1
|
Langlois AW, Chenoweth MJ, Twesigomwe D, Scantamburlo G, Whirl-Carrillo M, Sangkuhl K, Klein TE, Nofziger C, Tyndale RF, Gaedigk A. PharmVar GeneFocus: CYP2A6. Clin Pharmacol Ther 2024; 116:948-962. [PMID: 39051767 PMCID: PMC11452280 DOI: 10.1002/cpt.3387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
The Pharmacogene Variation Consortium (PharmVar) provides nomenclature for the human CYP2A gene locus containing the highly polymorphic CYP2A6 gene. CYP2A6 plays a role in the metabolism of nicotine and various drugs. Thus, genetic variation can substantially contribute to the function of this enzyme and associated efficacy and safety. This GeneFocus provides an overview of the clinical significance of CYP2A6, including its genetic variation and function. We also highlight and discuss caveats in the identification and characterization of allelic variation of this complex pharmacogene, a prerequisite for accurate genotype determination and prediction of phenotype status.
Collapse
Affiliation(s)
- Alec W.R. Langlois
- Department of Pharmacology & Toxicology, University of Toronto; 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
| | - Meghan J. Chenoweth
- Department of Pharmacology & Toxicology, University of Toronto; 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
- Department of Psychiatry, University of Toronto; 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - David Twesigomwe
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | - Katrin Sangkuhl
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Teri E. Klein
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
- Departments of Medicine (BMIR) and Genetics, Stanford University, Stanford, California, USA
| | | | - Rachel F. Tyndale
- Department of Pharmacology & Toxicology, University of Toronto; 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
- Department of Psychiatry, University of Toronto; 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children’s Mercy Research Institute (CMRI), Kansas City, Missouri, USA and School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
2
|
Dong T, Gu Y. Impact of CYP2A6 Gene Polymorphism on the Efficacy and Safety of S-1 Therapy in Patients with Gastric Cancer: A Systematic Review and Meta-Analysis. Chemotherapy 2024; 69:195-204. [PMID: 38599185 DOI: 10.1159/000538769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
INTRODUCTION The relationship of CYP2A6 polymorphisms with S-1 therapy outcomes in gastric cancer is unclear. This review aimed to assess the association between CYP2A6 gene polymorphisms (CYP2A6*4, *7, *9, *10) and S-1 therapy outcomes in gastric cancer, aiming to identify predictive markers for S-1 efficacy and adverse reactions. METHODS We searched seven databases, using random or fixed-effect models to calculate hazard ratio (HR) and 95% confidence interval (CI) based on study heterogeneity. RESULTS A total of 1,143 articles were retrieved from multiple online databases as of March 28, 2023. After screening, seven articles containing seven investigations were included in the meta-analysis. Our results revealed a significant association between the CYP2A6 polymorphism site and the overall survival (OS) of variant/variant group (V/V) patients compared to wild-type/wild-type (W/W) or wild-type/variant (W/V) patients (HR = 2.73, 95% CI: 1.45-5.14, p = 0.002). S-1 was more beneficial for W/W or W/V patients than V/V patients in terms of progression-free survival (PFS) (HR = 3.15, 95% CI: 1.47-6.75, p = 0.003). There was no association between CYP2A6 polymorphism and hematological adverse reactions (OR = 0.52, 95% CI: 0.23-1.15, p = 0.104). CONCLUSION CYP2A6 polymorphisms correlate with S-1 efficacy (OS and PFS) in gastric cancer, suggesting their potential as predictive markers. However, the generalizability of findings is limited by the small number of studies from Eastern countries and variations in chemotherapy regimens and detection methods. Further, large-scale studies are needed to confirm these associations.
Collapse
Affiliation(s)
- Tao Dong
- Department of Pharmacy, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, China
| | - Yuanyuan Gu
- Pharmaceutical Department, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Wroblewski TH, Witt KE, Lee SB, Malhi RS, Peede D, Huerta-Sánchez E, Villanea FA, Claw KG. Pharmacogenetic Variation in Neanderthals and Denisovans and Implications for Human Health and Response to Medications. Genome Biol Evol 2023; 15:evad222. [PMID: 38051947 PMCID: PMC10727477 DOI: 10.1093/gbe/evad222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023] Open
Abstract
Modern humans carry both Neanderthal and Denisovan (archaic) genome elements that are part of the human gene pool and affect the life and health of living individuals. The impact of archaic DNA may be particularly evident in pharmacogenes-genes responsible for the processing of exogenous substances such as food, pollutants, and medications-as these can relate to changing environmental effects, and beneficial variants may have been retained as modern humans encountered new environments. However, the health implications and contribution of archaic ancestry in pharmacogenes of modern humans remain understudied. Here, we explore 11 key cytochrome P450 genes (CYP450) involved in 75% of all drug metabolizing reactions in three Neanderthal and one Denisovan individuals and examine archaic introgression in modern human populations. We infer the metabolizing efficiency of these 11 CYP450 genes in archaic individuals and find important predicted phenotypic differences relative to modern human variants. We identify several single nucleotide variants shared between archaic and modern humans in each gene, including some potentially function-altering mutations in archaic CYP450 genes, which may result in altered metabolism in living people carrying these variants. We also identified several variants in the archaic CYP450 genes that are novel and unique to archaic humans as well as one gene, CYP2B6, that shows evidence for a gene duplication found only in Neanderthals and modern Africans. Finally, we highlight CYP2A6, CYP2C9, and CYP2J2, genes which show evidence for archaic introgression into modern humans and posit evolutionary hypotheses that explain their allele frequencies in modern populations.
Collapse
Affiliation(s)
- Tadeusz H Wroblewski
- Department of Biomedical Informatics, Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kelsey E Witt
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, South Carolina, USA
| | - Seung-been Lee
- Precision Medicine Institute, Macrogen Inc., Seoul, Republic of Korea
| | - Ripan S Malhi
- Department of Anthropology and Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Illinois, USA
| | - David Peede
- Department of Ecology, Evolution, and Organismal Biology and Center for Computational and Molecular Biology, Brown University, Providence, Rhode Island, USA
- Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island, USA
| | - Emilia Huerta-Sánchez
- Department of Ecology, Evolution, and Organismal Biology and Center for Computational and Molecular Biology, Brown University, Providence, Rhode Island, USA
| | | | - Katrina G Claw
- Department of Biomedical Informatics, Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
4
|
Yadav A, Kesharwani A, Chaurasia DK, Katara P. Mining of molecular insights of CYP2A6 and its variants complex with coumarin (CYP2A6*-coumarin) using molecular dynamics simulation. J Biomol Struct Dyn 2023; 41:4081-4092. [PMID: 35427216 DOI: 10.1080/07391102.2022.2062785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/02/2022] [Indexed: 10/18/2022]
Abstract
CYP2A6 is a very important enzyme that plays a crucial role in nicotine compounds and is responsible for the metabolism of more than 3% drugs of total metabolized drugs by the CYP family and reported as one of very important pharmacogenes. CYP2A6 is highly polymorphic in nature and reported with more than 40 variants, most of these variants are SNPs originated and population specific. It has been well observed and reported that the presence of these population-specific non-synonymous SNPs in CYP2A6 alters the rate of drug metabolism and as a functional consequence, drugs produce an abnormal response. Though genomics and pharmacogenomics studies are there, very less is known about the structural effects of these SNPs on molecular-interaction and folding of CYP2A6. To fill the knowledge gap, SNPs based four variants, i.e., CYP2A6*2, CYP2A6*18, CYP2A6*21, and CYP2A6*35, which are frequently reported in the South Asian population, were considered for the study. Coumarin (DB04665), a well reported drug, is considered as a model substance, and the effect of all four variants on 'CYP2A6*-coumarin' complex was studied. MD simulation-based analysis (at 200 ns) was performed and comparative analysis with respect to wild type 'CYP2A6-coumarin' complex was done. Though observation didn't find any global effect on complete complex but found some crucial minor-local alteration in interaction and folding process. It is assumed that the change due to SNPs in the single amino acid did not bring global change in physiochemical properties of CYP2A6* but caused local-trivial changes which are very crucial for its metabolic activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anamika Yadav
- Computational omics Lab, Centre of Bioinformatics, University of Allahabad, Prayagraj, India
| | - Akanksha Kesharwani
- Computational omics Lab, Centre of Bioinformatics, University of Allahabad, Prayagraj, India
- Supercomputing Facility for Bioinformatics and Computational Biology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Dheeraj Kumar Chaurasia
- Supercomputing Facility for Bioinformatics and Computational Biology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Pramod Katara
- Computational omics Lab, Centre of Bioinformatics, University of Allahabad, Prayagraj, India
| |
Collapse
|
5
|
Langlois AWR, El-Boraie A, Pouget JG, Cox LS, Ahluwalia JS, Fukunaga K, Mushiroda T, Knight J, Chenoweth MJ, Tyndale RF. Genotyping, characterization, and imputation of known and novel CYP2A6 structural variants using SNP array data. J Hum Genet 2023:10.1038/s10038-023-01148-y. [PMID: 37059825 DOI: 10.1038/s10038-023-01148-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/16/2023]
Abstract
CYP2A6 metabolically inactivates nicotine. Faster CYP2A6 activity is associated with heavier smoking and higher lung cancer risk. The CYP2A6 gene is polymorphic, including functional structural variants (SV) such as gene deletions (CYP2A6*4), duplications (CYP2A6*1 × 2), and hybrids with the CYP2A7 pseudogene (CYP2A6*12, CYP2A6*34). SVs are challenging to genotype due to their complex genetic architecture. Our aims were to develop a reliable protocol for SV genotyping, functionally phenotype known and novel SVs, and investigate the feasibility of CYP2A6 SV imputation from SNP array data in two ancestry populations. European- (EUR; n = 935) and African- (AFR; n = 964) ancestry individuals from smoking cessation trials were genotyped for SNPs using an Illumina array and for CYP2A6 SVs using Taqman copy number (CN) assays. SV-specific PCR amplification and Sanger sequencing was used to characterize a novel SV. Individuals with SVs were phenotyped using the nicotine metabolite ratio, a biomarker of CYP2A6 activity. SV diplotype and SNP array data were integrated and phased to generate ancestry-specific SV reference panels. Leave-one-out cross-validation was used to investigate the feasibility of CYP2A6 SV imputation. A minimal protocol requiring three Taqman CN assays for CYP2A6 SV genotyping was developed and known SV associations with activity were replicated. The first domain swap CYP2A6-CYP2A7 hybrid SV, CYP2A6*53, was identified, sequenced, and associated with lower CYP2A6 activity. In both EURs and AFRs, most SV alleles were identified using imputation (>70% and >60%, respectively); importantly, false positive rates were <1%. These results confirm that CYP2A6 SV imputation can identify most SV alleles, including a novel SV.
Collapse
Affiliation(s)
- Alec W R Langlois
- Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
| | - Ahmed El-Boraie
- Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
| | - Jennie G Pouget
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Lisa Sanderson Cox
- Department of Population Health, University of Kansas School of Medicine, Kansas City, KS, 66160, USA
| | - Jasjit S Ahluwalia
- Departments of Behavioral and Social Sciences and Medicine, Brown University School of Public Health, Providence, RI, 02912, USA
| | - Koya Fukunaga
- Center for Integrative Medical Sciences, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Taisei Mushiroda
- Center for Integrative Medical Sciences, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Jo Knight
- Data Science Institute and Medical School, Lancaster University, Lancaster, UK
| | - Meghan J Chenoweth
- Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Rachel F Tyndale
- Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON, M6J 1H4, Canada.
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, ON, M5T 1R8, Canada.
| |
Collapse
|
6
|
Perez-Paramo YX, Watson CJ, Chen G, Thomas CE, Adams-Haduch J, Wang R, Khor CC, Koh WP, Nelson HH, Yuan JM, Lazarus P. Impact of Genetic Variants in the Nicotine Metabolism Pathway on Nicotine Metabolite Levels in Smokers. Cancer Epidemiol Biomarkers Prev 2023; 32:54-65. [PMID: 36252563 PMCID: PMC9827107 DOI: 10.1158/1055-9965.epi-22-0868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/14/2022] [Accepted: 10/11/2022] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Nicotine metabolism is a major factor in nicotine dependence, with approximately 70% to 80% of nicotine metabolized to cotinine in Caucasians. Cotinine formation is catalyzed primarily by CYP2A6, which also converts cotinine to trans-3'-hydroxycotinine (3HC). The goal of the present study was to examine the effects of CYP2A6 deficiency on nicotine metabolism profiles in vivo and the importance of genetic variants in nicotine-metabolizing enzyme genes on urinary nicotine metabolites levels. METHODS Urine samples from 722 smokers who participated in the Singapore Chinese Health Study were analyzed using UPLC-MS/MS to detect nicotine and eight of its urinary metabolites, and a total of 58 variants in 12 genes involved in nicotine metabolism were investigated in 475 of these subjects with informative genotyping data. RESULTS Urine samples stratified by the ratio of 3HC/cotinine exhibited a 7-fold increase in nicotine-N'-oxide, a 6-fold increase in nicotine-Glucuronide (Gluc), and a 5-fold decrease in 3HC-Gluc when comparing the lower versus upper 3HC/cotinine ventiles. Significant (P < 0.0001) associations were observed between functional metabolizing enzyme genotypes and levels of various urinary nicotine metabolites, including CYP2A6 genotype and levels of nicotine, nicotine-Gluc, nicotine-N'-oxide and 3HC, UGT2B10 genotype and levels of cotinine, nicotine-Gluc and cotinine-Gluc, UGT2B17 genotype and levels of 3HC-Gluc, FMO3 genotype and levels of nicotine-N'-oxide, and CYP2B6 genotype and levels of nicotine-N'-oxide and 4-hydroxy-4-(3-pyridyl)-butanoic acid. CONCLUSIONS These data suggest that several pathways are important in nicotine metabolism. IMPACT Genotype differences in several nicotine-metabolizing enzyme pathways may potentially lead to differences in nicotine dependence and smoking behavior and cessation.
