1
|
Chu XL, Zhao XX, Liu SY, Li YJ, Ding N, Liu MQ, Li QW, Li Q. Research progress in different physical therapies for treating peripheral nerve injuries. Front Neurol 2025; 16:1508604. [PMID: 40260135 PMCID: PMC12009707 DOI: 10.3389/fneur.2025.1508604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/28/2025] [Indexed: 04/23/2025] Open
Abstract
Physical therapy is gaining recognition as an effective therapeutic approach in the realm of peripheral nerve injury (PNI) research. This article seeks to provide a comprehensive review of the latest advancements, applications, and mechanisms of action of four physical therapy modalities-ultrasound, electrical stimulation, photobiomodulation, and aerobic exercise-in the context of PNI. Ultrasound, characterized by its mechanical and thermal effects, is widely regarded as an effective non-invasive or minimally invasive method for neural modulation. Electrical stimulation therapy, a prevalent technique in PNI treatment, entails the application of electric currents to stimulate nerve and muscle tissues, thereby facilitating nerve regeneration and mitigating muscle atrophy. Photobiomodulation, a process that influences cell metabolism through the absorption of photon energy, is closely associated with neural regeneration in the field of rehabilitation medicine. Additionally, aerobic exercise, a popular form of physical activity, serves to enhance blood circulation and improve neuronal function. The article discusses various physical therapy methods for peripheral nerve injuries, including hyperbaric oxygen therapy, magnetic therapy, and biofeedback therapy, in addition to traditional approaches. Despite advancements, challenges in nerve injury treatment persist, such as the need for standardized treatment protocols, consideration of individual variations, and assessment of long-term effectiveness. Future research is needed to address these issues. In summary, this article offers theoretical and empirical evidence supporting the utilization of physical therapy in the management of PNI. This research aims to promote further research and clinical practice in this field, contributing to enhancing patient quality of life and recovery outcomes.
Collapse
Affiliation(s)
- Xiao-Lei Chu
- Department of Rehabilitation, Tianjin University Tianjin Hospital, Tianjin, China
| | - Xiao-Xuan Zhao
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Shuai-Yi Liu
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Ya-Jie Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Ning Ding
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Min-Qi Liu
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Qing-Wen Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Qi Li
- Department of Rehabilitation, Tianjin University Tianjin Hospital, Tianjin, China
| |
Collapse
|
2
|
Vieira WF, Real CC, Martins DO, Chacur M. The Role of Exercise on Glial Cell Activity in Neuropathic Pain Management. Cells 2025; 14:487. [PMID: 40214441 PMCID: PMC11988158 DOI: 10.3390/cells14070487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/13/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Chronic pain is a widespread global health problem with profound socioeconomic implications, affecting millions of people of all ages. Glial cells (GCs) in pain pathways play essential roles in the processing of pain signals. Dysregulation of GC activity contributes to chronic pain states, making them targets for therapeutic interventions. Non-pharmacological approaches, such as exercise, are strongly recommended for effective pain management. This review examines the link between exercise, regular physical activity (PA), and glial cell-mediated pain processing, highlighting its potential as a strategy for managing chronic pain. Exercise not only improves overall health and quality of life but also influences the function of GCs. Recent research highlights the ability of exercise to mitigate neuroinflammatory responses and modulate the activity of GCs by reducing the activation of microglia and astrocytes, as well as modulating the expression biomarkers, thereby attenuating pain hypersensitivity. Here, we summarize new insights into the role of exercise as a non-pharmacological intervention for the relief of chronic pain.
Collapse
Affiliation(s)
- Willians Fernando Vieira
- Department of Anatomy, Institute of Biomedical Sciences (ICB), University of São Paulo (USP), 2415 Prof. Lineu Prestes Avenue, São Paulo 05508-000, SP, Brazil;
| | - Caroline C. Real
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, 8200 Aarhus, Denmark;
| | | | - Marucia Chacur
- Department of Anatomy, Institute of Biomedical Sciences (ICB), University of São Paulo (USP), 2415 Prof. Lineu Prestes Avenue, São Paulo 05508-000, SP, Brazil;
| |
Collapse
|
3
|
Hanani M. How Do Peripheral Neurons and Glial Cells Participate in Pain Alleviation by Physical Activity? Cells 2025; 14:462. [PMID: 40136711 PMCID: PMC11941599 DOI: 10.3390/cells14060462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/21/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
Chronic pain is a global health problem with major socioeconomic implications. Drug therapy for chronic pain is limited, prompting search for non-pharmacological treatments. One such approach is physical exercise, which has been found to be beneficial for numerous health issues. Research in recent years has yielded considerable evidence for the analgesic actions of exercise in humans and experimental animals, but the underlying mechanisms are far from clear. It was proposed that exercise influences the pain pathways by interacting with the immune system, mainly by reducing inflammatory responses, but the release of endogenous analgesic mediators is another possibility. Exercise acts on neurons and glial cells in both the central and peripheral nervous systems. This review focuses on the periphery, with emphasis on possible glia-neuron interactions. Key topics include interactions of Schwann cells with axons (myelinated and unmyelinated), satellite glial cells in sensory ganglia, enteric glial cells, and the sympathetic nervous system. An attempt is made to highlight several neurological diseases that are associated with pain and the roles that glial cells may play in exercise-induced pain alleviation. Among the diseases are fibromyalgia and Charcot-Marie-Tooth disease. The hypothesis that active skeletal muscles exert their effects on the nervous system by releasing myokines is discussed.
Collapse
Affiliation(s)
- Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240, Israel;
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
4
|
Hao S, Lin S, Tao W, Zhuo M. Cortical Potentiation in Chronic Neuropathic Pain and the Future Treatment. Pharmaceuticals (Basel) 2025; 18:363. [PMID: 40143140 PMCID: PMC11944705 DOI: 10.3390/ph18030363] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/09/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
Pain, or the ability to feel pain and express the unpleasantness caused by peripheral injuries, are functions of the central nervous system. From peripheral sensory nerve terminals to certain cortical regions of the brain, activation of related neural networks underlies the sensory process. Recently, our knowledge of pain has been increasing dramatically, due to the advancement of scientific approaches. We no longer see the brain as a random matrix for pain but, rather, we are able to identify the step-by-step selective signaling proteins, neurons, and networks that preferentially contribute to the process of chronic pain and its related negative emotions, like anxiety and fear. However, there is still lacking the selective and effective drugs and methods for the treatment of chronic pain clinically. While first-line drugs for acute pain and mental diseases are also applied for the clinical management of chronic pain, their prolonged usage always causes serious side effects. In this short review, we will update and summarize the recent progress in this field and mainly focus on the roles of neural networks and synaptic mechanisms in chronic neuropathic pain. Furthermore, potential drug targets (such as plasticity-related signaling molecules, ionic channels, cytokines, and neuropeptides) and methods for the management of chronic neuropathic pain will be discussed as well. We hope this review can provide new, valuable insight into the treatment of chronic neuropathic pain.
Collapse
Affiliation(s)
- Shun Hao
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou 350122, China; (S.H.); (W.T.)
| | - Shen Lin
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China;
| | - Wucheng Tao
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou 350122, China; (S.H.); (W.T.)
| | - Min Zhuo
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou 350122, China; (S.H.); (W.T.)
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
5
|
Zhu CC, Zheng YL, Gong C, Chen BL, Guo JB. Role of Exercise on Neuropathic Pain in Preclinical Models: Perspectives for Neuroglia. Mol Neurobiol 2025; 62:3684-3696. [PMID: 39316356 DOI: 10.1007/s12035-024-04511-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 09/15/2024] [Indexed: 09/25/2024]
Abstract
The benefits of exercise on neuropathic pain (NP) have been demonstrated in numerous studies. In recent studies, inflammation, neurotrophins, neurotransmitters, and endogenous opioids are considered as the main mechanisms. However, the role of exercise in alleviating NP remains unclear. Neuroglia, widely distributed in both the central and peripheral nervous systems, perform functions such as support, repair, immune response, and maintenance of normal neuronal activity. A large number of studies have shown that neuroglia play an important role in the occurrence and development of NP, and exercise can alleviate NP by regulating neuroglia. This article reviewed the involvement of neuroglia in the development of NP and their role in the exercise treatment of NP, intending to provide a theoretical basis for the exercise treatment strategy of NP.
Collapse
Affiliation(s)
- Chen-Chen Zhu
- The Second School of Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Yi-Li Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, 200438, China
| | - Chan Gong
- The Second School of Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Bing-Lin Chen
- The Second School of Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Jia-Bao Guo
- The Second School of Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
6
|
Ghanbari A. Beneficial Effects of Exercise in Neuropathic Pain: An Overview of the Mechanisms Involved. Pain Res Manag 2025; 2025:3432659. [PMID: 40040749 PMCID: PMC11879594 DOI: 10.1155/prm/3432659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 02/08/2025] [Indexed: 03/06/2025]
Abstract
Neuropathic pain is a prevalent issue that often arises following injuries to the peripheral or central nervous system. Unfortunately, there is currently no definitive and flawless treatment available to alleviate this type of pain. However, exercise has emerged as a promising nonpharmacological and adjunctive approach, demonstrating a significant impact in reducing pain intensity. This is why physical therapy is considered a beneficial approach for diminishing pain and promoting functional recovery following nerve injuries. Regular physical activity exerts its hypoalgesic effects through a diverse array of mechanisms. These include inhibiting oxidative stress, suppressing inflammation, and modulating neurotransmitter levels, among others. It is possible that multiple activated mechanisms may coexist within an individual. However, the priming mechanism does not need to be the same across all subjects. Each person's response to physical activity and pain modulation may vary depending on their unique physiological and genetic factors. In this review, we aimed to provide a concise overview of the mechanisms underlying the beneficial effects of regular exercise on neuropathic pain. We have discussed several key mechanisms that contribute to the improvement of neuropathic pain through exercise. However, it is important to note that this is not an exhaustive analysis, and there may be other mechanisms at play. Our goal was to provide a brief yet informative exploration of the topic.
