1
|
Lee Y, Kamada N, Moon JJ. Oral nanomedicine for modulating immunity, intestinal barrier functions, and gut microbiome. Adv Drug Deliv Rev 2021; 179:114021. [PMID: 34710529 PMCID: PMC8665886 DOI: 10.1016/j.addr.2021.114021] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022]
Abstract
The gastrointestinal tract (GIT) affects not only local diseases in the GIT but also various systemic diseases. Factors that can affect the health and disease of both GIT and the human body include 1) the mucosal immune system composed of the gut-associated lymphoid tissues and the lamina propria, 2) the intestinal barrier composed of mucus and intestinal epithelium, and 3) the gut microbiota. Selective delivery of drugs, including antigens, immune-modulators, intestinal barrier enhancers, and gut-microbiome manipulators, has shown promising results for oral vaccines, immune tolerance, treatment of inflammatory bowel diseases, and other systemic diseases, including cancer. However, physicochemical and biological barriers of the GIT present significant challenges for successful translation. With the advances of novel nanomaterials, oral nanomedicine has emerged as an attractive option to not only overcome these barriers but also to selectively deliver drugs to the target sites in GIT. In this review, we discuss the GIT factors and physicochemical and biological barriers in the GIT. Furthermore, we present the recent progress of oral nanomedicine for oral vaccines, immune tolerance, and anti-inflammation therapies. We also discuss recent advances in oral nanomedicine designed to fortify the intestinal barrier functions and modulate the gut microbiota and microbial metabolites. Finally, we opine about the future directions of oral nano-immunotherapy.
Collapse
Affiliation(s)
- Yonghyun Lee
- Department of Pharmacy, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea; Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea.
| | - Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109 USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109 USA.
| |
Collapse
|
2
|
Ludvigsson J. Autoantigen Treatment in Type 1 Diabetes: Unsolved Questions on How to Select Autoantigen and Administration Route. Int J Mol Sci 2020; 21:E1598. [PMID: 32111075 PMCID: PMC7084272 DOI: 10.3390/ijms21051598] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Autoantigen treatment has been tried for the prevention of type 1 diabetes (T1D) and to preserve residual beta-cell function in patients with a recent onset of the disease. In experimental animal models, efficacy was good, but was insufficient in human subjects. Besides the possible minor efficacy of peroral insulin in high-risk individuals to prevent T1D, autoantigen prevention trials have failed. Other studies on autoantigen prevention and intervention at diagnosis are ongoing. One problem is to select autoantigen/s; others are dose and route. Oral administration may be improved by using different vehicles. Proinsulin peptide therapy in patients with T1D has shown possible minor efficacy. In patients with newly diagnosed T1D, subcutaneous injection of glutamic acid decarboxylase (GAD) bound to alum hydroxide (GAD-alum) can likely preserve beta-cell function, but the therapeutic effect needs to be improved. Intra-lymphatic administration may be a better alternative than subcutaneous administration, and combination therapy might improve efficacy. This review elucidates some actual problems of autoantigen therapy in the prevention and/or early intervention of type 1 diabetes.
Collapse
Affiliation(s)
- Johnny Ludvigsson
- Crown Princess Victoria Children´s Hospital and Div of Pediatrics, Dept of Biomedical and Clinical Sciences, Lnköping university, SE 58185 Linköping, Sweden
| |
Collapse
|
3
|
Kim NS, Torrez T, Langridge W. LPS enhances CTB-INSULIN induction of IDO1 and IL-10 synthesis in human dendritic cells. Cell Immunol 2019; 338:32-42. [PMID: 30910218 DOI: 10.1016/j.cellimm.2019.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/15/2019] [Accepted: 03/17/2019] [Indexed: 12/19/2022]
Abstract
Autoantigen-specific immunotherapy promises effective treatment for devastating tissue specific autoimmune diseases like multiple sclerosis (MS) and type 1 diabetes (T1D). Because activated dendritic cells (DCs) stimulate the differentiation of autoreactive T cells involved in the initiation of autoimmunity, blocking the activation of DCs may be an effective strategy for inhibiting tissue specific autoimmunity. Following this approach, immature DCs were shown to remain inactive after treatment with chimeric fusion proteins composed of the cholera toxin B subunit adjuvant linked to autoantigens like proinsulin (CTB-INS). Mass spectrometer analysis of human DCs treated with CTB-INS suggest that upregulation of the tryptophan catabolic enzyme indoleamine 2, 3-dioxygenase (IDO1) is responsible for inhibiting DC activation thereby resulting in a state of immunological tolerance within the DC. Here we show that the fusion protein CTB-INS inhibits human monocyte derived DC (moDC) activation through stimulation of IDO1 biosynthesis and that the resultant state of DC tolerance can be further enhanced by the presence of residual E. coli lipopolysaccharide (LPS) present in partially purified CTB-INS preparations. Additional experiments showed that LPS enhancement of DC tolerance was dependent upon stimulation of IDO1 biosynthesis. LPS stimulation of increased levels of IDO1 in the DC resulted in increased secretion of kynurenines, tryptophan degradation products known to suppress DC mediated pro-inflammatory T cell differentiation and to stimulate the proliferation of regulatory T cells (Tregs). Further, the presence of LPS in CTB-INS treated DCs stimulated the biosynthesis of costimulatory factors CD80 and CD86 but failed to upregulate maturation factor CD83, suggesting CTB-INS treated DCs may be maintained in a state of semi-activation. While treatment of moDCs with increasing amounts of LPS free CTB-INS was shown to increase DC secretion of the anti-inflammatory cytokine IL-10, the presence of residual LPS in partially purified CTB-INS preparations dramatically increased IL-10 secretion, suggesting that CTB-INS may enhance DC mediated immunological tolerance by stimulating the proliferation of anti-inflammatory T cells. While the extraction of LPS from bacterial generated CTB-INS may remove additional unknown factors that may contribute to the regulation of IDO1 levels, together, our experimental data suggest that LPS stimulates the ability of CTB-INS to induce IDO1 and IL-10 important factors required for establishment of a state of functional immunological tolerance in human DCs. Regulation of the ratio of LPS to CTB-INS may prove to be an effective method for optimization of readily available "off the shelf" CTB-INS mediated immune-therapy for tissue specific autoimmune diseases including type 1 diabetes.