Collapse
Affiliation(s)
- Yadira X. Perez-Paramo
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Christy J.W. Watson
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Gang Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Claire E. Thomas
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jennifer Adams-Haduch
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Renwei Wang
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.,Singapore Eye Research Institute, Singapore, Singapore.,Eye Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Woon-Puay Koh
- Health Services and Systems Research, Duke-NUS Medical School Singapore, Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Heather H. Nelson
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania.,Corresponding Authors: Philip Lazarus, College of Pharmacy and Pharmaceutical Sciences, Washington State University, PBS building, Room 431, Spokane, Washington, 99210-1495. E-mail: ; and Jian-Min Yuan, Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, 5150 Centre Avenue, Pittsburgh, Pennsylvania, 15232. E-mail:
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington.,Corresponding Authors: Philip Lazarus, College of Pharmacy and Pharmaceutical Sciences, Washington State University, PBS building, Room 431, Spokane, Washington, 99210-1495. E-mail: ; and Jian-Min Yuan, Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, 5150 Centre Avenue, Pittsburgh, Pennsylvania, 15232. E-mail:
| |
Collapse
|
7
|
Ahire D, Kruger L, Sharma S, Mettu VS, Basit A, Prasad B. Quantitative Proteomics in Translational Absorption, Distribution, Metabolism, and Excretion and Precision Medicine. Pharmacol Rev 2022; 74:769-796. [PMID: 35738681 PMCID: PMC9553121 DOI: 10.1124/pharmrev.121.000449] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A reliable translation of in vitro and preclinical data on drug absorption, distribution, metabolism, and excretion (ADME) to humans is important for safe and effective drug development. Precision medicine that is expected to provide the right clinical dose for the right patient at the right time requires a comprehensive understanding of population factors affecting drug disposition and response. Characterization of drug-metabolizing enzymes and transporters for the protein abundance and their interindividual as well as differential tissue and cross-species variabilities is important for translational ADME and precision medicine. This review first provides a brief overview of quantitative proteomics principles including liquid chromatography-tandem mass spectrometry tools, data acquisition approaches, proteomics sample preparation techniques, and quality controls for ensuring rigor and reproducibility in protein quantification data. Then, potential applications of quantitative proteomics in the translation of in vitro and preclinical data as well as prediction of interindividual variability are discussed in detail with tabulated examples. The applications of quantitative proteomics data in physiologically based pharmacokinetic modeling for ADME prediction are discussed with representative case examples. Finally, various considerations for reliable quantitative proteomics analysis for translational ADME and precision medicine and the future directions are discussed. SIGNIFICANCE STATEMENT: Quantitative proteomics analysis of drug-metabolizing enzymes and transporters in humans and preclinical species provides key physiological information that assists in the translation of in vitro and preclinical data to humans. This review provides the principles and applications of quantitative proteomics in characterizing in vitro, ex vivo, and preclinical models for translational research and interindividual variability prediction. Integration of these data into physiologically based pharmacokinetic modeling is proving to be critical for safe, effective, timely, and cost-effective drug development.
Collapse
Affiliation(s)
- Deepak Ahire
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Laken Kruger
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Sheena Sharma
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Vijaya Saradhi Mettu
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Abdul Basit
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| |
Collapse
|
8
|
Jones SK, Wolf BJ, Froeliger B, Wallace K, Carpenter MJ, Alberg AJ. Nicotine metabolism predicted by CYP2A6 genotypes in relation to smoking cessation: A systematic review. Nicotine Tob Res 2021; 24:633-642. [PMID: 34478556 DOI: 10.1093/ntr/ntab175] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 09/02/2021] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Identifying genetic factors associated with smoking cessation could inform precision cessation interventions. Of major interest is genetic variation in nicotine metabolism, largely predicted by CYP2A6 variations. METHODS We conducted a systematic literature review to summarize the population-based evidence of the association between CYP2A6 and smoking cessation.In the 12 studies meeting the inclusion criteria, the known functional metabolic effect of CYP2A6 variants was used to classify nicotine metabolism as normal (>75% metabolic activity), intermediate (50.1 - 75% activity), slow (25 - 50% activity), and poor (<25% activity). Summary odds ratios of smoking cessation were calculated across metabolic groups, stratified by ancestry and whether participants received pharmacotherapy or placebo/no treatment. RESULTS Among untreated people of European ancestry (n = 4 studies), those with CYP2A6 reduced metabolism were more likely to quit smoking than those with normal metabolism [Summary OR = 2.05, 95% CI 1.23 - 3.42] and the likelihood of cessation increased as nicotine metabolism decreased. Nicotine replacement therapy attenuated the association at end-of-treatment, while bupropion modified the association such that intermediate/slow metabolizers were less likely to quit than normal metabolizers [Summary OR = 0.86, 95% CI 0.79 - 0.94]. Among untreated Asian people (n = 3 studies), results differed compared to those with European ancestry: those with slow metabolism were less likely to have quit smoking than normal metabolizers [Summary OR = 0.52, 95% CI 0.38 - 0.71]. Evidence for people of African ancestry (n = 1 study) suggested the CYP2A6 association with cessation may differ compared to those of European ancestry. IMPLICATIONS Most studies included in this review were of European ancestry populations; these showed slower nicotine metabolism was associated with increased likelihood of smoking cessation in a dose-related manner. Pharmacotherapy appeared to attenuate or modify this association among people of European ancestry, but it is unclear whether the change in the association remains consistent after treatment ceases. This finding has implications for precision medicine cessation interventions. Based on only a few studies of people of Asian or African ancestry, the association between CYP2A6 variants and cessation may differ from that observed among those of European ancestry, but more evidence is needed.
Collapse
Affiliation(s)
- Stephanie K Jones
- Department of Public Health Sciences, Medical University of South Carolina, Charleston SC
| | - Bethany J Wolf
- Department of Public Health Sciences, Medical University of South Carolina, Charleston SC
| | - Brett Froeliger
- Department of Psychological Sciences, University of Missouri, Columbia MO
| | - Kristin Wallace
- Department of Public Health Sciences, Medical University of South Carolina, Charleston SC.,Hollings Cancer Center, 86 Jonathan Lucas Street, Medical University of South Carolina, Charleston SC
| | - Matthew J Carpenter
- Hollings Cancer Center, 86 Jonathan Lucas Street, Medical University of South Carolina, Charleston SC.,Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston SC
| | - Anthony J Alberg
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia SC
| |
Collapse
|
9
|
Carvalho Henriques B, Yang EH, Lapetina D, Carr MS, Yavorskyy V, Hague J, Aitchison KJ. How Can Drug Metabolism and Transporter Genetics Inform Psychotropic Prescribing? Front Genet 2020; 11:491895. [PMID: 33363564 PMCID: PMC7753050 DOI: 10.3389/fgene.2020.491895] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/25/2020] [Indexed: 12/11/2022] Open
Abstract
Many genetic variants in drug metabolizing enzymes and transporters have been shown to be relevant for treating psychiatric disorders. Associations are strong enough to feature on drug labels and for prescribing guidelines based on such data. A range of commercial tests are available; however, there is variability in included genetic variants, methodology, and interpretation. We herein provide relevant background for understanding clinical associations with specific variants, other factors that are relevant to consider when interpreting such data (such as age, gender, drug-drug interactions), and summarize the data relevant to clinical utility of pharmacogenetic testing in psychiatry and the available prescribing guidelines. We also highlight areas for future research focus in this field.
Collapse
Affiliation(s)
| | - Esther H. Yang
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Diego Lapetina
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Michael S. Carr
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Vasyl Yavorskyy
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Joshua Hague
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Katherine J. Aitchison
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
10
|
Lapetina DL, Yang EH, Henriques BC, Aitchison KJ. Pharmacogenomics and Psychopharmacology. SEMINARS IN CLINICAL PSYCHOPHARMACOLOGY 2020:151-202. [DOI: 10.1017/9781911623465.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
Claw KG, Beans JA, Lee SB, Avey JP, Stapleton PA, Scherer SE, El-Boraie A, Tyndale RF, Nickerson DA, Dillard DA, Thummel KE, Robinson RF. Pharmacogenomics of Nicotine Metabolism: Novel CYP2A6 and CYP2B6 Genetic Variation Patterns in Alaska Native and American Indian Populations. Nicotine Tob Res 2020; 22:910-918. [PMID: 31241144 PMCID: PMC7249913 DOI: 10.1093/ntr/ntz105] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/21/2019] [Indexed: 11/12/2022]
Abstract
INTRODUCTION Alaska Native and American Indian (AN/AI) populations have higher tobacco use prevalence than other ethnic/racial groups. Pharmacogenetic testing to tailor tobacco cessation treatment may improve cessation rates. This study characterized polymorphic variations among AN/AI people in genes associated with metabolism of nicotine and drugs used for tobacco cessation. METHODS Recruitment of AN/AI individuals represented six subgroups, five geographic subgroups throughout Alaska and a subgroup comprised of AIs from the lower 48 states living in Alaska. We sequenced the CYP2A6 and CYP2B6 genes to identify known and novel gain, reduced, and loss-of-function alleles, including structural variation (eg, gene deletions, duplications, and hybridizations). RESULTS Variant allele frequencies differed substantially between AN/AI subgroups. The gene deletion CYP2A6*4 and reduced function CYP2A6*9 alleles were found at high frequency in Northern/Western subgroups and in Lower 48/Interior subgroups, respectively. The reduced function CYP2B6*6 allele was observed in all subgroups and a novel, predicted reduced function CYP2B6 variant was found at relatively high frequency in the Southeastern subgroup. CONCLUSIONS Diverse CYP2A6 and CYP2B6 variation among the subgroups highlight the need for comprehensive pharmacogenetic testing to guide tobacco cessation therapy for AN/AI populations. IMPLICATIONS Nicotine metabolism is largely determined by CYP2A6 genotype, and variation in CYP2A6 activity has altered the treatment success in other populations. These findings suggest pharmacogenetic-guided smoking cessation drug treatment could provide benefit to this unique population seeking tobacco cessation therapy.
Collapse
Affiliation(s)
- Katrina G Claw
- Department of Pharmaceutics, University of Washington, Seattle, WA
| | - Julie A Beans
- Research Department, Southcentral Foundation, Anchorage, AK
| | - Seung-Been Lee
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Jaedon P Avey
- Research Department, Southcentral Foundation, Anchorage, AK
| | - Patricia A Stapleton
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
| | - Steven E Scherer
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Ahmed El-Boraie
- Departments of Pharmacology and Toxicology, and Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Rachel F Tyndale
- Departments of Pharmacology and Toxicology, and Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
12
|
Copy number variation profiling in pharmacogenes using panel-based exome resequencing and correlation to human liver expression. Hum Genet 2019; 139:137-149. [PMID: 31786673 DOI: 10.1007/s00439-019-02093-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/23/2019] [Indexed: 12/13/2022]
Abstract
Structural variants including copy number variations (CNV) have gained widespread attention, especially in pharmacogenomics but for several genes functional relevance and clinical evidence are still lacking. Detection of CNVs in next-generation sequencing data is challenging but offers widespread applications. We developed a cohort-based CNV detection workflow to extract CNVs from read counts of targeted NGS of 340 genes involved in absorption, distribution, metabolism and excretion (ADME) of drugs. We applied our method to 150 human liver tissue samples and correlated identified CNVs to mRNA expression levels. In total, we identified 445 deletions (73%) and 167 duplications (27%) in 36 pharmacogenes including all well-known CNVs of CYPs, GSTs, SULTs, UGTs, numerous described rare CNVs of CYP2E1, SLC16A3 or UGT2B15 as well as novel observations, e.g., for SLC22A12, SLC22A17 and GPS2 (G Protein Pathway Suppressor 2). We were able to fine-map complex CNVs of CYP2A6 and CYP2D6 with exon resolution. Correlation analysis confirmed known expression patterns for common CNVs and suggested an influence on expression variability for some rare CNVs. Our straightforward CNV detection workflow can be easily applied to any NGS coverage data and helped to analyze CNVs in an ADME-NGS panel of 340 pharmacogenes to improve genotype-phenotype correlations.
