU-CONICET (National Council of Scientific and Technical Research of Argentina), Buenos Aires, Argentina. .,Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina. .,Pharmacology Area, Pathology Department, Medical Sciences College, National University of Cuyo, Mendoza, CP5500, Argentina.
| |
Collapse
|
28
|
Ma Q, Feng W, Zhuang Z, Liu S. Cloning, expression profiling and promoter functional analysis of Bone morphogenetic protein 6 and 7 in tongue sole (Cynoglossus semilaevis). FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:435-454. [PMID: 28013423 DOI: 10.1007/s10695-016-0298-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
Bone morphogenetic proteins (BMPs) play crucial roles in vertebrate developmental process and are associated with the mechanisms which drive early skeletal development. As a first approach to elucidating the role of BMPs in regulating fish bone formation and growth, we describe the cloning, expression profiling and promoter functional analysis of bmp6 and bmp7 in tongue sole (Cynoglossus semilaevis). The full length of bmp6 and bmp7 cDNA sequences is 1939 and 1836 bp, which encodes a protein of 428 and 427 amino acids, respectively. Tissue expression distribution of bmp6 and bmp7 was examined in 14 tissues of mature individuals by quantitative real-time PCR (qRT-PCR). The results revealed that bmp6 was predominantly expressed in the gonad, and bmp7 exhibited the highest expression level in the dorsal fin. Further comparison of bmp6 expression levels between female and male gonads showed that the expression in the ovary was significantly higher than in the testis. Moreover, bmp6 and bmp7 expression levels were detected at 15 sampling time points of early developmental stages (egg, larva, juvenile and fingerling stages). The highest expression level of bmp6 was observed in the egg stage (multi-cell and gastrula stage); while bmp7 exhibited the highest expression in the larva stage (1-4 days old). The high expression levels of BMP6 in the ovary as well as at early embryonic stages indicated that the maternally stored transcripts of bmp6 might play a role in early embryonic development. Whole-mount in situ hybridization showed that bmp6 and bmp7 exhibited similar spatial expression patterns. Both bmp6 and bmp7 signals were first detected in the head and anterior regions in newly hatched larvae, and then, the mRNAs appeared in the crown-like larval fin, jaw, operculum and fins (pectoral, dorsal, pelvic and anal) along with early development. Subsequently, we characterized the 5'-flanking regions of bmp6 and bmp7 by testing the promoter activity by luciferase reporter assays. Positive regulatory regions were, respectively, detected at the location of -272 to +28 and -740 to -396 in bmp6 and bmp7 gene. The predicted transcription factor binding sites (CREB, AP1 and methyl-CpG-binding protein) in the regions might participate in the transcriptional regulation of these two genes.
Collapse
Affiliation(s)
- Qian Ma
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
| | - Wenrong Feng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Zhimeng Zhuang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
- Function Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China.
| | - Shufang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China
| |
Collapse
|
29
|
Yang G, Zhao Z, Zhang X, Wu A, Huang Y, Miao Y, Yang M. Effect of berberine on the renal tubular epithelial-to-mesenchymal transition by inhibition of the Notch/snail pathway in diabetic nephropathy model KKAy mice. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:1065-1079. [PMID: 28408805 PMCID: PMC5384688 DOI: 10.2147/dddt.s124971] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Renal tubular epithelial-to-mesenchymal transition (EMT) and renal tubular interstitial fibrosis are the main pathological changes of diabetic nephropathy (DN), which is a common cause of end-stage renal disease. Previous studies have suggested that berberine (BBR) has antifibrotic effects in the kidney and can reduce apoptosis and inhibit the EMT of podocytes in DN. However, the effect of BBR on the renal tubular EMT in DN and its mechanisms of action are unknown. This study was performed to explore the effects of BBR on the renal tubular EMT and the molecular mechanisms of BBR in DN model KKAy mice and on the high glucose (HG)-induced EMT in mouse renal tubular epithelial cells. Our results showed that, relative to the model mice, the mice in the treatment group had an improved general state and reduced blood glucose and 24-h urinary protein levels. Degradation of renal function was ameliorated by BBR. We also observed the protective effects of BBR on renal structural changes, including normalization of an index of renal interstitial fibrosis and kidney weight/body weight. Moreover, BBR suppressed the activation of the Notch/snail pathway and upregulated the α-SMA and E-cadherin levels in DN model KKAy mice. BBR was further found to prevent HG-induced EMT events and to inhibit the HG-induced expression of Notch pathway members and snail1 in mouse renal tubular epithelial cells. Our findings indicate that BBR has a therapeutic effect on DN, including its inhibition of the renal tubular EMT and renal interstitial fibrosis. Furthermore, the BBR-mediated EMT inhibition occurs through Notch/snail pathway regulation.
Collapse
Affiliation(s)
- Guannan Yang
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Zongjiang Zhao
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xinxue Zhang
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Amin Wu
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yawei Huang
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yonghui Miao
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Meijuan Yang
- School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| |
Collapse
|
30
|
Zhong J, Yang HC, Fogo AB. A perspective on chronic kidney disease progression. Am J Physiol Renal Physiol 2016; 312:F375-F384. [PMID: 27974318 DOI: 10.1152/ajprenal.00266.2016] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 11/29/2016] [Accepted: 12/08/2016] [Indexed: 12/24/2022] Open
Abstract
Chronic kidney disease (CKD) will progress to end stage without treatment, but the decline of renal function may not be linear. Compared with glomerular filtration rate and proteinuria, new surrogate markers, such as kidney injury molecule-1, neutrophil gelatinase-associated protein, apolipoprotein A-IV, and soluble urokinase receptor, may allow potential intervention and treatment in the earlier stages of CKD, which could be useful for clinical trials. New omic-based technologies reveal potential new genomic and epigenomic mechanisms that appear different from those causing the initial disease. Various clinical studies also suggest that acute kidney injury is a major risk for progressive CKD. To ameliorate the progression of CKD, the first step is optimizing renin-angiotensin-aldosterone system blockade. New drugs targeting endothelin, transforming growth factor-β, oxidative stress, and inflammatory- and cell-based regenerative therapy may have add-on benefit.