Collapse
Affiliation(s)
- Nan-Sun Kim
- Division of Biochemistry, Center for Health Disparity and Molecular Medicine, Loma Linda University, School of Medicine, Loma Linda, CA 92354, United States; National Institute of Horticultural & Herbal Science (NIHHS), Rural Development Administration (RDA), Wanju 55365, Republic of Korea; Department of Molecular Biology, Chonbuk National University, Dukjindong 664-14, Jeonju, Jeollabuk-do 561-756, Republic of Korea
| | - Timothy Torrez
- Division of Biochemistry, Center for Health Disparity and Molecular Medicine, Loma Linda University, School of Medicine, Loma Linda, CA 92354, United States
| | - William Langridge
- Division of Biochemistry, Center for Health Disparity and Molecular Medicine, Loma Linda University, School of Medicine, Loma Linda, CA 92354, United States.
| |
Collapse
|
4
|
Kim NS, Mbongue JC, Nicholas DA, Esebanmen GE, Unternaehrer JJ, Firek AF, Langridge WHR. Chimeric Vaccine Stimulation of Human Dendritic Cell Indoleamine 2, 3-Dioxygenase Occurs via the Non-Canonical NF-κB Pathway. PLoS One 2016; 11:e0147509. [PMID: 26881431 PMCID: PMC4755608 DOI: 10.1371/journal.pone.0147509] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/05/2016] [Indexed: 11/19/2022] Open
Abstract
A chimeric protein vaccine composed of the cholera toxin B subunit fused to proinsulin (CTB-INS) was shown to suppress type 1 diabetes onset in NOD mice and upregulate biosynthesis of the tryptophan catabolic enzyme indoleamine 2, 3-dioxygenase (IDO1) in human dendritic cells (DCs). Here we demonstrate siRNA inhibition of the NF-κB-inducing kinase (NIK) suppresses vaccine-induced IDO1 biosynthesis as well as IKKα phosphorylation. Chromatin immunoprecipitation (ChIP) analysis of CTB-INS inoculated DCs showed that RelB bound to NF-κB consensus sequences in the IDO1 promoter, suggesting vaccine stimulation of the non-canonical NF-κB pathway activates IDO1 expression in vivo. The addition of Tumor Necrosis Factor Associated Factors (TRAF) TRAF 2, 3 and TRAF6 blocking peptides to vaccine inoculated DCs was shown to inhibit IDO1 biosynthesis. This experimental outcome suggests vaccine activation of the TNFR super-family receptor pathway leads to upregulation of IDO1 biosynthesis in CTB-INS inoculated dendritic cells. Together, our experimental data suggest the CTB-INS vaccine uses a TNFR-dependent signaling pathway of the non-canonical NF-κB signaling pathway resulting in suppression of dendritic cell mediated type 1 diabetes autoimmunity.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Autoimmunity/drug effects
- Base Sequence
- Cholera Toxin/biosynthesis
- Cholera Toxin/genetics
- Cholera Toxin/immunology
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/pathology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/therapy
- Gene Expression Regulation
- Humans
- I-kappa B Kinase/genetics
- I-kappa B Kinase/immunology
- I-kappa B Kinase/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Mice
- Mice, Inbred NOD
- Molecular Sequence Data
- NF-kappa B/genetics
- NF-kappa B/immunology
- NF-kappa B/metabolism
- Proinsulin/biosynthesis
- Proinsulin/genetics
- Proinsulin/immunology
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/immunology
- Protein Serine-Threonine Kinases/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Signal Transduction
- TNF Receptor-Associated Factor 2/pharmacology
- TNF Receptor-Associated Factor 3/pharmacology
- TNF Receptor-Associated Factor 6/pharmacology
- Vaccines/administration & dosage
- NF-kappaB-Inducing Kinase
Collapse
Affiliation(s)
- Nan-Sun Kim
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Department of Molecular Biology, Chonbuk National University, Jeon-Ju, Republic of Korea
| | - Jacques C. Mbongue
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Loma Linda University School of Medicine, Department of Basic Sciences, Division of Physiology, Loma Linda, California, United States of America
| | - Dequina A. Nicholas
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Loma Linda University School of Medicine, Department of Basic Sciences, Division of Biochemistry, Loma Linda, California, United States of America
| | - Grace E. Esebanmen