Collapse
Affiliation(s)
- Ali Ghanbari
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
- Department of Physiology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
7
|
Saffar Kohneh Quchan AH, Kordi MR, Mohammadi G, Amiri Raeez R, Choobineh S. Strength training attenuates neuropathic pain by Preventing dendritic Spine dysgenesis through Suppressing Rac1 and inflammation in experimental autoimmune encephalomyelitis. Mult Scler Relat Disord 2025; 93:106192. [PMID: 39616773 DOI: 10.1016/j.msard.2024.106192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/16/2024] [Accepted: 11/26/2024] [Indexed: 01/31/2025]
Abstract
Chronic pain is a challenge and major health problem to basic science and clinical practice. Pain is one of the worst symptoms of multiple sclerosis (MS), which has a significant impact on their quality of life. Rac1 is an important intracellular signaling molecule involved in spinal dendritic spine pathology and activation of IL-1β and TNF-α that are associated with chronic neuropathic pain. As a result, targeting Rac1 presents a promising approach to managing neuropathic pain. Clinical studies have demonstrated that physical exercise is a non-pharmacological strategy that positively influences disease progression in individuals with MS, but underlying mechanism of exercise on Rac1- induced neuropathic pain is not well understood. This study examined the effects of a 4-week strength training on Rac1 expression, IL-1B, TNF-α, TGF-β1 levels, MDA concentrations, SOD activity, dendritic spine abnormalities in the dorsal horn of the spinal cord, as well as nociceptive behaviors (formalin test) and motor function (Rotarod test) during the chronic phase of experimental autoimmune encephalomyelitis (EAE). The findings indicated that strength training increased TGF-β1 expression and SOD activity while decreasing the expression of Rac1, IL-1β, TNF-α, and MDA and reducing dendritic spine dysgenesis in the dorsal horn of the spinal cord. We observed strength training effectively reduced nociceptive behaviors and improved motor function in mice with EAE. In summary, regular physical exercise may modulate neuropathic pain through inhibition of dendritic spine dysgenesis, inflammation and oxidative stress in the dorsal horn of the spinal cord.
Collapse
Affiliation(s)
| | - Mohammad Reza Kordi
- Department of Exercise Physiology, Faculty of Sport Sciences and Health, University of Tehran, Tehran, Iran.
| | - Golrokh Mohammadi
- Department of Exercise Physiology, Faculty of Sport Sciences and Health, University of Tehran, Tehran, Iran
| | - Raheleh Amiri Raeez
- Department of Exercise Physiology, Faculty of Sport Sciences and Health, University of Tehran, Tehran, Iran
| | - Siroos Choobineh
- Department of Exercise Physiology, Faculty of Sport Sciences and Health, University of Tehran, Tehran, Iran
| |
Collapse
|
8
|
Dhir S, Derue H, Ribeiro-da-Silva A. Temporal changes of spinal microglia in murine models of neuropathic pain: a scoping review. Front Immunol 2024; 15:1460072. [PMID: 39735541 PMCID: PMC11671780 DOI: 10.3389/fimmu.2024.1460072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/18/2024] [Indexed: 12/31/2024] Open
Abstract
Neuropathic pain (NP) is an ineffectively treated, debilitating chronic pain disorder that is associated with maladaptive changes in the central nervous system, particularly in the spinal cord. Murine models of NP looking at the mechanisms underlying these changes suggest an important role of microglia, the resident immune cells of the central nervous system, in various stages of disease progression. However, given the number of different NP models and the resource limitations that come with tracking longitudinal changes in NP animals, many studies fail to truly recapitulate the patterns that exist between pain conditions and temporal microglial changes. This review integrates how NP studies are being carried out in murine models and how microglia changes over time can affect pain behavior in order to inform better study design and highlight knowledge gaps in the field. 258 peer-reviewed, primary source articles looking at spinal microglia in murine models of NP were selected using Covidence. Trends in the type of mice, statistical tests, pain models, interventions, microglial markers and temporal pain behavior and microglia changes were recorded and analyzed. Studies were primarily conducted in inbred, young adult, male mice having peripheral nerve injury which highlights the lack of generalizability in the data currently being collected. Changes in microglia and pain behavior, which were both increased, were tested most commonly up to 2 weeks after pain initiation despite aberrant microglia activity also being recorded at later time points in NP conditions. Studies using treatments that decrease microglia show decreased pain behavior primarily at the 1- and 2-week time point with many studies not recording pain behavior despite the involvement of spinal microglia dysfunction in their development. These results show the need for not only studying spinal microglia dynamics in a variety of NP conditions at longer time points but also for better clinically relevant study design considerations.
Collapse
Affiliation(s)
- Simran Dhir
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Hannah Derue
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Alfredo Ribeiro-da-Silva
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| |
Collapse
|
9
|
Zheng YN, Zheng YL, Wang XQ, Chen PJ. Role of Exercise on Inflammation Cytokines of Neuropathic Pain in Animal Models. Mol Neurobiol 2024; 61:10288-10301. [PMID: 38714582 DOI: 10.1007/s12035-024-04214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/25/2024] [Indexed: 05/10/2024]
Abstract
Neuropathic pain (NP) resulting from a lesion or disease of the somatosensory system can lead to loss of function and reduced life quality. Neuroinflammation plays a vital role in the development and maintenance of NP. Exercise as an economical, effective, and nonpharmacological treatment, recommended by clinical practice guidelines, has been proven to alleviate chronic NP. Previous studies have shown that exercise decreases NP by modifying inflammation; however, the exact mechanisms of exercise-mediated NP are unclear. Therefore, from the perspective of neuroinflammation, this review mainly discussed the effects of exercise on inflammatory cytokines in different parts of NP conduction pathways, such as the brain, spinal cord, dorsal root ganglion, sciatic nerve, and blood in rat/mice models. Results suggested that exercise training could modulate neuroinflammation, inhibit astrocyte glial cell proliferation and microglial activation, alter the macrophage phenotype, reduce the expression of proinflammatory cytokines, increase anti-inflammatory cytokine levels, and positively modulate the state of the immune system, thereby relieving NP.
Collapse
Affiliation(s)
- Ya-Nan Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, 399 Changhai Road, Yangpu District, Shanghai, China
- Rehabilitation Treatment Center, The First Rehabilitation Hospital of Shanghai, Shanghai, 200090, China
| | - Yi-Li Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, 399 Changhai Road, Yangpu District, Shanghai, China
| | - Xue-Qiang Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Pei-Jie Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, 399 Changhai Road, Yangpu District, Shanghai, China.
| |
Collapse
|
10
|
Wang C, He H, Gao T, Sun X, Du L, Yang Y, Zhu J, Yang Y, Wang Y, Mi W. Analgesic Effect of Exercise on Neuropathic Pain via Regulating the Complement Component 3 of Reactive Astrocytes. Anesth Analg 2024; 139:840-850. [PMID: 38294950 PMCID: PMC11379360 DOI: 10.1213/ane.0000000000006884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Exercise has been proven to be an efficient intervention in attenuating neuropathic pain. However, the underlying mechanisms that drive exercise analgesia remain unknown. In this study, we aimed to examine the role of complement component 3 (C3) in neuropathic pain and whether antinociceptive effects are produced by exercise via regulating C3 in mice. METHODS In this study, using a spared nerve injury (SNI)-induced neuropathic pain mice model, C57BL/6J mice were divided into 3 groups: Sham mice, SNI mice, and SNI + Exercise (Ex) mice with 30-minute low-intensity aerobic treadmill running (10 m/min, no inclination). Paw withdrawal threshold; thermal withdrawal latency; and glial fibrillary acidic protein, C3, tumor necrosis factor-α, and interlukin-1β expression in the spinal cord were monitored. C3 knockout (KO) mice were further used to verify the role of C3 in neuropathic pain. RESULTS von Frey test, acetone test, and CatWalk gait analysis revealed that treadmill exercise for 4 weeks reversed pain behaviors. In addition, exercise reduced astrocyte reactivity (SNI mean = 14.5, 95% confidence interval [CI], 12.7-16.3; SNI + Ex mean = 10.3, 95% CI, 8.77-11.9, P = .0003 SNI + Ex versus SNI) and inflammatory responses in the spinal cord after SNI. Moreover, it suppressed the SNI-induced upregulation of C3 expression in the spinal cord (SNI mean = 5.46, 95% CI, 3.39-7.53; SNI + Ex mean = 2.41, 95% CI, 1.42-3.41, P = .0054 SNI + Ex versus SNI in Western blot). C3 deficiency reduced SNI-induced pain and spinal astrocyte reactivity (wild type mean = 7.96, 95% CI, 6.80-9.13; C3 KO mean = 5.98, 95% CI, 5.14-6.82, P = .0052 C3 KO versus wild type). Intrathecal injection of recombinant C3 (rC3) was sufficient to produce mechanical (rC3-Ex mean = 0.77, 95% CI, 0.15-1.39; rC3 mean = 0.18, 95% CI, -0.04 to 0.41, P = .0168 rC3-Ex versus rC3) and cold (rC3-Ex mean = 1.08, 95% CI, 0.40-1.77; rC3 mean = 3.46, 95% CI, 1.45-5.47, P = .0025 rC3-Ex versus rC3) allodynia in mice. Importantly, exercise training relieved C3-induced mechanical and cold allodynia, and the analgesic effect of exercise was attenuated by a subeffective dose of intrathecal injection of C3. CONCLUSIONS Overall, these results suggest that exercise suppresses neuropathic pain by regulating astroglial C3 expression and function, thereby providing a rationale for the analgesic effect of exercise as an acceptable alternative approach for treating neuropathic pain.