Collapse
Affiliation(s)
- Jianyong Zhong
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.,Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Hai-Chun Yang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.,Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Agnes B Fogo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; .,Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee; and.,Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
31
|
Hammad AM, Youssef HM, El-Arman MM. Transforming growth factor beta 1 in children with systemic lupus erythematosus: a possible relation with clinical presentation of lupus nephritis. Lupus 2016; 15:608-12. [PMID: 17080918 DOI: 10.1177/0961203306071873] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plasma and urinary (latent and active) TGF-β1 levels were assessed in 32 children with active lupus and compared to 15 healthy controls of matched age and sex. Plasma latent and active TGF-β1 levels in children with active disease were significantly lower than controls ( P = 0.004 and P < 0.001 respectively). Plasma active TGF-β1 correlated negatively with Systemic Lupus Erythematosus Disease Activity Index ( r =-0.38, P = 0.03). On the contrary, urinary latent and active TGF-β1 levels in children with active disease were significantly higher than controls ( P < 0.001 and P = 0.003 respectively). Urinary active TGF-β1 levels correlated positively with Anti-ds DNA titre ( r = 0.42, P = 0.015) and negatively with serum C3 levels ( r =-0.48, P = 0.005). Patients with symptomatic nephritis had significantly elevated urinary active TGF-β1 levels in comparison to those with silent nephritis ( P = 0.008). From this data we conclude that lowered plasma TGF-β1 levels may be a feature of systemic immune dysfunction in children with active lupus while increased renal production of active TGF-β1 seems to have a role in the clinical presentation of lupus nephritis.
Collapse
Affiliation(s)
- A M Hammad
- Department of Pediatrics, Mansoura Faculty of Medicine, Egypt
| | | | | |
Collapse
|
32
|
Hu C, Sun L, Xiao L, Han Y, Fu X, Xiong X, Xu X, Liu Y, Yang S, Liu F, Kanwar YS. Insights into the Mechanisms Involved in the Expression and Regulation of Extracellular Matrix Proteins in Diabetic Nephropathy. Curr Med Chem 2016; 22:2858-70. [PMID: 26119175 DOI: 10.2174/0929867322666150625095407] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 06/15/2015] [Accepted: 06/24/2015] [Indexed: 02/06/2023]
Abstract
Diabetic Nephropathy (DN) is believed to be a major microvascular complication of diabetes. The hallmark of DN includes deposition of Extracellular Matrix (ECM) proteins, such as, collagen, laminin and fibronectin in the mesangium and renal tubulo-interstitium of the glomerulus and basement membranes. Such an increased expression of ECM leads to glomerular and tubular basement membranes thickening and increase of mesangial matrix, ultimately resulting in glomerulosclerosis and tubulointerstitial fibrosis. The characteristic morphologic glomerular mesangial lesion has been described as Kimmelstiel-Wilson nodule, and the process at times is referred to as diabetic nodular glomerulosclerosis. Thus, the accumulation of ECM proteins plays a critical role in the development of DN. The relevant mechanism(s) involved in the increased ECM expression and their regulation in the kidney in diabetic state has been extensively investigated and documented in the literature. Nevertheless, there are certain other mechanisms that may yet be conclusively defined. Recent studies demonstrated that some of the new signaling pathways or molecules including, Notch, Wnt, mTOR, TLRs and small GTPase may play a pivotal role in the modulation of ECM regulation and expression in DN. Such modulation could be operational for instance Notch through Notch1/Jagged1 signaling, Wnt by Wnt/β- catenin pathway and mTOR via PI3-K/Akt/mTOR signaling pathways. All these pathways may be critical in the modulation of ECM expression and tubulo-interstitial fibrosis. In addition, TLRs, mainly the TLR2 and TLR4, by TLR2- dependent and TGF-β-dependent conduits, may modulate ECM expression and generate a fibrogenic response. Small GTPase like Rho, Ras and Rab family by targeting relevant genes may also influence the accumulation of ECM proteins and renal fibrosis in hyperglycemic states. This review summarizes the recent information about the role and mechanisms by which these molecules and signaling pathways regulate ECM synthesis and its expression in high glucose ambience in vitro and in vivo states. The understanding of such signaling pathways and the molecules that influence expression, secretion and amassing of ECM may aid in developing strategies for the amelioration of diabetic nephropathy.
Collapse
Affiliation(s)
| | - L Sun
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hu B, Phan SH. Notch in fibrosis and as a target of anti-fibrotic therapy. Pharmacol Res 2016; 108:57-64. [PMID: 27107790 DOI: 10.1016/j.phrs.2016.04.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 02/07/2023]
Abstract
The Notch pathway represents a highly conserved signaling network with essential roles in regulation of key cellular processes and functions, many of which are critical for development. Accumulating evidence indicates that it is also essential for fibrosis and thus the pathogenesis of chronic fibroproliferative diseases in diverse organs and tissues. Different effects of Notch activation are observed depending on cellular and tissue context as well as in both physiologic and pathologic states. Close interactions of Notch signaling pathway with other signaling pathways have been identified. In this review, current knowledge on the role of the Notch signaling with special focus on fibrosis and its potential as a therapeutic target is summarized.
Collapse
Affiliation(s)
- Biao Hu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Sem H Phan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
34
|
Merino D, Villar AV, García R, Tramullas M, Ruiz L, Ribas C, Cabezudo S, Nistal JF, Hurlé MA. BMP-7 attenuates left ventricular remodelling under pressure overload and facilitates reverse remodelling and functional recovery. Cardiovasc Res 2016; 110:331-45. [DOI: 10.1093/cvr/cvw076] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/18/2016] [Indexed: 12/28/2022] Open
|
35
|
Tan YJ, Zhu CL, Mao HX. [Therapeutic effect of baicalin in treatment of renal interstitial fibrosis in rats with unliateral ureteral obstruction and related mechanisms]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2016; 18:365-371. [PMID: 27097585 PMCID: PMC7390072 DOI: 10.7499/j.issn.1008-8830.2016.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/29/2016] [Indexed: 06/05/2023]
Abstract
OBJECTIVE To investigate the therapeutic effect of baicalin at different doses administered for different periods of time in the treatment of renal interstitial fibrosis in rats with unliateral ureteral obstruction (UUO) and related mechanisms. METHODS Sixty-four Sprague-Dawley rats were randomly divided into sham-operation, model, low-dose baicalin, and high-dose baicalin groups, and each group was further randomly divided into 7-day and 14-day groups (n=8 each). Left ureteral ligation was used to establish the rat model of UUO. Hematoxylin and eosin staining was used to observe the pathological changes in the kidney. ELISA was used to measure the serum levels of transforming growth factor-β1 (TGF-β1), Notch1, and Jagged1. Immunohistochemistry was used to measure the expression of TGF-β1 and Notch1. The Pearson correlation analysis was used for correlation analysis. RESULTS Hematoxylin and eosin staining showed inflammatory cell infiltration and edema in renal interstitium, tubular dilation and structure disorder, degeneration and necrosis of renal tubular epithelial cells, and a basically normal structure of the glomeruli on days 7 and 14 in the model group, and these lesions were alleviated in the low- and high-dose baicalin groups. Compared with the sham-operation group, the model group had a significantly higher serum level of TGF-β1 and a significantly higher number of TGF-β1-positive cells in renal tissues on days 7 and 14 (P<0.05). Compared with the model group at the same time points, the high- and low-dose baicalin groups had a significantly lower serum level of TGF-β1 and a significantly lower number of TGF-β1-positive cells in renal tissues on days 7 and 14 (P<0.05). The serum level of Jagged1 showed no significant differences between any two groups on days 7 and 14 (P>0.05). The serum level of TGF-β1 was positively correlated with that of Notch1 (r=0.650, P<0.01), and the serum level of Notch1 was positively correlated with that of Jagged1 (r=0.727, P<0.01). TGF-β1 level in renal tissues was also positively correlated with the number of Notch1-positive cells (r=0.743, P<0.01). CONCLUSIONS Baicalin can alleviate renal interstitial fibrosis in UUO rats, probably by inhibiting Notch1 signaling pathway and the expression of TGF-β1.