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Loma Linda University School of Medicine, Department of Earth and Biological Sciences, Loma Linda, California, United States of America
| | - Juli J. Unternaehrer
- Loma Linda University School of Medicine, Department of Basic Sciences, Division of Biochemistry, Loma Linda, California, United States of America
| | - Anthony F. Firek
- Endocrinology Section, JL Pettis Memorial VA Medical Center, Loma Linda, California, United States of America
| | - William H. R. Langridge
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Loma Linda University School of Medicine, Department of Basic Sciences, Division of Biochemistry, Loma Linda, California, United States of America
| |
Collapse
|
5
|
Oral Administration of Silkworm-Produced GAD65 and Insulin Bi-Autoantigens against Type 1 Diabetes. PLoS One 2016; 11:e0147260. [PMID: 26783749 PMCID: PMC4718521 DOI: 10.1371/journal.pone.0147260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/02/2016] [Indexed: 01/27/2023] Open
Abstract
Induction of mucosal tolerance by oral administration of protein antigens is a potential therapeutic strategy for preventing and treating type 1 diabetes (T1D); however, the requirement for a large dosage of protein limits clinical applications because of the low efficacy. In this study, we generated a fusion protein CTB-Ins-GAD composed of CTB (cholera toxin B subunit), insulin, and three copies of GAD65 peptide 531–545, which were efficiently produced in silkworm pupae, to evaluate its protective effect against T1D. We demonstrate that oral administration of CTB-Ins-GAD suppressed T1D by up to 78%, which is much more effective than GAD65 single-antigen treatment. Strikingly, CTB-Ins-GAD enhance insulin- and GAD65-specific Th2-like immune responses, which repairs the Th1/Th2 imbalance and increases the number of CD4+CD25+Foxp3+ T cell and suppresses insulin- and GAD65-reactive spleen T lymphocyte proliferation and migration. Our results strongly suggest that the combined dual antigens promote the induction of oral tolerance, thus providing an effective and economic immunotherapy against T1D in combination with a silkworm bioreactor.
Collapse
|
6
|
Mbongue JC, Nicholas DA, Torrez TW, Kim NS, Firek AF, Langridge WHR. The Role of Indoleamine 2, 3-Dioxygenase in Immune Suppression and Autoimmunity. Vaccines (Basel) 2015; 3:703-29. [PMID: 26378585 PMCID: PMC4586474 DOI: 10.3390/vaccines3030703] [Citation(s) in RCA: 269] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 08/26/2015] [Accepted: 09/02/2015] [Indexed: 02/06/2023] Open
Abstract
Indoleamine 2, 3-dioxygenase (IDO) is the first and rate limiting catabolic enzyme in the degradation pathway of the essential amino acid tryptophan. By cleaving the aromatic indole ring of tryptophan, IDO initiates the production of a variety of tryptophan degradation products called "kynurenines" that are known to exert important immuno-regulatory functions. Because tryptophan must be supplied in the diet, regulation of tryptophan catabolism may exert profound effects by activating or inhibiting metabolism and immune responses. Important for survival, the regulation of IDO biosynthesis and its activity in cells of the immune system can critically alter their responses to immunological insults, such as infection, autoimmunity and cancer. In this review, we assess how IDO-mediated catabolism of tryptophan can modulate the immune system to arrest inflammation, suppress immunity to cancer and inhibit allergy, autoimmunity and the rejection of transplanted tissues. Finally, we examine how vaccines may enhance immune suppression of autoimmunity through the upregulation of IDO biosynthesis in human dendritic cells.
Collapse
Affiliation(s)
- Jacques C Mbongue
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| | - Dequina A Nicholas
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| | | | - Nan-Sun Kim
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
- Department of Molecular Biology, Chonbuk National University, Jeon-Ju 54896, Korea.
| | - Anthony F Firek
- Endocrinology Section, JL Pettis Memorial VA Medical Center, Loma Linda, CA 92357, USA.
