1
|
Coelho DRA, Gersten M, Jimenez AS, Fregni F, Cassano P, Vieira WF. Treating neuropathic pain and comorbid affective disorders: Preclinical and clinical evidence. Pain Pract 2024; 24:937-955. [PMID: 38572653 DOI: 10.1111/papr.13370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
INTRODUCTION Neuropathic pain (NP) significantly impacts quality of life and often coexists with affective disorders such as anxiety and depression. Addressing both NP and its psychiatric manifestations requires a comprehensive understanding of therapeutic options. This study aimed to review the main pharmacological and non-pharmacological treatments for NP and comorbid affective disorders to describe their mechanisms of action and how they are commonly used in clinical practice. METHODS A review was conducted across five electronic databases, focusing on pharmacological and non-pharmacological treatments for NP and its associated affective disorders. The following combination of MeSH and title/abstract keywords were used: "neuropathic pain," "affective disorders," "depression," "anxiety," "treatment," and "therapy." Both animal and human studies were included to discuss the underlying therapeutic mechanisms of these interventions. RESULTS Pharmacological interventions, including antidepressants, anticonvulsants, and opioids, modulate neural synaptic transmission to alleviate NP. Topical agents, such as capsaicin, lidocaine patches, and botulinum toxin A, offer localized relief by desensitizing pain pathways. Some of these drugs, especially antidepressants, also treat comorbid affective disorders. Non-pharmacological techniques, including repetitive transcranial magnetic stimulation, transcranial direct current stimulation, and photobiomodulation therapy, modulate cortical activity and have shown promise for NP and mood disorders. CONCLUSIONS The interconnection between NP and comorbid affective disorders necessitates holistic therapeutic strategies. Some pharmacological treatments can be used for both conditions, and non-pharmacological interventions have emerged as promising complementary approaches. Future research should explore novel molecular pathways to enhance treatment options for these interrelated conditions.
Collapse
Affiliation(s)
- David Richer Araujo Coelho
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Maia Gersten
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Felipe Fregni
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Boston, Massachusetts, USA
| | - Paolo Cassano
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Willians Fernando Vieira
- Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Norris MR, Kuo CC, Dunn SS, Kim JR, Becker LJ, Borges G, Thang LV, Parker KE, McCall JG. Mu opioid receptors gate the locus coeruleus pain generator. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.20.562785. [PMID: 37961541 PMCID: PMC10634678 DOI: 10.1101/2023.10.20.562785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The locus coeruleus (LC) plays a paradoxical role in chronic pain. Although largely known as a potent source of endogenous analgesia, increasing evidence suggests injury can transform the LC into a chronic pain generator. We sought to clarify the role of this system in pain. Here, we show optogenetic inhibition of LC activity is acutely antinociceptive. Following long-term spared nerve injury, the same LC inhibition is analgesic - further supporting its pain generator function. To identify inhibitory substrates that may naturally serve this function, we turned to endogenous LC mu opioid receptors (LC-MOR). These receptors provide powerful LC inhibition and exogenous activation of LC-MOR is antinociceptive. We therefore hypothesized that endogenous LC-MOR-mediated inhibition is critical to how the LC modulates pain. Using cell type-selective conditional knockout and rescue of LC-MOR receptor signaling, we show these receptors bidirectionally regulate thermal and mechanical hyperalgesia - providing a functional gate on the LC pain generator.
Collapse
Affiliation(s)
- Makenzie R. Norris
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Chao-Cheng Kuo
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Samantha S. Dunn
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Jenny R. Kim
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Léa J. Becker
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Gustavo Borges
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Loc V. Thang
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Kyle E. Parker
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Jordan G. McCall
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
3
|
Suárez-Pereira I, López-Martín C, Camarena-Delgado C, Llorca-Torralba M, González-Saiz F, Ruiz R, Santiago M, Berrocoso E. Nerve Injury Triggers Time-dependent Activation of the Locus Coeruleus, Influencing Spontaneous Pain-like Behavior in Rats. Anesthesiology 2024; 141:131-150. [PMID: 38602502 DOI: 10.1097/aln.0000000000005006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
BACKGROUND Dynamic changes in neuronal activity and in noradrenergic locus coeruleus (LC) projections have been proposed during the transition from acute to chronic pain. Thus, the authors explored the cellular cFos activity of the LC and its projections in conjunction with spontaneous pain-like behavior in neuropathic rats. METHODS Tyrosine hydroxylase:Cre and wild-type Long-Evans rats, males and females, were subjected to chronic constriction injury (CCI) for 2 (short-term, CCI-ST) or 30 days (long-term, CCI-LT), evaluating cFos and Fluoro-Gold expression in the LC, and its projections to the spinal cord (SC) and rostral anterior cingulate cortex (rACC). These tests were carried out under basal conditions (unstimulated) and after noxious mechanical stimulation. LC activity was evaluated through chemogenetic and pharmacologic approaches, as were its projections, in association with spontaneous pain-like behaviors. RESULTS CCI-ST enhanced basal cFos expression in the LC and in its projection to the SC, which increased further after noxious stimulation. Similar basal activation was found in the neurons projecting to the rACC, although this was not modified by stimulation. Strong basal cFos expression was found in CCI-LT, specifically in the projection to the rACC, which was again not modified by stimulation. No cFos expression was found in the CCI-LT LCipsilateral (ipsi)/contralateral (contra)→SC. Chemogenetics showed that CCI-ST is associated with greater spontaneous pain-like behavior when the LCipsi is blocked, or by selectively blocking the LCipsi→SC projection. Activation of the LCipsi or LCipsi/contra→SC dampened pain-like behavior. Moreover, Designer Receptor Exclusively Activated by Designer Drugs (DREADDs)-mediated inactivation of the CCI-ST LCipsi→rACC or CCI-LT LCipsi/contra→rACC pathway, or intra-rACC antagonism of α-adrenoreceptors, also dampens pain-like behavior. CONCLUSIONS In the short term, activation of the LC after CCI attenuates spontaneous pain-like behaviors via projections to the SC while increasing nociception via projections to the rACC. In the long term, only the projections from the LC to the rACC contribute to modulate pain-like behaviors in this model. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Irene Suárez-Pereira
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), Madrid, Spain; Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, Faculty of Medicine, University of Cádiz, Cádiz, Spain; Biomedical Research and Innovation Institute of Cádiz (INIBICA), Puerta del Mar University Hospital, Cádiz, Spain
| | - Carolina López-Martín
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), Madrid, Spain; Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, Faculty of Medicine, University of Cádiz, Cádiz, Spain; Biomedical Research and Innovation Institute of Cádiz (INIBICA), Puerta del Mar University Hospital, Cádiz, Spain
| | - Carmen Camarena-Delgado
- Biomedical Research and Innovation Institute of Cádiz (INIBICA), Puerta del Mar University Hospital, Cádiz, Spain; IRCCS Humanitas Research Hospital, Milan, Italy; Institute of Neuroscience (IN-CNR), National Research Council of Italy, Milan, Italy
| | - Meritxell Llorca-Torralba
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), Madrid, Spain; Biomedical Research and Innovation Institute of Cádiz (INIBICA), Puerta del Mar University Hospital, Cádiz, Spain; Neuropsychopharmacology and Psychobiology Research Group, Department of Cell Biology and Histology, University of Cádiz, Cádiz, Spain
| | - Francisco González-Saiz
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), Madrid, Spain; Department of Neuroscience, Faculty of Medicine, University of Cádiz, Cádiz, Spain; Community Mental Health Unit of Villamartin, University Hospital of Jerez de la Frontera, Cádiz, Spain
| | - Rocío Ruiz
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Institute of Biomedicine of Sevilla (IBiS) - University Hospital Virgen del Rocío/CSIC/University of Sevilla, Sevilla, Spain
| | - Martiniano Santiago
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Institute of Biomedicine of Sevilla (IBiS) - University Hospital Virgen del Rocío/CSIC/University of Sevilla, Sevilla, Spain
| | - Esther Berrocoso
- Biomedical Research Networking Center for Mental Health (CIBERSAM), Institute of Health Carlos III (ISCIII), Madrid, Spain; Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, Faculty of Medicine, University of Cádiz, Cádiz, Spain; Biomedical Research and Innovation Institute of Cádiz (INIBICA), Puerta del Mar University Hospital, Cádiz, Spain
| |
Collapse
|
4
|
Widerström-Noga E. Neuropathic Pain and Spinal Cord Injury: Management, Phenotypes, and Biomarkers. Drugs 2023:10.1007/s40265-023-01903-7. [PMID: 37326804 DOI: 10.1007/s40265-023-01903-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 06/17/2023]
Abstract
Chronic neuropathic pain after a spinal cord injury (SCI) continues to be a complex condition that is difficult to manage due to multiple underlying pathophysiological mechanisms and the association with psychosocial factors. Determining the individual contribution of each of these factors is currently not a realistic goal; however, focusing on the primary mechanisms may be more feasible. One approach used to uncover underlying mechanisms includes phenotyping using pain symptoms and somatosensory function. However, this approach does not consider cognitive and psychosocial mechanisms that may also significantly contribute to the pain experience and impact treatment outcomes. Indeed, clinical experience supports that a combination of self-management, non-pharmacological, and pharmacological approaches is needed to optimally manage pain in this population. This article will provide a broad updated summary integrating the clinical aspects of SCI-related neuropathic pain, potential pain mechanisms, evidence-based treatment recommendations, neuropathic pain phenotypes and brain biomarkers, psychosocial factors, and progress regarding how defining neuropathic pain phenotypes and other surrogate measures in the neuropathic pain field may lead to targeted treatments for neuropathic pain after SCI.