Collapse
Affiliation(s)
- Yu-Jie Tan
- Department of Nephrology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China.
| | | | | |
Collapse
|
36
|
Mazzei L, García M, Calvo JP, Casarotto M, Fornés M, Abud MA, Cuello-Carrión D, Ferder L, Manucha W. Changes in renal WT-1 expression preceding hypertension development. BMC Nephrol 2016; 17:34. [PMID: 27009470 PMCID: PMC4806522 DOI: 10.1186/s12882-016-0250-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/18/2016] [Indexed: 12/14/2022] Open
Abstract
Background Hypertension is a public health problem with mostly unknown causes, and where strong hereditary genetic alterations have not been fully elucidated. However, the use of experimental models has provided valuable information. Recent evidences suggest that alterations in key nephrogenic factors, such as Wilms’ tumor 1 transcription factor (WT-1), could contribute to the development of hypertension. The aim of this paper is to evaluate the expression of WT-1 and related genes in the nephrogenic process in connection with the development of hypertension as well as the corresponding anatomical and functional correlation. Methods Male spontaneously hypertensive and control rats were evaluated weekly from birth until week 8 of life. Their blood pressure was taken weekly using the tail-cuff blood pressure system. Weekly, 5 rats per group were sacrificed with a lethal injection of pentobarbital, and their kidneys were removed, decapsulated and weighed. The serum was collected for measuring biochemical parameters. The results were assessed using one-way analysis of variance for comparisons between groups. Results The relationship between renal weight/total body weights was established, without significantly different values. These data were compared with apoptosis, fibrosis, number and size of the glomeruli. The elevation of systolic blood pressure was significant since week 6. Biochemical values differed slightly. Histology showed a slight increase in deposits of collagen fibers since week 4. Additionally, in kidney cortices, the expression of WT-1, heat shock protein 70 (Hsp70) and vitamin D receptors (VDR) decreased since week 4. Finally, we demonstrated ultrastructural damage to mitochondria since week 4. Conclusions Our results would suggest an unprecedented link, possibly a regulatory mechanism, between WT-1 on nephrogenic alteration processes and their relationship with hypertension. Moreover, and previous to the increase in blood pressure, we demonstrated low expressions of WT-1, VDR and Hsp70 in kidneys from neonatal SHRs. If so, this may suggest that deregulation in the expression of WT-1 and its impact on nephrogenesis induction could be crucial in understanding the development and maintenance of hypertension. Electronic supplementary material The online version of this article (doi:10.1186/s12882-016-0250-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luciana Mazzei
- National Scientific and Technical Research Council, Institute of Medical and Experimental Biology of Cuyo, Mendoza, Argentina.,Pathology Department, Pharmacology Area Medical Sciences College, National University of Cuyo, Mendoza, CP5500, Argentina
| | - Mercedes García
- Pathology Department, Pharmacology Area Medical Sciences College, National University of Cuyo, Mendoza, CP5500, Argentina
| | - Juan Pablo Calvo
- Pathology Department, Pharmacology Area Medical Sciences College, National University of Cuyo, Mendoza, CP5500, Argentina
| | - Mariana Casarotto
- Pathology Department, Pharmacology Area Medical Sciences College, National University of Cuyo, Mendoza, CP5500, Argentina
| | - Miguel Fornés
- National Scientific and Technical Research Council, Institute of Histology and Embryology of Mendoza, Mendoza, Argentina
| | - María Angélica Abud
- Pathology Department, Pharmacology Area Medical Sciences College, National University of Cuyo, Mendoza, CP5500, Argentina
| | - Darío Cuello-Carrión
- National Scientific and Technical Research Council, Institute of Medical and Experimental Biology of Cuyo, Mendoza, Argentina
| | - León Ferder
- Department of Physiology and Pharmacology, School of Medicine, Puerto Rico University, Puerto Rico, EEUU, USA
| | - Walter Manucha
- National Scientific and Technical Research Council, Institute of Medical and Experimental Biology of Cuyo, Mendoza, Argentina. .,Pathology Department, Pharmacology Area Medical Sciences College, National University of Cuyo, Mendoza, CP5500, Argentina.
| |
Collapse
|
37
|
Sureshbabu A, Muhsin SA, Choi ME. TGF-β signaling in the kidney: profibrotic and protective effects. Am J Physiol Renal Physiol 2016; 310:F596-F606. [PMID: 26739888 DOI: 10.1152/ajprenal.00365.2015] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/04/2016] [Indexed: 12/31/2022] Open
Abstract
Transforming growth factor-β (TGF-β) is generally considered as a central mediator of fibrotic diseases. Indeed, much focus has been placed on inhibiting TGF-β and its downstream targets as ideal therapeutic strategies. However, pharmacological blockade of TGF-β has not yet translated into successful therapy for humans, which may be due to pleiotropic effects of TGF-β signaling. Equally, TGF-β signaling as a protective response in kidney injury has been relatively underexplored. An emerging body of evidence from experimental kidney disease models indicates multifunctionality of TGF-β capable of inducing profibrotic and protective effects. This review discusses recent advances highlighting the diverse roles of TGF-β in promoting not only renal fibrosis but also protective responses of TGF-β signaling. We review, in particular, growing evidence that supports protective effects of TGF-β by mechanisms which include inhibiting inflammation and induction of autophagy. Additional detailed studies are required to fully understand the diverse mechanisms of TGF-β actions in renal fibrosis and inflammation that will likely direct toward effective antifibrotic therapies.