Collapse
|
13
|
Chen LS, Hartz SM, Baker TB, Ma Y, L Saccone N, Bierut LJ. Use of polygenic risk scores of nicotine metabolism in predicting smoking behaviors. Pharmacogenomics 2018; 19:1383-1394. [PMID: 30442082 PMCID: PMC6562697 DOI: 10.2217/pgs-2018-0081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/10/2018] [Indexed: 01/19/2023] Open
Abstract
AIM This study tests whether polygenic risk scores (PRSs) for nicotine metabolism predict smoking behaviors in independent data. MATERIALS & METHODS Linear regression, logistic regression and survival analyses were used to analyze nicotine metabolism PRSs and nicotine metabolism, smoking quantity and smoking cessation. RESULTS Nicotine metabolism PRSs based on two genome wide association studies (GWAS) meta-analyses significantly predicted nicotine metabolism biomarkers (R2 range: 9.2-16%; minimum p = 7.6 × 10-8). The GWAS top hit variant rs56113850 significantly predicted nicotine metabolism biomarkers (R2 range: 14-17%; minimum p = 4.4 × 10-8). There was insufficient evidence for these PRSs predicting smoking quantity and smoking cessation. CONCLUSION Results suggest that nicotine metabolism PRSs based on GWAS meta-analyses predict an individual's nicotine metabolism, so does use of the top hit variant. We anticipate that PRSs will enter clinical medicine, but additional research is needed to develop a more comprehensive genetic score to predict smoking behaviors.
Collapse
Affiliation(s)
- Li-Shiun Chen
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO 63110, USA
| | - Sarah M Hartz
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Timothy B Baker
- Department of Medicine, University of Wisconsin School of Medicine & Public Health, Madison, WI 53711, USA
| | - Yinjiao Ma
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Nancy L Saccone
- Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Laura J Bierut
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO 63110, USA
| |
Collapse
|
14
|
Perez-Paramo YX, Chen G, Ashmore JH, Watson CJW, Nasrin S, Adams-Haduch J, Wang R, Gao YT, Koh WP, Yuan JM, Lazarus P. Nicotine- N'-Oxidation by Flavin Monooxygenase Enzymes. Cancer Epidemiol Biomarkers Prev 2018; 28:311-320. [PMID: 30381441 DOI: 10.1158/1055-9965.epi-18-0669] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/22/2018] [Accepted: 10/04/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The major mode of metabolism of nicotine is by hydroxylation via cytochrome P450 (CYP) 2A6, but it can also undergo glucuronidation by UDP-glucuronosyltransferases and oxidation by flavin monooxygenases (FMO). The goal of this study was to examine the potential importance of FMOs in nicotine metabolism and assess the potential impact of missense polymorphisms in active FMOs on nicotine-N'-oxide (NOX) formation. METHODS Urine samples from 106 current Chinese smokers were analyzed for nicotine metabolites by mass spectrometry. Wild-type FMOs 1-5 and their most prevalent nonsynonymous variants were cloned and overexpressed in HEK293 cells, and were tested in oxidation reactions against nicotine. RESULTS A strong inverse correlation was observed between the ratio of urinary 3'-hydroxycotinine/cotinine, a measure of CYP2A6 activity, and the urinary levels of NOX alone (r = -0.383; P < 0.001) or NOX measured as a ratio of total nicotine metabolites (r = -0.414; P < 0.001) in smokers. In addition to FMO1 and FMO3, the functional FMO2427Q isoform was active against nicotine, whereas FMO4 and FMO5 exhibited low activity against nicotine (K m > 5.0 mmol/L). Significant (P < 0.05) decreases in N'-oxidation activity (V max/K m) were observed for the FMO1I303V, FMO3N61S, FMO3D132H, FMO3V257M, and FMO3E308G variants in vitro when compared with their respective wild-type isoforms; the truncated FMO2Q472stop isoform exhibited no enzyme activity. CONCLUSIONS These data indicate that increases in nicotine-N'-oxidation occur in subjects with deficient CYP2A6 activity, and that several FMO enzymes are active in nicotine-N'-oxidation. IMPACT Several common missense FMO variants are associated with altered enzyme activity against nicotine and may play an important role in nicotine metabolism in low-CYP2A6 activity subjects.
Collapse
Affiliation(s)
- Yadira X Perez-Paramo
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Gang Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Joseph H Ashmore
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Christy J W Watson
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Shamema Nasrin
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Jennifer Adams-Haduch
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Renwei Wang
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Woon-Puay Koh
- Duke-NUS Medical School Singapore, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington.
| |
Collapse
|
15
|
De T, Park CS, Perera MA. Cardiovascular Pharmacogenomics: Does It Matter If You're Black or White? Annu Rev Pharmacol Toxicol 2018; 59:577-603. [PMID: 30296897 DOI: 10.1146/annurev-pharmtox-010818-021154] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Race and ancestry have long been associated with differential risk and outcomes to disease as well as responses to medications. These differences in drug response are multifactorial with some portion associated with genomic variation. The field of pharmacogenomics aims to predict drug response in patients prior to medication administration and to uncover the biological underpinnings of drug response. The field of human genetics has long recognized that genetic variation differs in frequency between ancestral populations, with some single nucleotide polymorphisms found solely in one population. Thus far, most pharmacogenomic studies have focused on individuals of European and East Asian ancestry, resulting in a substantial disparity in the clinical utility of genetic prediction for drug response in US minority populations. In this review, we discuss the genetic factors that underlie variability to drug response and known pharmacogenomic associations and how these differ between populations, with an emphasis on the current knowledge in cardiovascular pharmacogenomics.
Collapse
Affiliation(s)
- Tanima De
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA;
| | - C Sehwan Park
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA;
| | - Minoli A Perera
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA;
| |
Collapse
|
16
|
Chen LS, Horton A, Bierut L. Pathways to precision medicine in smoking cessation treatments. Neurosci Lett 2018; 669:83-92. [PMID: 27208830 PMCID: PMC5115988 DOI: 10.1016/j.neulet.2016.05.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 02/06/2023]
Abstract
Cigarette smoking is highly addictive and modern genetic research has identified robust genetic influences on nicotine dependence. An important step in translating these genetic findings to clinical practice is identifying the genetic factors affecting smoking cessation in order to enhance current smoking cessation treatments. We reviewed the significant genetic variants that predict nicotine dependence, smoking cessation, and response to cessation pharmacotherapy. These data suggest that genetic risks can predict smoking cessation outcomes and moderate the effect of pharmacological treatments. Some pharmacogenetic findings have been replicated in meta-analyses or in multiple smoking cessation trials. The variation in efficacy between smokers with different genetic markers supports the notion that personalized smoking cessation intervention based upon genotype could maximize the efficiency of such treatment while minimizing side effects, thus influencing the number needed to treat (NNT) and the number needed to harm. In summary, as precision medicine is revolutionizing healthcare, smoking cessation may be one of the first areas where genetic variants may identify individuals at increased risk. Current evidence strongly suggests that genetic variants predict cessation failure and that cessation pharmacotherapy effectiveness is modulated by biomarkers such as nicotinic cholinergic receptor α5 subunit (CHRNA5) genotypes or nicotine metabolism ratio (NMR). These findings strengthen the case for the development and rigorous testing of treatments that target patients with different biological risk profiles.
Collapse
Affiliation(s)
- Li-Shiun Chen
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States.
| | - Amy Horton
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Laura Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States
| |
Collapse
|
17
|
Henderson LM, Claw KG, Woodahl EL, Robinson RF, Boyer BB, Burke W, Thummel KE. P450 Pharmacogenetics in Indigenous North American Populations. J Pers Med 2018; 8:jpm8010009. [PMID: 29389890 PMCID: PMC5872083 DOI: 10.3390/jpm8010009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 12/14/2022] Open
Abstract
Indigenous North American populations, including American Indian and Alaska Native peoples in the United States, the First Nations, Métis and Inuit peoples in Canada and Amerindians in Mexico, are historically under-represented in biomedical research, including genomic research on drug disposition and response. Without adequate representation in pharmacogenetic studies establishing genotype-phenotype relationships, Indigenous populations may not benefit fully from new innovations in precision medicine testing to tailor and improve the safety and efficacy of drug treatment, resulting in health care disparities. The purpose of this review is to summarize and evaluate what is currently known about cytochrome P450 genetic variation in Indigenous populations in North America and to highlight the importance of including these groups in future pharmacogenetic studies for implementation of personalized drug therapy.
Collapse
Affiliation(s)
- Lindsay M Henderson
- Departments of Pharmaceutics, University of Washington, Seattle, WA 98195, USA.
| | - Katrina G Claw
- Departments of Pharmaceutics, University of Washington, Seattle, WA 98195, USA.
| | - Erica L Woodahl
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA.
| | - Renee F Robinson
- Southcentral Foundation, Anchorage, AK 99508, USA.
- United States Public Health Service, Department of Human Services, Washington, DC 20201, USA.
| | - Bert B Boyer
- Center for Alaska Native Health Research, University of Alaska Fairbanks, Fairbanks, AK 99775, USA.
| | - Wylie Burke
- Bioethics & Humanities, University of Washington, Seattle, WA 98195, USA.
| | - Kenneth E Thummel
- Departments of Pharmaceutics, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
18
|
Baurley JW, McMahan CS, Ervin CM, Pardamean B, Bergen AW. Biosignature Discovery for Substance Use Disorders Using Statistical Learning. Trends Mol Med 2018; 24:221-235. [PMID: 29409736 PMCID: PMC5836808 DOI: 10.1016/j.molmed.2017.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 12/14/2017] [Accepted: 12/14/2017] [Indexed: 12/19/2022]
Abstract
There are limited biomarkers for substance use disorders (SUDs). Traditional statistical approaches are identifying simple biomarkers in large samples, but clinical use cases are still being established. High-throughput clinical, imaging, and 'omic' technologies are generating data from SUD studies and may lead to more sophisticated and clinically useful models. However, analytic strategies suited for high-dimensional data are not regularly used. We review strategies for identifying biomarkers and biosignatures from high-dimensional data types. Focusing on penalized regression and Bayesian approaches, we address how to leverage evidence from existing studies and knowledge bases, using nicotine metabolism as an example. We posit that big data and machine learning approaches will considerably advance SUD biomarker discovery. However, translation to clinical practice, will require integrated scientific efforts.
Collapse
Affiliation(s)
- James W Baurley
- BioRealm, Culver City, CA, USA; Bina Nusantara University, Jakarta, Indonesia.
| | | | | | - Bens Pardamean
- BioRealm, Culver City, CA, USA; Bina Nusantara University, Jakarta, Indonesia
| | - Andrew W Bergen
- BioRealm, Culver City, CA, USA; Oregon Research Institute, Eugene, OR, USA
| |
Collapse
|
19
|
Olfson E, Bloom J, Bertelsen S, Budde JP, Breslau N, Brooks A, Culverhouse R, Chan G, Chen LS, Chorlian D, Dick DM, Edenberg HJ, Hartz S, Hatsukami D, Hesselbrock VM, Johnson EO, Kramer JR, Kuperman S, Meyers JL, Nurnberger J, Porjesz B, Saccone NL, Schuckit MA, Stitzel J, Tischfield JA, Rice JP, Goate A, Bierut LJ. CYP2A6 metabolism in the development of smoking behaviors in young adults. Addict Biol 2018; 23:437-447. [PMID: 28032407 PMCID: PMC5491369 DOI: 10.1111/adb.12477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/12/2016] [Accepted: 10/28/2016] [Indexed: 11/28/2022]
Abstract
Cytochrome P450 2A6 (CYP2A6) encodes the enzyme responsible for the majority of nicotine metabolism. Previous studies support that slow metabolizers smoke fewer cigarettes once nicotine dependent but provide conflicting results on the role of CYP2A6 in the development of dependence. By focusing on the critical period of young adulthood, this study examines the relationship of CYP2A6 variation and smoking milestones. A total of 1209 European American young adults enrolled in the Collaborative Study on the Genetics of Alcoholism were genotyped for CYP2A6 variants to calculate a previously well-validated metric that estimates nicotine metabolism. This metric was not associated with the transition from never smoking to smoking initiation nor with the transition from initiation to daily smoking (P > 0.4). But among young adults who had become daily smokers (n = 506), decreased metabolism was associated with increased risk of nicotine dependence (P = 0.03) (defined as Fagerström Test for Nicotine Dependence score ≥4). This finding was replicated in the Collaborative Genetic Study of Nicotine Dependence with 335 young adult daily smokers (P = 0.02). Secondary meta-analysis indicated that slow metabolizers had a 53 percent increased odds (OR = 1.53, 95 percent CI 1.11-2.11, P = 0.009) of developing nicotine dependence compared with normal metabolizers. Furthermore, secondary analyses examining four-level response of time to first cigarette after waking (>60, 31-60, 6-30, ≤5 minutes) demonstrated a robust effect of the metabolism metric in Collaborative Study on the Genetics of Alcoholism (P = 0.03) and Collaborative Genetic Study of Nicotine Dependence (P = 0.004), illustrating the important role of this measure of dependence. These findings highlight the complex role of CYP2A6 variation across different developmental stages of smoking behaviors.