Collapse
Affiliation(s)
- Chenghao Wang
- From the Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Hui He
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| | - Tianchi Gao
- From the Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinzheng Sun
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | - Lixia Du
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yayue Yang
- From the Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianyu Zhu
- From the Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yachen Yang
- From the Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanqing Wang
- From the Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenli Mi
- From the Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Rajamanickam G, Lee ATH, Liao P. Role of Brain Derived Neurotrophic Factor and Related Therapeutic Strategies in Central Post-Stroke Pain. Neurochem Res 2024; 49:2303-2318. [PMID: 38856889 DOI: 10.1007/s11064-024-04175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) is vital for synaptic plasticity, cell persistence, and neuronal development in peripheral and central nervous systems (CNS). Numerous intracellular signalling pathways involving BDNF are well recognized to affect neurogenesis, synaptic function, cell viability, and cognitive function, which in turn affects pathological and physiological aspects of neurons. Stroke has a significant psycho-socioeconomic impact globally. Central post-stroke pain (CPSP), also known as a type of chronic neuropathic pain, is caused by injury to the CNS following a stroke, specifically damage to the somatosensory system. BDNF regulates a broad range of functions directly or via its biologically active isoforms, regulating multiple signalling pathways through interactions with different types of receptors. BDNF has been shown to play a major role in facilitating neuroplasticity during post-stroke recovery and a pro-nociceptive role in pain development in the nervous system. BDNF-tyrosine kinase receptors B (TrkB) pathway promotes neurite outgrowth, neurogenesis, and the prevention of apoptosis, which helps in stroke recovery. Meanwhile, BDNF overexpression plays a role in CPSP via the activation of purinergic receptors P2X4R and P2X7R. The neuronal hyperexcitability that causes CPSP is linked with BDNF-TrkB interactions, changes in ion channels and inflammatory reactions. This review provides an overview of BDNF synthesis, interactions with certain receptors, and potential functions in regulating signalling pathways associated with stroke and CPSP. The pathophysiological mechanisms underlying CPSP, the role of BDNF in CPSP, and the challenges and current treatment strategies targeting BDNF are also discussed.
Collapse
Affiliation(s)
- Gayathri Rajamanickam
- Calcium Signalling Laboratory, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Andy Thiam Huat Lee
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore
| | - Ping Liao
- Calcium Signalling Laboratory, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
12
|
Kang DW, Choi SR, Shin H, Lee H, Park J, Lee M, Bae M, Kim HW. Modulation of Brain-derived Neurotrophic Factor Expression by Physical Exercise in Reserpine-induced Pain-depression Dyad in Mice. Exp Neurobiol 2024; 33:165-179. [PMID: 39266473 PMCID: PMC11411092 DOI: 10.5607/en24014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/14/2024] Open
Abstract
Pain accompanied by depressive symptoms is a common reason for seeking medical assistance, and many chronic pain patients experience comorbid depression. The brain-derived neurotrophic factor (BDNF) is a well-known neurotrophin expressed throughout the nervous system, playing a crucial role in neuronal growth and neuroplasticity. This study aimed to examine the effects of exercise on BDNF expression in the nervous system and reserpine (RSP)-induced pain-depression dyad. RSP (1 mg/kg) was subcutaneously administered once daily for three days in mice. The exercise was performed using a rota-rod tester for seven consecutive days following RSP administration. Pain responses were evaluated using von Frey filaments, and depression-like behaviors were assessed through forced swimming and open field tests. Immunofluorescence staining was performed to examine the changes in BDNF expression in the dorsal root ganglion (DRG), spinal cord, and hippocampus. Administration of RSP reduced mechanical paw withdrawal threshold, increased immobility time in the forced swimming test, and decreased movement in the open field test. The immunoreactivity of BDNF was increased in the DRG and spinal dorsal regions, and decreased in the hippocampus after RSP administration. Physical exercise significantly reduced the RSP-induced mechanical hypersensitivity and depression-like behaviors. In addition, exercise suppressed not only the increased expression of BDNF in the DRG and spinal dorsal regions but also the decreased expression of BDNF in the hippocampus induced by RSP administration. These findings suggest that repetitive exercise could serve as an effective and non-invasive treatment option for individuals experiencing both pain and depression by modulating BDNF expression.
Collapse
Affiliation(s)
- Dong-Wook Kang
- Department of Physiology and Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Korea
| | - Sheu-Ran Choi
- Department of Pharmacology, Catholic Kwandong University College of Medicine, Gangneung 25601, Korea
| | - Hyunjin Shin
- Department of Physiology and Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Korea
| | - Hyeryeong Lee
- Department of Physiology and Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Korea
| | - Jaehong Park
- Department of Physiology and Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Korea
| | - Miae Lee
- Department of Physiology and Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Korea
| | - Miok Bae
- Preclinical Research Center, Chungnam National University Hospital, Daejeon 35015, Korea
| | - Hyun-Woo Kim
- Department of Physiology and Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, Daejeon 35015, Korea
| |
Collapse
|
13
|
Bi X, Fang J, Jin X, Thirupathi A. The interplay between BDNF and PGC-1 alpha in maintaining brain health: role of exercise. Front Endocrinol (Lausanne) 2024; 15:1433750. [PMID: 39239097 PMCID: PMC11374591 DOI: 10.3389/fendo.2024.1433750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
Throughout our evolutionary history, physical activity has played a significant role in shaping our physiology. Advances in exercise science have further reinforced this concept by highlighting how exercise can change gene expression and molecular signaling to achieve various beneficial outcomes. Several studies have shown that exercise can alter neuronal functions to prevent neurodegenerative conditions like Parkinson's and Alzheimer's diseases. However, individual genotypes, phenotypes, and varying exercise protocols hinder the prescription of exercise as standard therapy. Moreover, exercise-induced molecular signaling targets can be double-edged swords, making it difficult to use exercise as the primary candidate for beneficial effects. For example, activating PGC-1 alpha and BDNF through exercise could produce several benefits in maintaining brain health, such as plasticity, neuronal survival, memory formation, cognition, and synaptic transmission. However, higher expression of BDNF might play a negative role in bipolar disorder. Therefore, further understanding of a specific mechanistic approach is required. This review focuses on how exercise-induced activation of these molecules could support brain health and discusses the potential underlying mechanisms of the effect of exercise-induced PGC-1 alpha and BDNF on brain health.
Collapse
Affiliation(s)
- Xuecui Bi
- Institute of Physical Education and Training, Capital University of Physical Education and Sports, Beijing, China
| | - Jing Fang
- Basic Department, Dezhou Vocational and Technical College, Dezhou, China
| | - Xin Jin
- International Department, Beijing No.35 High School, Beijing, China
| | | |
Collapse
|
14
|
Liu S, Li Q, Wang H, Zhang H, Zhao Q, Su J, Zou J, Feng P, Zhang A. Exercise as a promising alternative for sciatic nerve injury pain relief: a meta-analysis. Front Neurol 2024; 15:1424050. [PMID: 39144705 PMCID: PMC11323690 DOI: 10.3389/fneur.2024.1424050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024] Open
Abstract
Objective The efficacy of drug therapies in managing neuropathic pain is constrained by their limited effectiveness and potential for adverse effects. In contrast, exercise has emerged as a promising alternative for pain relief. In this study, we conducted a systematic evaluation of the therapeutic impact of exercise on neuropathic pain resulting from sciatic nerve injury in rodent models. Methods The PubMed, Embase, and Web of Science databases were retrieved before April 2024. A series of studies regarding the effect of treadmill, swimming, wheel and other exercises on neuropathic pain induced by sciatic nerve injury in rats and mice were collected. Using predefined inclusion criteria, two researchers independently performed literature screening, data extraction, and methodological quality assessment utilizing SYRCLE's risk of bias tool for animal studies. Statistical analysis was conducted using RevMan 5.3 and STATA 12.0 analysis software. Results A total of 12 relevant academic sources were included in the analysis of controlled animal studies, with 133 rodents in the exercise group and 135 rodents in the sedentary group. The meta-analysis revealed that exercise was associated with a significant increase in paw withdrawal mechanical threshold [Standard Mean Difference (SMD) = 0.84, 95% confidence interval (CI): 0.28-1.40, p = 0.003] and paw withdrawal thermal latency (SMD = 1.54, 95%CI: 0.93-2.15, p < 0.0001) in rats and mice with sciatic nerve injury. Subgroup analyses were conducted to evaluate the impact of exercise duration on heterogeneity. The results showed that postoperative exercise duration ≤3 weeks could significantly elevate paw withdrawal mechanical threshold (SMD = 1.04, 95% CI: 0.62-1.46, p < 0.00001). Postoperative exercise duration ≤4 weeks could significantly improve paw withdrawal thermal latency (SMD = 1.93, 95% CI:1.19-2.67, p < 0.00001). Conclusion Exercise represents an effective method for improving mechanical and thermal hypersensitivity resulting from sciatic nerve injury in rodents. Factors such as pain models, the initiation of exercise, the type of exercise, and the species of rodent do not significantly impact the development of exercise-induced hypoalgesia. However, the duration of postoperative exercise plays a crucial role in the onset of exercise-induced hypoalgesia.