Collapse
Affiliation(s)
- Angara Sureshbabu
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York; and
| | - Saif A Muhsin
- New York-Presbyterian Hospital-Weill Cornell Medical Center, New York, New York
| | - Mary E Choi
- Division of Nephrology and Hypertension, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York; and .,New York-Presbyterian Hospital-Weill Cornell Medical Center, New York, New York
| |
Collapse
|
38
|
Gremlin1 preferentially binds to bone morphogenetic protein-2 (BMP-2) and BMP-4 over BMP-7. Biochem J 2015; 466:55-68. [DOI: 10.1042/bj20140771] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gremlin1 has a distinct preference for which bone morphogenetic protein it binds to in kidney epithelial cells. Grem1–BMP-2 complexes are favoured over other BMPs, and this may play an important role in fibrotic kidney disease.
Collapse
|
39
|
Detrimental effects of Notch1 signaling activated by cadmium in renal proximal tubular epithelial cells. Cell Death Dis 2014; 5:e1378. [PMID: 25118938 PMCID: PMC4454314 DOI: 10.1038/cddis.2014.339] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 01/10/2023]
Abstract
We examined the roles of Notch1 signaling and its cross-talk with other signaling pathways, including p53 and phosphatidylinositol-3-kinase (PI3K)/Akt, in cadmium-induced cellular damage in HK-2 human renal proximal tubular epithelial cells. Following exposure to cadmium chloride (CdCl2), the level of Notch intracellular domain (NICD), the cleaved form of the Notch1 receptor, was increased and accumulated in the nuclear fraction. Knockdown of Notch1 with siRNA or treatment with the γ-secretase inhibitor, DAPT (N-[N-(3,5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester), prevented CdCl2-induced morphological change of HK-2 cells and reduction of cell viability. Knockdown of Jagged1 or Jagged2, the ligands of the Notch1 receptor, partially suppressed cadmium cytotoxicity. Inhibition of p53 activity with pifithrin-α or inhibition of PI3K with LY294002 suppressed CdCl2-induced cellular damage and elevation of Notch1-NICD. In addition, treatment with the epidermal growth factor receptor (EGFR) inhibitor, AG1478, and the insulin-like growth factor-1 receptor inhibitor, PPP, suppressed both Notch1-NICD accumulation and Akt phosphorylation in HK-2 cells exposed to CdCl2. However, knockdown of Notch1 did not affect CdCl2-induced p53 accumulation and phosphorylation but suppressed phosphorylation of EGFR, Akt, and p70 S6 kinase. Depletion of Notch1 suppressed CdCl2-induced reduction of E-cadherin expression and elevation of Snail expression. Furthermore, treatment with SB216763, an inhibitor of glycogen synthase kinase-3, suppressed the potency of LY294002 treatment to reduce Snail expression in HK-2 cells exposed to CdCl2. Knockdown of Snail with siRNA partially prevented HK-2 cells from CdCl2-induced reduction of E-cadherin expression and cellular damage. These results suggest that cadmium exposure induces the activation of Notch1 signaling in renal proximal tubular cells with cooperative activation by the p53 and PI3K/Akt signaling pathways; the resultant expression of Snail, a repressor of E-cadherin expression, might lead to cellular damage by decreasing cell-cell adhesion.
Collapse
|
40
|
Long M, Li SX, Xiao JF, Wang J, Lozanoff S, Zhang ZG, Luft BJ, Johnson F. Kidney tubular-cell secretion of osteoblast growth factor is increased by kaempferol: a scientific basis for "the kidney controlling the bone" theory of Chinese medicine. Chin J Integr Med 2014; 20:675-81. [PMID: 25012631 DOI: 10.1007/s11655-014-1336-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To study, at the cytological level, the basic concept of Chinese medicine that "the Kidney (Shen) controls the bone". METHODS Kaempferol was isolated form Rhizoma Drynariae (Gu Sui Bu, GSB) and at several concentrations was incubated with opossum kidney (OK) cells, osteoblasts (MC3T3 E1) and human fibroblasts (HF) at cell concentrations of 2×10(4)/mL. Opossum kidney cell-conditioned culture media with kaempferol at 70 nmol/L (70kaeOKM) and without kaempferol (0OKM) were used to stimulate MC3T3 E1 and HF proliferation. The bone morphological protein receptors I and II (BMPR I and II) in OK cells were identified by immune-fluorescence staining and Western blot analysis. RESULTS Kaempferol was found to increase OK cell growth (P<0.05), but alone did not promote MC3T3 E1 or HF cell proliferation. However, although OKM by itself increased MC3T3 E1 growth by 198% (P<0.01), the 70kaeOKM further increased the growth of these cells by an additional 127% (P<0.01). It indicates that the kidney cell generates a previously unknown osteoblast growth factor (OGF) and kaempferol increases kidney cell secretion of OGF. Neither of these media had any significant effect on HF growth. Kaempferol also was found to increase the level of the BMPR II in OK cells. CONCLUSIONS This lends strong support to the original idea that the Kidney has a significant influence over bone-formation, as suggested by some long-standing Chinese medical beliefs, kaempferol may also serve to stimulate kidney repair and indirectly stimulate bone formation.
Collapse
Affiliation(s)
- Mian Long
- Department of Complementary and Alternative Medicine, University of Hawai'i at Manoa. John A, Burns School of Medicine, Honolulu, 96813, USA,
| | | | | | | | | | | | | | | |
Collapse
|
41
|
García IM, Altamirano L, Mazzei L, Fornés M, Cuello-Carrión FD, Ferder L, Manucha W. Vitamin D receptor-modulated Hsp70/AT1 expression may protect the kidneys of SHRs at the structural and functional levels. Cell Stress Chaperones 2014; 19:479-91. [PMID: 24222043 PMCID: PMC4041946 DOI: 10.1007/s12192-013-0474-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/22/2013] [Accepted: 10/24/2013] [Indexed: 02/07/2023] Open
Abstract
Previous hypertension studies have shown that low levels of vitamin D are linked to elevated renin-angiotensin system. The heat shock protein 70 regulates signaling pathways for cellular oxidative stress responses. Hsp70 has been shown to protect against angiotensin II-induced hypertension and exert a cytoprotective effect. Here, we wanted to evaluate whether the vitamin D receptor (VDR) associated with Hsp70/AT1 expression may be involved in the mechanism by which paricalcitol provides renal protection in spontaneously hypertensive rats (SHRs). One-month-old female SHRs were treated for 4 months with vehicle, paricalcitol, enalapril, or a combination of both paricalcitol and enalapril. The following were determined: blood pressure; biochemical parameters; fibrosis; apoptosis; mitochondrial morphology; and VDR, AT1 receptor, and Hsp70 expression in the renal cortex. Blood pressure was markedly reduced by enalapril or the combination but not by paricalcitol alone. However, VDR activation, enalapril or combination, prevented fibrosis, the number of TUNEL-positive apoptotic cells, mitochondrial damage, and NADPH oxidase activity in SHRs. Additionally, high AT1 receptor expression, like low Hsp70 expression (immunohistochemical/immunofluorescence studies), was reversed in the renal cortices of paricalcitol- and/or enalapril-treated animals (SHRs), and these changes were most marked in the combination therapy group. Finally, all of the recovery parameters were consistent with an improvement in VDR expression. Data suggest that Hsp70/AT1 modulated by VDR is involved in the mechanism by which paricalcitol provides renal protection in SHRs. We propose that low AT1 expression through VDR induction could be a consequence of the heat shock response Hsp70-mediated cell protection.