Collapse
Affiliation(s)
- Emily Olfson
- Child Study Center and Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Joseph Bloom
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
| | - Sarah Bertelsen
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John P Budde
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Naomi Breslau
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Andrew Brooks
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Robert Culverhouse
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Grace Chan
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Li-Shiun Chen
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - David Chorlian
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Danielle M Dick
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sarah Hartz
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Dorothy Hatsukami
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Victor M Hesselbrock
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Eric O Johnson
- Behavioral Health Epidemiology Program, RTI International, Research Triangle Park, NC, USA
| | - John R Kramer
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Samuel Kuperman
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Jacquelyn L Meyers
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - John Nurnberger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bernice Porjesz
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Nancy L Saccone
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Marc A Schuckit
- Department of Psychiatry, University of California, San Diego Medical School, San Diego, CA, USA
| | - Jerry Stitzel
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
| | - Jay A Tischfield
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - John P Rice
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Alison Goate
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura J Bierut
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
20
|
López-Flores LA, Pérez-Rubio G, Falfán-Valencia R. Distribution of polymorphic variants of CYP2A6 and their involvement in nicotine addiction. EXCLI JOURNAL 2017; 16:174-196. [PMID: 28507465 PMCID: PMC5427481 DOI: 10.17179/excli2016-847] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/13/2017] [Indexed: 01/08/2023]
Abstract
Tobacco consumption has become a major public health issue, which has motivated studies to identify and understand the biological processes involved in the smoking behavior for prevention and smoking cessation treatments. CYP2A6 has been identified as the main gene that codifies the enzyme that metabolizes nicotine. Many alleles have been identified after the discovery of CYP2A6, suggesting a wide interethnic variability and a diverse smoking behavior of the allele carrying individuals. The main purpose of this review is to update and highlight the effects of the CYP2A6 gene variability related to tobacco consumption reported from diverse human populations. The review further aims to consider CYP2A6 in future studies as a possible genetic marker for the prevention and treatment of nicotine addiction. Therefore, we analyzed several population studies and their importance at addressing and characterizing a population using specific parameters. Our efforts may contribute to a personalized system for detecting, preventing and treating populations at a higher risk of smoking to avoid diseases related to tobacco consumption.
Collapse
|
21
|
Hosono H, Kumondai M, Maekawa M, Yamaguchi H, Mano N, Oda A, Hirasawa N, Hiratsuka M. Functional Characterization of 34 CYP2A6 Allelic Variants by Assessment of Nicotine C-Oxidation and Coumarin 7-Hydroxylation Activities. Drug Metab Dispos 2017; 45:279-285. [PMID: 27974382 DOI: 10.1124/dmd.116.073494] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/13/2016] [Indexed: 11/22/2022] Open
Abstract
CYP2A6, a member of the cytochrome P450 (P450) family, is one of the enzymes responsible for the metabolism of therapeutic drugs and such tobacco components as nicotine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, and N-nitrosodiethylamine. Genetic polymorphisms in CYP2A6 are associated with individual variation in smoking behavior, drug toxicities, and the risk of developing several cancers. In this study, we conducted an in vitro analysis of 34 allelic variants of CYP2A6 using nicotine and coumarin as representative CYP2A6 substrates. These variant CYP2A6 proteins were heterologously expressed in 293FT cells, and their enzymatic activities were assessed on the basis of nicotine C-oxidation and coumarin 7-hydroxylation activities. Among the 34 CYP2A6 variants, CYP2A6.2, CYP2A6.5, CYP2A6.6, CYP2A6.10, CYP2A6.26, CYP2A6.36, and CYP2A6.37 exhibited no enzymatic activity, whereas 14 other variants exhibited markedly reduced activity toward both nicotine and coumarin. These comprehensive in vitro findings may provide useful insight into individual differences in smoking behavior, drug efficacy, and cancer susceptibility.
Collapse
Affiliation(s)
- Hiroki Hosono
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (H.H., M.K., N.H., M.H.), Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., H.Y., N.M.), Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Masaki Kumondai
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (H.H., M.K., N.H., M.H.), Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., H.Y., N.M.), Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Masamitsu Maekawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (H.H., M.K., N.H., M.H.), Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., H.Y., N.M.), Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Hiroaki Yamaguchi
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (H.H., M.K., N.H., M.H.), Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., H.Y., N.M.), Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Nariyasu Mano
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (H.H., M.K., N.H., M.H.), Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., H.Y., N.M.), Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Akifumi Oda
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (H.H., M.K., N.H., M.H.), Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., H.Y., N.M.), Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (H.H., M.K., N.H., M.H.), Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., H.Y., N.M.), Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (H.H., M.K., N.H., M.H.), Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.M., H.Y., N.M.), Department of Biophysical Chemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan (A.O.)
| |
Collapse
|
22
|
Patel YM, Park SL, Han Y, Wilkens LR, Bickeböller H, Rosenberger A, Caporaso N, Landi MT, Brüske I, Risch A, Wei Y, Christiani DC, Brennan P, Houlston R, McKay J, McLaughlin J, Hung R, Murphy S, Stram DO, Amos C, Le Marchand L. Novel Association of Genetic Markers Affecting CYP2A6 Activity and Lung Cancer Risk. Cancer Res 2016; 76:5768-5776. [PMID: 27488534 PMCID: PMC5050097 DOI: 10.1158/0008-5472.can-16-0446] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 06/10/2016] [Indexed: 01/28/2023]
Abstract
Metabolism of nicotine by cytochrome P450 2A6 (CYP2A6) is a suspected determinant of smoking dose and, consequently, lung cancer risk. We conducted a genome-wide association study (GWAS) of CYP2A6 activity, as measured by the urinary ratio of trans-3'-hydroxycotinine and its glucuronide conjugate over cotinine (total 3HCOT/COT), among 2,239 smokers in the Multiethnic Cohort (MEC) study. We identified 248 CYP2A6 variants associated with CYP2A6 activity (P < 5 × 10-8). CYP2A6 activity was correlated (r = 0.32; P < 0.0001) with total nicotine equivalents (a measure of nicotine uptake). When we examined the effect of these variants on lung cancer risk in the Transdisciplinary Research in Cancer of the Lung (TRICL) consortium GWAS dataset (13,479 cases and 43,218 controls), we found that the vast majority of these individual effects were directionally consistent and associated with an increased lung cancer risk. Two hundred and twenty-six of the 248 variants associated with CYP2A6 activity in the MEC were available in TRICL. Of them, 81% had directionally consistent risk estimates, and six were globally significantly associated with lung cancer. When conditioning on nine known functional variants and two deletions, the top two SNPs (rs56113850 in MEC and rs35755165 in TRICL) remained significantly associated with CYP2A6 activity in MEC and lung cancer in TRICL. The present data support the hypothesis that a greater CYP2A6 activity causes smokers to smoke more extensively and be exposed to higher levels of carcinogens, resulting in an increased risk for lung cancer. Although the variants identified in these studies may be used as risk prediction markers, the exact causal variants remain to be identified. Cancer Res; 76(19); 5768-76. ©2016 AACR.
Collapse
Affiliation(s)
- Yesha M Patel
- Department of Preventive Medicine and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Sunghim L Park
- Department of Preventive Medicine and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Younghun Han
- Department of Biomedical Data Science, Dartmouth College, Hanover, New Hampshire
| | - Lynne R Wilkens
- Epidemiology Program, University of Hawai'i Cancer Center, Honolulu, Hawaii
| | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Albert Rosenberger
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Neil Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Irene Brüske
- Helmholtz Centre Munich, German Research Centre for Environmental Health, Institute of Epidemiology I, Neuherberg, Germany
| | - Angela Risch
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Yongyue Wei
- Nanjing Medical University School of Public Health, Nanjing, China
| | - David C Christiani
- Massachusetts General Hospital, Boston, Massachusetts. Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts
| | - Paul Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Richard Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - James McKay
- Genetic Epidemiology Group, International Agency for Research on Cancer (IARC), Lyon, France
| | | | - Rayjean Hung
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Sharon Murphy
- Department of Biochemistry Molecular Biology and Biophysics and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Daniel O Stram
- Department of Preventive Medicine and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Christopher Amos
- Department of Biomedical Data Science, Dartmouth College, Hanover, New Hampshire
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawai'i Cancer Center, Honolulu, Hawaii.
| |
Collapse
|
23
|
Zhang HF, Wang HH, Gao N, Wei JY, Tian X, Zhao Y, Fang Y, Zhou J, Wen Q, Gao J, Zhang YJ, Qian XH, Qiao HL. Physiological Content and Intrinsic Activities of 10 Cytochrome P450 Isoforms in Human Normal Liver Microsomes. J Pharmacol Exp Ther 2016; 358:83-93. [PMID: 27189963 DOI: 10.1124/jpet.116.233635] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/25/2016] [Indexed: 11/22/2022] Open
Abstract
Due to a lack of physiologic cytochrome P450 (P450) isoform content, P450 activity is typically only determined at the microsomal level (per milligram of microsomal protein) and not at the isoform level (per picomole of P450 isoform), which could result in the misunderstanding of variations in P450 activity between individuals and further hinder development of personalized medicine. We found that there were large variations in protein content, mRNA levels, and intrinsic activities of the 10 P450s in 100 human liver samples, in which CYP2E1 and CYP2C9 showed the highest expression levels. P450 gene polymorphisms had different effects on activity at two levels: CYP3A5*3 and CYP2A6*9 alleles conferred increased activity at the isoform level but decreased activity at the microsomal level; CYP2C9*3 had no effect at the isoform level but decreased activity at the microsomal level. The different effects at each level stem from the different effects of each polymorphism on the resulting P450 protein. Individuals with CYP2A6*1/*4, CYP2A6*1/*9, CYP2C9*1/*3, CYP2D6 100C>T TT, CYP2E1 7632T>A AA, CYP3A5*1*3, and CYP3A5*3*3 genotypes had significantly lower protein content, whereas CYP2D6 1661G>C mutants had a higher protein content. In conclusion, we first offered the physiologic data of 10 P450 isoform contents and found that some single nucleotide polymorphisms had obvious effects on P450 expression in human normal livers. The effects of gene polymorphisms on intrinsic P450 activity at the isoform level were quite different from those at the microsomal level, which might be due to changes in P450 protein content.
Collapse
Affiliation(s)
- Hai-Feng Zhang
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, Henan, China (H.-F.Z., N.G., X.T., Y.F., J.Z., Q.W., J.G., H.-L.Q.); and State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China (H.-H.W., J.-Y.W., Y.-J.Z., Y.Z, X.-H.Q.)
| | - Huan-Huan Wang
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, Henan, China (H.-F.Z., N.G., X.T., Y.F., J.Z., Q.W., J.G., H.-L.Q.); and State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China (H.-H.W., J.-Y.W., Y.-J.Z., Y.Z, X.-H.Q.)
| | - Na Gao
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, Henan, China (H.-F.Z., N.G., X.T., Y.F., J.Z., Q.W., J.G., H.-L.Q.); and State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China (H.-H.W., J.-Y.W., Y.-J.Z., Y.Z, X.-H.Q.)
| | - Jun-Ying Wei
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, Henan, China (H.-F.Z., N.G., X.T., Y.F., J.Z., Q.W., J.G., H.-L.Q.); and State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China (H.-H.W., J.-Y.W., Y.-J.Z., Y.Z, X.-H.Q.)
| | - Xin Tian
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, Henan, China (H.-F.Z., N.G., X.T., Y.F., J.Z., Q.W., J.G., H.-L.Q.); and State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China (H.-H.W., J.-Y.W., Y.-J.Z., Y.Z, X.-H.Q.)
| | - Yan Zhao
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, Henan, China (H.-F.Z., N.G., X.T., Y.F., J.Z., Q.W., J.G., H.-L.Q.); and State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China (H.-H.W., J.-Y.W., Y.-J.Z., Y.Z, X.-H.Q.)
| | - Yan Fang
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, Henan, China (H.-F.Z., N.G., X.T., Y.F., J.Z., Q.W., J.G., H.-L.Q.); and State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China (H.-H.W., J.-Y.W., Y.-J.Z., Y.Z, X.-H.Q.)
| | - Jun Zhou
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, Henan, China (H.-F.Z., N.G., X.T., Y.F., J.Z., Q.W., J.G., H.-L.Q.); and State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China (H.-H.W., J.-Y.W., Y.-J.Z., Y.Z, X.-H.Q.)
| | - Qiang Wen
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, Henan, China (H.-F.Z., N.G., X.T., Y.F., J.Z., Q.W., J.G., H.-L.Q.); and State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China (H.-H.W., J.-Y.W., Y.-J.Z., Y.Z, X.-H.Q.)
| | - Jie Gao
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, Henan, China (H.-F.Z., N.G., X.T., Y.F., J.Z., Q.W., J.G., H.-L.Q.); and State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China (H.-H.W., J.-Y.W., Y.-J.Z., Y.Z, X.-H.Q.)
| | - Yang-Jun Zhang
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, Henan, China (H.-F.Z., N.G., X.T., Y.F., J.Z., Q.W., J.G., H.-L.Q.); and State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China (H.-H.W., J.-Y.W., Y.-J.Z., Y.Z, X.-H.Q.)