Collapse
Affiliation(s)
- Eva Widerström-Noga
- The Miami Project to Cure Paralysis, University of Miami, 1611 NW 12th Avenue, Miami, FL, 33136, USA.
- Department of Neurological Surgery, University of Miami, 1095 NW 14th Terrace, Miami, FL, 33136, USA.
| |
Collapse
|
5
|
Da Vitoria Lobo ME, Madden R, Liddell S, Hirashima M, Hulse RP. Spinal cord vascular degeneration impairs duloxetine penetration. FRONTIERS IN PAIN RESEARCH 2023; 4:1190440. [PMID: 37325676 PMCID: PMC10262048 DOI: 10.3389/fpain.2023.1190440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Chronic pain is a prevalent physically debilitating health-related morbidity. Frontline analgesics are inadequate, providing only partial pain relief in only a proportion of the patient cohort. Here, we explore whether alterations in spinal cord vascular perfusion are a factor in reducing the analgesic capability of the noradrenaline reuptake inhibitor, duloxetine. Method An established rodent model of spinal cord vascular degeneration was used. Endothelial-specific vascular endothelial growth factor receptor 2 knockout mouse was induced via hydroxytamoxifen administered via intrathecal injection. Duloxetine was administered via intraperitoneal injection, and nociceptive behavioural testing was performed in both WT and VEGFR2KO mice. LC-MS/MS was performed to explore the accumulation of duloxetine in the spinal cord in WT and VEGFR2KO mice. Results Spinal cord vascular degeneration leads to heat hypersensitivity and a decline in capillary perfusion. The integrity of noradrenergic projections (dopa - hydroxylase labelled) in the dorsal horn remained unaltered in WT and VEGFR2KO mice. There was an association between dorsal horn blood flow with the abundance of accumulated duloxetine in the spinal cord and analgesic capacity. In VEGFR2KO mice, the abundance of duloxetine in the lumbar spinal cord was reduced and was correlated with reduced anti-nociceptive capability of duloxetine. Discussion Here, we show that an impaired vascular network in the spinal cord impairs the anti-nociceptive action of duloxetine. This highlights that the spinal cord vascular network is crucial to maintaining the efficacy of analgesics to provide pain relief.
Collapse
Affiliation(s)
- M. E Da Vitoria Lobo
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine University of Nottingham, Nottingham, United Kingdom
| | - R Madden
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine University of Nottingham, Nottingham, United Kingdom
| | - S Liddell
- Exonate Ltd., Nottingham, United Kingdom
| | - M Hirashima
- Division of Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - R. P Hulse
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine University of Nottingham, Nottingham, United Kingdom
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
6
|
Bannister K, Hughes S. One size does not fit all: towards optimising the therapeutic potential of endogenous pain modulatory systems. Pain 2023; 164:e5-e9. [PMID: 35594517 PMCID: PMC9756434 DOI: 10.1097/j.pain.0000000000002697] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 01/09/2023]
Affiliation(s)
- Kirsty Bannister
- Central Modulation of Pain Lab, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Sam Hughes
- Pain Modulation Lab, Brain Research, and Imaging Centre (BRIC), School of Psychology, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
7
|
Patra PH, Tench B, Hitrec T, Holmes F, Drake R, Cerritelli S, Spanswick D, Pickering AE. Pro-Opiomelanocortin (POMC) neurons in the nucleus of the solitary tract mediate endorphinergic endogenous analgesia in mice. Pain 2022; 164:1051-1066. [PMID: 36448978 DOI: 10.1097/j.pain.0000000000002802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 09/27/2022] [Indexed: 12/02/2022]
Abstract
ABSTRACT The nucleus of the solitary tract (NTS) contains pro-opiomelanocortin (POMC) neurons which are one of the two major sources of β-endorphin in the brain. The functional role of these NTS POMC neurons in nociceptive and cardiorespiratory function is debated. We have shown that NTS POMC optogenetic activation produces bradycardia and transient apnoea in a working heart brainstem preparation and chemogenetic activation with an engineered ion channel (PSAM) produced opioidergic analgesia in vivo . To better define the role of the NTS POMC neurons in behaving animals, we adopted in vivo optogenetics (ChrimsonR) and excitatory/inhibitory chemogenetic DREADD (hM3Dq/hM4Di) strategies in POMC-Cre mice. We show that optogenetic activation of NTS POMC neurons produces time-locked, graded, transient bradycardia and bradypnoea in anaesthetised mice which is naloxone sensitive (1 mg/kg, i.p) suggesting a role of β-endorphin. Both optogenetic and chemogenetic activation of NTS POMC neurons produces sustained thermal analgesia in behaving mice which can be blocked by naloxone. It also produced analgesia in inflammatory pain (carrageenan) but not in a neuropathic pain model (tibial nerve transection). Inhibiting NTS POMC neurons does not produce any effect on basal nociception but inhibits stress-induced analgesia (unlike inhibition of arcuate POMC neurons). Activation of NTS POMC neuronal populations in conscious mice did not cause respiratory depression, anxiety or locomotor deficit (in open field) nor affective preference. These findings indicate that NTS POMC neurons play a key role in the generation of endorphinergic endogenous analgesia and can also regulate cardiorespiratory function.