Collapse
Affiliation(s)
- Isabel Mercedes García
- />Área de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- />Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- />Departamento de Bioquímica y Ciencias Biológicas, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Liliana Altamirano
- />Área de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- />Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Luciana Mazzei
- />Área de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- />IMBECU-CONICET (National Council of Scientific and Technical Research of Argentina), Buenos Aires, Argentina
| | - Miguel Fornés
- />IHEM-CONICET (National Council of Scientific and Technical Research of Argentina), Buenos Aires, Argentina
| | | | - León Ferder
- />Department of Physiology and Pharmacology, Ponce School of Medicine and Health Sciences, Ponce, Puerto Rico
| | - Walter Manucha
- />Área de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- />IMBECU-CONICET (National Council of Scientific and Technical Research of Argentina), Buenos Aires, Argentina
- />Área de Fisiología Patológica, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo Centro Universitario, Mendoza, 5500 Argentina
| |
Collapse
|
42
|
Kramann R, DiRocco DP, Humphreys BD. Understanding the origin, activation and regulation of matrix-producing myofibroblasts for treatment of fibrotic disease. J Pathol 2013; 231:273-89. [PMID: 24006178 DOI: 10.1002/path.4253] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 08/26/2013] [Indexed: 12/19/2022]
Abstract
Fibrosis and scar formation results from chronic progressive injury in virtually every tissue and affects a growing number of people around the world. Myofibroblasts drive fibrosis, and recent work has demonstrated that mesenchymal cells, including pericytes and perivascular fibroblasts, are their main progenitors. Understanding the cellular mechanisms of pericyte/fibroblast-to-myofibroblast transition, myofibroblast proliferation and the key signalling pathways that regulate these processes is essential to develop novel targeted therapeutics for the growing patient population suffering from solid organ fibrosis. In this review, we summarize the current knowledge about different progenitor cells of myofibroblasts, discuss major pathways that regulate their transdifferentiation and discuss the current status of novel targeted anti-fibrotic therapeutics in development.
Collapse
Affiliation(s)
- Rafael Kramann
- Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; RWTH Aachen University, Division of Nephrology, Aachen, Germany
| | | | | |
Collapse
|
43
|
Leppäranta O, Tikkanen JM, Bespalov MM, Koli K, Myllärniemi M. Bone morphogenetic protein-inducer tilorone identified by high-throughput screening is antifibrotic in vivo. Am J Respir Cell Mol Biol 2013; 48:448-55. [PMID: 23258233 DOI: 10.1165/rcmb.2012-0201oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with a poor prognosis and very few therapeutic options. On the molecular level, patients with IPF have increased amounts of the bone morphogenetic protein (BMP) inhibitor gremlin in their lungs, which results in decreased BMP signaling, and an increase in transforming growth factor-β signaling. Based on these findings, we hypothesized that restoration of the impaired BMP signaling would offer a novel strategy for the prevention of fibrosis progression or for the treatment of pulmonary fibrosis. We used reporter cell lines and high-throughput screening of a chemical compound library as an approach to finding molecules that increase BMP signaling in lung epithelial cells, without increasing transforming growth factor-β signaling. The most promising candidate drug was analyzed further by studying its effects on BMP target gene expression, Smad protein phosphorylation, and a mouse model of silica-induced pulmonary fibrosis. The most promising drug candidate, tilorone, induced BMP signaling in the reporter cells and increased the expression of BMP-7 and a BMP target gene, Id3, in lung epithelial A549 cells. In a mouse model of pulmonary fibrosis, tilorone decreased lung hydroxyproline content and the expression of collagen genes Col1A1 and Col3A1. Mice treated with tilorone showed markedly decreased histological changes, compared with untreated mice. These findings indicate that tilorone has biologically significant antifibrotic properties.
Collapse
Affiliation(s)
- Outi Leppäranta
- Division of Pulmonary Medicine, Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | | | |
Collapse
|
44
|
Liu L, Gao C, Chen G, Li X, Li J, Wan Q, Xu Y. Notch Signaling Molecules Activate TGF- β in Rat Mesangial Cells under High Glucose Conditions. J Diabetes Res 2013; 2013:979702. [PMID: 23691527 PMCID: PMC3652152 DOI: 10.1155/2013/979702] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/17/2013] [Accepted: 03/31/2013] [Indexed: 01/22/2023] Open
Abstract
The involvement of the Notch signaling pathway in the cellular differentiation of the mammalian kidney is established. Recently, the dysregulation of Notch signaling molecules has been identified in acute and chronic renal injuries, fibrosis models, and diabetic kidney biopsies. The canonical Notch ligand , Jagged1, is upregulated in a transforming growth factor-beta- (TGF- β -) dependent manner during chronic kidney disease. TGF- β , a central mediator of renal fibrosis, also is a major contributor to the development of diabetic nephropathy. To explore the roles and possible mechanisms of Notch signaling molecules in the pathogenesis of diabetic nephropathy, we exposed cultured rat mesangial cells to a γ -secretase inhibitor (DAPT) or high glucose and measured the expression of Notch signaling molecules and the fibrosis index. Notch pathway-related molecules, TGF- β , and fibronectin increased with exposure to high glucose and decreased with DAPT treatment. Our results suggest that the Notch signaling pathway may precipitate diabetic nephropathy via TGF- β activation.