| | - Xiao-Hong Qian
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, Henan, China (H.-F.Z., N.G., X.T., Y.F., J.Z., Q.W., J.G., H.-L.Q.); and State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China (H.-H.W., J.-Y.W., Y.-J.Z., Y.Z, X.-H.Q.)
| | - Hai-Ling Qiao
- Institute of Clinical Pharmacology, Zhengzhou University, Zhengzhou, Henan, China (H.-F.Z., N.G., X.T., Y.F., J.Z., Q.W., J.G., H.-L.Q.); and State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China (H.-H.W., J.-Y.W., Y.-J.Z., Y.Z, X.-H.Q.)
| |
Collapse
|
24
|
Park SL, Tiirikainen MI, Patel YM, Wilkens LR, Stram DO, Le Marchand L, Murphy SE. Genetic determinants of CYP2A6 activity across racial/ethnic groups with different risks of lung cancer and effect on their smoking intensity. Carcinogenesis 2016; 37:269-279. [PMID: 26818358 DOI: 10.1093/carcin/bgw012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/19/2016] [Indexed: 01/22/2023] Open
Abstract
Genetic variation in cytochrome P450 2A6 (CYP2A6) gene is the primary contributor to the intraindividual and interindividual differences in nicotine metabolism and has been found to influence smoking intensity. However, no study has evaluated the relationship between CYP2A6 genetic variants and the CYP2A6 activity ratio (total 3-hydroxycotinine/cotinine) and their influence on smoking intensity [total nicotine equivalents (TNE)], across five racial/ethnic groups found to have disparate rates of lung cancer. This study genotyped 10 known functional CYP2A6 genetic or copy number variants in 2115 current smokers from the multiethnic cohort study [African Americans (AA) = 350, Native Hawaiians (NH) = 288, Whites = 413, Latinos (LA) = 437 and Japanese Americans (JA) = 627] to conduct such an investigation. Here, we found that LA had the highest CYP2A6 activity followed by Whites, AA, NH and JA, who had the lowest levels. Adjusting for age, sex, race/ethnicity and body mass index, we found that CYP2A6 diplotypes were predictive of TNE levels, particularly in AA and JA (P trend < 0.0001). However, only in JA did the association remain after accounting for cigarettes per day. Also, it is only in this population that the lower activity ratio supports lower TNE levels, carcinogen exposure and thereby lower risk of lung cancer. Despite the association between nicotine metabolism (CYP2A6 activity phenotype and diplotypes) and smoking intensity (TNE), CYP2A6 levels did not correlate with the higher TNE levels found in AA nor the lower TNE levels found in LA, suggesting that other factors may influence smoking dose in these populations. Therefore, further study in these populations is recommended.
Collapse
Affiliation(s)
| | - Maarit I Tiirikainen
- Epidemiology Program, University of Hawaii Cancer Center , Honolulu, HI 96813 , USA and
| | | | - Lynne R Wilkens
- Epidemiology Program, University of Hawaii Cancer Center , Honolulu, HI 96813 , USA and
| | | | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center , Honolulu, HI 96813 , USA and
| | - Sharon E Murphy
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, University of Minnesota , 2231 6th Street SE, 2-127 CCRB, Minneapolis, MN 55455 , USA
| |
Collapse
|
25
|
Kumondai M, Hosono H, Orikasa K, Arai Y, Arai T, Sugimura H, Ozono S, Sugiyama T, Takayama T, Sasaki T, Hirasawa N, Hiratsuka M. Genetic Polymorphisms of CYP2A6 in a Case-Control Study on Bladder Cancer in Japanese Smokers. Biol Pharm Bull 2016; 39:84-89. [PMID: 26725431 DOI: 10.1248/bpb.b15-00604] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Several of the procarcinogens inhaled in tobacco smoke, the primary risk factor for bladder cancer, are activated by CYP2A6. The association between the whole-gene deletion of CYP2A6 (CYP2A6*4) and a reduced risk of bladder cancer was suggested in Chinese Han smokers. However, there is no evidence for association between the risk of bladder cancer and CYP2A6 genotypes in the Japanese population. Using genomic DNA from smokers of the Japanese population (163 bladder cancer patients and 116 controls), we conducted a case-control study to assess the association between CYP2A6 polymorphisms and the risk of bladder cancer. Determination of CYP2A6 genotypes was carried out by amplifying each exon of CYP2A6 using polymerase chain reaction (PCR) and Sanger sequencing. The CYP2A6*4 allele was identified by an allele-specific PCR assay. Bladder cancer risk was evaluated using the activity score (AS) system based on CYP2A6 genotypes. The odds ratios (95% confidence interval) for the AS 0, AS 0.5, AS 1.0, and AS 1.5 groups were 0.46 (0.12-1.83), 0.43 (0.15-1.25), 0.86 (0.40-1.86), and 1.36 (0.60-3.06), respectively. In conclusion, although decreased CYP2A6 AS tended to reduce the risk of bladder cancer in Japanese smokers, no significant association was recognized in this population. However, given the relatively small size of the sample, further study is required to conclude the lack of a statistically significant association between CYP2A6 genotypes and the risk of bladder cancer.
Collapse
Affiliation(s)
- Masaki Kumondai
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wang H, Park SL, Stram DO, Haiman CA, Wilkens LR, Hecht SS, Kolonel LN, Murphy SE, Le Marchand L. Associations Between Genetic Ancestries and Nicotine Metabolism Biomarkers in the Multiethnic Cohort Study. Am J Epidemiol 2015; 182:945-51. [PMID: 26568573 DOI: 10.1093/aje/kwv138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 05/19/2015] [Indexed: 01/18/2023] Open
Abstract
Differences in internal dose of nicotine and tobacco-derived carcinogens among ethnic/racial groups have been observed. In this study, we explicitly examined the relationships between genetic ancestries (genome-wide average) and 19 tobacco-derived biomarkers in smokers from 3 admixed groups in the Multiethnic Cohort Study (1993-present), namely, African ancestry in African Americans (n = 362), Amerindian ancestry in Latinos (n = 437), and Asian and Native Hawaiian ancestries in Native Hawaiians (n = 300). After multiple comparison adjustment, both African and Asian ancestries were significantly related to a greater level of free cotinine; African ancestry was also significantly related to lower cotinine glucuronidation (P's < 0.00156). The predicted decrease in cotinine glucuronidation was 8.6% (P = 4.5 × 10(-6)) per a 20% increase in African ancestry. Follow-up admixture mapping revealed that African ancestry in a 12-Mb region on chromosome 4q was related to lower cotinine glucuronidation (P's < 2.7 × 10(-7), smallest P = 1.5 × 10(-9)), although this is the same region reported in our previous genome-wide association study. Our results implicate a genetic ancestral component in the observed ethnic/racial variation in nicotine metabolism. Further studies are needed to identify the underlying genetic variation that could potentially be ethnic/racial specific.
Collapse
|
27
|
Hosono H, Kumondai M, Arai T, Sugimura H, Sasaki T, Hirasawa N, Hiratsuka M. CYP2A6 genetic polymorphism is associated with decreased susceptibility to squamous cell lung cancer in Japanese smokers. Drug Metab Pharmacokinet 2015; 30:263-268. [PMID: 26091970 DOI: 10.1016/j.dmpk.2015.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 04/06/2015] [Accepted: 04/08/2015] [Indexed: 11/30/2022]
Abstract
Cytochrome P450 2A6 (CYP2A6) is an enzyme involved in the metabolism of tobacco carcinogens, which are important risk factors in lung cancer. We and others have previously reported that CYP2A6*4, a whole-gene deletion polymorphism, is associated with lower risk of lung cancer than the wild-type allele. However, the genotyping method used in these previous studies considered only the CYP2A6*4 allele; this lead to insufficient classification of the CYP2A6 genotype, thereby underestimating the frequencies of the deficient alleles. In this study, CYP2A6 genotypes of Japanese smokers (110 individuals with squamous cell lung cancer (SQCC) and 132 sex-matched cancer-free controls) were determined using a sequencing-based approach to determine CYP2A6 haplotypes. The risk of SQCC was evaluated using the activity score (AS) system to predict CYP2A6 phenotype from its genotype. The risk of developing SQCC was significantly lower in the poor metabolizers assigned as AS 0.5 (adjusted odds ratio [OR] = 0.13, 95% CI = 0.04-0.45, P = 0.001) and AS 0 (adjusted OR = 0.15, 95% CI = 0.03-0.82, P = 0.028) than in the extensive metabolizers assigned as AS 2.0. In conclusion, CYP2A6 genetic polymorphisms may play important roles in the development of SQCC in Japanese smokers.
Collapse
Affiliation(s)
- Hiroki Hosono
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Masaki Kumondai
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takamitsu Sasaki
- Department of Environmental and Health Science, Tohoku Pharmaceutical University, Sendai, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Masahiro Hiratsuka
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
28
|
Bergen AW, Michel M, Nishita D, Krasnow R, Javitz HS, Conneely KN, Lessov-Schlaggar CN, Hops H, Zhu AZX, Baurley JW, McClure JB, Hall SM, Baker TB, Conti DV, Benowitz NL, Lerman C, Tyndale RF, Swan GE. Drug Metabolizing Enzyme and Transporter Gene Variation, Nicotine Metabolism, Prospective Abstinence, and Cigarette Consumption. PLoS One 2015; 10:e0126113. [PMID: 26132489 PMCID: PMC4488893 DOI: 10.1371/journal.pone.0126113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 03/29/2015] [Indexed: 11/28/2022] Open
Abstract
The Nicotine Metabolite Ratio (NMR, ratio of trans-3’-hydroxycotinine and cotinine), has previously been associated with CYP2A6 activity, response to smoking cessation treatments, and cigarette consumption. We searched for drug metabolizing enzyme and transporter (DMET) gene variation associated with the NMR and prospective abstinence in 2,946 participants of laboratory studies of nicotine metabolism and of clinical trials of smoking cessation therapies. Stage I was a meta-analysis of the association of 507 common single nucleotide polymorphisms (SNPs) at 173 DMET genes with the NMR in 449 participants of two laboratory studies. Nominally significant associations were identified in ten genes after adjustment for intragenic SNPs; CYP2A6 and two CYP2A6 SNPs attained experiment-wide significance adjusted for correlated SNPs (CYP2A6 PACT=4.1E-7, rs4803381 PACT=4.5E-5, rs1137115, PACT=1.2E-3). Stage II was mega-regression analyses of 10 DMET SNPs with pretreatment NMR and prospective abstinence in up to 2,497 participants from eight trials. rs4803381 and rs1137115 SNPs were associated with pretreatment NMR at genome-wide significance. In post-hoc analyses of CYP2A6 SNPs, we observed nominally significant association with: abstinence in one pharmacotherapy arm; cigarette consumption among all trial participants; and lung cancer in four case:control studies. CYP2A6 minor alleles were associated with reduced NMR, CPD, and lung cancer risk. We confirmed the major role that CYP2A6 plays in nicotine metabolism, and made novel findings with respect to genome-wide significance and associations with CPD, abstinence and lung cancer risk. Additional multivariate analyses with patient variables and genetic modeling will improve prediction of nicotine metabolism, disease risk and smoking cessation treatment prognosis.
Collapse
Affiliation(s)
- Andrew W. Bergen
- Center for Health Sciences, SRI International, Menlo Park, California, United States of America
- * E-mail:
| | - Martha Michel
- Academic Research Systems, University of California San Francisco, San Francisco, California, United States of America
| | - Denise Nishita
- Center for Health Sciences, SRI International, Menlo Park, California, United States of America
| | - Ruth Krasnow
- Center for Health Sciences, SRI International, Menlo Park, California, United States of America
| | - Harold S. Javitz
- Center for Health Sciences, SRI International, Menlo Park, California, United States of America
| | - Karen N. Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | | | - Hyman Hops
- Oregon Research Institute, Eugene, Oregon, United States of America
| | - Andy Z. X. Zhu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | | | - Jennifer B. McClure
- Group Health Research Institute, Seattle, Washington, United States of America
| | - Sharon M. Hall
- Department of Psychiatry, University of California San Francisco, San Francisco, California, United States of America
| | - Timothy B. Baker
- Center for Tobacco Research and Intervention, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - David V. Conti
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Neal L. Benowitz
- Departments of Medicine and of Bioengineering & Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Caryn Lerman
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rachel F. Tyndale
- Cambell Family Mental Health Research Institute, Centre for Addiction and Mental Health, and Departments of Psychiatry, and of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Gary E. Swan
- Oregon Research Institute, Eugene, Oregon, United States of America
- Stanford Prevention Research Center, Department of Medicine, Stanford University School of Medicine, Palo Alto, California, United States of America
| | | |
Collapse
|
29
|
Achour B, Barber J, Rostami-Hodjegan A. Expression of hepatic drug-metabolizing cytochrome p450 enzymes and their intercorrelations: a meta-analysis. Drug Metab Dispos 2014; 42:1349-56. [PMID: 24879845 DOI: 10.1124/dmd.114.058834] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Cytochrome P450 is a family of enzymes that catalyze reactions involved in the metabolism of drugs and other xenobiotics. These enzymes are therefore important in pharmacologic and toxicologic studies, and information on their abundances is of value in the process of scaling in vitro data to in vivo metabolic parameters. A meta-analysis was applied to data on the abundance of human hepatic cytochrome P450 enzymes in Caucasian adult livers (50 studies). Despite variations in the methods used to measure the abundance of enzymes, agreement between the studies in 26 different laboratories was generally good. Nonetheless, some heterogeneity was detected (Higgins and Thompson heterogeneity test). More importantly, large interindividual variability was observed in the collated data. Positive correlations between the expression levels of some cytochrome P450 enzymes were found in the abundance data, including the following pairs: CYP3A4/CYP3A5*1/*3 (Rs = 0.70, P < 0.0001, n = 52), CYP3A4/CYP2C8 (Rs = 0.68, P < 0.0001, n = 134), CYP3A4/CYP2C9 (Rs = 0.55, P < 0.0001, n = 71), and CYP2C8/CYP2C9 (Rs = 0.55, P < 0.0001, n = 99). These correlations can be used to demonstrate common genetic transcriptional mechanisms.
