1
|
Ripa C, Munshi L, Kuebler WM, Magliocca A, Taccone FS, Ware LB, Citerio G, Laffey JG, Rezoagli E. Oxygen targets in critically ill patients: from pathophysiology to population enrichment strategies. Med Gas Res 2025; 15:409-419. [PMID: 40251021 PMCID: PMC12054680 DOI: 10.4103/mgr.medgasres-d-24-00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/28/2024] [Accepted: 12/03/2024] [Indexed: 04/20/2025] Open
Abstract
Oxygen supplementation is widely used to enhance oxygen delivery and to treat or prevent hypoxia; however, it requires careful management to avoid the harmful effects of excessive oxygen exposure. Both hyperoxia (inspiratory oxygen fraction exceeding 0.21) and hyperoxemia (arterial oxygen tension oxygen partial pressure [PaO2] > 100 mmHg) can contribute to lung injury, promote systemic vasoconstriction, and increase the production of reactive oxygen species, which can impair macromolecular and cellular functions. Conversely, in certain situations, hyperoxemia may provide benefits, such as hemodynamic stabilization in hyperdynamic shock, immunomodulation, and bactericidal effects. The literature presents conflicting evidence regarding the impact of different oxygen targets (i.e., PaO2 and/or peripheral saturation of oxygen [SpO2]) on both short- and long-term outcomes in patients with acute critical conditions, such as acute respiratory distress syndrome, sepsis, cardiac arrest, and acute central nervous system injuries. These discrepancies may stem from the small differences between the oxygenation targets used in randomized trials, the physiological limitations of PaO2 and SpO2 targets, which reflect blood oxygen content rather than oxygen delivery, the lack of measurements of microvascular function or oxygen delivery, and the heterogeneity in treatment response. Furthermore, advanced analytical methods (e.g., machine learning) are emerging as promising tools to implement population enrichment strategies. By refining patient sub-group identification, these approaches can significantly optimize precision medicine, enabling more personalized oxygen therapy tailored to individual patient characteristics.
Collapse
Affiliation(s)
- Claudio Ripa
- School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Laveena Munshi
- Interdepartmental Division of Critical Care Medicine, Sinai Health System/University Health Network, University of Toronto, Toronto, Canada
- Department of Medicine, Sinai Health System and University Health Network, Toronto, Canada
- Mount Sinai Hospital, Toronto, Canada
| | - Wolfgang M. Kuebler
- Institute of Physiology, Charité-Universitätsmedizin, Berlin, Germany
- German Center for Cardiovascular Research, Berlin, Germany
- Department of Surgery, University of Toronto, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
- Keenan Research Center, St Michael’s Hospital, Toronto, Canada
| | - Aurora Magliocca
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Fabio S. Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Lorraine B. Ware
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- Department of Neuroscience, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - John G. Laffey
- Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals, Galway, Ireland
- Anaesthesia, School of Medicine, College of Medicine, Nursing and Health Sciences, and CÚRAM Center for Research in Medical Devices, University of Galway, Galway, Ireland
| | - Emanuele Rezoagli
- School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
2
|
Datzmann T, Münz F, Hoffmann A, Moehrke E, Binzenhöfer M, Gröger M, Kapapa T, Mathieu R, Mayer S, Zink F, Gässler H, Wolfschmitt EM, Hogg M, Merz T, Calzia E, Radermacher P, Messerer DAC. An exploratory study investigating the effect of targeted hyperoxemia in a randomized controlled trial in a long-term resuscitated model of combined acute subdural hematoma and hemorrhagic shock in cardiovascular healthy pigs. Front Immunol 2023; 14:1123196. [PMID: 37114041 PMCID: PMC10126345 DOI: 10.3389/fimmu.2023.1123196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/14/2023] [Indexed: 04/29/2023] Open
Abstract
Severe physical injuries and associated traumatic brain injury and/or hemorrhagic shock (HS) remain leading causes of death worldwide, aggravated by accompanying extensive inflammation. Retrospective clinical data indicated an association between mild hyperoxemia and improved survival and outcome. However, corresponding prospective clinical data, including long-term resuscutation, are scarce. Therefore, the present study explored the effect of mild hyperoxemia for 24 hours in a prospective randomized controlled trial in a long-term resuscitated model of combined acute subdural hematoma (ASDH) and HS. ASDH was induced by injecting 0.1 ml × kg-1 autologous blood into the subdural space and HS was triggered by passive removal of blood. After 2 hours, the animals received full resuscitation, including retransfusion of the shed blood and vasopressor support. During the first 24 hours, the animals underwent targeted hyperoxemia (PaO2 = 200 - 250 mmHg) or normoxemia (PaO2 = 80 - 120 mmHg) with a total observation period of 55 hours after the initiation of ASDH and HS. Survival, cardiocirculatory stability, and demand for vasopressor support were comparable between both groups. Likewise, humoral markers of brain injury and systemic inflammation were similar. Multimodal brain monitoring, including microdialysis and partial pressure of O2 in brain tissue, did not show significant differences either, despite a significantly better outcome regarding the modified Glasgow Coma Scale 24 hours after shock that favors hyperoxemia. In summary, the present study reports no deleterious and few beneficial effects of mild targeted hyperoxemia in a clinically relevant model of ASDH and HS with long-term resuscitation in otherwise healthy pigs. Further beneficial effects on neurological function were probably missed due to the high mortality in both experimental groups. The present study remains exploratory due to the unavailability of an a priori power calculation resulting from the lack of necessary data.
Collapse
Affiliation(s)
- Thomas Datzmann
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Franziska Münz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Ulm, Ulm, Germany
| | - Andrea Hoffmann
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Elena Moehrke
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Martha Binzenhöfer
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Michael Gröger
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Thomas Kapapa
- Department of Neurosurgery, University Hospital Ulm, Ulm, Germany
| | - René Mathieu
- Department of Neurosurgery, German Federal Armed Forces Hospital Ulm, Ulm, Germany
| | - Simon Mayer
- Department of Neurosurgery, German Federal Armed Forces Hospital Ulm, Ulm, Germany
| | - Fabian Zink
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Holger Gässler
- Department of Anesthesiology, Intensive Care Medicine, Emergency Medicine and Pain Therapy, German Armed Forces Hospital Ulm, Ulm, Germany
| | - Eva-Maria Wolfschmitt
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Melanie Hogg
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Tamara Merz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Ulm, Ulm, Germany
| | - Enrico Calzia
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | - David Alexander Christian Messerer
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
3
|
Guo X, Guo D, Luo Q. Exploration of the optimal pulse oximetry-derived oxygen saturation target for critically ill AECOPD patients: a retrospective cohort study. RESEARCH SQUARE 2023:rs.3.rs-2661975. [PMID: 36993641 PMCID: PMC10055526 DOI: 10.21203/rs.3.rs-2661975/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Background Appropriate levels of blood oxygen are crucial for critically ill patients. However, the optimal oxygen saturation has not been confirmed for AECOPD patients during their ICU stays. The purpose of this study was to determine the optimal oxygen saturation range target to reduce mortality for those individuals. Methods Data of 533 critically ill AECOPD patients with hypercapnic respiratory failure from the MIMIC-IV database were extracted. The association between median SpO2 value during ICU stay and 30days mortality was analyzed by LOWESS curve, and an optimal range of SpO2(92-96%) platform was observed. Comparisons between subgroups and linear analyses of the percentage of SpO2 in 92-96% and 30days or 180 days mortality were performed to support our view further. Methods Although patients with 92-96% SpO2 had a higher rate of invasive ventilator than those with 88-92%, there was no significant increase in the adjusted ICU stay duration, non-invasive ventilator duration, or invasive ventilator duration while leading to lower 30days and 180days mortality in the subgroup with 92-96%. In addition, the percentage of SpO2 in 92-96% was associated with decreased hospital mortality. Conclusion In conclusion, SpO2 within 92-96% could lead to lower mortality than 88-92% and > 96% for AECOPD patients during their ICU stay.
Collapse
Affiliation(s)
- Xuequn Guo
- Quanzhou First Hospital Affiliated to Fujian Medical University
| | | | - Qiu Luo
- Quanzhou First Hospital Affiliated to Fujian Medical University
| |
Collapse
|
4
|
Systemic calcitonin gene-related peptide receptor antagonism decreases survival in a large animal model of polymicrobial sepsis: blinded randomised controlled laboratory trial. Br J Anaesth 2022; 128:864-873. [DOI: 10.1016/j.bja.2021.11.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
|
5
|
Gelissen H, de Grooth HJ, Smulders Y, Wils EJ, de Ruijter W, Vink R, Smit B, Röttgering J, Atmowihardjo L, Girbes A, Elbers P, Tuinman PR, Oudemans-van Straaten H, de Man A. Effect of Low-Normal vs High-Normal Oxygenation Targets on Organ Dysfunction in Critically Ill Patients: A Randomized Clinical Trial. JAMA 2021; 326:940-948. [PMID: 34463696 PMCID: PMC8408761 DOI: 10.1001/jama.2021.13011] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IMPORTANCE Hyperoxemia may increase organ dysfunction in critically ill patients, but optimal oxygenation targets are unknown. OBJECTIVE To determine whether a low-normal Pao2 target compared with a high-normal target reduces organ dysfunction in critically ill patients with systemic inflammatory response syndrome (SIRS). DESIGN, SETTING, AND PARTICIPANTS Multicenter randomized clinical trial in 4 intensive care units in the Netherlands. Enrollment was from February 2015 to October 2018, with end of follow-up to January 2019, and included adult patients admitted with 2 or more SIRS criteria and expected stay of longer than 48 hours. A total of 9925 patients were screened for eligibility, of whom 574 fulfilled the enrollment criteria and were randomized. INTERVENTIONS Target Pao2 ranges were 8 to 12 kPa (low-normal, n = 205) and 14 to 18 kPa (high-normal, n = 195). An inspired oxygen fraction greater than 0.60 was applied only when clinically indicated. MAIN OUTCOMES AND MEASURES Primary end point was SOFARANK, a ranked outcome of nonrespiratory organ failure quantified by the nonrespiratory components of the Sequential Organ Failure Assessment (SOFA) score, summed over the first 14 study days. Participants were ranked from fastest organ failure improvement (lowest scores) to worsening organ failure or death (highest scores). Secondary end points were duration of mechanical ventilation, in-hospital mortality, and hypoxemic measurements. RESULTS Among the 574 patients who were randomized, 400 (70%) were enrolled within 24 hours (median age, 68 years; 140 women [35%]), all of whom completed the trial. The median Pao2 difference between the groups was -1.93 kPa (95% CI, -2.12 to -1.74; P < .001). The median SOFARANK score was -35 points in the low-normal Pao2 group vs -40 in the high-normal Pao2 group (median difference, 10 [95% CI, 0 to 21]; P = .06). There was no significant difference in median duration of mechanical ventilation (3.4 vs 3.1 days; median difference, -0.15 [95% CI, -0.88 to 0.47]; P = .59) and in-hospital mortality (32% vs 31%; odds ratio, 1.04 [95% CI, 0.67 to 1.63]; P = .91). Mild hypoxemic measurements occurred more often in the low-normal group (1.9% vs 1.2%; median difference, 0.73 [95% CI, 0.30 to 1.20]; P < .001). Acute kidney failure developed in 20 patients (10%) in the low-normal Pao2 group and 21 patients (11%) in the high-normal Pao2 group, and acute myocardial infarction in 6 patients (2.9%) in the low-normal Pao2 group and 7 patients (3.6%) in the high-normal Pao2 group. CONCLUSIONS AND RELEVANCE Among critically ill patients with 2 or more SIRS criteria, treatment with a low-normal Pao2 target compared with a high-normal Pao2 target did not result in a statistically significant reduction in organ dysfunction. However, the study may have had limited power to detect a smaller treatment effect than was hypothesized. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02321072.