Collapse
Affiliation(s)
- Shunxin Liu
- Guangxi University of Chinese Medicine, Nanning, China
| | - Qin Li
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Huaiming Wang
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Hongwei Zhang
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Qi Zhao
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jinjun Su
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jiang Zou
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Pengjiu Feng
- Guangxi University of Chinese Medicine, Nanning, China
- Department of Anesthesiology, Liuzhou Traditional Chinese Medicine Hospital, The Third Affiliated Hospital of Guangxi University of Chinese Medicine, Liuzhou, China
| | - Aimin Zhang
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
15
|
De la Corte-Rodriguez H, Roman-Belmonte JM, Resino-Luis C, Madrid-Gonzalez J, Rodriguez-Merchan EC. The Role of Physical Exercise in Chronic Musculoskeletal Pain: Best Medicine-A Narrative Review. Healthcare (Basel) 2024; 12:242. [PMID: 38255129 PMCID: PMC10815384 DOI: 10.3390/healthcare12020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
The aim of this paper is to provide a narrative review of the effects of physical exercise in the treatment of chronic musculoskeletal pain. Physical inactivity and sedentary behavior are associated with chronic musculoskeletal pain and can aggravate it. For the management of musculoskeletal pain, physical exercise is an effective, cheap, and safe therapeutic option, given that it does not produce the adverse effects of pharmacological treatments or invasive techniques. In addition to its analgesic capacity, physical exercise has an effect on other pain-related areas, such as sleep quality, activities of daily living, quality of life, physical function, and emotion. In general, even during periods of acute pain, maintaining a minimum level of physical activity can be beneficial. Programs that combine several of the various exercise modalities (aerobic, strengthening, flexibility, and balance), known as multicomponent exercise, can be more effective and better adapted to clinical conditions. For chronic pain, the greatest benefits typically occur with programs performed at light-to-moderate intensity and at a frequency of two to three times per week for at least 4 weeks. Exercise programs should be tailored to the specific needs of each patient based on clinical guidelines and World Health Organization recommendations. Given that adherence to physical exercise is a major problem, it is important to empower patients and facilitate lifestyle change. There is strong evidence of the analgesic effect of physical exercise in multiple pathologies, such as in osteoarthritis, chronic low back pain, rheumatoid arthritis, and fibromyalgia.
Collapse
Affiliation(s)
- Hortensia De la Corte-Rodriguez
- Department of Physical Medicine and Rehabilitation, La Paz University Hospital, 28046 Madrid, Spain;
- IdiPAZ Institute for Health Research, 28046 Madrid, Spain
| | - Juan M. Roman-Belmonte
- Department of Physical Medicine and Rehabilitation, Cruz Roja San José y Santa Adela University Hospital, 28003 Madrid, Spain; (J.M.R.-B.); (C.R.-L.)
- Medical School, Universidad Alfonso X El Sabio (UAX), 28691 Madrid, Spain
| | - Cristina Resino-Luis
- Department of Physical Medicine and Rehabilitation, Cruz Roja San José y Santa Adela University Hospital, 28003 Madrid, Spain; (J.M.R.-B.); (C.R.-L.)
| | - Jorge Madrid-Gonzalez
- Department of Physical Medicine and Rehabilitation, La Paz University Hospital, 28046 Madrid, Spain;
| | - Emerito Carlos Rodriguez-Merchan
- Department of Orthopedic Surgery, La Paz University Hospital, 28046 Madrid, Spain;
- Osteoarticular Surgery Research, Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Autonomous University of Madrid), 28046 Madrid, Spain
| |
Collapse
|
16
|
Wang MJ, Jing XY, Wang YZ, Yang BR, Lu Q, Hu H, Kang L. Exercise, Spinal Microglia and Neuropathic Pain: Potential Molecular Mechanisms. Neurochem Res 2024; 49:29-37. [PMID: 37725293 PMCID: PMC10776684 DOI: 10.1007/s11064-023-04025-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
As one of the most common neuropathic disorders, neuropathic pain often has a negative impact on patients with persistent pain, mood disorders and sleep disturbances. Currently, neuropathic pain is not treated with any specific drug, instead, drugs for other diseases are used as replacements in clinics, but most have adverse effects. In recent years, the role of spinal cord microglia in the pathogenesis of neuropathic pain has been widely recognized, and they are being explored as potential therapeutic targets. Spinal microglia are known to be involved in the pathogenic mechanisms of neuropathic pain through purine signaling, fractalkine signaling, and p38 MAPK signaling. Exercise is a safe and effective treatment, and numerous studies have demonstrated its effectiveness in improving neurological symptoms. Nevertheless, it remains unclear what the exact molecular mechanism is. This review summarized the specific molecular mechanisms of exercise in alleviating neuropathic pain by mediating the activity of spinal microglia and maintaining the phenotypic homeostasis of spinal microglia through purine signaling, fractalkine signaling and p38 MAPK signaling. In addition, it has been proposed that different intensities and types of exercise affect the regulation of the above-mentioned signaling pathways differently, providing a theoretical basis for the improvement of neuropathic pain through exercise.
Collapse
Affiliation(s)
- Min-Jia Wang
- Institute of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610041, China
| | - Xin-Yu Jing
- Department of Postpartum Rehabilitation, Sichuan Jinxin Women and Children Hospital, Chengdu, 610041, China
| | - Yao-Zheng Wang
- Institute of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610041, China
| | - Bi-Ru Yang
- Institute of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610041, China
| | - Qu Lu
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Hao Hu
- Institute of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610041, China
| | - Liang Kang
- Institute of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610041, China.
| |
Collapse
|
17
|
Ruimonte-Crespo J, Plaza-Manzano G, Díaz-Arribas MJ, Navarro-Santana MJ, López-Marcos JJ, Fabero-Garrido R, Seijas-Fernández T, Valera-Calero JA. Aerobic Exercise and Neuropathic Pain: Insights from Animal Models and Implications for Human Therapy. Biomedicines 2023; 11:3174. [PMID: 38137395 PMCID: PMC10740819 DOI: 10.3390/biomedicines11123174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
This narrative review explores the complex relationship between aerobic exercise (AE) and neuropathic pain (NP), particularly focusing on peripheral neuropathies of mechanical origin. Pain, a multifaceted phenomenon, significantly impacts functionality and distress. The International Association for the Study of Pain's definition highlights pain's biopsychosocial nature, emphasizing the importance of patient articulation. Neuropathic pain, arising from various underlying processes, presents unique challenges in diagnosis and treatment. Our methodology involved a comprehensive literature search in the PubMed and SCOPUS databases, focusing on studies relating AE to NP, specifically in peripheral neuropathies caused by mechanical forces. The search yielded 28 articles and 1 book, primarily animal model studies, providing insights into the efficacy of AE in NP management. Results from animal models demonstrate that AE, particularly in forms like no-incline treadmill and swimming, effectively reduces mechanical allodynia and thermal hypersensitivity associated with NP. AE influences neurophysiological mechanisms underlying NP, modulating neurotrophins, cytokines, and glial cell activity. These findings suggest AE's potential in attenuating neurophysiological alterations in NP. However, human model studies are scarce, limiting the direct extrapolation of these findings to human neuropathic conditions. The few available studies indicate AE's potential benefits in peripheral NP, but a lack of specificity in these studies necessitates further research. In conclusion, while animal models show promising results regarding AE's role in mitigating NP symptoms and influencing underlying neurophysiological mechanisms, more human-centric research is required. This review underscores the need for targeted clinical trials to fully understand and harness AE's therapeutic potential in human neuropathic pain, especially of mechanical origin.
Collapse
Affiliation(s)
- Jorge Ruimonte-Crespo
- Department of Radiology, Rehabilitation and Physiotherapy, Complutense University of Madrid, 28040 Madrid, Spain; (J.R.-C.); (M.J.D.-A.); (M.J.N.-S.); (J.J.L.-M.); (R.F.-G.); (T.S.-F.); (J.A.V.-C.)
| | - Gustavo Plaza-Manzano
- Department of Radiology, Rehabilitation and Physiotherapy, Complutense University of Madrid, 28040 Madrid, Spain; (J.R.-C.); (M.J.D.-A.); (M.J.N.-S.); (J.J.L.-M.); (R.F.-G.); (T.S.-F.); (J.A.V.-C.)
- Grupo InPhysio, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - María José Díaz-Arribas
- Department of Radiology, Rehabilitation and Physiotherapy, Complutense University of Madrid, 28040 Madrid, Spain; (J.R.-C.); (M.J.D.-A.); (M.J.N.-S.); (J.J.L.-M.); (R.F.-G.); (T.S.-F.); (J.A.V.-C.)
- Grupo InPhysio, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Marcos José Navarro-Santana
- Department of Radiology, Rehabilitation and Physiotherapy, Complutense University of Madrid, 28040 Madrid, Spain; (J.R.-C.); (M.J.D.-A.); (M.J.N.-S.); (J.J.L.-M.); (R.F.-G.); (T.S.-F.); (J.A.V.-C.)
- Grupo InPhysio, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - José Javier López-Marcos
- Department of Radiology, Rehabilitation and Physiotherapy, Complutense University of Madrid, 28040 Madrid, Spain; (J.R.-C.); (M.J.D.-A.); (M.J.N.-S.); (J.J.L.-M.); (R.F.-G.); (T.S.-F.); (J.A.V.-C.)
- Faculty of Life and Natural Sciences, Nebrija University, 28015 Madrid, Spain
| | - Raúl Fabero-Garrido
- Department of Radiology, Rehabilitation and Physiotherapy, Complutense University of Madrid, 28040 Madrid, Spain; (J.R.-C.); (M.J.D.-A.); (M.J.N.-S.); (J.J.L.-M.); (R.F.-G.); (T.S.-F.); (J.A.V.-C.)
| | - Tamara Seijas-Fernández
- Department of Radiology, Rehabilitation and Physiotherapy, Complutense University of Madrid, 28040 Madrid, Spain; (J.R.-C.); (M.J.D.-A.); (M.J.N.-S.); (J.J.L.-M.); (R.F.-G.); (T.S.-F.); (J.A.V.-C.)
| | - Juan Antonio Valera-Calero
- Department of Radiology, Rehabilitation and Physiotherapy, Complutense University of Madrid, 28040 Madrid, Spain; (J.R.-C.); (M.J.D.-A.); (M.J.N.-S.); (J.J.L.-M.); (R.F.-G.); (T.S.-F.); (J.A.V.-C.)