Collapse
Affiliation(s)
- Brahim Achour
- Manchester Pharmacy School, University of Manchester, Manchester, United Kingdom (B.A., J.B., A.R-H.), and Simcyp Limited, a Certara Company, Sheffield, United Kingdom (A.R-H.)
| | - Jill Barber
- Manchester Pharmacy School, University of Manchester, Manchester, United Kingdom (B.A., J.B., A.R-H.), and Simcyp Limited, a Certara Company, Sheffield, United Kingdom (A.R-H.)
| | - Amin Rostami-Hodjegan
- Manchester Pharmacy School, University of Manchester, Manchester, United Kingdom (B.A., J.B., A.R-H.), and Simcyp Limited, a Certara Company, Sheffield, United Kingdom (A.R-H.)
| |
Collapse
|
30
|
Chenoweth MJ, Novalen M, Hawk LW, Schnoll RA, George TP, Cinciripini PM, Lerman C, Tyndale RF. Known and novel sources of variability in the nicotine metabolite ratio in a large sample of treatment-seeking smokers. Cancer Epidemiol Biomarkers Prev 2014; 23:1773-82. [PMID: 25012994 DOI: 10.1158/1055-9965.epi-14-0427] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The ratio of 3'hydroxycotinine to cotinine, or nicotine metabolite ratio (NMR), is strongly associated with CYP2A6 genotype, CYP2A6-mediated nicotine and cotinine metabolism, and nicotine clearance. Higher NMR (faster nicotine clearance) is associated retrospectively with heavier smoking and lower cessation rates. METHODS NMR as a predictive biomarker of cessation outcomes is being investigated (NCT01314001). In addition to strong CYP2A6 genetic influences on NMR, demographic and hormonal factors alter NMR. Here, we analyzed, for the first time together, these sources of variation on NMR in smokers screened for this clinical trial (N = 1,672). RESULTS Participants (mean age = 45.9) were 65.1% Caucasian, 34.9% African American, and 54.8% male. Mean NMR (SD) was higher in Caucasians versus African Americans [0.41 (0.20) vs. 0.33 (0.21); P < 0.001], and in females versus males [0.41 (0.22) vs. 0.37 (0.20); P < 0.001]. Among females, birth control pill use (N = 17) and hormone replacement therapy (N = 14) were associated with 19.5% (P = 0.09) and 29.3% (P = 0.06) higher mean NMR, respectively, albeit nonsignificantly. BMI was negatively associated with NMR (Rho = -0.14; P < 0.001), whereas alcohol use (Rho = 0.11; P < 0.001) and cigarette consumption (Rho = 0.12; P < 0.001) were positively associated with NMR. NMR was 16% lower in mentholated cigarette users (P < 0.001). When analyzed together in a linear regression model, these predictors (each ≤2%) accounted for <8% of total NMR variation. CONCLUSIONS Although these factors significantly affected NMR, they contributed little (together <8%; each ≤2%) to total NMR variation. IMPACT Thus, when using NMR, for example, to prospectively guide smoking cessation therapy, these sources of variation are unlikely to cause NMR misclassification.
Collapse
Affiliation(s)
- Meghan J Chenoweth
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada. Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Maria Novalen
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada. Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Larry W Hawk
- Department of Psychology and Center for Children and Families, University at Buffalo, SUNY, Buffalo, New York
| | - Robert A Schnoll
- Department of Psychiatry, Center for Interdisciplinary Research on Nicotine Addiction, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tony P George
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada. Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada. Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Paul M Cinciripini
- Department of Behavioral Science, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Caryn Lerman
- Department of Psychiatry, Center for Interdisciplinary Research on Nicotine Addiction, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rachel F Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada. Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada. Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
31
|
Tiong KH, Mohammed Yunus NA, Yiap BC, Tan EL, Ismail R, Ong CE. Inhibitory potency of 8-methoxypsoralen on cytochrome P450 2A6 (CYP2A6) allelic variants CYP2A6 15, CYP2A6 16, CYP2A6 21 and CYP2A6 22: differential susceptibility due to different sequence locations of the mutations. PLoS One 2014; 9:e86230. [PMID: 24475091 PMCID: PMC3903516 DOI: 10.1371/journal.pone.0086230] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 12/06/2013] [Indexed: 11/19/2022] Open
Abstract
Human cytochrome P450 2A6 (CYP2A6) is a highly polymorphic isoform of CYP2A subfamily. Our previous kinetic study on four CYP2A6 allelic variants (CYP2A6 15, CYP2A6 16, CYP2A6 21 and CYP2A6 22) have unveiled the functional significance of sequence mutations in these variants on coumarin 7-hydroxylation activity. In the present study, we further explored the ability of a typical CYP2A6 inhibitor, 8-methoxypsoralen (8-MOP), in inhibition of these alleles and we hypothesized that translational mutations in these variants are likely to give impact on 8-MOP inhibitory potency. The CYP2A6 variant and the wild type proteins were subjected to 8-MOP inhibition to yield IC50 values. In general, a similar trend of change in the IC50 and Km values was noted among the four mutants towards coumarin oxidation. With the exception of CYP2A6 16, differences in IC50 values were highly significant which implied compromised interaction of the mutants with 8-MOP. Molecular models of CYP2A6 were subsequently constructed and ligand-docking experiments were performed to rationalize experimental data. Our docking study has shown that mutations have induced enlargement of the active site volume in all mutants with the exception of CYP2A6 16. Furthermore, loss of hydrogen bond between 8-MOP and active site residue Asn297 was evidenced in all mutants. Our data indicate that the structural changes elicited by the sequence mutations could affect 8-MOP binding to yield differential enzymatic activities in the mutant CYP2A6 proteins.
Collapse
Affiliation(s)
- Kai Hung Tiong
- School of Pharmacy and Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Nafees Ahemad Mohammed Yunus
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Beow Chin Yiap
- School of Pharmacy and Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Eng Lai Tan
- School of Pharmacy and Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Rusli Ismail
- Centre of Excellence for Research in AIDS (CERiA), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chin Eng Ong
- Discipline of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- * E-mail:
| |
Collapse
|
32
|
Chen LS, Bloom AJ, Baker TB, Smith SS, Piper ME, Martinez M, Saccone N, Hatsukami D, Goate A, Bierut L. Pharmacotherapy effects on smoking cessation vary with nicotine metabolism gene (CYP2A6). Addiction 2014; 109:128-137. [PMID: 24033696 PMCID: PMC3946972 DOI: 10.1111/add.12353] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/27/2013] [Accepted: 09/03/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND AIMS Evidence suggests that both the nicotinic receptor α5 subunit (CHRNA5) and Cytochrome P450 2A6 (CYP2A6) genotypes influence smoking cessation success and response to pharmacotherapy. We examine the effect of CYP2A6 genotype on smoking cessation success and response to cessation pharmacotherapy, and combine these effects with those of CHRNA5 genotypes. DESIGN Placebo-controlled randomized smoking cessation trial. SETTING Ambulatory care facility in Wisconsin, USA. PARTICIPANTS Smokers (n = 709) of European ancestry were randomized to placebo, bupropion, nicotine replacement therapy or combined bupropion and nicotine replacement therapy. MEASUREMENTS Survival analysis was used to model time to relapse using nicotine metabolism derived from CYP2A6 genotype-based estimates. Slow metabolism is defined as the lowest quartile of estimated metabolic function. FINDINGS CYP2A6-defined nicotine metabolic function moderated the effect of smoking cessation pharmacotherapy on smoking relapse over 90 days [hazard ratio (HR) = 2.81, 95% confidence interval (CI) = 1.32-5.99, P = 0.0075], with pharmacotherapy significantly slowing relapse in fast (HR = 0.39, 95% CI = 0.28-0.55, P = 1.97 × 10(-8)), but not slow metabolizers (HR = 1.09, 95% CI = 0.55-2.17, P = 0.80). Further, only the effect of nicotine replacement, and not bupropion, varies with CYP2A6-defined metabolic function. The effect of nicotine replacement on continuous abstinence is moderated by the combined genetic risks from CYP2A6 and CHRNA5 (Wald = 7.44, d.f. = 1, P = 0.0064). CONCLUSIONS Nicotine replacement therapy is effective among individuals with fast, but not slow, CYP2A6-defined nicotine metabolism. The effect of bupropion on relapse likelihood is unlikely to be affected by nicotine metabolism as estimated from CYP2A6 genotype. The variation in treatment responses among smokers with genes may guide future personalized smoking cessation interventions.
Collapse
Affiliation(s)
- Li-Shiun Chen
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - A. Joseph Bloom
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Timothy B. Baker
- Tobacco Research and Intervention, University of Wisconsin, School of Medicine, Madison, WI53711
| | - Stevens S. Smith
- Tobacco Research and Intervention, University of Wisconsin, School of Medicine, Madison, WI53711
| | - Megan E. Piper
- Tobacco Research and Intervention, University of Wisconsin, School of Medicine, Madison, WI53711
| | - Maribel Martinez
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Nancy Saccone
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Dorothy Hatsukami
- Department of Psychiatry, University of Minnesota, Minneapolis, MN 55455
| | - Alison Goate
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Laura Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
33
|
Saladores PH, Precht JC, Schroth W, Brauch H, Schwab M. Impact of metabolizing enzymes on drug response of endocrine therapy in breast cancer. Expert Rev Mol Diagn 2013; 13:349-65. [PMID: 23638818 DOI: 10.1586/erm.13.26] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Estrogen-receptor positive breast cancer accounts for 75% of diagnosed breast cancers worldwide. There are currently two major options for adjuvant treatment: tamoxifen and aromatase inhibitors. Variability in metabolizing enzymes determines their pharmacokinetic profile, possibly affecting treatment response. Therefore, prediction of therapy outcome based on genotypes would enable a more personalized medicine approach, providing optimal therapy for each patient. In this review, the authors will discuss the current evidence on the most important metabolizing enzymes in endocrine therapy, with a special focus on CYP2D6 and its role in tamoxifen metabolism.
Collapse
Affiliation(s)
- Pilar H Saladores
- Dr Margarete Fischer-Bosch-Institute of Clinical Pharmacology and University of Tübingen, Auerbachstr. 112, 70376 Stuttgart, Germany
| | | | | | | | | |
Collapse
|
34
|
Rieger JK, Klein K, Winter S, Zanger UM. Expression variability of absorption, distribution, metabolism, excretion-related microRNAs in human liver: influence of nongenetic factors and association with gene expression. Drug Metab Dispos 2013; 41:1752-62. [PMID: 23733276 DOI: 10.1124/dmd.113.052126] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Genes that are important for the detoxification of drugs and other xenobiotics show a high degree of interindividual variation attributable to regulation by diverse genetic, nongenetic, and epigenetic mechanisms including microRNAs (miRNAs). We selected a set of 56 miRNAs predicted to target the 3'-untranslated region of absorption, distribution, metabolism, excretion (ADME) genes to assess their hepatic expression levels and interindividual variability in a well-documented human liver tissue cohort (n = 92), together with the well-known hepatic miRNAs miR-122, miR-21, miR-27b, and miR-148a. Quantification by stem-loop real-time reverse-transcription polymerase chain reaction confirmed high expression for these microRNAs and revealed particularly strong variability of expression (>1000-fold) for miR-539, miR-200c, miR-31, miR-15a, and miR-22. Association analysis revealed a high degree of correlation among various miRNAs, suggesting coregulation. Statistical analysis considering liver donor meta-data including correction for multiple testing revealed strongly elevated levels of miR-21, miR-34a, miR-130b, and miR-132 in cholestatic liver and of miR-21 and miR-130b during inflammation, as indicated by elevated C-reactive protein levels in serum. Although none of the miRNAs was strongly associated with sex, several miRNAs, including miR-34a and miR-200a/b, were positively correlated with age. Association analysis with ADME gene expression profiles and with cytochrome P450 gene expression phenotypes (mRNA, protein, enzymatic activity) revealed numerous significant correlations. Negatively affected protein and/or activity levels were observed for CYP1A1 (e.g., miR-132, miR-142-3p, miR-21), CYP2A6 (miR-142-3p, miR-21), CYP2C19 (e.g., miR-130b, miR-185, miR-34a), and CYP2E1 (miR-10a, let-7g, miR-200c). These data should be useful to further elucidate regulatory functions of miRNAs in liver pathophysiology and regulation of ADME gene expression.