Collapse
Affiliation(s)
- Harry Gelissen
- Department of Intensive Care Medicine, Research VUmc Intensive Care, Amsterdam Cardiovascular Science, Amsterdam Infection and Immunity Institute, Amsterdam Medical Data Science, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Harm-Jan de Grooth
- Department of Intensive Care Medicine, Research VUmc Intensive Care, Amsterdam Cardiovascular Science, Amsterdam Infection and Immunity Institute, Amsterdam Medical Data Science, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
- Department of Anesthesiology, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Yvo Smulders
- Department of Internal Medicine, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Evert-Jan Wils
- Department of Intensive Care, Franciscus Gasthuis & Vlietland, Rotterdam, the Netherlands
| | - Wouter de Ruijter
- Department of Intensive Care, Noordwest Ziekenhuisgroep, Alkmaar, the Netherlands
| | - Roel Vink
- Department of Intensive Care, Tergooiziekenhuizen, Hilversum, the Netherlands
| | - Bob Smit
- Department of Intensive Care Medicine, Research VUmc Intensive Care, Amsterdam Cardiovascular Science, Amsterdam Infection and Immunity Institute, Amsterdam Medical Data Science, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
- Department of Clinical Chemistry, HAGA Ziekenhuis, Den Haag, the Netherlands
| | - Jantine Röttgering
- Department of Intensive Care Medicine, Research VUmc Intensive Care, Amsterdam Cardiovascular Science, Amsterdam Infection and Immunity Institute, Amsterdam Medical Data Science, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Leila Atmowihardjo
- Department of Intensive Care Medicine, Research VUmc Intensive Care, Amsterdam Cardiovascular Science, Amsterdam Infection and Immunity Institute, Amsterdam Medical Data Science, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Armand Girbes
- Department of Intensive Care Medicine, Research VUmc Intensive Care, Amsterdam Cardiovascular Science, Amsterdam Infection and Immunity Institute, Amsterdam Medical Data Science, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Paul Elbers
- Department of Intensive Care Medicine, Research VUmc Intensive Care, Amsterdam Cardiovascular Science, Amsterdam Infection and Immunity Institute, Amsterdam Medical Data Science, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Pieter-Roel Tuinman
- Department of Intensive Care Medicine, Research VUmc Intensive Care, Amsterdam Cardiovascular Science, Amsterdam Infection and Immunity Institute, Amsterdam Medical Data Science, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Heleen Oudemans-van Straaten
- Department of Intensive Care Medicine, Research VUmc Intensive Care, Amsterdam Cardiovascular Science, Amsterdam Infection and Immunity Institute, Amsterdam Medical Data Science, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| | - Angelique de Man
- Department of Intensive Care Medicine, Research VUmc Intensive Care, Amsterdam Cardiovascular Science, Amsterdam Infection and Immunity Institute, Amsterdam Medical Data Science, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Abstract
Pigs represent a potentially attractive model for medical research. Similar body size and physiological patterns of kidney injury that more closely mimic those described in humans make larger animals attractive for experimentation. Using larger animals, including pigs, to investigate the pathogenesis of acute kidney injury (AKI) also serves as an experimental bridge, narrowing the gap between clinical disease and preclinical discoveries. This article compares the advantages and disadvantages of large versus small AKI animal models and provides a comprehensive overview of the development and application of porcine models of AKI induced by clinically relevant insults, including ischemia-reperfusion, sepsis, and nephrotoxin exposure. The primary focus of this review is to evaluate the use of pigs for AKI studies by current investigators, including areas where more information is needed.
Collapse
Affiliation(s)
- Jianni Huang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - George Bayliss
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island
| |
Collapse
|
7
|
Nakane M. Biological effects of the oxygen molecule in critically ill patients. J Intensive Care 2020; 8:95. [PMID: 33317639 PMCID: PMC7734465 DOI: 10.1186/s40560-020-00505-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
The medical use of oxygen has been widely and frequently proposed for patients, especially those under critical care; however, its benefit and drawbacks remain controversial for certain conditions. The induction of oxygen therapy is commonly considered for either treating or preventing hypoxia. Therefore, the concept of different types of hypoxia should be understood, particularly in terms of their mechanism, as the effect of oxygen therapy principally varies by the physiological characteristics of hypoxia. Oxygen molecules must be constantly delivered to all cells throughout the human body and utilized effectively in the process of mitochondrial oxidative phosphorylation, which is necessary for generating energy through the formation of adenosine triphosphate. If the oxygen availability at the cellular level is inadequate for sustaining the metabolism, the condition of hypoxia which is characterized as heterogeneity in tissue oxygen tension may develop, which is called dysoxia, a more physiological concept that is related to hypoxia. In such hypoxic patients, repetitive measurements of the lactate level in blood are generally recommended in order to select the adequate therapeutic strategy targeting a reduction in lactate production. Excessive oxygen, however, may actually induce a hyperoxic condition which thus can lead to harmful oxidative stress by increasing the production of reactive oxygen species, possibly resulting in cellular dysfunction or death. In contrast, the human body has several oxygen-sensing mechanisms for preventing both hypoxia and hyperoxia that are employed to ensure a proper balance between the oxygen supply and demand and prevent organs and cells from suffering hyperoxia-induced oxidative stress. Thus, while the concept of hyperoxia is known to have possible adverse effects on the lung, the heart, the brain, or other organs in various pathological conditions of critically ill patients, and no obvious evidence has yet been proposed to totally support liberal oxygen supplementation in any subset of critically ill patients, relatively conservative oxygen therapy with cautious monitoring appears to be safe and may improve the outcome by preventing harmful oxidative stress resulting from excessive oxygen administration. Given the biological effects of oxygen molecules, although the optimal target levels remain controversial, unnecessary oxygen administration should be avoided, and exposure to hyperoxemia should be minimized in critically ill patients.
Collapse
Affiliation(s)
- Masaki Nakane
- Department of Emergency and Critical Care Medicine, Yamagata University Hospital, 2-2-2 Iida-nishi, Yamagata, 990-9585, Japan.
| |
Collapse
|
8
|
Systemic Effects Induced by Hyperoxia in a Preclinical Model of Intra-abdominal Sepsis. Mediators Inflamm 2020; 2020:5101834. [PMID: 33122967 PMCID: PMC7585649 DOI: 10.1155/2020/5101834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/16/2020] [Accepted: 09/23/2020] [Indexed: 01/13/2023] Open
Abstract
Supplemental oxygen is a supportive treatment in patients with sepsis to balance tissue oxygen delivery and demand in the tissues. However, hyperoxia may induce some pathological effects. We sought to assess organ damage associated with hyperoxia and its correlation with the production of reactive oxygen species (ROS) in a preclinical model of intra-abdominal sepsis. For this purpose, sepsis was induced in male, Sprague-Dawley rats by cecal ligation and puncture (CLP). We randomly assigned experimental animals to three groups: control (healthy animals), septic (CLP), and sham-septic (surgical intervention without CLP). At 18 h after CLP, septic (n = 39), sham-septic (n = 16), and healthy (n = 24) animals were placed within a sealed Plexiglas cage and randomly distributed into four groups for continuous treatment with 21%, 40%, 60%, or 100% oxygen for 24 h. At the end of the experimental period, we evaluated serum levels of cytokines, organ damage biomarkers, histological examination of brain and lung tissue, and ROS production in each surviving animal. We found that high oxygen concentrations increased IL-6 and biomarkers of organ damage levels in septic animals, although no relevant histopathological lung or brain damage was observed. Healthy rats had an increase in IL-6 and aspartate aminotransferase at high oxygen concentration. IL-6 levels, but not ROS levels, are correlated with markers of organ damage. In our study, the use of high oxygen concentrations in a clinically relevant model of intra-abdominal sepsis was associated with enhanced inflammation and organ damage. These findings were unrelated to ROS release into circulation. Hyperoxia could exacerbate sepsis-induced inflammation, and it could be by itself detrimental. Our study highlights the need of developing safer thresholds for oxygen therapy.
Collapse
|
9
|
Ha JH, Kim SW, Kim IK, Yeo CD, Kang HH, Lee SH. Effects of long term normobaric hyperoxia exposure on lipopolysaccharide-induced lung injury. Exp Lung Res 2020; 46:44-52. [PMID: 32067505 DOI: 10.1080/01902148.2020.1725183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose/Aim of the study: Prolonged exposure to hyperoxia can cause injury to normal lung tissue. However, patients with acute hypoxic respiratory failure are frequently exposed to very high oxygen levels. This study investigated the effects of long term normobaric hyperoxia exposure in a mouse model of acute severe lung injury (SLI).Meterials and Methods: C57BL/6J mice were injected intratracheally with lipopolysaccharide (LPS, 4 mg/kg) to induce acute lung injury. After 2 h, mice were divided into two groups, and then exposed to room air or hyperoxic conditions for 48 h. Animals in the hyperoxia group were placed within their cages in a Plexiglass chamber with an atmosphere of 95% O2 maintained constant using an oxygen analyzer. After exposure to normoxia (N) or hyperoxia (H) for 48 h, the left lungs were collected for tissue paraffin block or oxidative stress assay. One lobe of the right lung was collected for lung/body weight ratio. The lung injury score and the mean linear intercept were evaluated in hematoxylin and eosin -stained lungs. The biochemical tests were performed by using ELISA assay.Results: Lung injury scoring, lung/body weight, and mean linear intercept were not significantly different between the N + LPS (NLPS) and H + LPS (HLPS) groups. Similar trends were observed in hydroxyproline and transforming growth factor-β (TGF-β) levels. Total cell and neutrophil counts in bronchoalveolar lavage fluid showed no significant differences between NLPS and HLPS groups. Histological analyses demonstrated more severe lung injury and fibrosis in the NLPS group than in the HLPS group. In addition, interleukin (IL)-1β was significantly decreased in the HLPS group compared to the NLPS group. Other inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and IL-6, showed similar trends. The malondialdehyde (MDA) level was significantly lower in the HLPS group than in the NLPS group.Conclusions: Exposure to hyperoxia did not augment lung injury in the LPS-induced lung injury model, and some indicators even showed better outcomes. These results suggest that long-term high-oxygen therapy in patients with SLI has low risk of lung injury.
Collapse
Affiliation(s)
- Jick Hwan Ha
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Republic of Korea
| | - Sei Won Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - In Kyoung Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chang Dong Yeo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyeon Hui Kang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang Haak Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
10
|
Merz T, Wepler M, Nußbaum B, Vogt J, Calzia E, Wang R, Szabo C, Radermacher P, McCook O. Cystathionine-γ-lyase expression is associated with mitochondrial respiration during sepsis-induced acute kidney injury in swine with atherosclerosis. Intensive Care Med Exp 2018; 6:43. [PMID: 30343340 PMCID: PMC6195873 DOI: 10.1186/s40635-018-0208-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/07/2018] [Indexed: 02/06/2023] Open
Abstract
Background Sepsis is associated with disturbed glucose metabolism and reduced mitochondrial activity and biogenesis, ultimately leading to multiple organ dysfunction, e.g., acute kidney injury (AKI). Cystathionine-γ-lyase (CSE), the major cardiovascular source of endogenous H2S release, is implicated in the regulation of glucose metabolism and mitochondrial activity through a PGC1α-dependent mechanism, and critical for kidney function. Atherosclerosis is associated with mitochondrial dysfunction and reduced CSE expression. Thus, the aim of this post hoc study was to test the hypothesis whether there is an interplay between CSE expression and kidney dysfunction, mitochondrial activity, and oxidative/nitrosative stress in porcine septic AKI with underlying coronary artery disease. Methods This study is a post hoc analysis of material from anesthetized and instrumented swine with a high fat diet-induced hypercholesterolemia and atherosclerosis undergoing faecal peritonitis-induced septic shock or sham procedure and intensive care (comprising fluid resuscitation and continuous i.v. noradrenaline (NoA) infusion) for 24 h. Glucose metabolism was quantified from blood 13C6-glucose and expiratory 13CO2/12CO2 isotope enrichment during 13C6-glucose infusion. Mitochondrial activity was determined by high-resolution respirometry. CSE and PGC1α expression, as well as nitrotyrosine formation and albumin extravasation, were quantified by immunohistochemistry of formalin-fixed kidney paraffin sections. Results Sepsis was associated with lactic acidosis (p = 0.004) and AKI (50% fall of creatinine clearance (CrCl), p = 0.019). While both whole-body glucose production (p = 0.004) and oxidation (p = 0.006) were increased, kidney tissue mitochondrial respiration was reduced (p = 0.028), coinciding with decreased CSE (p = 0.003) and PGC1α (p = 0.003) expression. Albumin extravasation (p = 0.011) and nitrotyrosine formation (p = 0.008) were increased in septic kidneys. Conclusions Sepsis-induced AKI is associated with disturbed mitochondrial respiration and biogenesis, which may be aggravated by oxidative and nitrosative stress. Our results confirm previous data in murine septic shock and porcine hemorrhage and resuscitation on the crucial role of CSE for barrier integrity and kidney function. Electronic supplementary material The online version of this article (10.1186/s40635-018-0208-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tamara Merz
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Helmholtzstrasse 8-1, 89081, Ulm, Germany.