- Grupo InPhysio, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| |
Collapse
|
18
|
Camuzard O, Lu JCY, Abbadi SE, Chang TNJ, Chuang DCC. The Impact of Exercise on Motor Recovery after Long Nerve Grafting-Experimental Rat Study. J Reconstr Microsurg 2023; 39:508-516. [PMID: 36693393 DOI: 10.1055/s-0043-1761207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Long nerve grafting often results in unsatisfactory functional outcomes. In this study we aim to investigate the effect of swimming exercise on nerve regeneration and functional outcomes after long nerve grafting. METHODS A reversed long nerve graft was interposed between C6 and the musculocutaneous nerve in 40 rats. The rats were divided into four groups with 10 in each based on different postoperative swimming regimes for rehabilitation: group A, continuous exercise; group B, early exercise; group C, late exercise; and group D, no exercise (control group). A grooming test was assessed at 4, 8, 12, and 16 weeks postoperatively. Biceps muscle compound action potential (MCAP), muscle tetanic contraction force (MTCF), and muscle weights were assessed after 16 weeks. Histomorphometric analyses of the musculocutaneous nerves were performed to examine nerve regeneration. RESULTS The grooming test showed all groups except group D demonstrated a trend of progressive improvement over the whole course of 16 weeks. Biceps MCAP, MTCF, and muscle weights all showed significant better results in the exercise group in comparison to the group D at 16 weeks, which is especially true in groups A and B. Nerve analysis at 16 weeks, however, showed no significant differences between the exercise groups and the control group. CONCLUSIONS Swimming after long nerve grafting can significantly improve muscle functional behavior and volume. The effect is less evident on nerve regeneration. Continuous exercise and early exercise after surgery show more optimal outcomes than late or no exercise. Having a good habit with exercise in the early period is thought as the main reason. Further studies are needed to determine the optimal exercise regimen.
Collapse
Affiliation(s)
- Olivier Camuzard
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang-Gung University, Taipei, Taiwan
- Department of Plastic and Reconstructive Surgery, Hôpital Pasteur 2, CHU de Nice, Université Côte d'Azur, Nice, France
| | - Johnny Chuieng-Yi Lu
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang-Gung University, Taipei, Taiwan
| | - Sam El Abbadi
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang-Gung University, Taipei, Taiwan
| | - Tommy Nai-Jen Chang
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang-Gung University, Taipei, Taiwan
| | - David Chwei-Chin Chuang
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang-Gung University, Taipei, Taiwan
| |
Collapse
|
19
|
Tanaka K, Kuzumaki N, Hamada Y, Suda Y, Mori T, Nagumo Y, Narita M. Elucidation of the mechanisms of exercise-induced hypoalgesia and pain prolongation due to physical stress and the restriction of movement. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 14:100133. [PMID: 37274841 PMCID: PMC10239008 DOI: 10.1016/j.ynpai.2023.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/07/2023]
Abstract
Persistent pain signals cause brain dysfunction and can further prolong pain. In addition, the physical restriction of movement (e.g., by a cast) can cause stress and prolong pain. Recently, it has been recognized that exercise therapy including rehabilitation is effective for alleviating chronic pain. On the other hand, physical stress and the restriction of movement can prolong pain. In this review, we discuss the neural circuits involved in the control of pain prolongation and the mechanisms of exercise-induced hypoalgesia (EIH). We also discuss the importance of the mesolimbic dopaminergic network in these phenomena.
Collapse
Affiliation(s)
- Kenichi Tanaka
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Naoko Kuzumaki
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yusuke Hamada
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yukari Suda
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Tomohisa Mori
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yasuyuki Nagumo
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Minoru Narita
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
20
|
Matesanz-García L, Billerot C, Fundaun J, Schmid AB. Effect of Type and Dose of Exercise on Neuropathic Pain After Experimental Sciatic Nerve Injury: A Preclinical Systematic Review and Meta-Analysis. THE JOURNAL OF PAIN 2023; 24:921-938. [PMID: 36690283 DOI: 10.1016/j.jpain.2023.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/30/2022] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
This preclinical systematic review aimed to determine the effectiveness of different types and doses of exercise on pain behavior and biomarkers in preclinical models of focal neuropathic pain. We searched MEDLINE, EMBASE, Web of Science, PubMed, SCOPUS, CINAHL, and Cochrane library from inception to November 2022 for preclinical studies evaluating the effect of exercise compared to control interventions on neuropathic pain behavior after experimental sciatic nerve injury. If possible, data were meta-analyzed using random effect models with inverse-variance weighting. Thirty-seven studies were included and 26 meta-analyzed. Risk of bias (SYRCLE tool) remained unclear in most studies and reporting quality (CAMARADES) was variable. Exercise reduced mechanical (standardized mean differences [SMD] .53 (95% CI .31, .74), P = .0001, I2 = 0%, n = 364), heat (.32 (.07, .57), P = .01, I2 = 0%, n = 266) and cold hypersensitivity (.51 (.03, 1.0), P = .04, I2 = 0%, n = 90) compared to control interventions. No relationship was apparent between exercise duration or intensity and antinociception. Exercise modulated biomarkers related to different systems (eg, immune system, neurotrophins). Whereas firm conclusions are prevented by the use of male animals only, variable reporting quality and unclear risk of bias in many studies, our results suggest that aerobic exercise is a promising tool in the management of focal neuropathic pain. PERSPECTIVE: This systematic review and meta-analysis demonstrates that aerobic exercise reduces neuropathic pain-related behavior in preclinical models of sciatic nerve injury. This effect is accompanied by changes in biomarkers associated with inflammation and neurotrophins among others. These results could help to develop exercise interventions for patients with neuropathic pain.
Collapse
Affiliation(s)
- Luis Matesanz-García
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Escuela Internacional de Doctorado, Universidad Rey Juan Carlos, Alcorcón, Spain; Department of Physiotherapy, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain
| | - Clément Billerot
- Faculty of Biology, Euro-Mediterranean Master in Neurosciences and Biotechnology, Université de Bordeaux, Bordeaux, France
| | - Joel Fundaun
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Annina B Schmid
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
21
|
Sleijser-Koehorst MLS, Koop MA, Coppieters MW, Lutke Schipholt IJ, Radisic N, Hooijmans CR, Scholten-Peeters GGM. The effects of aerobic exercise on neuroimmune responses in animals with traumatic peripheral nerve injury: a systematic review with meta-analyses. J Neuroinflammation 2023; 20:104. [PMID: 37138291 PMCID: PMC10155410 DOI: 10.1186/s12974-023-02777-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Increasing pre-clinical evidence suggests that aerobic exercise positively modulates neuroimmune responses following traumatic nerve injury. However, meta-analyses on neuroimmune outcomes are currently still lacking. This study aimed to synthesize the pre-clinical literature on the effects of aerobic exercise on neuroimmune responses following peripheral nerve injury. METHODS MEDLINE (via Pubmed), EMBASE and Web of Science were searched. Controlled experimental studies on the effect of aerobic exercise on neuroimmune responses in animals with a traumatically induced peripheral neuropathy were considered. Study selection, risk of bias assessment and data extraction were performed independently by two reviewers. Results were analyzed using random effects models and reported as standardized mean differences. Outcome measures were reported per anatomical location and per class of neuro-immune substance. RESULTS The literature search resulted in 14,590 records. Forty studies were included, reporting 139 comparisons of neuroimmune responses at various anatomical locations. All studies had an unclear risk of bias. Compared to non-exercised animals, meta-analyses showed the following main differences in exercised animals: (1) in the affected nerve, tumor necrosis factor-α (TNF-α) levels were lower (p = 0.003), while insulin-like growth factor-1 (IGF-1) (p < 0.001) and Growth Associated Protein 43 (GAP43) (p = 0.01) levels were higher; (2) At the dorsal root ganglia, brain-derived neurotrophic factor (BDNF)/BDNF mRNA levels (p = 0.004) and nerve growth factor (NGF)/NGF mRNA (p < 0.05) levels were lower; (3) in the spinal cord, BDNF levels (p = 0.006) were lower; at the dorsal horn, microglia (p < 0.001) and astrocyte (p = 0.005) marker levels were lower; at the ventral horn, astrocyte marker levels (p < 0.001) were higher, and several outcomes related to synaptic stripping were favorably altered; (4) brainstem 5-HT2A receptor levels were higher (p = 0.001); (5) in muscles, BDNF levels (p < 0.001) were higher and TNF-α levels lower (p < 0.05); (6) no significant differences were found for systemic neuroimmune responses in blood or serum. CONCLUSION This review revealed widespread positive modulatory effects of aerobic exercise on neuroimmune responses following traumatic peripheral nerve injury. These changes are in line with a beneficial influence on pro-inflammatory processes and increased anti-inflammatory responses. Given the small sample sizes and the unclear risk of bias of the studies, results should be interpreted with caution.