Collapse
Affiliation(s)
- Li Liu
- Department of Endocrinology, The Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan, China
- Department of Endocrinology, The People's Hospital of Yongchuan, Yongchuan, Chongqing, China
| | - Chenlin Gao
- Department of Endocrinology, The Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan, China
| | - Guo Chen
- Department of Endocrinology, The Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan, China
| | - Xia Li
- Department of Endocrinology, The Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan, China
- Department of Endocrinology, The First Hospital of Yibin, Yibin, Sichuan, China
| | - Jia Li
- Department of Endocrinology, The Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan, China
| | - Qin Wan
- Department of Endocrinology, The Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan, China
| | - Yong Xu
- Department of Endocrinology, The Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan, China
| |
Collapse
|
45
|
Brennan EP, Nolan KA, Börgeson E, Gough OS, McEvoy CM, Docherty NG, Higgins DF, Murphy M, Sadlier DM, Ali-Shah ST, Guiry PJ, Savage DA, Maxwell AP, Martin F, Godson C. Lipoxins attenuate renal fibrosis by inducing let-7c and suppressing TGFβR1. J Am Soc Nephrol 2013; 24:627-37. [PMID: 23520204 DOI: 10.1681/asn.2012060550] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lipoxins, which are endogenously produced lipid mediators, promote the resolution of inflammation, and may inhibit fibrosis, suggesting a possible role in modulating renal disease. Here, lipoxin A4 (LXA4) attenuated TGF-β1-induced expression of fibronectin, N-cadherin, thrombospondin, and the notch ligand jagged-1 in cultured human proximal tubular epithelial (HK-2) cells through a mechanism involving upregulation of the microRNA let-7c. Conversely, TGF-β1 suppressed expression of let-7c. In cells pretreated with LXA4, upregulation of let-7c persisted despite subsequent stimulation with TGF-β1. In the unilateral ureteral obstruction model of renal fibrosis, let-7c upregulation was induced by administering an LXA4 analog. Bioinformatic analysis suggested that targets of let-7c include several members of the TGF-β1 signaling pathway, including the TGF-β receptor type 1. Consistent with this, LXA4-induced upregulation of let-7c inhibited both the expression of TGF-β receptor type 1 and the response to TGF-β1. Overexpression of let-7c mimicked the antifibrotic effects of LXA4 in renal epithelia; conversely, anti-miR directed against let-7c attenuated the effects of LXA4. Finally, we observed that several let-7c target genes were upregulated in fibrotic human renal biopsies compared with controls. In conclusion, these results suggest that LXA4-mediated upregulation of let-7c suppresses TGF-β1-induced fibrosis and that expression of let-7c targets is dysregulated in human renal fibrosis.
Collapse
Affiliation(s)
- Eoin P Brennan
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences, University College Dublin, Dublin 4, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zeisberg M, Kalluri R. Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis. Am J Physiol Cell Physiol 2013; 304:C216-25. [PMID: 23255577 PMCID: PMC3566435 DOI: 10.1152/ajpcell.00328.2012] [Citation(s) in RCA: 350] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 12/20/2022]
Abstract
Fibrosis is a pathological scarring process that leads to destruction of organ architecture and impairment of organ function. Chronic loss of organ function in most organs, including bone marrow, heart, intestine, kidney, liver, lung, and skin, is associated with fibrosis, contributing to an estimated one third of natural deaths worldwide. Effective therapies to prevent or to even reverse existing fibrotic lesions are not yet available in any organ. There is hope that an understanding of common fibrosis pathways will lead to development of antifibrotic therapies that are effective in all of these tissues in the future. Here we review common and organ-specific pathways of tissue fibrosis.
Collapse
Affiliation(s)
- Michael Zeisberg
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen, Germany.
| | | |
Collapse
|
47
|
Strategies for anti-fibrotic therapies. Biochim Biophys Acta Mol Basis Dis 2012; 1832:1088-103. [PMID: 23266403 DOI: 10.1016/j.bbadis.2012.12.007] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/07/2012] [Accepted: 12/08/2012] [Indexed: 02/07/2023]
Abstract
The fibrotic diseases encompass a wide spectrum of entities including such multisystemic diseases as systemic sclerosis, nephrogenic systemic fibrosis and sclerodermatous graft versus host disease, as well as organ-specific disorders such as pulmonary, liver, and kidney fibrosis. Collectively, given the wide variety of affected organs, the chronic nature of the fibrotic processes, and the large number of individuals suffering their devastating effects, these diseases pose one of the most serious health problems in current medicine and a serious economic burden to society. Despite these considerations there is currently no accepted effective treatment. However, remarkable progress has been achieved in the elucidation of their pathogenesis including the identification of the critical role of myofibroblasts and the determination of molecular mechanisms that result in the transcriptional activation of the genes responsible for the fibrotic process. Here we review the origin of the myofibroblast and discuss the crucial regulatory pathways involving multiple growth factors and cytokines that participate in the pathogenesis of the fibrotic process. Potentially effective therapeutic strategies based upon this new information are considered in detail and the major challenges that remain and their possible solutions are presented. It is expected that translational efforts devoted to convert this new knowledge into novel and effective anti-fibrotic drugs will be forthcoming in the near future. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.
Collapse
|
48
|
Chen F. Plumbing the depths of urinary tract obstruction by using murine models. Organogenesis 2012; 5:297-305. [PMID: 19568351 DOI: 10.4161/org.8055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 02/02/2009] [Indexed: 11/19/2022] Open
Abstract
Urinary tract obstruction leads to obstructive nephropathy, which in turn, frequently results in renal failure. Congenital urinary tract obstruction can be traced back to errors during the organogenesis of the urinary system. A fundamental understanding of the causes of urinary tract obstruction and the developmental processes involved are critical for improving the diagnostic and therapeutic strategies for this disease. A number of laboratories, including ours, have been using genetically engineered and spontaneously occurring mouse models to study the primary causes and the pathogenesis of urinary tract obstruction. These studies have shown that urinary tract obstruction is a very heterogeneous disease that can be caused by a diverse set of factors targeting multiple levels of the urinary system. Accumulating evidence also indicates that the development of the urinary tract requires the integration of progenitor cells of diverse embryonic origins, leading to the formation of multiple junctions prone to developmental errors. In addition, the high sensitivity of the pyeloureteral peristaltic machinery to disturbance affecting the structural or functional integrity of its components also contributes to the high incidence rate of urinary tract obstruction.