Collapse
Affiliation(s)
- Pabitra Hriday Patra
- Anaesthesia, Pain & Critical Care Research, School of Physiology, Pharmacology and Neuroscience, University of Bristol, BS8 1TD, UK
| | - Becks Tench
- Anaesthesia, Pain & Critical Care Research, School of Physiology, Pharmacology and Neuroscience, University of Bristol, BS8 1TD, UK
| | - Timna Hitrec
- Anaesthesia, Pain & Critical Care Research, School of Physiology, Pharmacology and Neuroscience, University of Bristol, BS8 1TD, UK
| | - Fiona Holmes
- Anaesthesia, Pain & Critical Care Research, School of Physiology, Pharmacology and Neuroscience, University of Bristol, BS8 1TD, UK
| | - Robert Drake
- Anaesthesia, Pain & Critical Care Research, School of Physiology, Pharmacology and Neuroscience, University of Bristol, BS8 1TD, UK
| | - Serena Cerritelli
- Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - David Spanswick
- Neurosolutions, University of Warwick, Gibbet Hill Road, Coventry, West Midlands, CV4 7AL, UK
| | - Anthony Edward Pickering
- Anaesthesia, Pain & Critical Care Research, School of Physiology, Pharmacology and Neuroscience, University of Bristol, BS8 1TD, UK
| |
Collapse
|
8
|
Suárez-Pereira I, Llorca-Torralba M, Bravo L, Camarena-Delgado C, Soriano-Mas C, Berrocoso E. The Role of the Locus Coeruleus in Pain and Associated Stress-Related Disorders. Biol Psychiatry 2022; 91:786-797. [PMID: 35164940 DOI: 10.1016/j.biopsych.2021.11.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/26/2022]
Abstract
The locus coeruleus (LC)-noradrenergic system is the main source of noradrenaline in the central nervous system and is involved intensively in modulating pain and stress-related disorders (e.g., major depressive disorder and anxiety) and in their comorbidity. However, the mechanisms involving the LC that underlie these effects have not been fully elucidated, in part owing to the technical difficulties inherent in exploring such a tiny nucleus. However, novel research tools are now available that have helped redefine the LC system, moving away from the traditional view of LC as a homogeneous structure that exerts a uniform influence on neural activity. Indeed, innovative techniques such as DREADDs (designer receptors exclusively activated by designer drugs) and optogenetics have demonstrated the functional heterogeneity of LC, and novel magnetic resonance imaging applications combined with pupillometry have opened the way to evaluate LC activity in vivo. This review aims to bring together the data available on the efferent activity of the LC-noradrenergic system in relation to pain and its comorbidity with anxiodepressive disorders. Acute pain triggers a robust LC stress response, producing spinal cord-mediated endogenous analgesia while promoting aversion, vigilance, and threat detection through its ascending efferents. However, this protective biological system fails in chronic pain, and LC activity produces pain facilitation, anxiety, increased aversive memory, and behavioral despair, acting at the medulla, prefrontal cortex, and amygdala levels. Thus, the activation/deactivation of specific LC projections contributes to different behavioral outcomes in the shift from acute to chronic pain.
Collapse
Affiliation(s)
- Irene Suárez-Pereira
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Meritxell Llorca-Torralba
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Lidia Bravo
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Camarena-Delgado
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Carles Soriano-Mas
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute, Barcelona, Spain; Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Esther Berrocoso
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
9
|
Llorca-Torralba M, Camarena-Delgado C, Suárez-Pereira I, Bravo L, Mariscal P, Garcia-Partida JA, López‐Martín C, Wei H, Pertovaara A, Mico JA, Berrocoso E. Pain and depression comorbidity causes asymmetric plasticity in the locus coeruleus neurons. Brain 2022; 145:154-167. [PMID: 34373893 PMCID: PMC8967092 DOI: 10.1093/brain/awab239] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 11/13/2022] Open
Abstract
There is strong comorbidity between chronic pain and depression, although the neural circuits and mechanisms underlying this association remain unclear. By combining immunohistochemistry, tracing studies and western blotting, with the use of different DREADDS (designer receptor exclusively activated by designer drugs) and behavioural approaches in a rat model of neuropathic pain (chronic constriction injury), we explore how this comorbidity arises. To this end, we evaluated the time-dependent plasticity of noradrenergic locus coeruleus neurons relative to the site of injury: ipsilateral (LCipsi) or contralateral (LCcontra) locus coeruleus at three different time points: short (2 days), mid (7 days) and long term (30-35 days from nerve injury). Nerve injury led to sensorial hypersensitivity from the onset of injury, whereas depressive-like behaviour was only evident following long-term pain. Global chemogenetic blockade of the LCipsi system alone increased short-term pain sensitivity while the blockade of the LCipsi or LCcontra relieved pain-induced depression. The asymmetric contribution of locus coeruleus modules was also evident as neuropathy develops. Hence, chemogenetic blockade of the LCipsi→spinal cord projection, increased pain-related behaviours in the short term. However, this lateralized circuit is not universal as the bilateral chemogenetic inactivation of the locus coeruleus-rostral anterior cingulate cortex pathway or the intra-rostral anterior cingulate cortex antagonism of alpha1- and alpha2-adrenoreceptors reversed long-term pain-induced depression. Furthermore, chemogenetic locus coeruleus to spinal cord activation, mainly through LCipsi, reduced sensorial hypersensitivity irrespective of the time post-injury. Our results indicate that asymmetric activation of specific locus coeruleus modules promotes early restorative analgesia, as well as late depressive-like behaviour in chronic pain and depression comorbidity.
Collapse
Affiliation(s)
- Meritxell Llorca-Torralba
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz 11519, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz 11009, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Carmen Camarena-Delgado
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz 11519, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz 11009, Spain
| | - Irene Suárez-Pereira
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz 11009, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid 28029, Spain
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz 11003, Spain
| | - Lidia Bravo
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz 11009, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid 28029, Spain
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz 11003, Spain
| | - Patricia Mariscal
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz 11009, Spain
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz 11003, Spain
| | - Jose Antonio Garcia-Partida
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz 11009, Spain
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz 11003, Spain
| | - Carolina López‐Martín
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz 11519, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz 11009, Spain
| | - Hong Wei
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Antti Pertovaara
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Juan Antonio Mico
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz 11009, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid 28029, Spain
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz 11003, Spain
| | - Esther Berrocoso
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz 11519, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz 11009, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid 28029, Spain
| |
Collapse
|
10
|
Oliva V, Hartley-Davies R, Moran R, Pickering AE, Brooks JC. Simultaneous brain, brainstem and spinal cord pharmacological-fMRI reveals involvement of an endogenous opioid network in attentional analgesia. eLife 2022; 11:71877. [PMID: 35080494 PMCID: PMC8843089 DOI: 10.7554/elife.71877] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Pain perception is decreased by shifting attentional focus away from a threatening event. This attentional analgesia engages parallel descending control pathways from anterior cingulate (ACC) to locus coeruleus, and ACC to periaqueductal grey (PAG) – rostral ventromedial medulla (RVM), indicating possible roles for noradrenergic or opioidergic neuromodulators. To determine which pathway modulates nociceptive activity in humans, we used simultaneous whole brain-spinal cord pharmacological-fMRI (N = 39) across three sessions. Noxious thermal forearm stimulation generated somatotopic-activation of dorsal horn (DH) whose activity correlated with pain report and mirrored attentional pain modulation. Activity in an adjacent cluster reported the interaction between task and noxious stimulus. Effective connectivity analysis revealed that ACC interacts with PAG and RVM to modulate spinal cord activity. Blocking endogenous opioids with Naltrexone impairs attentional analgesia and disrupts RVM-spinal and ACC-PAG connectivity. Noradrenergic augmentation with Reboxetine did not alter attentional analgesia. Cognitive pain modulation involves opioidergic ACC-PAG-RVM descending control which suppresses spinal nociceptive activity.