| | - Martin Wepler
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Helmholtzstrasse 8-1, 89081, Ulm, Germany.,Klinik für Anästhesiologie, Universitätsklinikum Ulm, Ulm, Germany
| | - Benedikt Nußbaum
- Klinik für Anästhesiologie, Universitätsklinikum Ulm, Ulm, Germany
| | - Josef Vogt
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Helmholtzstrasse 8-1, 89081, Ulm, Germany
| | - Enrico Calzia
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Helmholtzstrasse 8-1, 89081, Ulm, Germany
| | - Rui Wang
- Department of Biology, Laurentian University, Sudbury, ON, Canada
| | - Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, 601 Harborside Drive, Galveston, TX, 77555, USA.,Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Peter Radermacher
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Helmholtzstrasse 8-1, 89081, Ulm, Germany
| | - Oscar McCook
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Helmholtzstrasse 8-1, 89081, Ulm, Germany
| |
Collapse
|
11
|
Hyperoxia or Therapeutic Hypothermia During Resuscitation from Non-Lethal Hemorrhagic Shock in Swine. Shock 2018; 48:564-570. [PMID: 28472012 DOI: 10.1097/shk.0000000000000884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We previously demonstrated beneficial effects of 22 h of hyperoxia following near-lethal porcine hemorrhagic shock, whereas therapeutic hypothermia was detrimental. Therefore, we investigated whether shorter exposure to hyperoxia (12 h) would still improve organ function, and whether 12 h of hypothermia with subsequent rewarming could avoid deleterious effects after less severe hemorrhagic shock.Twenty-seven anesthetized and surgically instrumented pigs underwent 3 h of hemorrhagic shock by removal of 30% of the blood volume and titration of the mean arterial blood pressure (MAP) to 40 mm Hg. Post-shock, pigs were randomly assigned to control, hyperoxia (FIO2 100% for 12 h) or hypothermia group (34°C core temperature for 12 h with subsequent rewarming). Before, at the end of shock, after 12 and 23 h of resuscitation, data sets comprising hemodynamics, blood gases, and parameters of inflammation and organ function were acquired. Postmortem, kidney samples were collected for immunohistochemistry and western blotting.Hyperoxia exerted neither beneficial nor detrimental effects. In contrast, mortality in the hypothermia group was significantly higher compared with controls (67% vs. 11%). Hypothermia impaired circulation (MAP 64 (57;89) mm Hg vs. 104 (98; 114) mm Hg) resulting in metabolic acidosis (lactate 11.0 (6.6;13.6) mmol L vs. 1.0 (0.8;1.5) mmol L) and reduced creatinine clearance (26 (9;61) mL min vs. 77 (52;80) mL min) compared to the control group after 12 h of resuscitation. Impaired kidney function coincided with increased renal 3-nitrotyrosine formation and extravascular albumin accumulation.In conclusion, hyperoxia proved to be safe during resuscitation from hemorrhagic shock. The lacking organ-protective effects of hyperoxia compared to resuscitation from near-lethal hemorrhage suggest a dependence of the effectiveness of hyperoxia from shock severity. In line with our previous report, therapeutic hypothermia (and rewarming) was confirmed to be detrimental most likely due to vascular barrier dysfunction.
Collapse
|
12
|
|
13
|
He HW, Liu DW, Ince C. Understanding elevated Pv-aCO 2 gap and Pv-aCO 2/Ca-vO 2 ratio in venous hyperoxia condition. J Clin Monit Comput 2017; 31:1321-1323. [PMID: 28217824 DOI: 10.1007/s10877-017-0005-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 02/10/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Huai-Wu He
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, 1 shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Da-Wei Liu
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, 1 shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Can Ince
- Department of Intensive Care, Erasmus MC University Hospital Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
14
|
Attaye I, Smulders YM, de Waard MC, Oudemans-van Straaten HM, Smit B, Van Wijhe MH, Musters RJ, Koolwijk P, Spoelstra-de Man AME. The effects of hyperoxia on microvascular endothelial cell proliferation and production of vaso-active substances. Intensive Care Med Exp 2017; 5:22. [PMID: 28409476 PMCID: PMC5391371 DOI: 10.1186/s40635-017-0135-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 04/06/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Hyperoxia, an arterial oxygen pressure of more than 100 mmHg or 13% O2, frequently occurs in hospitalized patients due to administration of supplemental oxygen. Increasing evidence suggests that hyperoxia induces vasoconstriction in the systemic (micro)circulation, potentially affecting organ perfusion. This study addresses effects of hyperoxia on viability, proliferative capacity, and on pathways affecting vascular tone in cultured human microvascular endothelial cells (hMVEC). METHODS hMVEC of the systemic circulation were exposed to graded oxygen fractions of 20, 30, 50, and 95% O2 for 8, 24, and 72 h. These fractions correspond to 152, 228, 380, and 722 mmHg, respectively. Cell proliferation and viability was measured via a proliferation assay, peroxynitrite formation via anti-nitrotyrosine levels, endothelial nitric oxide synthase (eNOS), and endothelin-1 (ET-1) levels via q-PCR and western blot analysis. RESULTS Exposing hMVEC to 50 and 95% O2 for more than 24 h impaired cell viability and proliferation. Hyperoxia did not significantly affect nitrotyrosine levels, nor eNOS mRNA and protein levels, regardless of the exposure time or oxygen concentration used. Phosphorylation of eNOS at the serine 1177 (S1177) residue and ET-1 mRNA levels were also not significantly affected. CONCLUSIONS Exposure of isolated human microvascular endothelial cells to marked hyperoxia for more than 24 h decreases cell viability and proliferation. Our results do not support a role of eNOS mRNA and protein or ET-1 mRNA in the potential vasoconstrictive effects of hyperoxia on isolated hMVEC.
Collapse
Affiliation(s)
- Ilias Attaye
- Department of Intensive Care, VU University Medical Center, Amsterdam, The Netherlands.
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Yvo M Smulders
- Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Monique C de Waard
- Department of Intensive Care, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Bob Smit
- Department of Intensive Care, VU University Medical Center, Amsterdam, The Netherlands
| | - Michiel H Van Wijhe
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Rene J Musters
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Pieter Koolwijk
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
15
|
Should Hyperoxia Be Avoided During Sepsis? An Experimental Study in Ovine Peritonitis*. Crit Care Med 2017; 45:e1060-e1067. [DOI: 10.1097/ccm.0000000000002524] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
|
17
|
Helmerhorst HJF, Schouten LRA, Wagenaar GTM, Juffermans NP, Roelofs JJTH, Schultz MJ, de Jonge E, van Westerloo DJ. Hyperoxia provokes a time- and dose-dependent inflammatory response in mechanically ventilated mice, irrespective of tidal volumes. Intensive Care Med Exp 2017; 5:27. [PMID: 28550659 PMCID: PMC5446430 DOI: 10.1186/s40635-017-0142-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/18/2017] [Indexed: 01/26/2023] Open
Abstract
Background Mechanical ventilation and hyperoxia have the potential to independently promote lung injury and inflammation. Our purpose was to study both time- and dose-dependent effects of supplemental oxygen in an experimental model of mechanically ventilated mice. Methods Healthy male C57Bl/6J mice, aged 9–10 weeks, were intraperitoneally anesthetized and randomly assigned to the mechanically ventilated group or the control group. In total, 100 mice were tracheotomized and mechanically ventilated for either 8 or 12 h after allocation to different settings for the applied fractions of inspired oxygen (FiO2, 30, 50, or 90%) and tidal volumes (7.5 or 15 ml/kg). After euthanisation arterial blood, bronchoalveolar lavage fluid (BALf) and tissues were collected for analyses. Results Mechanical ventilation significantly increased the lung injury score (P < 0.05), mean protein content (P < 0.001), and the mean number of cells (P < 0.01), including neutrophils in BALf (P < 0.001). In mice ventilated for 12 h, a significant increase in TNF-α, IFN-γ, IL-1β, IL-10, and MCP-1 (P < 0.01) was observed with 90% FiO2, whereas IL-6 showed a decreasing trend (P for trend = 0.03) across FiO2 groups. KC, MIP-2, and sRAGE were similar between FiO2 groups. HMGB-1 was significantly higher in BALf of mechanically ventilated mice compared to controls and showed a gradual increase in expression with increasing FiO2. Cytokine and chemokine levels in BALf did not markedly differ between FiO2 groups after 8 h of ventilation. Differences between the tidal volume groups were small and did not appear to significantly interact with the oxygen levels. Conclusions We demonstrated a severe vascular leakage and a pro-inflammatory pulmonary response in mechanically ventilated mice, which was enhanced by severe hyperoxia and longer duration of mechanical ventilation. Prolonged ventilation with high oxygen concentrations induced a time-dependent immune response characterized by elevated levels of neutrophils, cytokines, and chemokines in the pulmonary compartment. Electronic supplementary material The online version of this article (doi:10.1186/s40635-017-0142-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hendrik J F Helmerhorst
- Department of Intensive Care Medicine, Leiden University Medical Center, Post Box 9600, 2300 RC, Leiden, The Netherlands. .,Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands. .,Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, Amsterdam, The Netherlands.
| | - Laura R A Schouten
- Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, Amsterdam, The Netherlands.,Department of Intensive Care Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Gerry T M Wagenaar
- Department of Pediatrics, Laboratory of Neonatology, University Medical Center Leiden, Leiden, The Netherlands
| | - Nicole P Juffermans
- Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, Amsterdam, The Netherlands.,Department of Intensive Care Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Marcus J Schultz
- Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, Amsterdam, The Netherlands.,Department of Intensive Care Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Evert de Jonge
- Department of Intensive Care Medicine, Leiden University Medical Center, Post Box 9600, 2300 RC, Leiden, The Netherlands
| | - David J van Westerloo
- Department of Intensive Care Medicine, Leiden University Medical Center, Post Box 9600, 2300 RC, Leiden, The Netherlands
| |
Collapse
|
18
|
Huang Y, Wang XX, Sun DD, Zhang ZX, Yang WW, Shao T, Han H, Zhang EF, Pu ZS, Hou ZX, Dong HL, Xiong LZ, Hou LC. Sub-anesthesia Dose of Isoflurane in 60% Oxygen Reduces Inflammatory Responses in Experimental Sepsis Models. Chin Med J (Engl) 2017; 130:840-853. [PMID: 28345549 PMCID: PMC5381319 DOI: 10.4103/0366-6999.202734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Sepsis is a major cause of mortality in Intensive Care Units. Anesthetic dose isoflurane and 100% oxygen were proved to be beneficial in sepsis; however, their application in septic patients is limited because long-term hyperoxia may induce oxygen toxicity and anesthetic dose isoflurane has potential adverse consequences. This study was scheduled to find the optimal combination of isoflurane and oxygen in protecting experimental sepsis and its mechanisms. METHODS The effects of combined therapy with isoflurane and oxygen on lung injury and sepsis were determined in animal models of sepsis induced by cecal ligation and puncture (CLP) or intraperitoneal injection of lipopolysaccharide (LPS) or zymosan. Mouse RAW264.7 cells or human peripheral blood mononuclear cells (PBMCs) were treated by LPS to probe mechanisms. The nuclear factor kappa B (NF-κB) signaling molecules were examined by Western blot and cellular immunohistochemistry. RESULTS The 0.5 minimum alveolar concentration (MAC) isoflurane in 60% oxygen was the best combination of oxygen and isoflurane for reducing mortality in experimental sepsis induced by CLP, intraperitoneal injection of LPS, or zymosan. The 0.5 MAC isoflurane in 60% oxygen inhibited proinflammatory cytokines in peritoneal lavage fluids (tumor necrosis factor-alpha [TNF-β]: 149.3 vs. 229.7 pg/ml, interleukin [IL]-1β: 12.5 vs. 20.6 pg/ml, IL-6: 86.1 vs. 116.1 pg/ml, and high-mobility group protein 1 [HMGB1]: 323.7 vs. 449.3 ng/ml; all P< 0.05) and serum (TNF-β: 302.7 vs. 450.7 pg/ml, IL-1β: 51.7 vs. 96.7 pg/ml, IL-6: 390.4 vs. 722.5 pg/ml, and HMGB1: 592.2 vs. 985.4 ng/ml; all P< 0.05) in septic animals. In vitro experiments showed that the 0.5 MAC isoflurane in 60% oxygen reduced inflammatory responses in mouse RAW264.7 cells, after LPS stimulation (all P< 0.05). Suppressed activation of NF-κB pathway was also observed in mouse RAW264.7 macrophages and human PBMCs after LPS stimulation or plasma from septic patients. The 0.5 MAC isoflurane in 60% oxygen also prevented the increases of phospho-IKKβ/β, phospho-IκBβ, and phospho-p65 expressions in RAW264.7 macrophages after LPS stimulation (all P< 0.05). CONCLUSION Combined administration of a sedative dose of isoflurane with 60% oxygen improves survival of septic animals through reducing inflammatory responses.