Collapse
Affiliation(s)
- Marije L S Sleijser-Koehorst
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences-Program Musculoskeletal Health, Vrije Universiteit Amsterdam, Van Der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands.
| | - Meghan A Koop
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences-Program Musculoskeletal Health, Vrije Universiteit Amsterdam, Van Der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands
| | - Michel W Coppieters
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences-Program Musculoskeletal Health, Vrije Universiteit Amsterdam, Van Der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands
- Menzies Health Institute Queensland, Griffith University, Brisbane and Gold Coast, Australia
- School of Health Sciences and Social Work, Griffith University, Brisbane and Gold Coast, Australia
| | - Ivo J Lutke Schipholt
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences-Program Musculoskeletal Health, Vrije Universiteit Amsterdam, Van Der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands
- Department of Clinical Chemistry, Laboratory Medical Immunology, Amsterdam University Medical Centre, Location VUmc, Amsterdam, The Netherlands
| | - Nemanja Radisic
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences-Program Musculoskeletal Health, Vrije Universiteit Amsterdam, Van Der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands
| | - Carlijn R Hooijmans
- Department of Anesthesiology, Pain and Palliative Care (Meta Research Team), Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Gwendolyne G M Scholten-Peeters
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences-Program Musculoskeletal Health, Vrije Universiteit Amsterdam, Van Der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands.
| |
Collapse
|
22
|
Cho YH, Seo TB. Effect of concurrent aerobic exercise and bone marrow stromal cell transplantation on time-dependent changes of myogenic differentiation-related cascades in soleus muscle after sciatic nerve injury. J Exerc Rehabil 2023; 19:11-18. [PMID: 36910676 PMCID: PMC9993002 DOI: 10.12965/jer.2346004.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/09/2023] [Indexed: 02/25/2023] Open
Abstract
The purpose of this study was to investigate the time-dependent alteration in whether concurrent aerobic exercise and bone marrow stromal cell (BMSC) engraftment could regulate myogenic differentiation-related signaling pathway in the soleus up to 35 days after sciatic nerve injury (SNI). The rats were divided as follows: the normal control (CON, n=5), sedentary group (SED, n=20), treadmill exercise group (TEX, n=20), BMSC transplantation group (BMSC, n=20), TEX+BMSC transplantation group (TEX+BMSC, n=20) 7, 14, 21, and 35 days after SNI. SNI was applied into the thigh and treadmill exercise was comprised of walking at a speed of 4 to 8 m/min for 30 min once a day. Harvested BMSC at a density of 5×106 in 50-μL phosphate-buff-ered saline was injected into the injury site. Phosphorylated (p) extracellular signal-regulated kinase 1/2 expression was dramatically upregulated in BMSC and BMSC+EX groups from 21 days after SNI compared to those in the SED group. P-ribosomal s6 kinase (RSK) was sharply increased 14 days later, and then rapidly downregulated from day 21, whereas TEX, BMSC and TEX+ BMSC groups significantly kept up expression levels of p-RSK until 35 days post injury than SED group. TEX+BMSC group significantly increased activation of protein kinase B-mammalian target of rapamycin in the soleus from day 14 and myoblast determination protein 1-myogen-in pathways was activated in TEX+BMSC group from day 21. Present findings provide information that combined intervention of aerobic exercise and BMSC transplantation might be a reliable therapeutic strategy for overcoming the morphological and functional problems in denervated soleus muscle.
Collapse
Affiliation(s)
- Yeong-Hyun Cho
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| | - Tae-Beom Seo
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| |
Collapse
|
23
|
Yu JI, Cho YH, Seo TB, Kim YP. Effect of combined intervention of exercise and autologous bone marrow stromal cell transplantation on neurotrophic factors and pain-related cascades over time after sciatic nerve injury. J Exerc Rehabil 2023; 19:19-26. [PMID: 36910683 PMCID: PMC9993005 DOI: 10.12965/jer.2244006.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/11/2023] [Indexed: 02/25/2023] Open
Abstract
The purpose of this study was to determine whether combined inter-vention of treadmill exercise and bone marrow stromal cell (BMSC) transplantation would affect the expression of neurotrophic factors in the sciatic nerve injury (SNI) and neuropathic pain-related cascades in ipsilateral lumbar 4-5 dorsal root ganglion (DRG) during the early or late stage of sciatic nerve regeneration. The rats were randomly divided into the normal control group (CONT, n=6), sedentary group (SS, n=24), exercise group (SE, n=24), BMSC transplantation group (SB, n=24), BMSC transplantation+exercise group (SBE, n=24) 1, 2, 3, and 5 weeks after SNI. Single dose of 5×106 harvested BMSC was injected into the injury area sing by a 30 gauge needle. Treadmill exercise was performed at a speed of 8 m/min for 30 min once a day. Tropomyosin-receptor kinase B, brain-derived neurotrophic factor and ciliary neurotrophic fac-tor were significantly upregulated in the SE and SBE groups at 1- and 2-week postinjury than those in the CONT and SS groups, and SB and SBE groups continuously kept up proinflammatory cytokines until the late stage of regeneration. Nuclear factor kappa-light-chain-enhancer of activated B cells, interleukin and tumor necrosis factor alpha in ipsi-lateral DRG were progressively decreased by exercise alone application and/or BMSC transplantation at early and late stage of regeneration. Present results provide reliable information that combined intervention of treadmill exercise and BMSC transplantation might be one of the effective treatment strategies for recovering sciatic nerve injury-induced neuropathic pain over time.
Collapse
Affiliation(s)
- Joo-In Yu
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| | - Yeong-Hyun Cho
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| | - Tae-Beom Seo
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| | - Young-Pyo Kim
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| |
Collapse
|
24
|
Lesnak JB, Berardi G, Sluka KA. Influence of routine exercise on the peripheral immune system to prevent and alleviate pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100126. [PMID: 37179769 PMCID: PMC10173010 DOI: 10.1016/j.ynpai.2023.100126] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 05/15/2023]
Abstract
Routine physical activity reduces the onset of pain and exercise is a first line treatment for individuals who develop chronic pain. In both preclinical and clinical research regular exercise (routine exercise sessions) produces pain relief through multiple mechanisms such as alterations in the central and peripheral nervous system. More recently, it has been appreciated that exercise can also alter the peripheral immune system to prevent or reduce pain. In animal models, exercise can alter the immune system at the site of injury or pain model induction, in the dorsal root ganglia, and systemically throughout the body to produce analgesia. Most notably exercise shows the ability to dampen the presence of pro-inflammatory immune cells and cytokines at these locations. Exercise decreases M1 macrophages and the cytokines IL-6, IL-1β, and TFNα, while increasing M2 macrophages and the cytokines IL-10, IL-4, and IL-1ra. In clinical research, a single bout of exercise produces an acute inflammatory response, however repeated training can lead to an anti-inflammatory immune profile leading to symptom relief. Despite the clinical and immune benefits of routine exercise, the direct effect of exercise on immune function in clinical pain populations remains unexplored. This review will discuss in more detail the preclinical and clinical research which demonstrates the numerous ways through which multiple types of exercise alter the peripheral immune system. This review closes with the clinical implications of these findings along with suggestions for future research directions.
Collapse
Affiliation(s)
- Joseph B. Lesnak
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Giovanni Berardi
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA, USA
| | - Kathleen A. Sluka
- Department of Physical Therapy & Rehabilitation Sciences, University of Iowa, Iowa City, IA, USA
- Corresponding author.
| |
Collapse
|
25
|
Ma Y, Luo J, Wang XQ. The effect and mechanism of exercise for post-stroke pain. Front Mol Neurosci 2022; 15:1074205. [PMID: 36533131 PMCID: PMC9755671 DOI: 10.3389/fnmol.2022.1074205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/18/2022] [Indexed: 08/30/2023] Open
Abstract
One of the common negative effects of a stroke that seriously lowers patients' quality of life is post-stroke pain (PSP). Thus, exercise in PSP management has become a hot research topic. The main advantages of exercise therapy are affordability and ease of acceptance by patients compared to other treatment methods. Therefore, this article reviews the effectiveness and possible mechanisms of exercise interventions for PSP. Exercise training for patients with PSP not only improves physical function but also effectively reduces pain intensity and attenuates the behavioral response to pain. In addition, exercise therapy can improve brain function and modulate levels of pro-inflammatory and neurotrophic factors to exert specific analgesic effects. Potential mechanisms for exercise intervention include modulation of synaptic plasticity in the anterior cingulate gyrus, modulation of endogenous opioids in vivo, reversal of brain-derived neurotrophic factor overexpression, inhibition of purinergic receptor (P2X4R, P2X7R) expression, and inhibition of microglia activation. However, current research on exercise for PSP remains limited, and the sustainable benefits of exercise interventions for PSP need to be further investigated.
Collapse
Affiliation(s)
- Yue Ma
- Department of Sport Rehabilitation, Xi’an Physical Education University, Xi’an, China
| | - Jing Luo
- Department of Sport Rehabilitation, Xi’an Physical Education University, Xi’an, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
26
|
Kong Y, Kuss M, Shi Y, Fang F, Xue W, Shi W, Liu Y, Zhang C, Zhong P, Duan B. Exercise facilitates regeneration after severe nerve transection and further modulates neural plasticity. Brain Behav Immun Health 2022; 26:100556. [PMID: 36405423 PMCID: PMC9673108 DOI: 10.1016/j.bbih.2022.100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with severe traumatic peripheral nerve injury (PNI) always suffer from incomplete recovery and poor functional outcome. Physical exercise-based rehabilitation, as a non-invasive interventional strategy, has been widely acknowledged to improve PNI recovery by promoting nerve regeneration and relieving pain. However, effects of exercise on chronic plastic changes following severe traumatic PNIs have been limitedly discussed. In this study, we created a long-gap sciatic nerve transection followed by autograft bridging in rats and tested the therapeutic functions of treadmill running with low intensity and late initiation. We demonstrated that treadmill running effectively facilitated nerve regeneration and prevented muscle atrophy and thus improved sensorimotor functions and walking performance. Furthermore, exercise could reduce inflammation at the injured nerve as well as prevent the overexpression of TRPV1, a pain sensor, in primary afferent sensory neurons. In the central nervous system, we found that PNI induced transcriptive changes at the ipsilateral lumber spinal dorsal horn, and exercise could reverse the differential expression for genes involved in the Notch signaling pathway. In addition, through neural imaging techniques, we found volumetric, microstructural, metabolite, and neuronal activity changes in supraspinal regions of interest (i.e., somatosensory cortex, motor cortex, hippocampus, etc.) after the PNI, some of which could be reversed through treadmill running. In summary, treadmill running with late initiation could promote recovery from long-gap nerve transection, and while it could reverse maladaptive plasticity after the PNI, exercise may also ameliorate comorbidities, such as chronic pain, mental depression, and anxiety in the long term.