Collapse
Affiliation(s)
- Valeria Oliva
- Department of Anesthesiology, University of California, San Diego, La Jolla, United States
| | - Ron Hartley-Davies
- School of Psychological Science, University of Bristol, Bristol, United Kingdom
| | - Rosalyn Moran
- Department of Neuroimaging, King's College London, London, United Kingdom
| | - Anthony E Pickering
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
11
|
Mehesz E, Karoui H, Strutton PH, Hughes SW. Exposure to an Immersive Virtual Reality Environment can Modulate Perceptual Correlates of Endogenous Analgesia and Central Sensitization in Healthy Volunteers. THE JOURNAL OF PAIN 2021; 22:707-714. [PMID: 33465506 DOI: 10.1016/j.jpain.2020.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 11/26/2022]
Abstract
Virtual reality (VR) has been shown to produce analgesic effects during different experimental and clinical pain states. Despite this, the top-down mechanisms are still poorly understood. In this study, we examined the influence of both a real and sham (ie, the same images in 2D) immersive arctic VR environment on conditioned pain modulation (CPM) and in a human surrogate model of central sensitization in 38 healthy volunteers. CPM and acute heat pain thresholds were assessed before and during VR/sham exposure in the absence of any sensitization. In a follow-on study, we used the cutaneous high frequency stimulation model of central sensitization and measured changes in mechanical pain sensitivity in an area of heterotopic sensitization before and during VR/sham exposure. There was an increase in CPM efficiency during the VR condition compared to baseline (P < .01). In the sham condition, there was a decrease in CPM efficiency compared to baseline (P < .01) and the real VR condition (P < .001). Neither real nor sham VR had any effect on pain ratings reported during the conditioning period or on heat pain threshold. There was also an attenuation of mechanical pain sensitivity during the VR condition indicating a lower sensitivity compared to sham (P < .05). We conclude that exposure to an immersive VR environment has no effect over acute pain thresholds but can modulate dynamic CPM responses and mechanical hypersensitivity in healthy volunteers. PERSPECTIVE: This study has demonstrated that exposure to an immersive virtual reality environment can modulate perceptual correlates of endogenous pain modulation and secondary hyperalgesia in a human surrogate pain model. These results suggest that virtual reality could provide a novel mechanism-driven analgesic strategy in patients with altered central pain processing.
Collapse
Affiliation(s)
- Erzsebet Mehesz
- The Nick Davey Laboratory, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Hajer Karoui
- The Nick Davey Laboratory, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Paul H Strutton
- The Nick Davey Laboratory, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Sam W Hughes
- The Pain Neuroplasticity and Modulation Laboratory, Brain Research and Imaging Centre (BRIC), School of Psychology, Faculty of Health, University of Plymouth, Plymouth, UK.
| |
Collapse
|
12
|
Drake RAR, Steel KA, Apps R, Lumb BM, Pickering AE. Loss of cortical control over the descending pain modulatory system determines the development of the neuropathic pain state in rats. eLife 2021; 10:e65156. [PMID: 33555256 PMCID: PMC7895525 DOI: 10.7554/elife.65156] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/07/2021] [Indexed: 12/21/2022] Open
Abstract
The loss of descending inhibitory control is thought critical to the development of chronic pain but what causes this loss in function is not well understood. We have investigated the dynamic contribution of prelimbic cortical neuronal projections to the periaqueductal grey (PrL-P) to the development of neuropathic pain in rats using combined opto- and chemogenetic approaches. We found PrL-P neurons to exert a tonic inhibitory control on thermal withdrawal thresholds in uninjured animals. Following nerve injury, ongoing activity in PrL-P neurons masked latent hypersensitivity and improved affective state. However, this function is lost as the development of sensory hypersensitivity emerges. Despite this loss of tonic control, opto-activation of PrL-P neurons at late post-injury timepoints could restore the anti-allodynic effects by inhibition of spinal nociceptive processing. We suggest that the loss of cortical drive to the descending pain modulatory system underpins the expression of neuropathic sensitisation after nerve injury.
Collapse
Affiliation(s)
- Robert AR Drake
- School of Physiology, Pharmacology & Neuroscience, University of BristolBristolUnited Kingdom
| | - Kenneth A Steel
- School of Biosciences, University of CardiffCardiffUnited States
| | - Richard Apps
- School of Physiology, Pharmacology & Neuroscience, University of BristolBristolUnited Kingdom
| | - Bridget M Lumb
- School of Physiology, Pharmacology & Neuroscience, University of BristolBristolUnited Kingdom
| | - Anthony E Pickering
- School of Physiology, Pharmacology & Neuroscience, University of BristolBristolUnited Kingdom
- Bristol Anaesthesia, Pain & Critical Care Sciences, Bristol Medical School, Bristol Royal InfirmaryBristolUnited Kingdom
| |
Collapse
|
13
|
Oliva V, Gregory R, Davies WE, Harrison L, Moran R, Pickering AE, Brooks JCW. Parallel cortical-brainstem pathways to attentional analgesia. Neuroimage 2020; 226:117548. [PMID: 33186712 PMCID: PMC7836236 DOI: 10.1016/j.neuroimage.2020.117548] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 01/04/2023] Open
Abstract
Pain demands attention, yet pain can be reduced by focusing attention elsewhere. The neural processes involved in this robust psychophysical phenomenon, attentional analgesia, are still being defined. Our previous fMRI study linked activity in the brainstem triad of locus coeruleus (LC), rostral ventromedial medulla (RVM) and periaqueductal grey (PAG) with attentional analgesia. Here we identify and model the functional interactions between these regions and the cortex in healthy human subjects (n = 57), who received painful thermal stimuli whilst simultaneously performing a visual attention task. RVM activity encoded pain intensity while contralateral LC activity correlated with attentional analgesia. Psycho-Physiological Interaction analysis and Dynamic Causal Modelling identified two parallel paths between forebrain and brainstem. These connections are modulated by attentional demand: a bidirectional anterior cingulate cortex (ACC) - right-LC loop, and a top-down influence of task on ACC-PAG-RVM. By recruiting discrete brainstem circuits, the ACC is able to modulate nociceptive input to reduce pain in situations of conflicting attentional demand.
Collapse
Affiliation(s)
- Valeria Oliva
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Rob Gregory
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom; Anaesthesia, Pain and Critical Care Sciences, Bristol Medical School, University Hospitals Bristol, Bristol BS2 8HW, United Kingdom
| | - Wendy-Elizabeth Davies
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom; Anaesthesia, Pain and Critical Care Sciences, Bristol Medical School, University Hospitals Bristol, Bristol BS2 8HW, United Kingdom
| | - Lee Harrison
- School of Psychological Science, University of Bristol, 12a Priory Road, Bristol BS8 1TU, United Kingdom
| | - Rosalyn Moran
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, SE5 8AF, United Kingdom
| | - Anthony E Pickering
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom; Anaesthesia, Pain and Critical Care Sciences, Bristol Medical School, University Hospitals Bristol, Bristol BS2 8HW, United Kingdom
| | - Jonathan C W Brooks
- School of Psychological Science, University of Bristol, 12a Priory Road, Bristol BS8 1TU, United Kingdom.
| |
Collapse
|
14
|
Huang LJ, Jia SS, Sun XH, Li XY, Wang FF, Li W, Jin QS. Baicalin relieves neuropathic pain by regulating α 2-adrenoceptor levels in rats following spinal nerve injury. Exp Ther Med 2020; 20:2684-2690. [PMID: 32765762 PMCID: PMC7401858 DOI: 10.3892/etm.2020.9019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 10/02/2019] [Indexed: 11/06/2022] Open
Abstract
In the present study, the ability of baicalin to relieve neuropathic pain due to spinal nerve ligation in rats was explored, and the relationship between baicalin and α2-adrenoceptors (α2-AR) was determined. The neuropathic pain model was established by ligating the L5-L6 spinal nerves in Sprague-Dawley rats. Several α2-AR antagonists were injected into the intramedullary sheath to evaluate the role of baicalin in neuropathic pain. The antagonists included nonselective α2-AR antagonist idazoxan, α2a-AR antagonist BRL 44408, α2b-AR antagonist ARC 239 and α2c-AR antagonist JP 1302. The rats were divided into an untreated control group, saline group, baicalin group and baicalin + α2-AR antagonist groups. Paw withdrawal threshold (PWT) was tested to assess the level of pain felt by the rats. The levels of α2-AR mRNA were tested by reverse transcription-quantitative PCR. Inflammatory factors, including tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-17 and IL-1β, were analyzed by ELISA. The histopathological changes were assessed by hematoxylin and eosin staining. Flow cytometry was used to examine the percentage of CD4+ peripheral blood mononuclear cells (PBMCs). Compared with the saline group, the PWT value increased after treating with baicalin. However, intrathecal injection of α2-AR antagonist reversed the antinociceptive effects of baicalin. Compared with the saline group, the expression of α2a-AR and α2c-AR mRNA was upregulated significantly in the baicalin group (P<0.05). Levels of α2-AR mRNA were also decreased in the baicalin + idazoxan group compared with the baicalin group (P<0.05). The levels of TNF-α, IL-6, IL-17 and IL-1β were raised after treatment with baicalin. In addition, baicalin treatment ameliorated the histological damage in the spinal cord. The percentage of CD4+ PBMCs was increased in the saline group compared with the control group (P<0.05). Compared with the baicalin group, the percentage of CD4+ PBMCs was raised after treatment with the α2-AR antagonists. In conclusion, intrathecal injection of baicalin produced an antiallodynic effect in a spinal nerve ligation-induced neuropathic pain model. The mechanism may be related to the regulation of a2-AR expression.