| | - William H R Langridge
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|
7
|
Mbongue JC, Nicholas DA, Zhang K, Kim NS, Hamilton BN, Larios M, Zhang G, Umezawa K, Firek AF, Langridge WHR. Induction of indoleamine 2, 3-dioxygenase in human dendritic cells by a cholera toxin B subunit-proinsulin vaccine. PLoS One 2015; 10:e0118562. [PMID: 25714914 PMCID: PMC4340906 DOI: 10.1371/journal.pone.0118562] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/20/2015] [Indexed: 12/28/2022] Open
Abstract
Dendritic cells (DC) interact with naïve T cells to regulate the delicate balance between immunity and tolerance required to maintain immunological homeostasis. In this study, immature human dendritic cells (iDC) were inoculated with a chimeric fusion protein vaccine containing the pancreatic β-cell auto-antigen proinsulin linked to a mucosal adjuvant the cholera toxin B subunit (CTB-INS). Proteomic analysis of vaccine inoculated DCs revealed strong up-regulation of the tryptophan catabolic enzyme indoleamine 2, 3-dioxygenase (IDO1). Increased biosynthesis of the immunosuppressive enzyme was detected in DCs inoculated with the CTB-INS fusion protein but not in DCs inoculated with proinsulin, CTB, or an unlinked combination of the two proteins. Immunoblot and PCR analyses of vaccine treated DCs detected IDO1mRNA by 3 hours and IDO1 protein synthesis by 6 hours after vaccine inoculation. Determination of IDO1 activity in vaccinated DCs by measurement of tryptophan degradation products (kynurenines) showed increased tryptophan cleavage into N-formyl kynurenine. Vaccination did not interfere with monocytes differentiation into DC, suggesting the vaccine can function safely in the human immune system. Treatment of vaccinated DCs with pharmacological NF-κB inhibitors ACHP or DHMEQ significantly inhibited IDO1 biosynthesis, suggesting a role for NF-κB signaling in vaccine up-regulation of dendritic cell IDO1. Heat map analysis of the proteomic data revealed an overall down-regulation of vaccinated DC functions, suggesting vaccine suppression of DC maturation. Together, our experimental data indicate that CTB-INS vaccine induction of IDO1 biosynthesis in human DCs may result in the inhibition of DC maturation generating a durable state of immunological tolerance. Understanding how CTB-INS modulates IDO1 activity in human DCs will facilitate vaccine efficacy and safety, moving this immunosuppressive strategy closer to clinical applications for prevention of type 1 diabetes autoimmunity.
Collapse
Affiliation(s)
- Jacques C. Mbongue
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
- Loma Linda University School of Medicine, Department of Basic Sciences, Division of Physiology, Loma Linda, CA, United States of America
| | - Dequina A. Nicholas
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
- Mass Spectrometer Core Facility, Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda University School of Medicine, Department of Basic Sciences, Loma Linda, CA, United States of America
| | - Kangling Zhang
- Mass Spectrometer Core Facility, Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda University School of Medicine, Department of Basic Sciences, Loma Linda, CA, United States of America
- Department of Pharmacology and Toxicology, School of Medicine, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Nan-Sun Kim
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
- Mass Spectrometer Core Facility, Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda University School of Medicine, Department of Basic Sciences, Loma Linda, CA, United States of America
- Department of Molecular Biology, Chonbuk National University, Jeon-Ju, Republic of Korea
| | - Brittany N. Hamilton
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
- Loma Linda University School of Medicine, Department of Basic Sciences, Division of Microbiology and Molecular Genetics, Loma Linda, CA, United States of America
| | - Marco Larios
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
| | - Guangyu Zhang
- Mass Spectrometer Core Facility, Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda University School of Medicine, Department of Basic Sciences, Loma Linda, CA, United States of America
| | - Kazuo Umezawa
- Aichi Medical University, School of Medicine, Department of Molecular Target Medicine Screening, Nagakute, Aichi, Japan
| | - Anthony F. Firek
- Endocrinology Section, JL Pettis Memorial VA Medical Center, Loma Linda, CA, United States of America
| | - William H. R. Langridge
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States of America
- Mass Spectrometer Core Facility, Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda University School of Medicine, Department of Basic Sciences, Loma Linda, CA, United States of America
- * E-mail:
| |
Collapse
|
8
|
Persistent suppression of type 1 diabetes by a multicomponent vaccine containing a cholera toxin B subunit-autoantigen fusion protein and complete Freund's adjuvant. Clin Dev Immunol 2013; 2013:578786. [PMID: 24319466 PMCID: PMC3844183 DOI: 10.1155/2013/578786] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/24/2013] [Accepted: 08/26/2013] [Indexed: 11/29/2022]
Abstract
Data presented here demonstrate multifunctional vaccination strategies that harness vaccinia virus mediated delivery of a gene encoding an immunoenhanced diabetes autoantigen in combination with complete Freund's adjuvant (CFA) that can maintain safe and durable immunologic homeostasis in NOD mice. Systemic coinoculation of prediabetic mice with recombinant vaccinia virus rVV-CTB::GAD and undiluted or 10-fold diluted CFA demonstrated a significant decrease in hyperglycemia and pancreatic islet inflammation in comparison with control animals during 17–61 and 17–105 weeks of age, respectively. Synergy in these beneficial effects was observed during 43–61 and 61–105 wks of age, respectively. Inflammatory cytokine and chemokine levels in GAD-stimulated splenocytes isolated from vaccinated mice were generally lower than those detected in unvaccinated mice. The overall health and humoral immune responses of the vaccinated animals remained normal throughout the duration of the experiments.