Collapse
Affiliation(s)
- Yi Huang
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiao-Xia Wang
- Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Dong-Dong Sun
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ze-Xin Zhang
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Wan-Wan Yang
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Tian Shao
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Han Han
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Er-Fei Zhang
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhong-Shu Pu
- Department of Epidemiology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zuo-Xu Hou
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hai-Long Dong
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Li-Ze Xiong
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Li-Chao Hou
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
19
|
Zhang Z, Ji X. Quadratic function between arterial partial oxygen pressure and mortality risk in sepsis patients: an interaction with simplified acute physiology score. Sci Rep 2016; 6:35133. [PMID: 27734905 PMCID: PMC5062070 DOI: 10.1038/srep35133] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 09/26/2016] [Indexed: 02/07/2023] Open
Abstract
Oxygen therapy is widely used in emergency and critical care settings, while there is little evidence on its real therapeutic effect. The study aimed to explore the impact of arterial oxygen partial pressure (PaO2) on clinical outcomes in patients with sepsis. A large clinical database was employed for the study. Subjects meeting the diagnostic criteria of sepsis were eligible for the study. All measurements of PaO2 were extracted. The primary endpoint was death from any causes during hospital stay. Survey data analysis was performed by using individual ICU admission as the primary sampling unit. Quadratic function was assumed for PaO2 and its interaction with other covariates were explored. A total of 199,125 PaO2 samples were identified for 11,002 ICU admissions. Each ICU stay comprised 18 PaO2 samples in average. The fitted multivariable model supported our hypothesis that the effect of PaO2 on mortality risk was in quadratic form. There was significant interaction between PaO2 and SAPS-I (p = 0.007). Furthermore, the main effect of PaO2 on SOFA score was nonlinear. The study shows that the effect of PaO2 on mortality risk is in quadratic function form, and there is significant interaction between PaO2 and severity of illness.
Collapse
Affiliation(s)
- Zhongheng Zhang
- Department of emergency medicine, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Department of critical care medicine, Jinhua municipal central hospital, Jinhua hospital of Zhejiang university, Zhejiang, P.R.China
| | - Xuqing Ji
- Department of critical care medicine, Jinhua municipal central hospital, Jinhua hospital of Zhejiang university, Zhejiang, P.R.China
| |
Collapse
|
20
|
Effects of Hyperoxia and Mild Therapeutic Hypothermia During Resuscitation From Porcine Hemorrhagic Shock. Crit Care Med 2016; 44:e264-77. [PMID: 26588829 DOI: 10.1097/ccm.0000000000001412] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Hemorrhagic shock-induced tissue hypoxia induces hyperinflammation, ultimately causing multiple organ failure. Hyperoxia and hypothermia can attenuate tissue hypoxia due to increased oxygen supply and decreased demand, respectively. Therefore, we tested the hypothesis whether mild therapeutic hypothermia and hyperoxia would attenuate postshock hyperinflammation and thereby organ dysfunction. DESIGN Prospective, controlled, randomized study. SETTING University animal research laboratory. SUBJECTS Thirty-six Bretoncelles-Meishan-Willebrand pigs of either gender. INTERVENTIONS After 4 hours of hemorrhagic shock (removal of 30% of the blood volume, subsequent titration of mean arterial pressure at 35 mm Hg), anesthetized and instrumented pigs were randomly assigned to "control" (standard resuscitation: retransfusion of shed blood, fluid resuscitation, norepinephrine titrated to maintain mean arterial pressure at preshock values, mechanical ventilation titrated to maintain arterial oxygen saturation > 90%), "hyperoxia" (standard resuscitation, but FIO2, 1.0), "hypothermia" (standard resuscitation, but core temperature 34°C), or "combi" (hyperoxia plus hypothermia) (n = 9 each). MEASUREMENTS AND MAIN RESULTS Before, immediately at the end of and 12 and 22 hours after hemorrhagic shock, we measured hemodynamics, blood gases, acid-base status, metabolism, organ function, cytokine production, and coagulation. Postmortem kidney specimen were taken for histological evaluation, immunohistochemistry (nitrotyrosine, cystathionine γ-lyase, activated caspase-3, and extravascular albumin), and immunoblotting (nuclear factor-κB, hypoxia-inducible factor-1α, heme oxygenase-1, inducible nitric oxide synthase, B-cell lymphoma-extra large, and protein expression of the endogenous nuclear factor-κB inhibitor). Although hyperoxia alone attenuated the postshock hyperinflammation and thereby tended to improve visceral organ function, hypothermia and combi treatment had no beneficial effect. CONCLUSIONS During resuscitation from near-lethal hemorrhagic shock, hyperoxia attenuated hyperinflammation, and thereby showed a favorable trend toward improved organ function. The lacking efficacy of hypothermia was most likely due to more pronounced barrier dysfunction with vascular leakage-induced circulatory failure.
Collapse
|
21
|
Hong Y, Sun LI, Sun R, Chen H, Yu Y, Xie K. Combination therapy of molecular hydrogen and hyperoxia improves survival rate and organ damage in a zymosan-induced generalized inflammation model. Exp Ther Med 2016; 11:2590-2596. [PMID: 27284352 DOI: 10.3892/etm.2016.3231] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/11/2016] [Indexed: 12/22/2022] Open
Abstract
Multiple organ dysfunction syndrome (MODS) is a leading cause of mortality in critically ill patients. Hyperoxia treatment may be beneficial to critically ill patients. However, the clinical use of hyperoxia is hindered as it may exacerbate organ injury by increasing reactive oxygen species (ROS). Hydrogen gas (H2) exerts a therapeutic antioxidative effect by selectively reducing ROS. Combination therapy of H2 and hyperoxia has previously been shown to significantly improve survival rate and organ damage extent in mice with polymicrobial sepsis. The aim of the present study was to investigate whether combination therapy with H2 and hyperoxia could improve survival rate and organ damage in a zymosan (ZY)-induced generalized inflammation model. The results showed that the inhalation of H2 (2%) or hyperoxia (98%) alone improved the 14-day survival rate of ZY-challenged mice from 20 to 70 or 60%, respectively. However, combination therapy with H2 and hyperoxia could increase the 14-day survival rate of ZY-challenged mice to 100%. Furthermore, ZY-challenged mice showed significant multiple organ damage characterized by increased serum levels of aspartate transaminase, alanine transaminase, blood urea nitrogen and creatinine, as well as lung, liver and kidney histopathological scores at 24 h after ZY injection. These symptoms where attenuated by H2 or hyperoxia alone; however, combination therapy with H2 and hyperoxia had a more marked beneficial effect against lung, liver and kidney damage in ZY-challenged mice. In addition, the beneficial effects of this combination therapy on ZY-induced organ damage were associated with decreased serum levels of the oxidative product 8-iso-prostaglandin F2α, increased activity of superoxide dismutase and reduced levels of the proinflammatory cytokines high-mobility group box 1 and tumor necrosis factor-α. In conclusion, combination therapy with H2 and hyperoxia provides enhanced therapeutic efficacy against multiple organ damage in a ZY-induced generalized inflammation model, suggesting the potential applicability of H2 and hyperoxia in the therapy of conditions associated with inflammation-related MODS.
Collapse
Affiliation(s)
- Yunchuan Hong
- Department of Respiratory Medicine, General Hospital of Tianjin Medical University, Tianjin 300052, P.R. China
| | - L I Sun
- Department of Anesthesiology, General Hospital of Beijing Military Command, Beijing 100700, P.R. China
| | - Ruiqiang Sun
- Department of Anesthesiology, Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin 300020, P.R. China
| | - Hongguang Chen
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, Tianjin 300052, P.R. China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, Tianjin 300052, P.R. China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University, Tianjin 300052, P.R. China; Department of Anesthesiology, Clinical Medical School of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| |
Collapse
|
22
|
Kiers D, Gerretsen J, Janssen E, John A, Groeneveld R, van der Hoeven JG, Scheffer GJ, Pickkers P, Kox M. Short-term hyperoxia does not exert immunologic effects during experimental murine and human endotoxemia. Sci Rep 2015; 5:17441. [PMID: 26616217 PMCID: PMC4663498 DOI: 10.1038/srep17441] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/29/2015] [Indexed: 12/19/2022] Open
Abstract
Oxygen therapy to maintain tissue oxygenation is one of the cornerstones of critical care. Therefore, hyperoxia is often encountered in critically ill patients. Epidemiologic studies have demonstrated that hyperoxia may affect outcome, although mechanisms are unclear. Immunologic effects might be involved, as hyperoxia was shown to attenuate inflammation and organ damage in preclinical models. However, it remains unclear whether these observations can be ascribed to direct immunosuppressive effects of hyperoxia or to preserved tissue oxygenation. In contrast to these putative anti-inflammatory effects, hyperoxia may elicit an inflammatory response and organ damage in itself, known as oxygen toxicity. Here, we demonstrate that, in the absence of systemic inflammation, short-term hyperoxia (100% O2 for 2.5 hours in mice and 3.5 hours in humans) does not result in increased levels of inflammatory cytokines in both mice and healthy volunteers. Furthermore, we show that, compared with room air, hyperoxia does not affect the systemic inflammatory response elicited by administration of bacterial endotoxin in mice and man. Finally, neutrophil phagocytosis and ROS generation are unaffected by short-term hyperoxia. Our results indicate that hyperoxia does not exert direct anti-inflammatory effects and temper expectations of using it as an immunomodulatory treatment strategy.