Collapse
Affiliation(s)
- Lan-Ji Huang
- Department of Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Shu-Shan Jia
- Department of Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Xue-Hua Sun
- Department of Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Xin-You Li
- Department of Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Fei-Fei Wang
- Department of Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Wei Li
- Department of Anesthesiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Qing-Song Jin
- Department of Endocrinology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| |
Collapse
|
15
|
Turan Yücel N, Can ÖD, Demir Özkay Ü. Catecholaminergic and opioidergic system mediated effects of reboxetine on diabetic neuropathic pain. Psychopharmacology (Berl) 2020; 237:1131-1145. [PMID: 31912189 DOI: 10.1007/s00213-019-05443-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/27/2019] [Indexed: 10/25/2022]
Abstract
RATIONALE Current data indicate that the noradrenergic system plays a critical role in neuropathic pain treatment. Notably, drugs that directly affect this system may have curative potential in neuropathy-associated pain. OBJECTIVES The aim of this study was to evaluate the potential therapeutic efficacy of reboxetine, a potent and selective noradrenaline reuptake inhibitor, on hyperalgesia and allodynia responses in rats with experimental diabetes. Furthermore, mechanistic studies were performed to elucidate the possible mode of actions. METHODS Experimental diabetes was induced by a single dose of streptozotocin. Mechanical hyperalgesia, mechanical allodynia, thermal hyperalgesia, and thermal allodynia responses in diabetic rats were evaluated by Randall-Selitto, dynamic plantar, Hargreaves, and warm plate tests, respectively. RESULTS Reboxetine treatment (8 and 16 mg/kg for 2 weeks) demonstrated an effect comparable to that of the reference drug, pregabalin, improving the hyperalgesic and allodynic responses secondary to diabetes mellitus. Pretreatment with phentolamine, metoprolol, SR 59230A, and atropine did not alter the abovementioned effects of reboxetine; however, the administration of α-methyl-para-tyrosine methyl ester, propranolol, ICI-118,551, SCH-23390, sulpiride, and naltrindole significantly inhibited these effects. Moreover, reboxetine did not induce a significant difference in the rat plasma glucose levels. CONCLUSIONS Our findings indicate that the antihyperalgesic and antiallodynic effects of reboxetine are mediated by the catecholaminergic system; β2-adrenoceptors; D1-, D2/D3-dopaminergic receptors; and δ-opioid receptors. The results suggest that this analgesic effect of reboxetine, besides its neutral profile on glycemic control, may be advantageous in the pharmacotherapy of diabetic neuropathy-induced pain.
Collapse
Affiliation(s)
- Nazlı Turan Yücel
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey.
| | - Özgür Devrim Can
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey
| | - Ümide Demir Özkay
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey
| |
Collapse
|
16
|
Costa-Pereira JT, Ribeiro J, Martins I, Tavares I. Role of Spinal Cord α 2-Adrenoreceptors in Noradrenergic Inhibition of Nociceptive Transmission During Chemotherapy-Induced Peripheral Neuropathy. Front Neurosci 2020; 13:1413. [PMID: 32009887 PMCID: PMC6974806 DOI: 10.3389/fnins.2019.01413] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/13/2019] [Indexed: 12/14/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a problem during cancer treatment and for cancer survivors but the central mechanisms underlying CIPN remain understudied. This study aims to determine if CIPN is associated with alterations of noradrenergic modulation of nociceptive transmission at the spinal cord. CIPN was induced in male Wistar rats by paclitaxel injections. One month after CIPN induction, the behavioral effects of the administration of reboxetine (noradrenaline reuptake inhibitor), clonidine (agonist of α2-adrenoreceptors; α2–AR) and atipamezole (antagonist of α2–AR) were evaluated using the von Frey and cold plate tests. Furthermore, we measured the expression of the noradrenaline biosynthetic enzyme dopamine-β-hydroxylase (DBH) and of α2–AR in the spinal dorsal horn. Reboxetine and clonidine reversed the behavioral signs of CIPN whereas the opposite occurred with atipamezole. In the 3 pharmacological approaches, a higher effect was detected in mechanical allodynia, the pain modality which is under descending noradrenergic control. DBH expression was increased at the spinal dorsal horn of paclitaxel-injected animals. The enhanced noradrenergic inhibition during CIPN may represent an adaptation of the descending noradrenergic pain control system to the increased arrival of peripheral nociceptive input. A potentiation of the α2–AR mediated antinociception at the spinal cord may represent a therapeutic opportunity to face CIPN.
Collapse
Affiliation(s)
- José Tiago Costa-Pereira
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal.,I3S-Institute for Investigation and Innovation in Health, University of Porto, Porto, Portugal
| | - Joana Ribeiro
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal.,I3S-Institute for Investigation and Innovation in Health, University of Porto, Porto, Portugal
| | - Isabel Martins
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal.,I3S-Institute for Investigation and Innovation in Health, University of Porto, Porto, Portugal
| | - Isaura Tavares
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal.,I3S-Institute for Investigation and Innovation in Health, University of Porto, Porto, Portugal
| |
Collapse
|
17
|
Hughes S, Grimsey S, Strutton PH. Primary Motor Cortex Transcranial Direct Current Stimulation Modulates Temporal Summation of the Nociceptive Withdrawal Reflex in Healthy Subjects. PAIN MEDICINE 2018; 20:1156-1165. [DOI: 10.1093/pm/pny200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sam Hughes
- The Nick Davey Laboratory, Faculty of Medicine, Imperial College London, London, UK
| | - Sybil Grimsey
- The Nick Davey Laboratory, Faculty of Medicine, Imperial College London, London, UK
| | - Paul H Strutton
- The Nick Davey Laboratory, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
18
|
Patel R, Qu C, Xie JY, Porreca F, Dickenson AH. Selective deficiencies in descending inhibitory modulation in neuropathic rats: implications for enhancing noradrenergic tone. Pain 2018; 159:1887-1899. [PMID: 29863529 PMCID: PMC6095727 DOI: 10.1097/j.pain.0000000000001300] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 01/04/2023]
Abstract
Pontine noradrenergic neurones form part of a descending inhibitory system that influences spinal nociceptive processing. Weak or absent descending inhibition is a common feature of chronic pain patients. We examined the extent to which the descending noradrenergic system is tonically active, how control of spinal neuronal excitability is integrated into thalamic relays within sensory-discriminative projection pathways, and how this inhibitory control is altered after nerve injury. In vivo electrophysiology was performed in anaesthetised spinal nerve-ligated (SNL) and sham-operated rats to record from wide dynamic range neurones in the ventral posterolateral thalamus (VPL). In sham rats, spinal block of α2-adrenoceptors with atipamezole resulted in enhanced stimulus-evoked and spontaneous firing in the VPL, and produced conditioned place avoidance. However, in SNL rats, these conditioned avoidance behaviours were absent. Furthermore, inhibitory control of evoked neuronal responses was lost, but spinal atipamezole markedly increased spontaneous firing. Augmenting spinal noradrenergic tone in neuropathic rats with reboxetine, a selective noradrenergic reuptake inhibitor, modestly reinstated inhibitory control of evoked responses in the VPL but had no effect on spontaneous firing. By contrast, clonidine, an α2 agonist, inhibited both evoked and spontaneous firing, and exhibited increased potency in SNL rats compared with sham controls. These data suggest descending noradrenergic inhibitory pathways are tonically active in sham rats. Moreover, in neuropathic states, descending inhibitory control is diminished, but not completely absent, and distinguishes between spontaneous and evoked neuronal activity. These observations may have implications for how analgesics targeting the noradrenergic system provide relief.