Collapse
|
9
|
Presa M, Ortiz AZ, Garabatos N, Izquierdo C, Rivas EI, Teyton L, Mora C, Serreze D, Stratmann T. Cholera toxin subunit B peptide fusion proteins reveal impaired oral tolerance induction in diabetes-prone but not in diabetes-resistant mice. Eur J Immunol 2013; 43:2969-79. [PMID: 23925934 DOI: 10.1002/eji.201343633] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/21/2013] [Accepted: 08/02/2013] [Indexed: 01/20/2023]
Abstract
The cholera toxin B subunit (CTB) has been used as adjuvant to improve oral vaccine delivery in type 1 diabetes. The effect of CTB/peptide formulations on Ag-specific CD4(+) T cells has remained largely unexplored. Here, using tetramer analysis, we investigated how oral delivery of CTB fused to two CD4(+) T-cell epitopes, the BDC-2.5 T-cell 2.5 mi mimotope and glutamic acid decarboxylase (GAD) 286-300, affected diabetogenic CD4(+) T cells in nonobese diabetic (NOD) mice. When administered i.p., CTB-2.5 mi activated 2.5 mi(+) T cells and following intragastric delivery generated Ag-specific Foxp3(+) Treg and Th2 cells. While 2.5 mi(+) and GAD-specific T cells were tolerized in diabetes-resistant NODxB6.Foxp3(EGFP) F1 and nonobese resistant (NOR) mice, this did not occur in NOD mice. This indicated that NOD mice had a recessive genetic resistance to induce oral tolerance to both CTB-fused epitopes. In contrast to NODxB6.Foxp3(EGFP) F1 mice, oral treatment in NOD mice lead to strong 2.5 mi(+) T-cell activation and the sequestration of these cells to the effector-memory pool. Oral treatment of NOD mice with CTB-2.5 mi failed to prevent diabetes. These findings underline the importance of investigating the effect of oral vaccine formulations on diabetogenic T cells as in selected cases they may have counterproductive consequences in human patients.
Collapse
Affiliation(s)
- Maximiliano Presa
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain; The Jackson Laboratory, Bar Harbor, ME, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kwon KC, Verma D, Singh ND, Herzog R, Daniell H. Oral delivery of human biopharmaceuticals, autoantigens and vaccine antigens bioencapsulated in plant cells. Adv Drug Deliv Rev 2013; 65:782-99. [PMID: 23099275 PMCID: PMC3582797 DOI: 10.1016/j.addr.2012.10.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/26/2012] [Accepted: 10/17/2012] [Indexed: 12/19/2022]
Abstract
Among 12billion injections administered annually, unsafe delivery leads to >20million infections and >100million reactions. In an emerging new concept, freeze-dried plant cells (lettuce) expressing vaccine antigens/biopharmaceuticals are protected in the stomach from acids/enzymes but are released to the immune or blood circulatory system when plant cell walls are digested by microbes that colonize the gut. Vaccine antigens bioencapsulated in plant cells upon oral delivery after priming, conferred both mucosal and systemic immunity and protection against bacterial, viral or protozoan pathogens or toxin challenge. Oral delivery of autoantigens was effective against complications of type 1 diabetes and hemophilia, by developing tolerance. Oral delivery of proinsulin or exendin-4 expressed in plant cells regulated blood glucose levels similar to injections. Therefore, this new platform offers a low cost alternative to deliver different therapeutic proteins to combat infectious or inherited diseases by eliminating inactivated pathogens, expensive purification, cold storage/transportation and sterile injections.
Collapse
Affiliation(s)
- Kwang-Chul Kwon
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Biomolecular Science Building, Orlando, FL 32816-2364, USA
| | - Dheeraj Verma
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Biomolecular Science Building, Orlando, FL 32816-2364, USA
| | - Nameirakpam D. Singh
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Biomolecular Science Building, Orlando, FL 32816-2364, USA
| | - Roland Herzog
- Department of Pediatrics, College of Medicine, University of Florida, Cancer and Genetics Research Complex, 2033 Mowry Road, Gainesville, FL 32610, USA
| | - Henry Daniell
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Biomolecular Science Building, Orlando, FL 32816-2364, USA
| |
Collapse
|
11
|
Odumosu O, Nicholas D, Payne K, Langridge W. Cholera toxin B subunit linked to glutamic acid decarboxylase suppresses dendritic cell maturation and function. Vaccine 2011; 29:8451-8. [PMID: 21807047 DOI: 10.1016/j.vaccine.2011.07.077] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 06/29/2011] [Accepted: 07/18/2011] [Indexed: 12/16/2022]
Abstract