Collapse
Affiliation(s)
- Dorien Kiers
- Department of Intensive Care Medicine, Radboud university medical center, Geert Grooteplein Zuid 10, Nijmegen, 6500 HB, Netherlands
- Department of Anesthesiology, Radboud university medical center, Geert Grooteplein Zuid 10, Nijmegen, 6500 HB, Netherlands
- Radboud Centre for Infectious Diseases (RCI) Geert Grooteplein
Zuid 10 PO Box 9101, 6500 HB
Nijmegen, The Netherlands
| | - Jelle Gerretsen
- Department of Intensive Care Medicine, Radboud university medical center, Geert Grooteplein Zuid 10, Nijmegen, 6500 HB, Netherlands
| | - Emmy Janssen
- Department of Intensive Care Medicine, Radboud university medical center, Geert Grooteplein Zuid 10, Nijmegen, 6500 HB, Netherlands
| | - Aaron John
- Department of Intensive Care Medicine, Radboud university medical center, Geert Grooteplein Zuid 10, Nijmegen, 6500 HB, Netherlands
| | - R. Groeneveld
- Department of Intensive Care Medicine, Radboud university medical center, Geert Grooteplein Zuid 10, Nijmegen, 6500 HB, Netherlands
| | - Johannes G. van der Hoeven
- Department of Intensive Care Medicine, Radboud university medical center, Geert Grooteplein Zuid 10, Nijmegen, 6500 HB, Netherlands
- Radboud Centre for Infectious Diseases (RCI) Geert Grooteplein
Zuid 10 PO Box 9101, 6500 HB
Nijmegen, The Netherlands
| | - Gert-Jan Scheffer
- Department of Anesthesiology, Radboud university medical center, Geert Grooteplein Zuid 10, Nijmegen, 6500 HB, Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud university medical center, Geert Grooteplein Zuid 10, Nijmegen, 6500 HB, Netherlands
- Radboud Centre for Infectious Diseases (RCI) Geert Grooteplein
Zuid 10 PO Box 9101, 6500 HB
Nijmegen, The Netherlands
| | - Matthijs Kox
- Department of Intensive Care Medicine, Radboud university medical center, Geert Grooteplein Zuid 10, Nijmegen, 6500 HB, Netherlands
- Department of Anesthesiology, Radboud university medical center, Geert Grooteplein Zuid 10, Nijmegen, 6500 HB, Netherlands
- Radboud Centre for Infectious Diseases (RCI) Geert Grooteplein
Zuid 10 PO Box 9101, 6500 HB
Nijmegen, The Netherlands
| |
Collapse
|
23
|
Hafner S, Beloncle F, Koch A, Radermacher P, Asfar P. Hyperoxia in intensive care, emergency, and peri-operative medicine: Dr. Jekyll or Mr. Hyde? A 2015 update. Ann Intensive Care 2015; 5:42. [PMID: 26585328 PMCID: PMC4653126 DOI: 10.1186/s13613-015-0084-6] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/02/2015] [Indexed: 12/22/2022] Open
Abstract
This review summarizes the (patho)-physiological effects of ventilation with high FiO2 (0.8–1.0), with a special focus on the most recent clinical evidence on its use for the management of circulatory shock and during medical emergencies. Hyperoxia is a cornerstone of the acute management of circulatory shock, a concept which is based on compelling experimental evidence that compensating the imbalance between O2 supply and requirements (i.e., the oxygen dept) is crucial for survival, at least after trauma. On the other hand, “oxygen toxicity” due to the increased formation of reactive oxygen species limits its use, because it may cause serious deleterious side effects, especially in conditions of ischemia/reperfusion. While these effects are particularly pronounced during long-term administration, i.e., beyond 12–24 h, several retrospective studies suggest that even hyperoxemia of shorter duration is also associated with increased mortality and morbidity. In fact, albeit the clinical evidence from prospective studies is surprisingly scarce, a recent meta-analysis suggests that hyperoxia is associated with increased mortality at least in patients after cardiac arrest, stroke, and traumatic brain injury. Most of these data, however, originate from heterogenous, observational studies with inconsistent results, and therefore, there is a need for the results from the large scale, randomized, controlled clinical trials on the use of hyperoxia, which can be anticipated within the next 2–3 years. Consequently, until then, “conservative” O2 therapy, i.e., targeting an arterial hemoglobin O2 saturation of 88–95 % as suggested by the guidelines of the ARDS Network and the Surviving Sepsis Campaign, represents the treatment of choice to avoid exposure to both hypoxemia and excess hyperoxemia.
Collapse
Affiliation(s)
- Sebastian Hafner
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Helmholtzstrasse 8-1, 89081, Ulm, Germany. .,Klinik für Anästhesiologie, Universitätsklinikum Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany.
| | - François Beloncle
- Département de Réanimation Médicale et de Médecine Hyperbare, Centre Hospitalier Universitaire, 4 rue Larrey, Cedex 9, 49933, Angers, France. .,Laboratoire de Biologie Neurovasculaire et Mitochondriale Intégrée, CNRS UMR 6214-INSERM U1083, Université Angers, PRES L'UNAM, Nantes, France.
| | - Andreas Koch
- Sektion Maritime Medizin, Institut für Experimentelle Medizin, Christian-Albrechts-Universität, 24118, Kiel, Germany. .,Schifffahrtmedizinisches Institut der Marine, 24119, Kronshagen, Germany.
| | - Peter Radermacher
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum Ulm, Helmholtzstrasse 8-1, 89081, Ulm, Germany.
| | - Pierre Asfar
- Département de Réanimation Médicale et de Médecine Hyperbare, Centre Hospitalier Universitaire, 4 rue Larrey, Cedex 9, 49933, Angers, France. .,Laboratoire de Biologie Neurovasculaire et Mitochondriale Intégrée, CNRS UMR 6214-INSERM U1083, Université Angers, PRES L'UNAM, Nantes, France.
| |
Collapse
|
24
|
Helmerhorst HJF, Schultz MJ, van der Voort PHJ, de Jonge E, van Westerloo DJ. Bench-to-bedside review: the effects of hyperoxia during critical illness. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:284. [PMID: 26278383 PMCID: PMC4538738 DOI: 10.1186/s13054-015-0996-4] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Oxygen administration is uniformly used in emergency and intensive care medicine and has life-saving potential in critical conditions. However, excessive oxygenation also has deleterious properties in various pathophysiological processes and consequently both clinical and translational studies investigating hyperoxia during critical illness have gained increasing interest. Reactive oxygen species are notorious by-products of hyperoxia and play a pivotal role in cell signaling pathways. The effects are diverse, but when the homeostatic balance is disturbed, reactive oxygen species typically conserve a vicious cycle of tissue injury, characterized by cell damage, cell death, and inflammation. The most prominent symptoms in the abundantly exposed lungs include tracheobronchitis, pulmonary edema, and respiratory failure. In addition, absorptive atelectasis results as a physiological phenomenon with increasing levels of inspiratory oxygen. Hyperoxia-induced vasoconstriction can be beneficial during vasodilatory shock, but hemodynamic changes may also impose risk when organ perfusion is impaired. In this context, oxygen may be recognized as a multifaceted agent, a modifiable risk factor, and a feasible target for intervention. Although most clinical outcomes are still under extensive investigation, careful titration of oxygen supply is warranted in order to secure adequate tissue oxygenation while preventing hyperoxic harm.
Collapse
Affiliation(s)
- Hendrik J F Helmerhorst
- Department of Intensive Care Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden, 2300 RC, The Netherlands. .,Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands.
| | - Marcus J Schultz
- Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands.,Department of Intensive Care Medicine, Academic Medical Center, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Peter H J van der Voort
- Department of Intensive Care Medicine, Onze Lieve Vrouwe Gasthuis, Oosterpark 9, Amsterdam, 1091 AZ, The Netherlands.,TIAS School for Business and Society, Tilburg University, Warandelaan 2, Tilburg, 5000 LE, The Netherlands
| | - Evert de Jonge
- Department of Intensive Care Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden, 2300 RC, The Netherlands
| | - David J van Westerloo
- Department of Intensive Care Medicine, Leiden University Medical Center, Albinusdreef 2, Leiden, 2300 RC, The Netherlands
| |
Collapse
|
25
|
Wagner K, Gröger M, McCook O, Scheuerle A, Asfar P, Stahl B, Huber-Lang M, Ignatius A, Jung B, Duechs M, Möller P, Georgieff M, Calzia E, Radermacher P, Wagner F. Blunt Chest Trauma in Mice after Cigarette Smoke-Exposure: Effects of Mechanical Ventilation with 100% O2. PLoS One 2015. [PMID: 26225825 PMCID: PMC4520521 DOI: 10.1371/journal.pone.0132810] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cigarette smoking (CS) aggravates post-traumatic acute lung injury and increases ventilator-induced lung injury due to more severe tissue inflammation and apoptosis. Hyper-inflammation after chest trauma is due to the physical damage, the drop in alveolar PO2, and the consecutive hypoxemia and tissue hypoxia. Therefore, we tested the hypotheses that 1) CS exposure prior to blunt chest trauma causes more severe post-traumatic inflammation and thereby aggravates lung injury, and that 2) hyperoxia may attenuate this effect. Immediately after blast wave-induced blunt chest trauma, mice (n=32) with or without 3-4 weeks of CS exposure underwent 4 hours of pressure-controlled, thoraco-pulmonary compliance-titrated, lung-protective mechanical ventilation with air or 100 % O2. Hemodynamics, lung mechanics, gas exchange, and acid-base status were measured together with blood and tissue cytokine and chemokine concentrations, heme oxygenase-1 (HO-1), activated caspase-3, and hypoxia-inducible factor 1-α (HIF-1α) expression, nuclear factor-κB (NF-κB) activation, nitrotyrosine formation, purinergic receptor 2X4 (P2XR4) and 2X7 (P2XR7) expression, and histological scoring. CS exposure prior to chest trauma lead to higher pulmonary compliance and lower PaO2 and Horovitz-index, associated with increased tissue IL-18 and blood MCP-1 concentrations, a 2-4-fold higher inflammatory cell infiltration, and more pronounced alveolar membrane thickening. This effect coincided with increased activated caspase-3, nitrotyrosine, P2XR4, and P2XR7 expression, NF-κB activation, and reduced HIF-1α expression. Hyperoxia did not further affect lung mechanics, gas exchange, pulmonary and systemic cytokine and chemokine concentrations, or histological scoring, except for some patchy alveolar edema in CS exposed mice. However, hyperoxia attenuated tissue HIF-1α, nitrotyrosine, P2XR7, and P2XR4 expression, while it increased HO-1 formation in CS exposed mice. Overall, CS exposure aggravated post-traumatic inflammation, nitrosative stress and thereby organ dysfunction and injury; short-term, lung-protective, hyperoxic mechanical ventilation have no major beneficial effect despite attenuation of nitrosative stress, possibly due to compensation of by regional alveolar hypoxia and/or consecutive hypoxemia, resulting in down-regulation of HIF-1α expression.
Collapse
MESH Headings
- Acute Lung Injury/etiology
- Acute Lung Injury/physiopathology
- Acute Lung Injury/therapy
- Animals
- Disease Models, Animal
- Female
- Hyperoxia/complications
- Hyperoxia/pathology
- Hyperoxia/physiopathology
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Lung/pathology
- Lung/physiopathology
- Male
- Mice
- Mice, Inbred C57BL
- Oxidative Stress
- Pulmonary Disease, Chronic Obstructive/etiology
- Pulmonary Disease, Chronic Obstructive/physiopathology
- Pulmonary Disease, Chronic Obstructive/therapy
- Reactive Nitrogen Species/metabolism
- Receptors, Purinergic P2X/metabolism
- Respiration, Artificial/adverse effects
- Smoking/adverse effects
- Thoracic Injuries/complications
- Thoracic Injuries/physiopathology
- Thoracic Injuries/therapy
- Wounds, Nonpenetrating/complications
- Wounds, Nonpenetrating/physiopathology
- Wounds, Nonpenetrating/therapy
Collapse
Affiliation(s)
- Katja Wagner
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Ulm, Germany
- Klinik für Anästhesiologie, Universitätsklinikum, Ulm, Germany
| | - Michael Gröger
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Ulm, Germany
| | - Oscar McCook
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Ulm, Germany
| | | | - Pierre Asfar
- Laboratoire HIFIH, UPRES EA 3859, PRES l’UNAM, IFR 132, CNRS UMR 6214, INSERM U1083, Université Angers, Département de Réanimation Médicale et de Médecine Hyperbare, Centre Hospitalier Universitaire, Angers, France
| | - Bettina Stahl
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Ulm, Germany
| | - Markus Huber-Lang
- Klinik für Unfall-, Hand-, Plastische und Wiederherstellungschirurgie, Universitätsklinikum, Ulm, Germany
| | - Anita Ignatius
- Institut für Unfallchirurgische Forschung und Biomechanik, Universitätsklinikum, Ulm, Germany
| | - Birgit Jung
- Abteilung Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach/Riss, Germany
| | - Matthias Duechs
- Abteilung Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach/Riss, Germany
| | - Peter Möller
- Institut für Pathologie, Universitätsklinikum, Ulm, Germany
| | | | - Enrico Calzia
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Ulm, Germany
| | - Peter Radermacher
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Ulm, Germany
- * E-mail:
| | - Florian Wagner
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Ulm, Germany
- Klinik für Anästhesiologie, Universitätsklinikum, Ulm, Germany
| |
Collapse
|
26
|
Kemmler J, Bindl R, McCook O, Wagner F, Gröger M, Wagner K, Scheuerle A, Radermacher P, Ignatius A. Exposure to 100% Oxygen Abolishes the Impairment of Fracture Healing after Thoracic Trauma. PLoS One 2015; 10:e0131194. [PMID: 26147725 PMCID: PMC4492600 DOI: 10.1371/journal.pone.0131194] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/30/2015] [Indexed: 12/22/2022] Open
Abstract
In polytrauma patients a thoracic trauma is one of the most critical injuries and an important trigger of post-traumatic inflammation. About 50% of patients with thoracic trauma are additionally affected by bone fractures. The risk for fracture malunion is considerably increased in such patients, the pathomechanisms being poorly understood. Thoracic trauma causes regional alveolar hypoxia and, subsequently, hypoxemia, which in turn triggers local and systemic inflammation. Therefore, we aimed to unravel the role of oxygen in impaired bone regeneration after thoracic trauma. We hypothesized that short-term breathing of 100% oxygen in the early post-traumatic phase ameliorates inflammation and improves bone regeneration. Mice underwent a femur osteotomy alone or combined with blunt chest trauma 100% oxygen was administered immediately after trauma for two separate 3 hour intervals. Arterial blood gas tensions, microcirculatory perfusion and oxygenation were assessed at 3, 9 and 24 hours after injury. Inflammatory cytokines and markers of oxidative/nitrosative stress were measured in plasma, lung and fracture hematoma. Bone healing was assessed on day 7, 14 and 21. Thoracic trauma induced pulmonary and systemic inflammation and impaired bone healing. Short-term exposure to 100% oxygen in the acute post-traumatic phase significantly attenuated systemic and local inflammatory responses and improved fracture healing without provoking toxic side effects, suggesting that hyperoxia could induce anti-inflammatory and pro-regenerative effects after severe injury. These results suggest that breathing of 100% oxygen in the acute post-traumatic phase might reduce the risk of poorly healing fractures in severely injured patients.