Collapse
Affiliation(s)
- Ryan Patel
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Chaoling Qu
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Jennifer Y. Xie
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Frank Porreca
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Anthony H. Dickenson
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
19
|
The onset of treatment with the antidepressant desipramine is critical for the emotional consequences of neuropathic pain. Pain 2018; 159:2606-2619. [DOI: 10.1097/j.pain.0000000000001372] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Gainfully employing descending controls in acute and chronic pain management. Vet J 2018; 237:16-25. [DOI: 10.1016/j.tvjl.2018.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/30/2022]
|
21
|
|
22
|
Abstract
PURPOSE OF REVIEW Here, we give a topical overview of the ways in which brain processing can alter spinal pain transmission through descending control pathways, and how these change in pain states. We link preclinical findings on the transmitter systems involved and discuss how the monoamines, noradrenaline, 5-hydroxytryptamine (5-HT), and dopamine, can interact through inhibitory and excitatory pathways. RECENT FINDINGS Descending pathways control sensory events and the actions of the neurotransmitters noradrenaline and 5-HT in the dorsal horn of the spinal cord are chiefly implicated in nociception or antinociception according to the receptor that is activated. Abnormalities in descending controls effect central pain processing. Following nerve injury a noradrenaline-mediated control of spinal excitability is lost, whereas its restoration reduces neuropathic hypersensitivity. The story with 5-HT remains more complex because of the myriad of receptors that it can act upon; however the most recent findings support that facilitations may dominate over inhibitions. SUMMARY The monoaminergic system can be manipulated to great effect in the clinic resulting in improved treatment outcomes and is the basis for the actions of the antidepressant drugs in pain. Looking to the future, prediction of treatment responses will possible by monitoring a form of inhibitory descending control for optimized pain relief.
Collapse
|
23
|
Hirschberg S, Li Y, Randall A, Kremer EJ, Pickering AE. Functional dichotomy in spinal- vs prefrontal-projecting locus coeruleus modules splits descending noradrenergic analgesia from ascending aversion and anxiety in rats. eLife 2017; 6:29808. [PMID: 29027903 PMCID: PMC5653237 DOI: 10.7554/elife.29808] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022] Open
Abstract
The locus coeruleus (LC) projects throughout the brain and spinal cord and is the major source of central noradrenaline. It remains unclear whether the LC acts functionally as a single global effector or as discrete modules. Specifically, while spinal-projections from LC neurons can exert analgesic actions, it is not known whether they can act independently of ascending LC projections. Using viral vectors taken up at axon terminals, we expressed chemogenetic actuators selectively in LC neurons with spinal (LC:SC) or prefrontal cortex (LC:PFC) projections. Activation of the LC:SC module produced robust, lateralised anti-nociception while activation of LC:PFC produced aversion. In a neuropathic pain model, LC:SC activation reduced hind-limb sensitisation and induced conditioned place preference. By contrast, activation of LC:PFC exacerbated spontaneous pain, produced aversion and increased anxiety-like behaviour. This independent, contrasting modulation of pain-related behaviours mediated by distinct noradrenergic neuronal populations provides evidence for a modular functional organisation of the LC.
Collapse
Affiliation(s)
- Stefan Hirschberg
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Yong Li
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Andrew Randall
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom.,Medical School, University of Exeter, Exeter, United Kingdom
| | - Eric J Kremer
- IGMM, CNRS, University of Montpellier, Montpellier, France
| | - Anthony E Pickering
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
24
|
Trouvin AP, Perrot S, Lloret-Linares C. Efficacy of Venlafaxine in Neuropathic Pain: A Narrative Review of Optimized Treatment. Clin Ther 2017; 39:1104-1122. [DOI: 10.1016/j.clinthera.2017.05.347] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 10/19/2022]
|
25
|
Widerström-Noga E. Neuropathic Pain and Spinal Cord Injury: Phenotypes and Pharmacological Management. Drugs 2017; 77:967-984. [PMID: 28451808 DOI: 10.1007/s40265-017-0747-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chronic neuropathic pain is a complicated condition after a spinal cord injury (SCI) that often has a lifelong and significant negative impact on life after the injury; therefore, improved pain management is considered a significant and unmet need. Neuropathic pain mechanisms are heterogeneous and the difficulty in determining their individual contribution to specific pain types may contribute to poor treatment outcomes in this population. Thus, identifying human neuropathic pain phenotypes based on pain symptoms, somatosensory changes, or cognitive and psychosocial factors that reflect specific spinal cord or brain mechanisms of neuropathic pain is an important goal. Once a pain phenotype can be reliably replicated, its relationship with biomarkers and clinical treatment outcomes can be analyzed, and thereby facilitate translational research and further the mechanistic understanding of individual differences in the pain experience and in clinical trial outcomes. The present article will discuss clinical aspects of SCI-related neuropathic pain, neuropathic pain phenotypes, pain mechanisms, potential biomarkers and pharmacological interventions, and progress regarding how defining neuropathic pain phenotypes may lead to more targeted treatments for these difficult pain conditions.
Collapse
Affiliation(s)
- Eva Widerström-Noga
- The Miami Project to Cure Paralysis, University of Miami, 1095 NW 14th Terrace, Miami, FL, 33136, USA. .,Department of Neurological Surgery, University of Miami, 1095 NW 14th Terrace, Miami, FL, 33136, USA.
| |
Collapse
|
26
|
Wang YX, Mao XF, Li TF, Gong N, Zhang MZ. Dezocine exhibits antihypersensitivity activities in neuropathy through spinal μ-opioid receptor activation and norepinephrine reuptake inhibition. Sci Rep 2017; 7:43137. [PMID: 28230181 PMCID: PMC5322378 DOI: 10.1038/srep43137] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/19/2017] [Indexed: 01/17/2023] Open
Abstract
Dezocine is the number one opioid painkiller prescribed and sold in China, occupying 44% of the nation’s opioid analgesics market today and far ahead of the gold-standard morphine. We discovered the mechanisms underlying dezocine antihypersensitivity activity and assessed their implications to antihypersensitivity tolerance. Dezocine, given subcutaneously in spinal nerve-ligated neuropathic rats, time- and dose-dependently produced mechanical antiallodynia and thermal antihyperalgesia, significantly increased ipsilateral spinal norepinephrine and serotonin levels, and induced less antiallodynic tolerance than morphine. Its mechanical antiallodynia was partially (40% or 60%) and completely (100%) attenuated by spinal μ-opioid receptor (MOR) antagonism or norepinephrine depletion/α2-adrenoceptor antagonism and combined antagonism of MORs and α2-adenoceptors, respectively. In contrast, antagonism of spinal κ-opioid receptors (KORs) and δ-opioid receptors (DORs) or depletion of spinal serotonin did not significantly alter dezocine antiallodynia. In addition, dezocine-delayed antiallodynic tolerance was accelerated by spinal norepinephrine depletion/α2-adenoceptor antagonism. Thus dezocine produces antihypersensitivity activity through spinal MOR activation and norepinephrine reuptake inhibition (NRI), but apparently not through spinal KOR and DOR activation, serotonin reuptake inhibition or other mechanisms. Our findings reclassify dezocine as the first analgesic of the recently proposed MOR-NRI, and reveal its potential as an alternative to as well as concurrent use with morphine in treating pain.