Dendritic cells are the largest population of antigen presenting cells in the body. One of their main functions is to regulate the delicate balance between immunity and tolerance responsible for maintenance of immunological homeostasis. Disruption of this delicate balance often results in chronic inflammation responsible for initiation of organ specific autoimmune diseases such as rheumatoid arthritis, multiple sclerosis and type I diabetes. The cholera toxin B subunit (CTB) is a weak mucosal adjuvant known for its ability to stimulate immunity to antigenic proteins. However, conjugation of CTB to many autoantigens can induce immunological tolerance resulting in suppression of autoimmunity. In this study, we examined whether linkage of CTB to a 5kDa C-terminal protein fragment of the major diabetes autoantigen glutamic acid decarboxylase (GAD(35)), can block dendritic cell (DC) functions such as biosynthesis of co-stimulatory factor proteins CD86, CD83, CD80 and CD40 and secretion of inflammatory cytokines. The results of human umbilical cord blood monocyte-derived DC-GAD(35) autoantigen incubation experiments showed that inoculation of immature DCs (iDCs), with CTB-GAD(35) protein dramatically suppressed levels of CD86, CD83, CD80 and CD40 co-stimulatory factor protein biosynthesis in comparison with GAD(35) alone inoculated iDCs. Surprisingly, incubation of iDCs in the presence of the CTB-autoantigen and the strong immunostimulatory molecules PMA and Ionomycin revealed that CTB-GAD(35) was capable of arresting PMA+Ionomycin induced DC maturation. Consistent with this finding, CTB-GAD(35) mediated suppression of DC maturation was accompanied by a dramatic decrease in the secretion of the pro-inflammatory cytokines IL-12/23p40 and IL-6 and a significant increase in secretion of the immunosuppressive cytokine IL-10. Taken together, our experimental data suggest that linkage of the weak adjuvant CTB to the dominant type 1 diabetes autoantigen GAD strongly inhibits DC maturation through the down regulation of major co-stimulatory factors and inflammatory cytokine biosynthesis. These results emphasize the possibility that CTB-autoantigen fusion proteins enhance DC priming of naïve Th0 cell development in the direction of immunosuppressive T lymphocytes. The immunological phenomena observed here establish a basis for improvement of adjuvant augmented multi-component subunit vaccine strategies capable of complete suppression of organ-specific autoimmune diseases in vivo.
Collapse
Affiliation(s)
- Oludare Odumosu
- Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| | | | | | | |
Collapse
|
12
|
Suppression of dendritic cell activation by diabetes autoantigens linked to the cholera toxin B subunit. Immunobiology 2010; 216:447-56. [PMID: 20956025 DOI: 10.1016/j.imbio.2010.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 09/20/2010] [Accepted: 09/20/2010] [Indexed: 02/02/2023]
Abstract
Antigen presenting cells, specifically dendritic cells (DCs) are a focal point in the delicate balance between T cell tolerance and immune responses contributing to the onset of type I diabetes (T1D). Weak adjuvant proteins like the cholera toxin B subunit when linked to autoantigens may sufficiently alter the balance of this initial immune response to suppress the development of autoimmunity. To assess adjuvant enhancement of autoantigen mediated immune suppression of Type 1 diabetes, we examined the cholera toxin B subunit (CTB)-proinsulin fusion protein (CTB-INS) activation of immature dendritic cells (iDC) at the earliest detectable stage of the human immune response. In this study, Incubation of human umbilical cord blood monocyte-derived immature DCs with CTB-INS autoantigen fusion protein increased the surface membrane expression of DC Toll-like receptor (TLR-2) while no significant upregulation in TLR-4 expression was detected. Inoculation of iDCs with CTB stimulated the biosynthesis of both CD86 and CD83 co-stimulatory factors demonstrating an immunostimulatory role for CTB in both DC activation and maturation. In contrast, incubation of iDCs with proinsulin partially suppressed CD86 co-stimulatory factor mediated DC activation, while incubation of iDCs with CTB-INS fusion protein completely suppressed iDC biosynthesis of both CD86 and CD83 costimulatory factors. The incubation of iDCs with increasing amounts of insulin did not increase the level of immune suppression but rather activated DC maturation by stimulating increased biosynthesis of both CD86 and CD83 costimulatory factors. Inoculation of iDCs with CTB-INS fusion protein dramatically increased secretion of the immunosuppressive cytokine IL-10 and suppressed synthesis of the pro-inflammatory cytokine IL12/23 p40 subunit protein suggesting that linkage of CTB to insulin (INS) may play an important role in mediating DC guidance of cognate naïve Th0 cell development into immunosuppressive T lymphocytes. Taken together, the experimental data suggests Toll like receptor 2 (TLR-2) plays a dominant role in CTB mediated INS inhibition of DC induced type 1 diabetes onset in human Type 1 diabetes autoimmunity. Further, fusion of CTB to the autoantigen was found to be essential for enhancement of immune suppression as co-delivery of CTB and insulin did not significantly inhibit DC costimulatory factor biosynthesis. The experimental data presented supports the hypotheses that adjuvant enhancement of autoantigen mediated suppression of islet beta cell inflammation is dependent on CTB stimulation of dendritic cell TLR2 receptor activation and co-processing of both CTB and the autoantigen in the same dendritic cell.