Collapse
Affiliation(s)
- Julia Kemmler
- Institute of Orthopaedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | - Ronny Bindl
- Institute of Orthopaedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | - Oscar McCook
- Institute of Pathophysiological Anaesthesiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Florian Wagner
- Institute of Pathophysiological Anaesthesiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Michael Gröger
- Institute of Pathophysiological Anaesthesiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Katja Wagner
- Institute of Pathophysiological Anaesthesiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | | | - Peter Radermacher
- Institute of Pathophysiological Anaesthesiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
- * E-mail:
| |
Collapse
|
27
|
Multiple system organ response induced by hyperoxia in a clinically relevant animal model of sepsis. Shock 2015; 42:148-53. [PMID: 24978892 DOI: 10.1097/shk.0000000000000189] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Oxygen therapy is currently used as a supportive treatment in septic patients to improve tissue oxygenation. However, oxygen can exert deleterious effects on the inflammatory response triggered by infection. We postulated that the use of high oxygen concentrations may be partially responsible for the worsening of sepsis-induced multiple system organ dysfunction in an experimental clinically relevant model of sepsis. We used Sprague-Dawley rats. Sepsis was induced by cecal ligation and puncture. Sham-septic controls (n = 16) and septic animals (n = 32) were randomly assigned to four groups and placed in a sealed Plexiglas cage continuously flushed for 24 h with medical air (group 1), 40% oxygen (group 2), 60% oxygen (group 3), or 100% oxygen (group 4). We examined the effects of these oxygen concentrations on the spread of infection in blood, urine, peritoneal fluid, bronchoalveolar lavage, and meninges; serum levels of inflammatory biomarkers and reactive oxygen species production; and hematological parameters in all experimental groups. In cecal ligation and puncture animals, the use of higher oxygen concentrations was associated with a greater number of infected biological samples (P < 0.0001), higher serum levels of interleukin-6 (P < 0.0001), interleukin-10 (P = 0.033), and tumor necrosis factor-α (P = 0.034), a marked decrease in platelet counts (P < 0.001), and a marked elevation of reactive oxygen species serum levels (P = 0.0006) after 24 h of oxygen exposure. Oxygen therapy greatly influences the progression and clinical manifestation of multiple system organ dysfunction in experimental sepsis. If these results are extrapolated to humans, they suggest that oxygen therapy should be carefully managed in septic patients to minimize its deleterious effects.
Collapse
|
28
|
van Zellem L, de Jonge R, van Rosmalen J, Reiss I, Tibboel D, Buysse C. High cumulative oxygen levels are associated with improved survival of children treated with mild therapeutic hypothermia after cardiac arrest. Resuscitation 2015; 90:150-7. [PMID: 25576438 DOI: 10.1016/j.resuscitation.2014.12.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/21/2014] [Accepted: 12/19/2014] [Indexed: 11/17/2022]
Abstract
AIM The aim of this study was to analyze the relationship between the partial pressure of arterial oxygen (PaO2) and in-hospital (IH) mortality in children after cardiac arrest (CA) using the conventional cutoff analysis, which was compared with the cumulative analysis, a new method in PaO2 analysis. Additionally, we analyzed this relationship for children with and without mild therapeutic hypothermia (MTH; 32-34 °C). METHODS This observational cohort study included all children (aged >28 days) with CA and return of spontaneous circulation (ROSC) between 2002 and 2011. The first research question was the association between PaO2 and IH mortality after ROSC. This was analyzed for three hyperoxia cutoff values, and for three time intervals using the cumulative PaO2 determined with the area under the curve (AUC). For the second research question, these analyses were repeated for children with and without MTH. RESULTS Of the 200 patients included (median age 2.6 years), 84 (42%) survived to hospital discharge. Fifty-eight children (29%) were treated with MTH. With the cutoff analysis and the AUC analysis we found no relationship between PaO2 and IH mortality. However, analysis of the MTH-group showed a lower IH mortality in children with high cumulative PaO2 levels on two of the three time intervals. Multivariable analysis showed significantly higher odds of survival (0.643 (95% confidence interval (CI) 0.424-0.976), 0.554 (95% CI 0.335-0.916)). CONCLUSIONS Cumulative PaO2 analysis showed that the IH mortality is significantly lower in MTH-treated children with high PaO2 levels. The effects of cumulative PaO2 on the outcome need to be studied further, and this will help us to achieve individualized goal-directed therapy.
Collapse
Affiliation(s)
- Lennart van Zellem
- Erasmus MC - Sophia Children's Hospital, Intensive Care and Department of Pediatric Surgery, Rotterdam, The Netherlands
| | - Rogier de Jonge
- Erasmus MC - Sophia Children's Hospital, Department of Neonatology, Rotterdam, The Netherlands
| | | | - Irwin Reiss
- Erasmus MC - Sophia Children's Hospital, Department of Neonatology, Rotterdam, The Netherlands
| | - Dick Tibboel
- Erasmus MC - Sophia Children's Hospital, Intensive Care and Department of Pediatric Surgery, Rotterdam, The Netherlands
| | - Corinne Buysse
- Erasmus MC - Sophia Children's Hospital, Intensive Care and Department of Pediatric Surgery, Rotterdam, The Netherlands.
| |
Collapse
|
29
|
He HW, Liu DW, Long Y, Wang XT. Mind the influence of arterial oxygen tension on central venous oxygen saturation. Crit Care 2014; 18:569. [PMID: 25323159 PMCID: PMC4422222 DOI: 10.1186/s13054-014-0569-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Huai-wu He
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 1 shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Da-wei Liu
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 1 shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Yun Long
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 1 shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Xiao-ting Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 1 shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
30
|
Ridler N, Plumb J, Grocott M. Oxygen Therapy in Critical Illness: Friend or Foe? A Review of Oxygen Therapy in Selected Acute Illnesses. J Intensive Care Soc 2014. [DOI: 10.1177/175114371401500303] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In recent years there has been a gradual shift away from using uncontrolled high concentrations of inspired oxygen in some acute illnesses. Oxygen is perhaps the most frequently used drug in medicine, and understanding the balance of benefits and harms is essential knowledge for all anaesthetists and intensivists. While current teaching and practice emphasise avoiding hypoxaemia over concerns about hyperoxaemia, it may transpire that oxygen excess is more harmful than previously thought. As with many interventions in intensive care medicine, striving to achieve physiological normality may sometimes do more harm than good, and tolerance of abnormal values may on occasion be in patients' best interests. Incorporating Single Best Answers (see page 197: answers on page 237).
Collapse
|
31
|
Sadowitz B, Roy S, Gatto LA, Habashi N, Nieman G. Lung injury induced by sepsis: lessons learned from large animal models and future directions for treatment. Expert Rev Anti Infect Ther 2014; 9:1169-78. [DOI: 10.1586/eri.11.141] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
L’oxygénothérapie dans tous ces états ou comment administrer l’oxygène en 2014 ? MEDECINE INTENSIVE REANIMATION 2014. [DOI: 10.1007/s13546-014-0839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Wepler M, Hafner S, Scheuerle A, Reize M, Gröger M, Wagner F, Simon F, Matallo J, Gottschalch F, Seifritz A, Stahl B, Matejovic M, Kapoor A, Möller P, Calzia E, Georgieff M, Wachter U, Vogt JA, Thiemermann C, Radermacher P, McCook O. Effects of the PPAR-β/δ agonist GW0742 during resuscitated porcine septic shock. Intensive Care Med Exp 2013; 1:28. [PMID: 26266797 PMCID: PMC4796150 DOI: 10.1186/2197-425x-1-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 12/28/2022] Open
Abstract
Background In un-resuscitated rodent models of septic shock, the peroxisome proliferator-activated receptor-β/δ (PPAR-β/δ) agonist GW0742 improved visceral organ function. Therefore, we tested the hypothesis whether GW0742 would attenuate kidney injury during long-term, resuscitated, porcine polymicrobial septic shock. Methods Six, 12, and 18 h after the induction of fecal peritonitis by inoculation of autologous feces, anesthetized, mechanically ventilated, and instrumented male pigs with pre-existing atherosclerosis resulting from familial hypercholesteremia and atherogenic diet randomly received either vehicle (dimethyl sulfoxide, n = 12) or GW0742 (n = 10). Resuscitation comprised hydroxyethyl starch and norepinephrine infusion titrated to maintain mean arterial pressure at baseline values. Results Despite aggressive fluid resuscitation, fecal peritonitis was associated with arterial hypotension requiring norepinephrine infusion, ultimately resulting in progressive lactic acidosis and acute kidney injury. GW0742 did not beneficially affect any parameter of systemic and regional hemodynamics, gas exchange, metabolism, or organ function. The parameters of inflammation, oxidative and nitrosative stress, and organ injury (post-mortem analysis for histomorphology and markers of apoptosis) were not influenced either. Immunohistochemistry of pre-shock kidney biopsies from a previous study in this swine strain showed markedly lower PPAR-β/δ receptor expression than in healthy animals. Conclusions In swine with pre-existing atherosclerosis, the PPAR-β/δ agonist GW0742 failed to attenuate septic shock-induced circulatory failure and kidney dysfunction, most likely due to reduced receptor expression coinciding with cardiovascular and metabolic co-morbidity. Electronic supplementary material The online version of this article (doi:10.1186/2197-425X-1-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin Wepler
- Sektion Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Klinik für Anästhesiologie, Universitätsklinikum, Helmholtzstrasse 8-1, Ulm, 89081, Germany,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The objective of this study was to determine the effects of a TREM (triggering receptor expressed on myeloid cells 1)-like transcript 1-derived peptide (LR12) administration during septic shock in pigs. Two hours after induction of a fecal peritonitis, anesthetized and mechanically ventilated adult male minipigs were randomized to receive LR12 (n = 6) or its vehicle alone (normal saline, n = 5). Two animals were operated and instrumented without the induction of peritonitis and served as controls (sham). Resuscitation was achieved using hydroxyethyl starch (up to 20 mL/kg) and norepinephrine infusion (up to 10 μg/kg per minute). Hemodynamic parameters were continuously recorded. Gas exchange, acid-base status, organ function, and plasma cytokines concentrations were evaluated at regular intervals until 24 h after the onset of peritonitis when animals were killed under anesthesia. Peritonitis induced profound hypotension, myocardial dysfunction, lactic acidosis, coagulation abnormalities, and multiple organ failure. These disorders were largely attenuated by LR12. In particular, cardiovascular failure was dampened as attested by a better mean arterial pressure, cardiac index, cardiac power index, and S(v)O(2), despite lower norepinephrine requirements. LR12, a TREM-like transcript 1-derived peptide, exhibits salutary properties during septic shock in adult minipigs.