Collapse
Affiliation(s)
- Yunfan Kong
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mitchell Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yu Shi
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, NE, 68588, USA
| | - Fang Fang
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Wen Xue
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yutong Liu
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, NE, 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Peng Zhong
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
27
|
Matesanz-García L, Schmid AB, Cáceres-Pajuelo JE, Cuenca-Martínez F, Arribas-Romano A, González-Zamorano Y, Goicoechea-García C, Fernández-Carnero J. Effect of Physiotherapeutic Interventions on Biomarkers of Neuropathic Pain: A Systematic Review of Preclinical Literature. THE JOURNAL OF PAIN 2022; 23:1833-1855. [PMID: 35768044 PMCID: PMC7613788 DOI: 10.1016/j.jpain.2022.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 02/02/2023]
Abstract
The purpose of this systematic review was to evaluate the effects of physiotherapeutic interventions on biomarkers of neuropathic pain in preclinical models of peripheral neuropathic pain (PNP). The search was performed in Pubmed, Web of Science, EMBASE, Cochrane, Cinhal, Psycinfo, Scopus, Medline, and Science Direct. Studies evaluating any type of physiotherapy intervention for PNP (systemic or traumatic) were included. Eighty-one articles were included in this review. The most common PNP model was chronic constriction injury, and the most frequently studied biomarkers were related to neuro-immune processes. Exercise therapy and Electro-acupuncture were the 2 most frequently studied physiotherapy interventions while acupuncture and joint mobilization were less frequently examined. Most physiotherapeutic interventions modulated the expression of biomarkers related to neuropathic pain. Whereas the results seem promising; they have to be considered with caution due to the high risk of bias of included studies and high heterogeneity of the type and anatomical localization of biomarkers reported. The review protocol is registered on PROSPERO (CRD42019142878). PERSPECTIVE: This article presents the current evidence about physiotherapeutic interventions on biomarkers of neuropathic pain in preclinical models of peripheral neuropathic pain. Existing findings are reviewed, and relevant data are provided on the effectiveness of each physiotherapeutic modality, as well as its certainty of evidence and clinical applicability.
Collapse
Affiliation(s)
- Luis Matesanz-García
- Escuela Internacional de Doctorado, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, Alcorcón, Spain; Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain
| | - Annina B Schmid
- Nuffield Department for Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | | | - Ferran Cuenca-Martínez
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain.
| | - Alberto Arribas-Romano
- Escuela Internacional de Doctorado, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, Alcorcón, Spain; Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, Madrid, Spain
| | - Yeray González-Zamorano
- Escuela Internacional de Doctorado, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, Alcorcón, Spain; Grupo de Investigación de Neurorrehabilitación del Daño Cerebral y los Trastornos del Movimiento (GINDAT), Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | | | - Josué Fernández-Carnero
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, Madrid, Spain; Grupo de Investigación de Neurorrehabilitación del Daño Cerebral y los Trastornos del Movimiento (GINDAT), Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain; Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain; Grupo Multidisciplinar de Investigación y Tratamiento del Dolor, Grupo de Excelencia Investigadora URJC-Banco de Santander, Madrid, Spain; La Paz Hospital Institute for Health Research, IdiPAZ, Madrid, Spain
| |
Collapse
|
28
|
Sun X, Wang C, Wu J, Chen X, He H. Effect of TGF- β1-Mediated Exercise Analgesia in Spared Nerve Injury Mice. Neural Plast 2022; 2022:7382327. [PMID: 36504685 PMCID: PMC9729053 DOI: 10.1155/2022/7382327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/30/2022] [Accepted: 10/12/2022] [Indexed: 01/07/2023] Open
Abstract
Peripheral nerve injury leads to severe neuropathic pain. Previous studies have highlighted the beneficial effects of physical exercise on alleviating neuropathic pain. Exercise regulating transforming growth factor-β1 (TGF-β1) can improve several diseases and relieve neuropathic pain induced by peripheral nerve injury. Here, we investigated whether exercise could alleviate neuropathic pain by modulating TGF-β1 expression. We assessed mechanical and cold pain behavior and conducted molecular evaluation of the spinal cord. We found that spared nerve injury (SNI) led to mechanical and cold allodynia in the hind paw, elevated the expression of latency-associated peptide- (LAP-) TGF-β1, and activated astroglial in the spinal cord. Exercise decreases allodynia, astroglial activation, and LAP-TGF-β1 in SNI mice. Intrathecal injection of a TGF-type I receptor inhibitor attenuated exercise analgesia and enhanced astroglial activation. These findings demonstrate that exercise induces analgesia by promoting TGF-β1 activation and inhibiting astrogliosis. Our study reveals a new underlying mechanism for exercise-attenuated neuropathic pain in the maintenance stage of neuropathic pain after nerve injury.
Collapse
Affiliation(s)
- Xinzheng Sun
- School of Sports Science, Beijing Sport University, Beijing 100084, China
| | - Chenghao Wang
- School of Sports Science, Beijing Sport University, Beijing 100084, China
| | - Junqi Wu
- School of Sports Science, Beijing Sport University, Beijing 100084, China
| | - Xiaoke Chen
- School of Sports Science, Beijing Sport University, Beijing 100084, China
| | - Hui He
- China Institute of Sports and Health, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
29
|
de Moura JA, de Morais J, Barbosa SMN, Ferreira MC, de Sousa Neto IV, Leite HR, Oliveira MX, Gaiad TP, Santos AP. Negative neuromuscular and functional repercussion of forced swimming after axonotmesis. J Exerc Rehabil 2022; 18:179-186. [PMID: 35846236 PMCID: PMC9271644 DOI: 10.12965/jer.2244150.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022] Open
Abstract
Peripheral nerve injuries are cause of sensory disturbances and in functional abilities, and are associated personal and social costs. Strategies that maximize nerve regeneration and functional recovery are necessary, the exercise is an option. This study evaluated the effects of forced swimming exercise on neuromuscular histomorphometry and on functional recovery in a median nerve crush model. Sixteen Wistar rats underwent median nerve crush and were divided into control group (CG) and swimming group (SG). The forced swimming protocol started one week after the injury and was performed for 1 hr a day, 5 days per week, for 2 weeks. The rats swam with an overload of 5% and 10% of body weight in the first and second week, respectively. The functional recovery was assessed in three moments using the grasping test. On day 21, fragments of the median nerve and of the forearm flexors muscles were removed for histomorphometric analysis. The SG had functional recovery impaired (P<0.001) and presented lower myelinated fibers number, fiber and axon minimal diameter, myelin thickness and g-ratio in the proximal e distal segments of the median nerve (P<0.005) and area muscle fiber (P<0.005) than CG. Also, the SG presented a number of capillaries in the proximal segments of the median nerve greater than CG (P<0.005). The exercise protocol used in this study impaired the regeneration of the median nerve and negatively influenced the functional recovery.
Collapse
Affiliation(s)
- Júlia Araújo de Moura
- Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Jaqueline de Morais
- Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Samara Maria Neves Barbosa
- Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Marcílio Coelho Ferreira
- Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | | | - Hércules Ribeiro Leite
- Departamento de Fisioterapia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Murilo Xavier Oliveira
- Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Thaís Peixoto Gaiad
- Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Ana Paula Santos
- Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
- Corresponding author: Ana Paula Santos, Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, CEP 39100-000, Brazil,
| |
Collapse
|
30
|
Exercise Reduces Pain Behavior and Pathological Changes in Dorsal Root Ganglia Induced by Systemic Inflammation in Mice. Neurosci Lett 2022; 778:136616. [DOI: 10.1016/j.neulet.2022.136616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/11/2022] [Accepted: 04/01/2022] [Indexed: 11/23/2022]
|
31
|
Song G, Zhang WM, Wang YZ, Guo JB, Zheng YL, Yang Z, Su X, Chen YM, Xie Q, Wang XQ. Long Non-coding RNA and mRNA Expression Change in Spinal Dorsal Horn After Exercise in Neuropathic Pain Rats. Front Mol Neurosci 2022; 15:865310. [PMID: 35431794 PMCID: PMC9005956 DOI: 10.3389/fnmol.2022.865310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Exercise can help inhibition of neuropathic pain (NP), but the related mechanism remains being explored. In this research, we performed the effect of swimming exercise on the chronic constriction injury (CCI) rats. Compared with CCI group, the mechanical withdrawal threshold of rats in the CCI-Swim group significantly increased on the 21st and 28th day after CCI surgery. Second-generation RNA-sequencing technology was employed to investigate the transcriptomes of spinal dorsal horns in the Sham, CCI, and CCI-Swim groups. On the 28th day post-operation, 306 intersecting long non-coding RNAs (lncRNAs) and 173 intersecting mRNAs were observed between the CCI vs Sham group and CCI-Swim vs CCI groups. Then, the biological functions of lncRNAs and mRNAs in the spinal dorsal horn of CCI rats were then analyzed. Taking the results together, this study could provide a novel perspective for the treatment for NP.