Collapse
Affiliation(s)
- Feng Chen
- Assistant Professor of Medicine and Cell Biology and Physiology; Washington University School of Medicine; St. Louis, Missouri USA
| |
Collapse
|
49
|
Liu X, Li J, Xiong J, Li M, Zhang Y, Zheng Q. Notch-dependent expression of epithelial-mesenchymal transition markers in cholangiocytes after liver transplantation. Hepatol Res 2012; 42:1024-38. [PMID: 22594800 DOI: 10.1111/j.1872-034x.2012.01011.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIM Epithelial-mesenchymal transition (EMT) has been identified in chronic cholestatic liver diseases, which are characterized by biliary proliferation and fibrosis. Activation of Notch signaling mediates EMT in a variety of epithelial cell types. In the present study, we investigated the role of Notch signaling in the regulation of EMT marker expression in cholangiocytes after liver transplantation. METHODS Orthotopic liver transplantation was performed in Sprague-Dawley rats. Liver tissues and isolated cholangiocytes were collected 1 week after transplantation. The expression of mesenchymal and biliary epithelial markers was evaluated by immunohistochemistry, quantitative polymerase chain reaction (PCR) and western blotting in liver sections and isolated cholangiocytes. Quantitative real-time PCR and western blotting for Jagged1 and HES1 were utilized to evaluate the activation of Notch signaling. Proliferation and migration of cholangiocytes were assessed by 5-bromodeoxyuridine and transwell assays, respectively. Cholangiocyte proliferation, migration and expression of EMT markers were also evaluated following the inhibition of Notch signaling with N,(N-[3,5-difluorophenacetyl]-L-alanyl)-S-phenylglycine t-butylester (γ-secretase inhibitor) and a Jagged1-neutralizing antibody. RESULTS Expression of EMT markers by cholangiocytes was observed in liver grafts and isolated cholangiocytes obtained 1 week after transplantation. Inhibition of Notch signaling prevented the expression of EMT markers in bile ducts of liver sections and isolated cholangiocytes. Cholangiocyte proliferative and migratory capacities were also suppressed by the inhibition of Notch signaling. CONCLUSION Activation of Notch signaling promotes cholangiocyte proliferation and expression of EMT markers after liver transplantation.
Collapse
Affiliation(s)
- Xiaowei Liu
- Division of Liver Transplantation, Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Department of General Surgery, Wuhan No. 11 Hospital, Wuhan, China
| | | | | | | | | | | |
Collapse
|
50
|
Sandholm N, Salem RM, McKnight AJ, Brennan EP, Forsblom C, Isakova T, McKay GJ, Williams WW, Sadlier DM, Mäkinen VP, Swan EJ, Palmer C, Boright AP, Ahlqvist E, Deshmukh HA, Keller BJ, Huang H, Ahola AJ, Fagerholm E, Gordin D, Harjutsalo V, He B, Heikkilä O, Hietala K, Kytö J, Lahermo P, Lehto M, Lithovius R, Österholm AM, Parkkonen M, Pitkäniemi J, Rosengård-Bärlund M, Saraheimo M, Sarti C, Söderlund J, Soro-Paavonen A, Syreeni A, Thorn LM, Tikkanen H, Tolonen N, Tryggvason K, Tuomilehto J, Wadén J, Gill GV, Prior S, Guiducci C, Mirel DB, Taylor A, Hosseini SM, DCCT/EDIC Research Group, Parving HH, Rossing P, Tarnow L, Ladenvall C, Alhenc-Gelas F, Lefebvre P, Rigalleau V, Roussel R, Tregouet DA, Maestroni A, Maestroni S, Falhammar H, Gu T, Möllsten A, Cimponeriu D, Ioana M, Mota M, Mota E, Serafinceanu C, Stavarachi M, Hanson RL, Nelson RG, Kretzler M, Colhoun HM, Panduru NM, Gu HF, Brismar K, Zerbini G, Hadjadj S, Marre M, Groop L, Lajer M, Bull SB, Waggott D, Paterson AD, Savage DA, Bain SC, Martin F, Hirschhorn JN, Godson C, Florez JC, Groop PH, Maxwell AP. New susceptibility loci associated with kidney disease in type 1 diabetes. PLoS Genet 2012; 8:e1002921. [PMID: 23028342 PMCID: PMC3447939 DOI: 10.1371/journal.pgen.1002921] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 07/12/2012] [Indexed: 12/12/2022] Open
Abstract
Diabetic kidney disease, or diabetic nephropathy (DN), is a major complication of diabetes and the leading cause of end-stage renal disease (ESRD) that requires dialysis treatment or kidney transplantation. In addition to the decrease in the quality of life, DN accounts for a large proportion of the excess mortality associated with type 1 diabetes (T1D). Whereas the degree of glycemia plays a pivotal role in DN, a subset of individuals with poorly controlled T1D do not develop DN. Furthermore, strong familial aggregation supports genetic susceptibility to DN. However, the genes and the molecular mechanisms behind the disease remain poorly understood, and current therapeutic strategies rarely result in reversal of DN. In the GEnetics of Nephropathy: an International Effort (GENIE) consortium, we have undertaken a meta-analysis of genome-wide association studies (GWAS) of T1D DN comprising ~2.4 million single nucleotide polymorphisms (SNPs) imputed in 6,691 individuals. After additional genotyping of 41 top ranked SNPs representing 24 independent signals in 5,873 individuals, combined meta-analysis revealed association of two SNPs with ESRD: rs7583877 in the AFF3 gene (P = 1.2 × 10(-8)) and an intergenic SNP on chromosome 15q26 between the genes RGMA and MCTP2, rs12437854 (P = 2.0 × 10(-9)). Functional data suggest that AFF3 influences renal tubule fibrosis via the transforming growth factor-beta (TGF-β1) pathway. The strongest association with DN as a primary phenotype was seen for an intronic SNP in the ERBB4 gene (rs7588550, P = 2.1 × 10(-7)), a gene with type 2 diabetes DN differential expression and in the same intron as a variant with cis-eQTL expression of ERBB4. All these detected associations represent new signals in the pathogenesis of DN.