Collapse
Affiliation(s)
- Jessica K Rieger
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; and University of Tuebingen, Tuebingen, Germany
| | | | | | | |
Collapse
|
35
|
Martiny VY, Miteva MA. Advances in molecular modeling of human cytochrome P450 polymorphism. J Mol Biol 2013; 425:3978-92. [PMID: 23856621 DOI: 10.1016/j.jmb.2013.07.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 01/08/2023]
Abstract
Cytochrome P450 (CYP) is a supergene family of metabolizing enzymes involved in the phase I metabolism of drugs and endogenous compounds. CYP oxidation often leads to inactive drug metabolites or to highly toxic or carcinogenic metabolites involved in adverse drug reactions (ADR). During the last decade, the impact of CYP polymorphism in various drug responses and ADR has been demonstrated. Of the drugs involved in ADR, 56% are metabolized by polymorphic phase I metabolizing enzymes, 86% among them being CYP. Here, we review the major CYP polymorphic forms, their impact for drug response and current advances in molecular modeling of CYP polymorphism. We focus on recent studies exploring CYP polymorphism performed by the use of sequence-based and/or protein-structure-based computational approaches. The importance of understanding the molecular mechanisms related to CYP polymorphism and drug response at the atomic level is outlined.
Collapse
Affiliation(s)
- Virginie Y Martiny
- Université Paris Diderot, Sorbonne Paris Cité, Molécules Thérapeutiques In Silico, Inserm UMR-S 973, 35 rue Helene Brion, 75013 Paris, France; Inserm, U973, F-75205 Paris, France
| | | |
Collapse
|
36
|
A compensatory effect upon splicing results in normal function of the CYP2A6*14 allele. Pharmacogenet Genomics 2013; 23:107-16. [PMID: 23292114 DOI: 10.1097/fpc.0b013e32835caf7d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A synonymous variant in the first exon of CYP2A6, rs1137115 (51G>A), defines the common reference allele CYP2A6*1A, and is associated with lower mRNA expression and slower in-vivo nicotine metabolism. Another common allele, CYP2A6*14, differs from CYP2A6*1A by a single variant, rs28399435 (86G>A, S29N). However, CYP2A6*14 shows in-vivo activity comparable with that of full-function alleles, and significantly higher than CYP2A6*1A. rs1137115A is predicted to create an exonic splicing suppressor site overlapping an exonic splicing enhancer (ESE) site in the first exon of CYP2A6, whereas rs28399435A is predicted to strengthen another adjacent ESE, potentially compensating for rs1137115A. Using an allelic expression assay to assess cDNAs produced from rs1137115 heterozygous liver biopsy samples, lower expression of the CYP2A6*1A allele is confirmed while CYP2A6*14 expression is found to be indistinguishable from that of rs1137115G alleles. Quantitative PCR assays to determine the relative abundance of spliced and unspliced or partially spliced CYP2A6 mRNAs in liver biopsy samples show that *1A/*1A homozygotes have a significantly lower ratio, due to both a reduction in spliced forms and an increase in unspliced or partially spliced CYP2A6. These results show the importance of common genetic variants that effect exonic splicing suppressor and ESEs to explain human variation regarding clinically-relevant phenotypes.
Collapse
|
37
|
Wassenaar CA, Dong Q, Amos CI, Spitz MR, Tyndale RF. Pilot study of CYP2B6 genetic variation to explore the contribution of nitrosamine activation to lung carcinogenesis. Int J Mol Sci 2013; 14:8381-92. [PMID: 23591849 PMCID: PMC3645749 DOI: 10.3390/ijms14048381] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/02/2013] [Accepted: 04/09/2013] [Indexed: 01/11/2023] Open
Abstract
We explored the contribution of nitrosamine metabolism to lung cancer in a pilot investigation of genetic variation in CYP2B6, a high-affinity enzymatic activator of tobacco-specific nitrosamines with a negligible role in nicotine metabolism. Previously we found that variation in CYP2A6 and CHRNA5-CHRNA3-CHRNB4 combined to increase lung cancer risk in a case-control study in European American ever-smokers (n = 860). However, these genes are involved in the pharmacology of both nicotine, through which they alter smoking behaviours, and carcinogenic nitrosamines. Herein, we separated participants by CYP2B6 genotype into a high- vs. low-risk group (*1/*1 + *1/*6 vs. *6/*6). Odds ratios estimated through logistic regression modeling were 1.25 (95% CI 0.68-2.30), 1.27 (95% CI 0.89-1.79) and 1.56 (95% CI 1.04-2.31) for CYP2B6, CYP2A6 and CHRNA5-CHRNA3-CHRNB4, respectively, with negligible differences when all genes were evaluated concurrently. Modeling the combined impact of high-risk genotypes yielded odds ratios that rose from 2.05 (95% CI 0.39-10.9) to 2.43 (95% CI 0.47-12.7) to 3.94 (95% CI 0.72-21.5) for those with 1, 2 and 3 vs. 0 high-risk genotypes, respectively. Findings from this pilot point to genetic variation in CYP2B6 as a lung cancer risk factor supporting a role for nitrosamine metabolic activation in the molecular mechanism of lung carcinogenesis.
Collapse
Affiliation(s)
- Catherine A. Wassenaar
- Department of Pharmacology and Toxicology, The University of Toronto, Toronto, ON M5S 1A8, Canada; E-Mail:
| | - Qiong Dong
- Department of Epidemiology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; E-Mail:
| | - Christopher I. Amos
- Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA; E-Mail:
| | - Margaret R. Spitz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; E-Mail:
| | - Rachel F. Tyndale
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Departments of Psychiatry, Pharmacology and Toxicology, the University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
38
|
PharmGKB summary: very important pharmacogene information for cytochrome P-450, family 2, subfamily A, polypeptide 6. Pharmacogenet Genomics 2013; 22:695-708. [PMID: 22547082 DOI: 10.1097/fpc.0b013e3283540217] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
39
|
Zhu AZX, Renner CC, Hatsukami DK, Swan GE, Lerman C, Benowitz NL, Tyndale RF. The ability of plasma cotinine to predict nicotine and carcinogen exposure is altered by differences in CYP2A6: the influence of genetics, race, and sex. Cancer Epidemiol Biomarkers Prev 2013; 22:708-18. [PMID: 23371292 DOI: 10.1158/1055-9965.epi-12-1234-t] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Cotinine, a nicotine metabolite, is a biomarker of tobacco, nicotine, and carcinogen exposure. However, a given cotinine level may not represent the same tobacco exposure; for example, African-Americans have higher cotinine levels than Caucasians after controlling for exposure. METHODS Cotinine levels are determined by the amount of cotinine formation and the rate of cotinine removal, which are both mediated by the enzyme CYP2A6. Because CYP2A6 activity differs by sex (estrogen induces CYP2A6) and genotype, their effect on cotinine formation and removal was measured in nonsmoking Caucasians (Study 1, n = 181) infused with labeled nicotine and cotinine. The findings were then extended to ad libitum smokers (Study 2, n = 163). RESULTS Study 1: Reduced CYP2A6 activity altered cotinine formation less than cotinine removal resulting in ratios of formation to removal of 1.31 and 1.12 in CYP2A6 reduced and normal metabolizers (P = 0.01), or 1.39 and 1.12 in males and females (P = 0.001), suggesting an overestimation of tobacco exposure in slower metabolizers. Study 2: Cotinine again overestimated tobacco and carcinogen exposure by 25% or more in CYP2A6 reduced metabolizers (≈2-fold between some genotypes) and in males. CONCLUSIONS In people with slower relative to faster CYP2A6 activity, cotinine accumulates resulting in substantial differences in cotinine levels for a given tobacco exposure. IMPACT Cotinine levels may be misleading when comparing those with differing CYP2A6 genotypes within a race, between races with differing frequencies of CYP2A6 gene variants (i.e., African-Americans have higher frequencies of reduced function variants contributing to their higher cotinine levels), or between the sexes.
Collapse
Affiliation(s)
- Andy Z X Zhu
- Departments of Psychiatry, Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
40
|
Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 2013; 138:103-41. [PMID: 23333322 DOI: 10.1016/j.pharmthera.2012.12.007] [Citation(s) in RCA: 2716] [Impact Index Per Article: 226.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 12/27/2012] [Indexed: 02/06/2023]
Abstract
Cytochromes P450 (CYP) are a major source of variability in drug pharmacokinetics and response. Of 57 putatively functional human CYPs only about a dozen enzymes, belonging to the CYP1, 2, and 3 families, are responsible for the biotransformation of most foreign substances including 70-80% of all drugs in clinical use. The highest expressed forms in liver are CYPs 3A4, 2C9, 2C8, 2E1, and 1A2, while 2A6, 2D6, 2B6, 2C19 and 3A5 are less abundant and CYPs 2J2, 1A1, and 1B1 are mainly expressed extrahepatically. Expression of each CYP is influenced by a unique combination of mechanisms and factors including genetic polymorphisms, induction by xenobiotics, regulation by cytokines, hormones and during disease states, as well as sex, age, and others. Multiallelic genetic polymorphisms, which strongly depend on ethnicity, play a major role for the function of CYPs 2D6, 2C19, 2C9, 2B6, 3A5 and 2A6, and lead to distinct pharmacogenetic phenotypes termed as poor, intermediate, extensive, and ultrarapid metabolizers. For these CYPs, the evidence for clinical significance regarding adverse drug reactions (ADRs), drug efficacy and dose requirement is rapidly growing. Polymorphisms in CYPs 1A1, 1A2, 2C8, 2E1, 2J2, and 3A4 are generally less predictive, but new data on CYP3A4 show that predictive variants exist and that additional variants in regulatory genes or in NADPH:cytochrome P450 oxidoreductase (POR) can have an influence. Here we review the recent progress on drug metabolism activity profiles, interindividual variability and regulation of expression, and the functional and clinical impact of genetic variation in drug metabolizing P450s.
Collapse
|
41
|
Djordjevic N, Carrillo JA, van den Broek MP, Kishikawa J, Roh HK, Bertilsson L, Aklillu E. Comparisons of CYP2A6 Genotype and Enzyme Activity between Swedes and Koreans. Drug Metab Pharmacokinet 2013; 28:93-7. [DOI: 10.2133/dmpk.dmpk-12-rg-029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Martis S, Mei H, Vijzelaar R, Edelmann L, Desnick RJ, Scott SA. Multi-ethnic cytochrome-P450 copy number profiling: novel pharmacogenetic alleles and mechanism of copy number variation formation. THE PHARMACOGENOMICS JOURNAL 2012; 13:558-66. [PMID: 23164804 PMCID: PMC3580117 DOI: 10.1038/tpj.2012.48] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 10/09/2012] [Accepted: 10/12/2012] [Indexed: 01/11/2023]
Abstract
To determine the role of CYP450 copy number variation (CNV) beyond CYP2D6, 11 CYP450 genes were interrogated by MLPA and qPCR in 542 African-American, Asian, Caucasian, Hispanic, and Ashkenazi Jewish individuals. The CYP2A6, CYP2B6 and CYP2E1 combined deletion/duplication allele frequencies ranged from 2% to 10% in these populations. High-resolution microarray-based comparative genomic hybridization (aCGH) localized CYP2A6, CYP2B6 and CYP2E1 breakpoints to directly-oriented low-copy repeats. Sequencing localized the CYP2B6 breakpoint to a 529 bp intron 4 region with high homology to CYP2B7P1, resulting in the CYP2B6*29 partial deletion allele and the reciprocal, and novel, CYP2B6/2B7P1 duplicated fusion allele (CYP2B6*30). Together, these data identified novel CYP450 CNV alleles (CYP2B6*30 and CYP2E1*1Cx2) and indicate that common CYP450 CNV formation is likely mediated by non-allelic homologous recombination resulting in both full gene and gene-fusion copy number imbalances. Detection of these CNVs should be considered when interrogating these genes for pharmacogenetic drug selection and dosing.
Collapse
Affiliation(s)
- S Martis
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
43
|
Binnington MJ, Zhu AZX, Renner CC, Lanier AP, Hatsukami DK, Benowitz NL, Tyndale RF. CYP2A6 and CYP2B6 genetic variation and its association with nicotine metabolism in South Western Alaska Native people. Pharmacogenet Genomics 2012; 22:429-40. [PMID: 22569203 PMCID: PMC3349071 DOI: 10.1097/fpc.0b013e3283527c1c] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Alaska Native (AN) people have a high prevalence of tobacco use and associated morbidity and mortality when compared with the general USA population. Variations in the CYP2A6 and CYP2B6 genes, encoding enzymes responsible for nicotine metabolic inactivation and procarcinogen activation, have not been characterized in AN and may contribute toward the increased risk. METHODS AN people (n=400) residing in the Bristol Bay region of South Western Alaska were recruited for a cross-sectional study on tobacco use. They were genotyped for CYP2A6*1X2A, *1X2B, *1B, *2, *4, *7, *8, *9, *10, *12, *17, *35 and CYP2B6*4, *6, *9 and provided plasma and urine samples for the measurement of nicotine and metabolites. RESULTS CYP2A6 and CYP2B6 variant frequencies among the AN Yupik people (n=361) were significantly different from those in other ethnicities. Nicotine metabolism [as measured by the plasma and urinary ratio of metabolites trans-3'-hydroxycotinine to cotinine (3HC/COT)] was significantly associated with CYP2A6 (P<0.001), but not CYP2B6 genotype (P=0.95) when controlling for known covariates. It was noteworthy that the plasma 3HC/COT ratios were high in the entire Yupik people, and among the Yupik CYP2A6 wild-type participants, they were substantially higher than those in previously characterized racial/ethnic groups (P<0.001 vs. Caucasians and African Americans). CONCLUSION Yupik AN people have a unique CYP2A6 genetic profile that associated strongly with in-vivo nicotine metabolism. More rapid CYP2A6-mediated nicotine and nitrosamine metabolism in the Yupik people may modulate the risk of tobacco-related diseases.