Collapse
|
13
|
Abstract
BACKGROUND Recombinant vaccinia virus (rVV) strains expressing the immunomodulatory cholera toxin B subunit (CTB) fused to the autoantigen glutamic acid decarboxylase (GAD) or the immunosuppressive cytokine interleukin-10 (IL-10) were independently able to generate only low levels of immune suppression of type 1 diabetes mellitus (T1DM). Here we suggest that a vaccinia virus (VV)-mediated combination of CTB::GAD fusion and IL-10 proteins promises a effective and durable immunotherapeutic strategy for T1DM. METHODS To explore this hypothesis, a CTB::GAD fusion gene was co-delivered with a gene encoding IL-10 by rVV infection (rVV-CTB::GAD + rVV-IL10) into 5-7-week-old non-obese diabetic (NOD) mice. The mice were assessed for vaccine protection against development of hyperglycemia from 12 to 64 weeks of age by assessment of pancreatic inflammation (insulitis) and splenocyte-secreted interferon-gamma and IL-10 cytokine levels. RESULTS By 36 weeks of age, from 54% to 80% of the mice in the negative control animal groups (either mock-infected or inoculated with unrelated plasmid or VV) had developed hyperglycemia. Similarly, no statistically significant improvement in protection against diabetes onset was achieved by inoculation with VV expressing CTB::GAD or IL-10 independently. Surprisingly, only 20% of mice co-inoculated with rVV-CTB::GAD + rVV-IL10 developed hyperglycemia by 28 weeks of age. Other treatment groups developed hyperglycemia by 32-36 weeks. After 36 weeks, diabetes incidence no longer increased in any groups until the end of experiment at 64 weeks of age. Histological analysis of pancreatic tissues of hyperglycemic mice revealed high levels of intra-islet insulitis. Analysis of insulitis at termination of the experiment showed that euglycemic mice co-inoculated with VV expressing CTB::GAD and IL-10 had more effectively reduced inflammation in comparison with the other groups. CONCLUSIONS A combinatorial vaccination strategy based on VV co-delivery of genes encoding the immunoenhanced autoantigen CTB::GAD and the anti-inflammatory cytokine IL-10 can maintain effective and durable euglycemia and immunological homeostasis in NOD mice with prediabetes.
Collapse
Affiliation(s)
- Béla Dénes
- Center for Health Disparities and Molecular Medicine, Department of Biochemistry and Microbiology, Loma Linda University, Loma Linda, California
- Department of Immunology, Central Veterinary Institute, Budapest, Hungary
| | - István Fodor
- Center for Health Disparities and Molecular Medicine, Department of Biochemistry and Microbiology, Loma Linda University, Loma Linda, California
| | - William H.R. Langridge
- Center for Health Disparities and Molecular Medicine, Department of Biochemistry and Microbiology, Loma Linda University, Loma Linda, California
| |
Collapse
|
14
|
Expression of a ricin toxin B subunit: insulin fusion protein in edible plant tissues. Mol Biotechnol 2010; 44:90-100. [PMID: 19898971 DOI: 10.1007/s12033-009-9217-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Onset of juvenile Type 1 diabetes (T1D) occurs when autoreactive lymphocytes progressively destroy the insulin-producing beta-cells in the pancreatic Islets of Langerhans. The increasing lack of insulin and subsequent onset of hyperglycemia results in increased damage to nerves, blood vessels, and tissues leading to the development of a host of severe disease symptoms resulting in premature morbidity and mortality. To enhance restoration of normoglycemia and immunological homeostasis generated by lymphocytes that mediate the suppression of autoimmunity, the non-toxic B chain of the plant AB enterotoxin ricin (RTB), a castor bean lectin binding a variety of epidermal cell receptors, was genetically linked to the coding region of the proinsulin gene (INS) and expressed as a fusion protein (INS-RTB) in transformed potato plants. This study is the first documented example of a plant enterotoxin B subunit linked to an autoantigen and expressed in transgenic plants for enhanced immunological suppression of T1D autoimmunity.
Collapse
|
15
|
Sun JB, Czerkinsky C, Holmgren J. Mucosally induced immunological tolerance, regulatory T cells and the adjuvant effect by cholera toxin B subunit. Scand J Immunol 2010; 71:1-11. [PMID: 20017804 DOI: 10.1111/j.1365-3083.2009.02321.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Induction of peripheral immunological tolerance by mucosal administration of selected antigens (Ags) ('oral tolerance') is an attractive, yet medically little developed, approach to prevent or treat selected autoimmune or allergic disorders. A highly effective way to maximize oral tolerance induction for immunotherapeutic purposes is to administer the relevant Ag together with, and preferably linked to the non-toxic B subunit protein of cholera toxin (CTB). Oral, nasal or sublingual administration of such Ag/CTB conjugates or gene fusion proteins have been found to induce tolerance with superior efficiency compared with administration of Ag alone, including the suppression of various autoimmune disorders and allergies in animal models. In a proof-of-concept clinical trial in patients with Behcet's disease, this was extended with highly promising results to prevent relapse of autoimmune uveitis. Tolerization by mucosal Ag/CTB administration results in a strong increase in Ag-specific regulatory CD4(+) T cells, apparently via two separate pathways: one using B cells as APCs and leading to a strong expansion of Foxp3(+) Treg cells which can both suppress and mediate apoptotic depletion of effector T cells, and one being B cell-independent and associated with development of Foxp3(-) regulatory T cells that express membrane latency-associated peptide and transforming growth factor (TGF-beta) and/or IL-10. The ability of CTB to dramatically increase mucosal Ag uptake and presentation by different APCs through binding to GM1 ganglioside (which makes most B cells effective APCs irrespective of their Ag specificity), together with CTB-mediated stimulation of TGF-beta and IL-10 production and inhibition of IL-6 formation may explain the dramatic potentiation of oral tolerance by mucosal Ags presented with CTB.