Collapse
Affiliation(s)
- Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiao-Fang Mao
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Teng-Fei Li
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Nian Gong
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Ma-Zhong Zhang
- Department of Anesthesiology and Pediatric Clinical Pharmacology Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai 200127, China
| |
Collapse
|
27
|
Bravo L, Mico JA, Rey-Brea R, Camarena-Delgado C, Berrocoso E. Effect of DSP4 and desipramine in the sensorial and affective component of neuropathic pain in rats. Prog Neuropsychopharmacol Biol Psychiatry 2016; 70:57-67. [PMID: 27181607 DOI: 10.1016/j.pnpbp.2016.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 05/08/2016] [Accepted: 05/09/2016] [Indexed: 12/13/2022]
Abstract
Previous findings suggest that neuropathic pain induces characteristic changes in the noradrenergic system that may modify the sensorial and affective dimensions of pain. We raise the hypothesis that different drugs that manipulate the noradrenergic system can modify specific domains of pain. In the chronic constriction injury (CCI) model of neuropathic pain, the sensorial (von Frey and acetone tests) and the affective (place escape/avoidance paradigm) domains of pain were evaluated in rats 1 and 2weeks after administering the noradrenergic neurotoxin [N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride] (DSP4, 50mg/kg). In other animals, we evaluated the effect of enhancing noradrenergic tone in the 2weeks after injury by administering the antidepressant desipramine (10mg/kg/day, delivered by osmotic minipumps) during this period, a noradrenaline reuptake inhibitor. Moreover, the phosphorylation of the extracellular signal regulated kinases (p-ERK) in the anterior cingulate cortex (ACC) was also assessed. The ACC receives direct inputs from the main noradrenergic nucleus, the locus coeruleus, and ERK activation has been related with the expression of pain-related negative affect. These studies revealed that DSP4 almost depleted noradrenergic axons in the ACC and halved noradrenergic neurons in the locus coeruleus along with a decrease in the affective dimension and an increased of p-ERK in the ACC. However, it did not modify sensorial pain perception. By contrast, desipramine reduced pain hypersensitivity, while completely impeding the reduction of the affective pain dimension and without modifying the amount of p-ERK. Together results suggest that the noradrenergic system may regulate the sensorial and affective sphere of neuropathic pain independently.
Collapse
Affiliation(s)
- Lidia Bravo
- Neuropsychopharmacology & Psychobiology Research Group, University of Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28007 Madrid, Spain; Psychobiology Area, Department of Psychology, University of Cadiz, Spain
| | - Juan A Mico
- Neuropsychopharmacology & Psychobiology Research Group, University of Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28007 Madrid, Spain; Department of Neuroscience, University of Cádiz, Spain
| | - Raquel Rey-Brea
- Neuropsychopharmacology & Psychobiology Research Group, University of Cádiz, Spain
| | | | - Esther Berrocoso
- Neuropsychopharmacology & Psychobiology Research Group, University of Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28007 Madrid, Spain; Psychobiology Area, Department of Psychology, University of Cadiz, Spain.
| |
Collapse
|
28
|
Restoring Spinal Noradrenergic Inhibitory Tone Attenuates Pain Hypersensitivity in a Rat Model of Parkinson's Disease. Neural Plast 2016; 2016:6383240. [PMID: 27747105 PMCID: PMC5056271 DOI: 10.1155/2016/6383240] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/29/2016] [Indexed: 12/27/2022] Open
Abstract
In the present study, we investigated whether restoring descending noradrenergic inhibitory tone can attenuate pain in a PD rat model, which was established by stereotaxic infusion of 6-hydroxydopamine (6-OHDA) into the bilateral striatum (CPu). PD rats developed thermal and mechanical hypersensitivity at the 4th week after surgery. HPLC analysis showed that NE content, but not dopamine or 5-HT, significantly decreased in lumbar spinal cord in PD rats. Additional noradrenergic depletion by injection of N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) aggravated pain hypersensitivity in PD rats. At the 5th week after injection of 6-OHDA, systemic treatment with pharmacological norepinephrine (NE) precursor droxidopa (L-DOPS) or α2 adrenoceptor agonist clonidine significantly attenuated thermal and mechanical pain hypersensitivity in PD rats. Furthermore, application of norepinephrine (NE) and 5-hydroxytryptamine (5-HT) reuptake inhibitors duloxetine, but not 5-HT selective reuptake inhibitors sertraline, significantly inhibited thermal and mechanical pain hypersensitivity in PD rats. Systemic administration of Madopar (L-DOPA) or the D2/D3 agonist pramipexole slightly inhibited the thermal, but not mechanical, hypersensitivity in PD rats. Thus, our study revealed that impairment of descending noradrenergic system may play a key role in PD-associated pain and restoring spinal noradrenergic inhibitory tone may serve as a novel strategy to manage PD-associated pain.
Collapse
|
29
|
Kremer M, Salvat E, Muller A, Yalcin I, Barrot M. Antidepressants and gabapentinoids in neuropathic pain: Mechanistic insights. Neuroscience 2016; 338:183-206. [PMID: 27401055 DOI: 10.1016/j.neuroscience.2016.06.057] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/21/2016] [Accepted: 06/30/2016] [Indexed: 01/20/2023]
Abstract
Neuropathic pain arises as a consequence of a lesion or disease affecting the somatosensory system. It is generally chronic and challenging to treat. The recommended pharmacotherapy for neuropathic pain includes the use of some antidepressants, such as tricyclic antidepressants (TCAs) (amitriptyline…) or serotonin and noradrenaline re-uptake inhibitors (duloxetine…), and/or anticonvulsants such as the gabapentinoids gabapentin or pregabalin. Antidepressant drugs are not acute analgesics but require a chronic treatment to relieve neuropathic pain, which suggests the recruitment of secondary downstream mechanisms as well as long-term molecular and neuronal plasticity. Noradrenaline is a major actor for the action of antidepressant drugs in a neuropathic pain context. Mechanistic hypotheses have implied the recruitment of noradrenergic descending pathways as well as the peripheral recruitment of noradrenaline from sympathetic fibers sprouting into dorsal root ganglia; and importance of both α2 and β2 adrenoceptors have been reported. These monoamine re-uptake inhibitors may also indirectly act as anti-proinflammatory cytokine drugs; and their therapeutic action requires the opioid system, particularly the mu (MOP) and/or delta (DOP) opioid receptors. Gabapentinoids, which target the voltage-dependent calcium channels α2δ-1 subunit, inhibit calcium currents, thus decreasing the excitatory transmitter release and spinal sensitization. Gabapentinoids also activate the descending noradrenergic pain inhibitory system coupled to spinal α2 adrenoceptors. Gabapentinoid treatment may also indirectly impact on neuroimmune actors, like proinflammatory cytokines. These drugs are effective against neuropathic pain both with acute administration at high dose and with repeated administration. This review focuses on mechanistic knowledge concerning chronic antidepressant treatment and gabapentinoid treatment in a neuropathic pain context.
Collapse
Affiliation(s)
- Mélanie Kremer
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Eric Salvat
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France; Centre d'Etude et de Traitement de la Douleur, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - André Muller
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France; Centre d'Etude et de Traitement de la Douleur, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Ipek Yalcin
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Michel Barrot
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France.