Collapse
Affiliation(s)
- Matthew J Binnington
- Departments of Psychiatry, Pharmacology and Toxicology, Centre for Addiction & Mental Health, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
44
|
Digard H, Proctor C, Kulasekaran A, Malmqvist U, Richter A. Determination of nicotine absorption from multiple tobacco products and nicotine gum. Nicotine Tob Res 2012; 15:255-61. [PMID: 22585541 PMCID: PMC3524070 DOI: 10.1093/ntr/nts123] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
INTRODUCTION Snus is a smokeless tobacco product traditionally used in Scandinavia and available in pouched or loose forms. The objective of this study was to determine nicotine absorption for current pouched and loose snus products in comparison with a cigarette and an over-the-counter nicotine gum. METHODS We conducted an open-label, randomized, 6-way, crossover study involving 20 healthy snus and cigarette users. One of 6 products (2 pouched snus, 2 weights of loose snus, a cigarette, and a nicotine gum) was administered at each of 6 visits. Blood samples were taken at intervals over 120 min and sensory perception assessed by questionnaire. RESULTS For the 4 smokeless tobacco products and the nicotine gum, blood plasma levels of nicotine were ranked according to total nicotine content as follows: loose snus (27.1 mg nicotine) > pouched snus (14.7 mg nicotine) > loose snus (10.8 mg nicotine) = pouched snus (10.7 mg nicotine) > nicotine gum (4.2 mg nicotine). The area under the plasma concentration-time curve (AUC) and maximum plasma concentration (C(max)) of nicotine ranged from 26.9 to 13.1 ng.h/ml and 17.9 to 9.1 ng.h/ml, respectively across all the products. Nicotine was absorbed more rapidly from the cigarette but systemic exposure was within the range of the smokeless tobacco products (AUC = 14.8 ng.h/ml; C(max) = 12.8 ng.h/ml). CONCLUSIONS This study has generated new information on comparative nicotine absorption from a cigarette, loose snus, and pouched snus typical of products sold in Scandinavia. The similar nicotine absorption for 1 g portions of loose and pouched snus with approximately 11 mg of nicotine indicate that absorption kinetics were dependent on quantity of tobacco by weight and total nicotine content rather than product form.
Collapse
Affiliation(s)
- Helena Digard
- Group R&D, British American Tobacco (Investments) Ltd., Southampton, United Kingdom
| | | | | | | | | |
Collapse
|
45
|
Bloom AJ, Harari O, Martinez M, Madden PAF, Martin NG, Montgomery GW, Rice JP, Murphy SE, Bierut LJ, Goate A. Use of a predictive model derived from in vivo endophenotype measurements to demonstrate associations with a complex locus, CYP2A6. Hum Mol Genet 2012; 21:3050-62. [PMID: 22451501 DOI: 10.1093/hmg/dds114] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This study demonstrates a novel approach to test associations between highly heterogeneous genetic loci and complex phenotypes. Previous investigations of the relationship between Cytochrome P450 2A6 (CYP2A6) genotype and smoking phenotypes made comparisons by dividing subjects into broad categories based on assumptions that simplify the range of function of different CYP2A6 alleles, their numerous possible diplotype combinations and non-additive allele effects. A predictive model that translates CYP2A6 diplotype into a single continuous variable was previously derived from an in vivo metabolism experiment in 189 European Americans. Here, we apply this model to assess associations between genotype, inferred nicotine metabolism and smoking behaviors in larger samples without direct nicotine metabolism measurements. CYP2A6 genotype is not associated with nicotine dependence, as defined by the Fagerström Test of Nicotine Dependence, demonstrating that cigarettes smoked per day (CPD) and nicotine dependence have distinct genetic correlates. The predicted metric is significantly associated with CPD among African Americans and European American dependent smokers. Individual slow metabolizing genotypes are associated with lower CPD, but the predicted metric is the best predictor of CPD. Furthermore, optimizing the predictive model by including additional CYP2A6 alleles improves the fit of the model in an independent data set and provides a novel method of predicting the functional impact of alleles without direct metabolism measurements. Lastly, comprehensive genotyping and in vivo metabolism data are used to demonstrate that genome-wide significant associations between CPD and single nucleotide polymorphisms are the result of synthetic associations.
Collapse
Affiliation(s)
- A Joseph Bloom
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid, Saint Louis, MO 63119, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Simultaneous quantitative analysis of letrozole, its carbinol metabolite, and carbinol glucuronide in human plasma by LC-MS/MS. Anal Bioanal Chem 2012; 403:301-8. [DOI: 10.1007/s00216-012-5813-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/19/2012] [Accepted: 01/31/2012] [Indexed: 11/25/2022]
|
47
|
Lee IS, Kim D. Polymorphic metabolism by functional alterations of human cytochrome P450 enzymes. Arch Pharm Res 2011; 34:1799-816. [PMID: 22139682 DOI: 10.1007/s12272-011-1103-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 08/24/2011] [Indexed: 10/14/2022]
Abstract
The study of cytochrome P450 pharmacogenomics is of particular interest because of its promise in the development of rational means to optimize drug therapy with respect to patient's genotype to ensure maximum efficacy with minimal adverse effects. Drug metabolizing P450 enzymes are polymorphic and are the main phase I enzymes responsible for the metabolism of clinical drugs. Therefore, polymorphisms in the P450s have the most impact on the fate of clinical drugs in phase I metabolism since almost 80% of drugs in use today are metabolized by these enzymes. Predictive genotyping for P450 enzymes for a more effective therapy will be routine for specific drugs in the future. In this review, we discuss the current knowledge of polymorphic metabolism by functional alterations in nonsynonymous SNPs of P450 1A2, 2A6, 2C8, 2C9, 2C19, 2D6, and 3A4 enzymes.
Collapse
Affiliation(s)
- Im-Soon Lee
- Department of Biological Sciences and Center for Biotechnology Research in UBITA, Konkuk University, Seoul 143-701, Korea
| | | |
Collapse
|
48
|
The contribution of common CYP2A6 alleles to variation in nicotine metabolism among European-Americans. Pharmacogenet Genomics 2011; 21:403-16. [PMID: 21597399 DOI: 10.1097/fpc.0b013e328346e8c0] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To study the association between cytochrome P450 2A6 (CYP2A6) genotype and metabolism of nicotine to cotinine, identify functional polymorphisms, and develop a predictive genetic model of nicotine metabolism. METHODS The conversion of deuterated (D2)-nicotine to D2-cotinine was quantified in 189 European-Americans and the contribution of CYP2A6 genotype to variability in first-pass nicotine metabolism was assessed. Specifically, (i) single time point measures of D2-cotinine/(D2-cotinine+D2-nicotine) after oral administration were used as a metric of CYP2A6 activity; (ii) the impact of CYP2A6 haplotype was treated as acting multiplicatively; (iii) parameter estimates were calculated for all haplotypes in the subject pool, defined by a set of polymorphisms previously reported to affect function, including gene copy number; and (iv) a minimum number of predictive polymorphisms were justified to be included in the model based on statistical evidence of differences between haplotypes. RESULTS The final model includes seven polymorphisms and fits the phenotype, 30-min after D2-nicotine oral administration, with R=0.719. The predictive power of the model is robust: parameter estimates calculated in men (n=89) predict the phenotype in women (n=100) with R=0.758 and vice versa with R=0.617; estimates calculated in current smokers (n=102) predict the phenotype in former-smokers (n=86) with R=0.690 and vice versa with R=0.703. Comparisons of haplotypes also demonstrate that CYP2A6*12 is a loss-of-function allele indistinguishable from CYP2A6*4 and CYP2A6*2 and that the CYP2A6*1B 5'-untranslated region conversion has negligible impact on metabolism. After controlling for CYP2A6 genotype, modest associations were found between increased metabolism and both female sex (P=4.8×10) and current smoking (P=0.02). CONCLUSION Among European-Americans, seven polymorphisms in the CYP2A6 gene explain the majority of variability in the metabolism of nicotine to cotinine after oral administration. Parameters determined from this in-vivo experiment can be used to predict nicotine metabolism based on CYP2A6 genotype.
Collapse
|
49
|
Wang H, Bian T, Liu D, Jin T, Chen Y, Lin A, Chen C. Association analysis of CYP2A6 genotypes and haplotypes with 5-fluorouracil formation from tegafur in human liver microsomes. Pharmacogenomics 2011; 12:481-92. [PMID: 21521021 DOI: 10.2217/pgs.10.202] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIM Tegafur is primarily converted to 5-fluorouracil (5-FU) by CYP2A6 in the human liver to exert its antitumor effect. Our objective was to comprehensively investigate the effects of CYP2A6 genetic polymorphisms on tegafur bioactivation activity. MATERIALS & METHODS Using a set of over 45 Chinese livers, the association between CYP2A6 genetic variations and 5-FU formation rates from tegafur, as well as CYP2A6 mRNA and protein levels, was determined. RESULTS A total of 20 polymorphic variants and 20 haplotypes of CYP2A6 were identified. From genotype/haplotype-phenotype association tests, we demonstrated that CYP2A6*4 was the main allele responsible for the decreased 5-FU formation from tegafur and CYP2A6 expression in this population. By contrast, haplotype 14 (a novel CYP2A6*1B allele) was associated with increased microsomal 5-FU formation activity and CYP2A6 expression, and this may be attributed to the combined effects of three single variants (g.22C>T, g.1620T>C and a gene conversion in the 3´-UTR) included in this haplotype. CONCLUSION We concluded that CYP2A6*4 and the novel CYP2A6*1B variant were the major genetic determinants of interindividual variability in 5-FU formation from tegafur in Chinese livers. Original submitted 2 November 2010; Revision submitted 3 December 2010.
Collapse
Affiliation(s)
- Huijuan Wang
- National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Elens L, Vandercam B, Yombi JC, Lison D, Wallemacq P, Haufroid V. Influence of host genetic factors on efavirenz plasma and intracellular pharmacokinetics in HIV-1-infected patients. Pharmacogenomics 2011; 11:1223-34. [PMID: 20860463 DOI: 10.2217/pgs.10.94] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Efavirenz (EFV) is characterized by interindividual pharmacokinetic variability causing inconsistent clinical responses. Previous studies have identified some possible genetic determinants of the variability in plasma concentrations. However, their impact on EFV intracellular pharmacokinetics remains mostly unexplored. AIMS To confirm previous observations concerning the influence of genetic polymorphisms on EFV plasma concentrations and to assess their effect on the intracellular pharmacokinetics of EFV. MATERIALS & METHODS EFV concentrations in plasma ([EFV](Cmin)) and in peripheral blood mononuclear cells ([EFV](CC)) were determined in 50 HIV-infected patients. Subjects were genotyped for 13 polymorphisms in 5 different genes (CYP2A6, CYP2B6, CYP3A5, UGT2B7 and ABCB1). Relationships between genetic status and [EFV](Cmin), [EFV](CC) or EFV accumulation in peripheral blood mononuclear cells (EFV accumulation ratio or accumulation ration [AR]) were then evaluated. RESULTS CYP2B6 allelic status was associated with differences in [EFV](Cmin) but also in [EFV](CC). Patients carrying at least one mutated allele showed significantly higher [EFV](Cmin) and [EFV](CC) than homozygous wild-type (mutated homozygous [m/m] >heterozygous [wt/m]>homozygous wild-type [wt/wt], p<0.001). ABCB1 rs3842T>C was significantly associated with higher EFV AR (p = 0.032). Finally, the ABCB1 3435C>T SNP was associated with a lower increase in CD4-cell count after EFV therapy initiation. CONCLUSION Our study corroborates previous findings indicating that knowledge of CYP2B6 genetic status should be taken into account for an EFV treatment. Our results also constitute the first demonstration of the significant influence of CYP2B6 genetic polymorphisms on [EFV](CC) and suggest that ABCB1 SNPs may also influence the clinical impact of EFV treatment.
Collapse
Affiliation(s)
- Laure Elens
- Louvain Centre for Toxicology & Applied Pharmacology, Université Catholique de Louvain, 53.02, Avenue E. Mounier, 1200 Bruxelles, Belgium.
| | | | | | | | | | | |
Collapse
|