Collapse
|
35
|
Combination therapy with molecular hydrogen and hyperoxia in a murine model of polymicrobial sepsis. Shock 2013; 38:656-63. [PMID: 23160520 DOI: 10.1097/shk.0b013e3182758646] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sepsis is the most common cause of death in intensive care units. Some studies have found that hyperoxia may be beneficial to sepsis. However, the clinical use of hyperoxia is hindered by concerns that it could exacerbate organ injury by increasing free radical formation. Recently, it has been suggested that molecular hydrogen (H2) at low concentration can exert a therapeutic antioxidant activity and effectively protect against sepsis by reducing oxidative stress. Therefore, we hypothesized that combination therapy with H2 and hyperoxia might afford more potent therapeutic strategies for sepsis. In the present study, we found that inhalation of H2 (2%) or hyperoxia (98%) alone improved the 14-day survival rate of septic mice with moderate cecal ligation and puncture (CLP) from 40% to 80% or 70%, respectively. However, combination therapy with H2 and hyperoxia could increase the 14-day survival rate of moderate CLP mice to 100% and improve the 7-day survival rate of severe CLP mice from 0% to 70%. Moreover, moderate CLP mice showed significant organ damage characterized by the increases in lung myeloperoxidase activity, lung wet-to-dry weight ratio, protein concentration in bronchoalveolar lavage, serum biochemical parameters (alanine aminotransferase, aspartate aminotransferase, creatinine, and blood urea nitrogen), and organ histopathological scores (lung, liver, and kidney), as well as the decrease in PaO2/FIO2 ratio at 24 h, which was attenuated by either H2 or hyperoxia alone. However, combination therapy with H2 and hyperoxia had a more beneficial effect against lung, liver, and kidney damage of moderate or severe CLP mice. Furthermore, we found that the beneficial effect of this combination therapy was associated with the decreased levels of oxidative product (8-iso-prostaglandin F2α), increased activities of antioxidant enzymes (superoxide dismutase and catalase) and anti-inflammatory cytokine (interleukin 10), and reduced levels of proinflammatory cytokines (high-mobility group box 1 and tumor necrosis factor α) in serum and tissues. Therefore, combination therapy with H2 and hyperoxia provides enhanced therapeutic efficacy via both antioxidant and anti-inflammatory mechanisms and might be potentially a clinically feasible approach for sepsis.
Collapse
|
36
|
Fernandez R, Gili G, Villagra A, Lopez-Aguilar J, Artigas A. Assessment of the inflammatory effect of low-dose oxygen in mechanically ventilated patients. Intensive Care Med 2013; 39:711-6. [PMID: 23296630 DOI: 10.1007/s00134-012-2801-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 11/05/2012] [Indexed: 11/26/2022]
Abstract
PURPOSE Although low doses of oxygen (FiO2 <0.50) are considered nontoxic, recent studies have shown that even lower doses increase pulmonary inflammatory mediators. We aimed to evaluate the acute effects of reducing FiO2 on pulmonary inflammation in mechanically ventilated patients without respiratory failure. METHODS This study was a prospective, single-center crossover study in a medical/surgical intensive care unit at a university hospital. Hemodynamically stable patients under mechanical ventilation for >24 h without severe respiratory failure (PaO2/FiO2 >250). A basal FiO2 of 0.40 was reduced to 0.21 provided SpO2 remained higher than 90 %. Patients who could not tolerate the reduction in FiO2 to 0.21 were excluded. RESULTS We screened 40 patients, but only 28 (70 %) tolerated FiO2 0.21. We measured common clinical variables and inflammatory mediators in plasma and in exhaled breath condensate (EBC) at the end of three 4-h periods: (1) basal (FiO2 0.40), (2) after FiO2 reduction to 0.21, and (3) after returning FiO2 0.40. We used one-way ANOVA for repeated measurements with FiO2 as the grouping variable. Median values of inflammatory mediators in EBC showed nonsignificant changes among the three periods: NO2 + NO3 17.1, 14.1 and 11.0 μmol/L (p = 0.2), and 8-isoprostane 4.4, 8.2 and 5.3 pg/ml (p = 0.6) for the three periods, respectively. Plasma levels also showed nonsignificant changes during the period of the study: NO2 + NO3 12.6, 16.3 and 15.0 μmol/L (p = 0.9), TNFα 13.5, 18.0 and 14.5 pg/ml (p = 0.8), IL-4 12.9, 18.7 and 23.9 pg/ml (p = 0.1), IL-6 50.9, 35.1 and 28.3 pg/ml (p = 0.6), and IL-10 15.2, 22.2 and 22.2 pg/ml (p = 0.7) for the three periods, respectively. CONCLUSION FiO2 0.40 in mechanically ventilated patients without severe respiratory failure did not increase systemic or pulmonary inflammation.
Collapse
Affiliation(s)
- Rafael Fernandez
- Intensive Care Unit, Hospital S. Joan de Deu - Fundacio Althaia, CIBERES, Universitat Internacional de Catalunya, c/ Dr Joan Soler 1, 08242, Manresa, Spain.
| | | | | | | | | |
Collapse
|
37
|
Effect of treatment delay on disease severity and need for resuscitation in porcine fecal peritonitis. Crit Care Med 2012; 40:2841-9. [DOI: 10.1097/ccm.0b013e31825b916b] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Zsikai B, Bizánc L, Sztányi P, Vida G, Nagy E, Jiga L, Ionac M, Erces D, Boros M, Kaszaki J. [Clinically relevant sepsis model in minipigs]. Magy Seb 2012; 65:198-204. [PMID: 22940388 DOI: 10.1556/maseb.65.2012.4.5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Our aim was to develop a large animal model of sepsis induced by fecal peritonitis, which reproduces the characteristic macrohemodynamic, microcirculatory and inflammatory changes seen in human sepsis. MATERIALS AND METHODS Anesthetized minipigs were subjected to fecal peritonitis (n = 9; 0.5 g/kg i.p. autofeces) or sham-operation (i.p. saline, n = 6). Invasive hemodynamic monitoring was started with regular blood gas analyses between the 15-24 hr of the insult. Sublingual microcirculation was characterized by red blood cell velocity changes (with orthogonal polarization spectral imaging), and the extravascular lung water index (EVLWI) was measured. The plasma levels of big-endothelin (big-ET) and high-mobility group box protein-1 (HMGB1) were determined from venous blood samples. RESULTS The mean arterial pressure gradually decreased below 70 mmHg in septic animals, while the heart rate and cardiac output increased constantly. In spite of the hyperdynamic reaction, significant elevation of the EVLWI was observed, while the sublingual microcirculation deteriorated, as compared with the control group. The big-ET and HMGB1 plasma concentrations were significantly elevated between 6-24 hr of peritonitis. CONCLUSION The in vivo data suggest that our fecal peritonitis-induced experimental sepsis model is of clinical relevance, and may play useful roles in the development of novel, sepsis-related therapies.
Collapse
Affiliation(s)
- Bettina Zsikai
- Szegedi Tudományegyetem, Általános Orvostudományi Kar Sebészeti Műtéttani Intézet 6720 Szeged Pécsi u. 6
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Abstract
We evaluated the effects of hyperoxia on pulmonary inflammatory changes in sepsis induced by cecal ligation and puncture (CLP) in rats. Seven groups were studied: sham-operated rats breathing air for 20 or 48 h; CLP breathing air for 20 or 48 h; and CLP + 100% oxygen for 20 h, or 70% oxygen for 48 h, or 100% oxygen intermittently (6 h/d) for 48 h. Video microscopy was used to monitor lung macromolecular leak, microvascular flow velocity, and shear rates, and lung morphometry was used for leukocyte infiltration and solid tissue area. Cell counts, tumor necrosis factor α, and nitrites were determined in peripheral blood and lung lavage fluid. Expression of adhesion molecules in blood leukocytes was evaluated by flow cytometry. Cecal ligation and puncture induced inflammation manifested in leukopenia, left shift, thrombocytopenia, increased expression of L selectin and CD11, increased serum and lavage fluid tumor necrosis factor α and leukocytes, and increased lung tissue area, macromolecular leak, and sequestration of leukocytes. Inhalation of 100% oxygen for 20 h increased nitrites (P < 0.01) and decreased leukocyte count in lavage fluid (P < 0.05) and attenuated lung macromolecular leak and changes in solid tissue area (P < 0.01). Inhalation of 70% oxygen (48 h) attenuated expression of adhesion molecules (P < 0.001) but failed to attenuate markers of lung inflammation. In contrast, intermittent 100% oxygen exerted favorable effects on markers of inflammation, attenuated leukocyte expression of L selectin and CD11 (P < 0.01), decreased pulmonary sequestration of leukocytes (P < 0.001), and ameliorated changes in macromolecular leak (P < 0.01) and lung solid tissue area (P < 0.05). Our data support the beneficial effects of safe subtoxic regimens of normobaric hyperoxia on the systemic and pulmonary inflammatory response following CLP.
Collapse
|
41
|
β2-adrenergic receptor antagonist butoxamine partly abolishes the protection of 100% oxygen treatment against zymosan-induced generalized inflammation in mice. Shock 2012; 36:272-8. [PMID: 21617579 DOI: 10.1097/shk.0b013e31822413a4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have demonstrated that 100% oxygen inhalation is beneficial to zymosan-induced generalized inflammation, and reactive oxygen species may be involved in the protection of oxygen treatment. Other investigators suggest that reactive oxygen species may modulate the sympathetic nervous system activity and β2-adrenergic receptor (β2AR)-mediated pathway. Moreover, studies have demonstrated that β2AR agonists are beneficial to sepsis. Therefore, we assessed the effects of β2AR antagonist butoxamine on the protection of oxygen treatment against zymosan-induced generalized inflammation in mice. Mice were given oxygen treatment by exposure to 100% oxygen for 3 h starting at 4 and 12 h after zymosan injection, respectively. In the mortality study, survival was monitored for 7 days after zymosan injection in mice. At 24 h after zymosan injection, mice were killed, and blood sample and organs were harvested for analysis. We observed that 100% oxygen treatment prevented the abnormal changes in organ histopathology, lactate dehydrogenase and C-reactive protein in serum, inflammatory cytokines in serum and tissue, and arterial blood gas analysis and improved the survival rate in zymosan-challenged mice. We found that pretreatment with β2AR antagonist butoxamine partly abolished the protection of 100% oxygen inhalation. We also showed that zymosan induced the increase in serum 3'-5'-cyclic adenosine monophosphate (cAMP) and the decrease in tissue cAMP. However, oxygen treatment increased the cAMP levels in both serum and tissue, which were partly abolished by pretreatment with butoxamine. Thus, 100% oxygen inhalation may protect against zymosan-induced generalized inflammation in mice partly through activation of β2AR pathway and subsequently enhance cAMP levels in both serum and tissue.
Collapse
|
42
|
Zhang Z, Bai X, Du K, Huang Y, Wang W, Zhao Y, Pei Y, Mu J, Han H, Hu S, Li S, Dong H, Lu Y, Hou L, Xiong L. Activation of cholinergic anti-inflammatory pathway contributes to the protective effects of 100% oxygen inhalation on zymosan-induced generalized inflammation in mice. J Surg Res 2011; 174:e75-83. [PMID: 22261596 DOI: 10.1016/j.jss.2011.10.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 10/14/2011] [Accepted: 10/26/2011] [Indexed: 10/15/2022]
Abstract
BACKGROUND The 100% oxygen inhalation has been demonstrated to have a protective effect on mice with zymosan-induced generalized inflammation. However, the underlying mechanism is largely unknown. The present study was designed to explore the role of the cholinergic anti-inflammatory pathway in this animal model. METHODS Oxygen inhalation was given to mice at 4 and 12 h after zymosan injection. One group of mice underwent vagotomy 7 d before zymosan injection. The other two groups of mice either received nicotinic acetylcholine receptor (nAChR) antagonist mecamylamine, or α7 nicotinic acetylcholine receptor (α7nAChR) antagonist methyllycaconitine 30 min before oxygen was given. RESULTS The 100% oxygen treatment significantly decreased the serum level of TNF-α and increased the serum level of IL-10. The pathologic changes of the heart, lung, liver, and kidney were attenuated, as well as the dysfunction of liver and kidney. The 7-d survival rate of zymosan-challenged mice was also improved. Conversely, all these protective effects caused by pure oxygen treatment were abolished in those animals that received anti-cholinergic treatments. CONCLUSIONS The cholinergic anti-inflammatory pathway may be involved in the 100% oxygen protective mechanism against zymosan-induced generalized inflammation in mice.