| |
Collapse
|
30
|
Sex differences in hypothalamic-mediated tonic norepinephrine release for thermal hyperalgesia in rats. Neuroscience 2016; 324:420-9. [DOI: 10.1016/j.neuroscience.2016.03.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/31/2022]
|
31
|
Li Y, Hickey L, Perrins R, Werlen E, Patel AA, Hirschberg S, Jones MW, Salinas S, Kremer EJ, Pickering AE. Retrograde optogenetic characterization of the pontospinal module of the locus coeruleus with a canine adenoviral vector. Brain Res 2016; 1641:274-90. [PMID: 26903420 PMCID: PMC5282403 DOI: 10.1016/j.brainres.2016.02.023] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 02/03/2016] [Accepted: 02/13/2016] [Indexed: 12/22/2022]
Abstract
Noradrenergic neurons of the brainstem extend projections throughout the neuraxis to modulate a wide range of processes including attention, arousal, autonomic control and sensory processing. A spinal projection from the locus coeruleus (LC) is thought to regulate nociceptive processing. To characterize and selectively manipulate the pontospinal noradrenergic neurons in rats, we implemented a retrograde targeting strategy using a canine adenoviral vector to express channelrhodopsin2 (CAV2-PRS-ChR2-mCherry). LC microinjection of CAV2-PRS-ChR2-mCherry produced selective, stable, transduction of noradrenergic neurons allowing reliable opto-activation in vitro. The ChR2-transduced LC neurons were opto-identifiable in vivo and functional control was demonstrated for >6 months by evoked sleep-wake transitions. Spinal injection of CAV2-PRS-ChR2-mCherry retrogradely transduced pontine noradrenergic neurons, predominantly in the LC but also in A5 and A7. A pontospinal LC (ps:LC) module was identifiable, with somata located more ventrally within the nucleus and with a discrete subset of projection targets. These ps:LC neurons had distinct electrophysiological properties with shorter action potentials and smaller afterhyperpolarizations compared to neurons located in the core of the LC. In vivo recordings of ps:LC neurons showed a lower spontaneous firing frequency than those in the core and they were all excited by noxious stimuli. Using this CAV2-based approach we have demonstrated the ability to retrogradely target, characterise and optogenetically manipulate a central noradrenergic circuit and show that the ps:LC module forms a discrete unit. This article is part of a Special Issue entitled SI: Noradrenergic System.
Collapse
Affiliation(s)
- Yong Li
- School of Physiology & Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | - Louise Hickey
- School of Physiology & Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | - Ray Perrins
- School of Physiology & Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | - Emilie Werlen
- School of Physiology & Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | - Amisha A Patel
- School of Physiology & Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | - Stefan Hirschberg
- School of Physiology & Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | - Matt W Jones
- School of Physiology & Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | - Sara Salinas
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, Montpellier, France; Université de Montpellier, Montpellier, France
| | - Eric J Kremer
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, Montpellier, France; Université de Montpellier, Montpellier, France
| | - Anthony E Pickering
- School of Physiology & Pharmacology, University of Bristol, Bristol BS8 1TD, UK; Department of Anaesthesia, University Hospitals Bristol, Bristol BS2 8HW, UK.
| |
Collapse
|
32
|
Arora V, Morado-Urbina CE, Aschenbrenner CA, Hayashida KI, Wang F, Martin TJ, Eisenach JC, Peters CM. Disruption of Spinal Noradrenergic Activation Delays Recovery of Acute Incision-Induced Hypersensitivity and Increases Spinal Glial Activation in the Rat. THE JOURNAL OF PAIN 2016; 17:190-202. [PMID: 26545342 PMCID: PMC4756646 DOI: 10.1016/j.jpain.2015.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/05/2015] [Accepted: 10/21/2015] [Indexed: 12/17/2022]
Abstract
UNLABELLED Results of clinical studies suggest that descending inhibitory controls from the brainstem are important for speeding recovery from pain after surgery. We examined the effects of destroying spinally projecting noradrenergic neurons via intrathecally administered antibody to dopamine β-hydroxylase conjugated to saporin (DβH-saporin) on recovery in an acute incisional pain model. Mechanical and thermal paw withdrawal thresholds and nonevoked spontaneous guarding scores were tested for several weeks postoperatively and analyzed using mixed effects growth curve modeling. DβH-saporin treatment resulted in a significant prolongation in the duration of mechanical and to a lesser degree thermal hypersensitivity in the ipsilateral paw of incised rats but did not increase the duration of spontaneous guarding. DβH-saporin treatment was also associated with increased microglial and astrocyte activation in the ipsilateral spinal cord 21 days after incision compared with immunoglobulin G-saporin treated controls. Chronic intrathecal administration of the α2 adrenergic receptor antagonist atipamezole (50-200 μg/d) produced similar effects. These data suggest that spinally projecting noradrenergic pathways and spinal α2 adrenergic receptor activation are important for speeding recovery from hypersensitivity after surgical incision possibly by reducing spinal glial activation. Interventions that augment the noradrenergic system might be important to speed recovery from pain after surgery. PERSPECTIVE Endogenous descending spinal noradrenergic activation promotes resolution of incision-induced hypersensitivity and inhibits spinal microglial and astrocyte activation in part through α2 adrenergic receptors.
Collapse
Affiliation(s)
- Vipin Arora
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | - Carol A Aschenbrenner
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Ken-Ichiro Hayashida
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - FuZhou Wang
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Thomas J Martin
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - James C Eisenach
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina; Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Christopher M Peters
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina.
| |
Collapse
|
33
|
Sisignano M, Parnham MJ, Geisslinger G. Drug Repurposing for the Development of Novel Analgesics. Trends Pharmacol Sci 2015; 37:172-183. [PMID: 26706620 DOI: 10.1016/j.tips.2015.11.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 01/12/2023]
Abstract
Drug development consumes huge amounts of time and money and the search for novel analgesics, which are urgently required, is particularly difficult, having resulted in many setbacks in the past. Drug repurposing - the identification of new uses for existing drugs - is an alternative approach, which bypasses most of the time- and cost-consuming components of drug development. Recent, unexpected findings suggest a role for several existing drugs, such as minocycline, ceftriaxone, sivelestat, and pioglitazone, as novel analgesics in chronic and neuropathic pain states. Here, we discuss these findings as well as their proposed antihyperalgesic mechanisms and outline the merits of pathway-based repurposing screens, in combination with bioinformatics and novel cellular reprogramming techniques, for the identification of novel analgesics.
Collapse
Affiliation(s)
- Marco Sisignano
- Institute of Clinical Pharmacology, pharmazentrum Frankfurt/ZAFES, University Hospital of Goethe-University, 60590 Frankfurt am Main, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project Group Translational Medicine and Pharmacology (TMP), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, pharmazentrum Frankfurt/ZAFES, University Hospital of Goethe-University, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project Group Translational Medicine and Pharmacology (TMP), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
34
|
Vo L, Drummond PD. Involvement of α2-adrenoceptors in inhibitory and facilitatory pain modulation processes. Eur J Pain 2015; 20:386-98. [PMID: 26032281 DOI: 10.1002/ejp.736] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND In healthy humans, high-frequency electrical stimulation (HFS) of the forearm not only produces hyperalgesia at the site of stimulation but also reduces sensitivity to pressure-pain on the ipsilateral side of the forehead. In addition, HFS augments the ipsilateral trigeminal nociceptive blink reflex and intensifies the ipsilateral component of conditioned pain modulation. The aim of this study was to determine whether α2-adrenoceptors mediate these ipsilateral nociceptive influences. METHODS The α2-adrenoceptor antagonist yohimbine was administered to 22 participants in a double-blind, placebo-controlled crossover study. In each session, thermal and mechanical sensitivity in the forearms and forehead was assessed before and after HFS. In addition, the combined effect of HFS and yohimbine on the nociceptive blink reflex and on conditioned pain modulation was explored. In this paradigm, the conditioning stimulus was cold pain in the ipsilateral or contralateral temple, and the test stimulus was electrically evoked pain in the forearm. RESULTS Blood pressure and electrodermal activity increased for several hours after yohimbine administration, consistent with blockade of central α2-adrenoceptors. Yohimbine not only augmented the nociceptive blink reflex ipsilateral to HFS but also intensified the inhibitory influence of ipsilateral temple cooling on electrically evoked pain at the HFS-treated site in the forearm. Yohimbine had no consistent effect on primary or secondary hyperalgesia in the forearm or on pressure-pain in the ipsilateral forehead. CONCLUSIONS These findings imply involvement of α2-adrenoceptors both in ipsilateral antinociceptive and pronociceptive pain modulation processes. However, a mechanism not involving α2-adrenoceptors appears to mediate analgesia in the ipsilateral forehead after HFS.
Collapse
Affiliation(s)
- L Vo
- Centre for Research on Chronic Pain and Inflammatory Diseases, Murdoch University, Perth, WA, Australia
| | - P D Drummond
- Centre for Research on Chronic Pain and Inflammatory Diseases, Murdoch University, Perth, WA, Australia
| |
Collapse
|