Collapse
Affiliation(s)
- Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
- Department of Biomedical Engineering and Computational Science, Aalto University, Espoo, Finland
| | - Rany M. Salem
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
- Endocrine Research Unit, Department of Endocrinology, Children's Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amy Jayne McKnight
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, United Kingdom
| | - Eoin P. Brennan
- Diabetes Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
- Mater Misericordiae Hospital, Dublin, Ireland
| | - Carol Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Tamara Isakova
- Division of Nephrology and Hypertension, University of Miami, Miami, Florida, United States of America
| | - Gareth J. McKay
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, United Kingdom
| | - Winfred W. Williams
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Denise M. Sadlier
- Diabetes Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
- Mater Misericordiae Hospital, Dublin, Ireland
| | - Ville-Petteri Mäkinen
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
- Institute of Clinical Medicine, Department of Internal Medicine, Biocenter Oulu and Clinical Research Center, University of Oulu, Oulu, Finland
| | - Elizabeth J. Swan
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, United Kingdom
| | - Cameron Palmer
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
- Endocrine Research Unit, Department of Endocrinology, Children's Hospital, Boston, Massachusetts, United States of America
| | | | - Emma Ahlqvist
- Department of Clinical Sciences, Diabetes, and Endocrinology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Harshal A. Deshmukh
- Wellcome Trust Centre for Molecular Medicine, University of Dundee, Dundee, Scotland, United Kingdom
| | - Benjamin J. Keller
- Computer Science, Eastern Michigan University, Ypsilanti, Michigan, United States of America
| | - Huateng Huang
- Division of Nephrology, Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Aila J. Ahola
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Emma Fagerholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Daniel Gordin
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Valma Harjutsalo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
- Diabetes Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Bing He
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Outi Heikkilä
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Kustaa Hietala
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Department of Ophthalmology, Helsinki University Central Hospital, Helsinki, Finland
| | - Janne Kytö
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Department of Ophthalmology, Helsinki University Central Hospital, Helsinki, Finland
| | - Päivi Lahermo
- Institute for Molecular Medicine Finland, Helsinki, Finland
| | - Markku Lehto
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Raija Lithovius
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Anne-May Österholm
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Maija Parkkonen
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Janne Pitkäniemi
- Hjelt Institute, Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Milla Rosengård-Bärlund
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Markku Saraheimo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Cinzia Sarti
- Hjelt Institute, Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Jenny Söderlund
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Aino Soro-Paavonen
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Anna Syreeni
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Lena M. Thorn
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Heikki Tikkanen
- Unit for Sports and Exercise Medicine, Institute of Clinical Medicine, University of Helsinki, Finland
| | - Nina Tolonen
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Karl Tryggvason
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jaakko Tuomilehto
- Diabetes Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
- South Ostrobothnia Central Hospital, Seinäjoki, Finland
- Red RECAVA Grupo RD06/0014/0015, Hospital Universitario La Paz, Madrid, Spain
- Centre for Vascular Prevention, Danube-University Krems, Krems, Austria
| | - Johan Wadén
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Geoffrey V. Gill
- Diabetes Endocrine Unit, Clinical Sciences Centre, Aintree University Hospital, University of Liverpool, Liverpool, United Kingdom
| | - Sarah Prior
- Institute of Life Sciences, Swansea University, Swansea, United Kingdom
| | - Candace Guiducci
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Daniel B. Mirel
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Andrew Taylor
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - S. Mohsen Hosseini
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, Canada
| | - DCCT/EDIC Research Group
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland, United States of America
- Biostatics Division, The George Washington University, Washington, D.C., United States of America
| | - Hans-Henrik Parving
- Department of Medical Endocrinology, University Hospital of Copenhagen, Copenhagen, Denmark
- Faculty of Health Sciences, University of Aarhus, Aarhus, Denmark
| | - Peter Rossing
- Faculty of Health Sciences, University of Aarhus, Aarhus, Denmark
- Steno Diabetes Center, Gentofte, Denmark
| | - Lise Tarnow
- Faculty of Health Sciences, University of Aarhus, Aarhus, Denmark
- Steno Diabetes Center, Gentofte, Denmark
| | - Claes Ladenvall
- Department of Clinical Sciences, Diabetes, and Endocrinology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - François Alhenc-Gelas
- INSERM U872, Paris-Descartes University, Pierre and Marie Curie University, Paris, France
| | | | | | - Ronan Roussel
- AP-HP, Hôpital Bichat, Diabetology Endocrinology Nutrition, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR 738, Paris, France
- INSERM, UMR872, Equipe 2, Centre de Recherche des Cordeliers, Paris, France
| | - David-Alexandre Tregouet
- INSERM UMR_S 937, ICAN Institute for Cardiometabolism and Nutrition, Pierre and Marie Curie University, Paris, France
| | - Anna Maestroni
- Complications of Diabetes Unit, Division of Metabolic and Cardiovascular Sciences, San Raffaele Scientific Institute, Milano, Italy
| | - Silvia Maestroni
- Complications of Diabetes Unit, Division of Metabolic and Cardiovascular Sciences, San Raffaele Scientific Institute, Milano, Italy
| | - Henrik Falhammar
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Endocrinology, Metabolism, and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Tianwei Gu
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anna Möllsten
- Department of Clinical Sciences, Paediatrics, Umeå University, Umeå, Sweden
| | | | - Mihai Ioana
- University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Maria Mota
- University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Eugen Mota
- University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | | | | | - Robert L. Hanson
- Diabetes Epidemiology and Clinical Research Section, NIDDK, Phoenix, Arizona, United States of America
| | - Robert G. Nelson
- Diabetes Epidemiology and Clinical Research Section, NIDDK, Phoenix, Arizona, United States of America
| | - Matthias Kretzler
- Internal Medicine, Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Helen M. Colhoun
- Wellcome Trust Centre for Molecular Medicine, University of Dundee, Dundee, Scotland, United Kingdom
| | | | - Harvest F. Gu
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Kerstin Brismar
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Endocrinology, Metabolism, and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Gianpaolo Zerbini
- Complications of Diabetes Unit, Division of Metabolic and Cardiovascular Sciences, San Raffaele Scientific Institute, Milano, Italy
| | - Samy Hadjadj
- CHU Poitiers–Endocrinology, University of Poitiers, Poitiers, France
- INSERM CIC0802, CHU Poitiers, Poitiers, France
| | - Michel Marre
- AP-HP, Hôpital Bichat, Diabetology Endocrinology Nutrition, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR 738, Paris, France
- INSERM, U695 (Genetic Determinants of Type 2 Diabetes and Its Vascular Complications), Paris, France
| | - Leif Groop
- Department of Clinical Sciences, Diabetes, and Endocrinology, Skåne University Hospital, Lund University, Malmö, Sweden
| | | | - Shelley B. Bull
- Prosserman Centre for Health Research, Samuel Lunenfeld Research Institute, Toronto, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Daryl Waggott
- Prosserman Centre for Health Research, Samuel Lunenfeld Research Institute, Toronto, Canada
| | - Andrew D. Paterson
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - David A. Savage
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, United Kingdom
| | - Stephen C. Bain
- Institute of Life Sciences, Swansea University, Swansea, United Kingdom
| | - Finian Martin
- Diabetes Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
- Mater Misericordiae Hospital, Dublin, Ireland
| | - Joel N. Hirschhorn
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
- Endocrine Research Unit, Department of Endocrinology, Children's Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Catherine Godson
- Diabetes Research Centre, Conway Institute, School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
- Mater Misericordiae Hospital, Dublin, Ireland
| | - Jose C. Florez
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Alexander P. Maxwell
- Nephrology Research, Centre for Public Health, Queen's University of Belfast, Belfast, United Kingdom
- Regional Nephrology Unit, Belfast City Hospital, Belfast, United Kingdom
| |
Collapse
|