Collapse
Affiliation(s)
- Zishen Zhang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Oxygen (O(2)) is the most frequently used pharmaceutical in anesthesiology and intensive care medicine: Every patient receives O(2) during surgery or during a stay in the intensive care unit. Hypoxia and hypoxemia of various origins are the most typical indications which are mentioned in the prescribing information of O(2): the goal of the administration of O(2) is either an increase of arterial O(2) partial pressure in order to treat hypoxia, or an increase of arterial O(2) content in order to treat hypoxemia. Most of the indications for O(2) administration were developed in former times and have seldom been questioned from that time on as the short-term side-effects of O(2) are usually considered to be of minor importance. As a consequence only a small number of controlled randomized studies exist, which can demonstrate the efficacy of O(2) in terms of evidence-based medicine. However, there is an emerging body of evidence that specific side-effects of O(2) result in a deterioration of the microcirculation. The administration of O(2) induces arteriolar constriction which will initiate a decline of regional O(2) delivery and subsequently a decline of tissue oxygenation. The aim of the manuscript presented is to discuss the significance of O(2) as a pharmaceutical in the clinical setting.
Collapse
|
44
|
Singer M, Matthay MA. Clinical review: Thinking outside the box--an iconoclastic view of current practice. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2011; 15:225. [PMID: 21888690 PMCID: PMC3387582 DOI: 10.1186/cc10245] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many advances in medicine have been achieved through challenging established dogma with revolutionary thought and novel practices. Each and every specialty is reinvigorated by regular re-evaluation of processes and practices in the light of new evidence and fresh conceptualization. Challenge can galvanize fresh thinking and new approaches, yet may also reinforce and strengthen traditional paradigms if the prevailing orthodoxy is subsequently revalidated. This article is a synopsis of a roundtable meeting held in Brussels in March 2010 designed specifically to confront doctrine with reasoned scientific argument, and to propose new ideas for advancing critical care practices and outcomes.
Collapse
Affiliation(s)
- Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Department of Medicine, University College London, London WC1E 6BT, UK.
| | | |
Collapse
|
45
|
Simsek K, Ay H, Topal T, Ozler M, Uysal B, Ucar E, Acikel CH, Yesilyurt O, Korkmaz A, Oter S, Yildiz S. Long-term exposure to repetitive hyperbaric oxygen results in cumulative oxidative stress in rat lung tissue. Inhal Toxicol 2011; 23:166-72. [PMID: 21391785 DOI: 10.3109/08958378.2011.558528] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Despite its known benefits, hyperbaric oxygen (HBO) is also reported to enhance the production of reactive oxygen species and can cause oxidative stress in several tissues. Previous studies had shown that HBO-induced oxidative stress is directly proportional to both its exposure pressure and duration. Nevertheless, these studies were usually performed with single-session HBO exposure but its clinical use commonly depends on long-term exposure periods. OBJECTIVE To clarify the oxidative effect of long-term repetitive HBO in the lung tissue of rats. MATERIALS AND METHODS Male Sprague-Dawley rats were divided into six study groups exposed to consecutive HBO sessions (2.8 atm/90 min) for 5, 10, 15, 20, 30, and 40 days. Animals were sacrificed 24 h after the last HBO session. An additional control group was set to obtain normal data. Lung malondialdehyde (MDA) and carbonylated protein (PCC) levels were determined as measures of oxidative stress along with the activities of the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase. RESULTS None of the measured parameters showed any changes among the groups exposed to 5-15 HBO sessions. However, MDA, PCC, and SOD were found to be significantly increased in the 20 to 40 session groups. DISCUSSION AND CONCLUSION These results indicate that repetitive treatment with HBO may cause oxidative stress in critical tissues including the lung. Although HBO-mediated free radicals are accepted to be responsible for the benefits of this therapeutic modality, especially in cases with prolonged exposure, possible injurious effects of supranormal values of bio-oxidative products need to be considered.
Collapse
Affiliation(s)
- Kemal Simsek
- Gulhane Military Medical Academy, Department of Undersea and Hyperbaric Medicine, Ankara, Turkey
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
The impact of resuscitated fecal peritonitis on the expression of the hepatic bile salt transporters in a porcine model. Shock 2011; 34:508-16. [PMID: 20357697 DOI: 10.1097/shk.0b013e3181dfc4b4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sepsis is often associated with cholestatic liver dysfunction caused by changes in the expression profile of hepatic bile salt transporters. However, in rodent endotoxin models, the role of ischemic hepatitis caused by liver hypoperfusion cannot be delineated. We hypothesized that hepatocytes change their expression pattern of bile salt transporters during early severe sepsis despite adequate resuscitation. Fifteen anesthetized and instrumented pigs were randomized to either fecal peritonitis (n = 8) or control (n = 7). Resuscitation was performed by hydroxyethyl starch and norepinephrine infusion. Hemodynamic parameters and markers of cholestatic and ischemic hepatic dysfunction were recorded. At baseline and after 21 h, messenger RNA (mRNA) and protein expression of bile salt transporters was determined by quantitative real-time polymerase chain reaction and immunohistochemistry, respectively, on in vivo liver biopsies. All resuscitated septic pigs developed a normotensive hyperdynamic circulation with increased portal flow. After 21 h of peritonitis, no signs of biochemical or histological cholestasis were present. Na-taurocholate cotransporting polypeptide and bile salt export pump mRNA were downregulated by 83% (P = 0.001) and 67% (P = 0.001), respectively, in comparison with controls, whereas multidrug resistance-associated protein 4 (MRP4) mRNA was upregulated by 85% (P = 0.02). Bile salt export pump and MRP2 staining were downregulated in septic pigs. During early porcine fluid-resuscitated sepsis, hepatic basolateral influx (Na-taurocholate cotransporting polypeptide) and canalicular efflux (bile salt export pump) of bile salts were downregulated without hemodynamic signs of hepatic hypoperfusion or biochemical signs of cholestasis. In parallel, the basolateral escape transport (MRP4) was markedly upregulated, possibly as an early adaptive response to counteract hepatocellular accumulation of toxic bile acids.
Collapse
|
47
|
Abstract
The current practice of mechanical ventilation comprises the use of the least inspiratory O2 fraction associated with an arterial O2 tension of 55 to 80 mm Hg or an arterial hemoglobin O2 saturation of 88% to 95%. Early goal-directed therapy for septic shock, however, attempts to balance O2 delivery and demand by optimizing cardiac function and hemoglobin concentration, without making use of hyperoxia. Clearly, it has been well-established for more than a century that long-term exposure to pure O2 results in pulmonary and, under hyperbaric conditions, central nervous O2 toxicity. Nevertheless, several arguments support the use of ventilation with 100% O2 as a supportive measure during the first 12 to 24 hrs of septic shock. In contrast to patients without lung disease undergoing anesthesia, ventilation with 100% O2 does not worsen intrapulmonary shunt under conditions of hyperinflammation, particularly when low tidal volume-high positive end-expiratory pressure ventilation is used. In healthy volunteers and experimental animals, exposure to hyperoxia may cause pulmonary inflammation, enhanced oxidative stress, and tissue apoptosis. This, however, requires long-term exposure or injurious tidal volumes. In contrast, within the timeframe of a perioperative administration, direct O2 toxicity only plays a negligible role. Pure O2 ventilation induces peripheral vasoconstriction and thus may counteract shock-induced hypotension and reduce vasopressor requirements. Furthermore, in experimental animals, a redistribution of cardiac output toward the kidney and the hepato-splanchnic organs was observed. Hyperoxia not only reverses the anesthesia-related impairment of the host defense but also is an antibiotic. In fact, perioperative hyperoxia significantly reduced wound infections, and this effect was directly related to the tissue O2 tension. Therefore, we advocate mechanical ventilation with 100% O2 during the first 12 to 24 hrs of septic shock. However, controlled clinical trials are mandatory to test the safety and efficacy of this approach.
Collapse
|
48
|
Lauscher P, Kertscho H, Meissner A, Zacharowski K, Habler O, Meier J. Hyperoxic ventilation improves survival in pigs during endotoxaemia at the critical hemoglobin concentration. Resuscitation 2011; 82:473-80. [PMID: 21227565 DOI: 10.1016/j.resuscitation.2010.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 11/21/2010] [Accepted: 11/27/2010] [Indexed: 10/18/2022]
Abstract
AIM OF THE STUDY Recently it has been demonstrated that short term hyperoxic ventilation (HV) can improve glucose metabolism, reduce pulmonary and hepatic apoptosis, and improve gastrointestinal perfusion during acute sepsis. However, it is unknown whether additional O(2) improves survival. Therefore we investigated the effects of increased plasma O(2) on survival during extreme anaemia and concomitant endotoxaemia in order to quantify the efficacy of HV. METHODS Endotoxaemia (Salmonella abortus equi-LPS) was induced in 14 anesthetized pigs ventilated with room air (FiO(2)=0.21). Simultaneously, animals were haemodiluted by exchange of whole blood for 6% hydroxyethyl starch (200,000:0.5) until the individual critical hemoglobin concentration (Hb(crit)) was achieved (outermost limit of tissue oxygenation). Subsequently, animals were either ventilated with an FiO(2) of 0.21 (NOX, n=7) or an FiO(2) of 1.0 (HOX, n=7), and observed thereafter for 6 h without further intervention. RESULTS HV significantly prolonged survival time at Hb(crit) (NOX, 30 [27/35] min; HOX, 172 [111/235] min, p<0.05). In contrast to the NOX group, HV maintained MAP, and improved DO(2) and tissue oxygenation in the HOX group. CONCLUSION The improvement of survival, oxygen transport and tissue oxygenation seems to underline the efficacy of HV during endotoxaemia and concomitant acute anaemia. Further studies are needed to transfer these results into daily clinical practice.
Collapse
Affiliation(s)
- Patrick Lauscher
- Clinic of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Maybauer MO, Maybauer DM, Fraser JF, Szabo C, Westphal M, Kiss L, Horvath EM, Nakano Y, Herndon DN, Traber LD, Traber DL. Recombinant human activated protein C attenuates cardiovascular and microcirculatory dysfunction in acute lung injury and septic shock. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:R217. [PMID: 21110850 PMCID: PMC3220026 DOI: 10.1186/cc9342] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/15/2010] [Accepted: 11/26/2010] [Indexed: 12/19/2022]
Abstract
Introduction This prospective, randomized, controlled, experimental animal study looks at the effects of recombinant human activated protein C (rhAPC) on global hemodynamics and microcirculation in ovine acute lung injury (ALI) and septic shock, resulting from smoke inhalation injury. Methods Twenty-one sheep (37 ± 2 kg) were operatively prepared for chronic study and randomly allocated to either the sham, control, or rhAPC group (n = 7 each). The control and rhAPC groups were subjected to insufflation of four sets of 12 breaths of cotton smoke followed by instillation of live Pseudomonas aeruginosa into both lung lobes, according to an established protocol. Healthy sham animals were not subjected to the injury and received only four sets of 12 breaths of room air and instillation of the vehicle (normal saline). rhAPC (24 μg/kg/hour) was intravenously administered from 1 hour post injury until the end of the 24-hour experiment. Regional microvascular blood flow was analyzed using colored microspheres. All sheep were mechanically ventilated with 100% oxygen, and fluid resuscitated with lactated Ringer's solution to maintain hematocrit at baseline levels. Results The rhAPC-associated reduction in heart malondialdehyde (MDA) and heart 3-nitrotyrosine (a reliable indicator of tissue injury) levels occurred parallel to a significant increase in mean arterial pressure and to a significant reduction in heart rate and cardiac output compared with untreated controls that showed a typical hypotensive, hyperdynamic response to the injury (P < 0.05). In addition, rhAPC significantly attenuated the changes in microvascular blood flow to the trachea, kidney, and spleen compared with untreated controls (P < 0.05 each). Blood flow to the ileum and pancreas, however, remained similar between groups. The cerebral blood flow as measured in cerebral cortex, cerebellum, thalamus, pons, and hypothalamus, was significantly increased in untreated controls, due to a loss of cerebral autoregulation in septic shock. rhAPC stabilized cerebral blood flow at baseline levels, as in the sham group. Conclusions We conclude that rhAPC stabilized cardiovascular functions and attenuated the changes in visceral and cerebral microcirculation in sheep suffering from ALI and septic shock by reduction of cardiac MDA and 3-nitrotyrosine.
Collapse
Affiliation(s)
- Marc O Maybauer
- Department of Anesthesiology, Investigational Intensive Care Unit, The University of Texas Medical Branch and Shriners Burns Hospital for Children, 301 University Blvd, Galveston, TX 77555-0591, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|