Collapse
Affiliation(s)
- J-B Sun
- Institute of Biomedicine, Department of Microbiology and Immunology, and University of Gothenburg Vaccine Research Institute, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden.
| | | | | |
Collapse
|
16
|
Bresson D, Fradkin M, Manenkova Y, Rottembourg D, von Herrath M. Genetic-induced variations in the GAD65 T-cell repertoire governs efficacy of anti-CD3/GAD65 combination therapy in new-onset type 1 diabetes. Mol Ther 2009; 18:307-16. [PMID: 19690518 DOI: 10.1038/mt.2009.197] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To enhance efficacy of forthcoming type 1 diabetes (T1D) clinical trials, combination therapies (CTs) are envisaged. In this study, we showed that efficacy of a CT, using anti-CD3 antibody and glutamic acid decarboxylase of 65 kd (GAD65)-expressing plasmid, to reverse new-onset T1D was dependent upon the genetic background. Synergism between both treatments was only observed in the RIP-LCMV-GP but not in the nonobese diabetic (NOD) or RIP-LCMV-NOD models. Efficacy was associated with an expansion of bystander suppressor regulatory T cells (Tregs) recognizing the C-terminal region of GAD65 and secreting interleukin-10 (IL-10), transforming growth factor-beta (TGF-beta), and interferon-gamma (IFN-gamma). In addition, we found that frequency and epitope specificity of GAD65-reactive CD4(+) T cells during antigen priming at diabetes onset and Tregs detected after CT correlated. Consequently, NOD mice harbored significantly lower levels of GAD65-reactive CD4(+) T cells than RIP-LCMV-GP before and after treatment. Our results demonstrate that antigen-specific T cells available at treatment may differ between various major histocompatibility complex (MHC) and genetic backgrounds. These cells play a major role in shaping T-cell responses following antigen-specific immune intervention and determine whether a beneficial Tregs response is generated. Our findings hold important implications to understand and predict the success of antigen-based clinical trials, where responsiveness to immunotherapy might vary from patient to patient.
Collapse
Affiliation(s)
- Damien Bresson
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA.
| | | | | | | | | |
Collapse
|
17
|
Dénes B, Yu J, Fodor N, Takátsy Z, Fodor I, Langridge WHR. Suppression of hyperglycemia in NOD mice after inoculation with recombinant vaccinia viruses. Mol Biotechnol 2006; 34:317-27. [PMID: 17284779 DOI: 10.1385/mb:34:3:317] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
In autoimmune (type 1) diabetes, autoreactive lymphocytes destroy pancreatic beta-cells responsible for insulin synthesis. To assess the feasibility of gene therapy for type 1 diabetes, recombinant vaccinia virus (rVV) vectors were constructed expressing pancreatic islet autoantigens proinsulin (INS) and a 55-kDa immunogenic peptide from glutamic acid decarboxylase (GAD), and the immunomodulatory cytokine interleukin (IL)-10. To augment the beneficial effects of recombinant virus therapy, the INS and GAD genes were fused to the C terminus of the cholera toxin B subunit (CTB). Five-week-old non-obese diabetic (NOD) mice were injected once with rVV. Humoral antibody immune responses and hyperglycemia in the infected mice were analyzed. Only 20% of the mice inoculated with rVV expressing the CTB::INS fusion protein developed hyperglycemia, in comparison to 70% of the mice in the uninoculated animal group. Islets from pancreatic tissues isolated from euglycemic mice from this animal group showed no sign of inflammatory lymphocyte invasion. Inoculation with rVV producing CTB::GAD or IL-10 was somewhat less effective in reducing diabetes. Humoral antibody isotypes of hyperglycemic and euglycemic mice from all treated groups possessed similar IgG1/IgG2c antibody titer ratios from 19 to 32 wk after virus inoculation. In comparison with uninoculated mice, 11-wk-old NOD mice injected with virus expressing CTB::INS were delayed in diabetes onset by more than 4 wk. The experimental results demonstrate the feasibility of using rVV expressing CTB::INS fusion protein to generate significant protection and therapy against type 1 diabetes onset and progression.
Collapse
Affiliation(s)
- Béla Dénes
- Center for Molecular Biology and Gene Therapy, Department of Biochemistry and Microbiology, Loma Linda University, Loma Linda, CA 92350, USA.
| | | | | | | | | | | |
Collapse
|