Collapse
Affiliation(s)
- Ge Song
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Ming Zhang
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Zu Wang
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia-Bao Guo
- The Second Clinical Medical School, Xuzhou Medical University, Xuzhou, China
| | - Yi-Li Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Zheng Yang
- Department of Rehabilitation Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xuan Su
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yu-Meng Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Qing Xie
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Qing Xie,
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- Xue-Qiang Wang,
| |
Collapse
|
32
|
Jaleel G, Shaphe MA, Khan AR, Malhotra D, Khan H, Parveen S, Qasheesh M, Beg RA, Chahal A, Ahmad F, Ahmad MF. Effect of Exercises on Central and Endocrine System for Pain Modulation in Primary Dysmenorrhea. J Lifestyle Med 2022; 12:15-25. [PMID: 35300040 PMCID: PMC8918380 DOI: 10.15280/jlm.2022.12.1.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/12/2021] [Indexed: 11/22/2022] Open
Abstract
Dysmenorrhea is the term for describing complex menstrual flow and painful spasmodic cramps during menstruation, and pain without any pathology is considered Primary Dysmenorrhea (PD). It is the most frequent ailment among women of all ages and races. The pain is dull and throbbing in character and occurs in the lower back and abdomen. Symptoms commonly appear 6 to 12 months after menarche, with the most significant incidence in the late teen and early twenties. Physical exercise is nearly a new non-medical intervention to relieve PD associated pain. Aerobics, stretching and Resistive exercises for 8-12 weeks, either supervised or unsupervised, relieves pain. Exercises are believed to cause hormonal changes in the uterine lining, which reduces PD symptoms. Researchers have presumed different pain-relieving methods, ranging from non-opioids to opioids to hormonal for variations in pain sensitivity. Exercise-induced analgesia provides the central pathway as the primary mechanism for pain reduction while, another way to reducing pain in PD may be a hormonal interaction. The hormonal changes causing exercise-induced pain modulation during the menstruation cycle is not clearly understood and the interaction and activation of all the central and endocrine components, which is a complex mechanism, is also not explained clearly. This study briefly reviews the physiological mechanism of Exercise-induced analgesia and its potent roles in controlling the pathogenesis of PD for pain relief.
Collapse
Affiliation(s)
- Ghufran Jaleel
- Centre for Physiotherapy and Rehabilitation Sciences, Jamia Millia Islamia, India
| | - Muhammad Abu Shaphe
- Physical Therapy College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | | | - Deepak Malhotra
- Department of Rehabilitation, School of Nursing Sciences and Allied Health, Jamia Hamdard, Delhi, India
| | - Huma Khan
- Department of Rehabilitation, School of Nursing Sciences and Allied Health, Jamia Hamdard, Delhi, India
| | - Sana Parveen
- Ayurvedic and Unani Tibbia College, Karol Bagh, India
| | - Mohammed Qasheesh
- Physical Therapy College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Rashid Ali Beg
- Physical Therapy College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Aksh Chahal
- Maharishi Markandeshwar Institute of Physiotherapy and Rehabilitation, Maharishi Markandeshwar (Deemed to be University), Haryana, India
| | - Fuzail Ahmad
- Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
33
|
Molecular Changes in the Dorsal Root Ganglion during the Late Phase of Peripheral Nerve Injury-induced Pain in Rodents: A Systematic Review. Anesthesiology 2021; 136:362-388. [PMID: 34965284 DOI: 10.1097/aln.0000000000004092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The dorsal root ganglion is widely recognized as a potential target to treat chronic pain. A fundamental understanding of quantitative molecular and genomic changes during the late phase of pain is therefore indispensable. The authors performed a systematic literature review on injury-induced pain in rodent dorsal root ganglions at minimally 3 weeks after injury. So far, slightly more than 300 molecules were quantified on the protein or messenger RNA level, of which about 60 were in more than one study. Only nine individual sequencing studies were performed in which the most up- or downregulated genes varied due to heterogeneity in study design. Neuropeptide Y and galanin were found to be consistently upregulated on both the gene and protein levels. The current knowledge regarding molecular changes in the dorsal root ganglion during the late phase of pain is limited. General conclusions are difficult to draw, making it hard to select specific molecules as a focus for treatment.
Collapse
|
34
|
Verdú E, Homs J, Boadas-Vaello P. Physiological Changes and Pathological Pain Associated with Sedentary Lifestyle-Induced Body Systems Fat Accumulation and Their Modulation by Physical Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:13333. [PMID: 34948944 PMCID: PMC8705491 DOI: 10.3390/ijerph182413333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022]
Abstract
A sedentary lifestyle is associated with overweight/obesity, which involves excessive fat body accumulation, triggering structural and functional changes in tissues, organs, and body systems. Research shows that this fat accumulation is responsible for several comorbidities, including cardiovascular, gastrointestinal, and metabolic dysfunctions, as well as pathological pain behaviors. These health concerns are related to the crosstalk between adipose tissue and body systems, leading to pathophysiological changes to the latter. To deal with these health issues, it has been suggested that physical exercise may reverse part of these obesity-related pathologies by modulating the cross talk between the adipose tissue and body systems. In this context, this review was carried out to provide knowledge about (i) the structural and functional changes in tissues, organs, and body systems from accumulation of fat in obesity, emphasizing the crosstalk between fat and body tissues; (ii) the crosstalk between fat and body tissues triggering pain; and (iii) the effects of physical exercise on body tissues and organs in obese and non-obese subjects, and their impact on pathological pain. This information may help one to better understand this crosstalk and the factors involved, and it could be useful in designing more specific training interventions (according to the nature of the comorbidity).
Collapse
Affiliation(s)
- Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
| | - Judit Homs
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
- Department of Physical Therapy, EUSES-University of Girona, 17190 Salt, Spain
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, University of Girona, 17003 Girona, Spain;
| |
Collapse
|
35
|
Voluntary Forelimbs Exercise Reduces Immobilization-Induced Mechanical Hyperalgesia in the Rat Hind Paw. Pain Res Manag 2021; 2021:5592992. [PMID: 34401008 PMCID: PMC8364427 DOI: 10.1155/2021/5592992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/15/2021] [Accepted: 07/26/2021] [Indexed: 01/27/2023]
Abstract
Voluntary exercise is sufficient to protect against neuropathic pain. However, it is unclear whether voluntary exercise reduces immobilization-induced hyperalgesia. We examined the effect of voluntary forelimb exercise on immobilized-induced hyperalgesia in hind paws of rats. Wistar rats were randomly divided into the (1) both hind limbs immobilized group (IM group), (2) immobilization and exercise with nonimmobilized fore limbs group (EX group), and (3) control group. In the IM and EX groups, the bilateral ankle joints of each rat were immobilized in full plantar flexion with a plaster cast for eight weeks. In the EX group, voluntary exercise using nonimmobilized forelimbs in the running wheel was administered during the immobilization period, while hind limbs were kept immobilized (60 min/day, 5 days/week). Mechanical hyperalgesia in the hind paw was measured using a digital von Frey device every week. To investigate the abnormality of primary sensory neurons and central sensitization, the number of calcitonin gene-related peptide-positive cells in the dorsal root ganglion and the expression level of calcitonin gene-related peptide in the spinal dorsal horn were analyzed by immunohistochemical staining. Immobilization-induced mechanical hyperalgesia was inhibited in the EX group compared to the IM group at three weeks after immobilization. In the EX group, the number of calcitonin gene-related peptide-positive cells in the dorsal root ganglion and the expression level of calcitonin gene-related peptide were significantly decreased compared to those in the IM group. Our results therefore suggest that voluntary forelimb exercise during hind limb immobilization partially reduces immobilization-induced hyperalgesia by suppressing that the plastic changes of the primary sensory nerves that excessively transmit pain and increased responsiveness of nociceptive neurons in the spinal dorsal horn.
Collapse
|
36
|
Bussulo SKD, Ferraz CR, Carvalho TT, Verri WA, Borghi SM. Redox interactions of immune cells and muscle in the regulation of exercise-induced pain and analgesia: implications on the modulation of muscle nociceptor sensory neurons. Free Radic Res 2021; 55:757-775. [PMID: 34238089 DOI: 10.1080/10715762.2021.1953696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The mechanistic interactions among redox status of leukocytes, muscle, and exercise in pain regulation are still poorly understood and limit targeted treatment. Exercise benefits are numerous, including the treatment of chronic pain. However, unaccustomed exercise may be reported as undesirable as it may contribute to pain. The aim of the present review is to evaluate the relationship between oxidative metabolism and acute exercise-induced pain, and as to whether improved antioxidant capacity underpins the analgesic effects of regular exercise. Preclinical and clinical studies addressing relevant topics on mechanisms by which exercise modulates the nociceptive activity and how redox status can outline pain and analgesia are discussed, in sense of translating into refined outcomes. Emerging evidence points to the role of oxidative stress-induced signaling in sensitizing nociceptor sensory neurons. In response to acute exercise, there is an increase in oxidative metabolism, and consequently, pain. Instead, regular exercise can modulate redox status in favor of antioxidant capacity and repair mechanisms, which have consequently increased resistance to oxidative stress, damage, and pain. Data indicate that acute sessions of unaccustomed prolonged and/or intense exercise increase oxidative metabolism and regulate exercise-induced pain in the post-exercise recovery period. Further, evidence demonstrates regular exercise improves antioxidant status, indicating its therapeutic utility for chronic pain disorders. An improved comprehension of the role of redox status in exercise can provide helpful insights into immune-muscle communication during pain modulatory effects of exercise and support new therapeutic efforts and rationale for the promotion of exercise.
Collapse
Affiliation(s)
- Sylvia K D Bussulo
- Center for Research in Health Sciences, University of Northern Paraná, Londrina, Brazil
| | - Camila R Ferraz
- Department of Pathology, Biological Sciences Center, Rodovia Celso Garcia Cid, State University of Londrina, Londrina, Brazil
| | - Thacyana T Carvalho
- Department of Pathology, Biological Sciences Center, Rodovia Celso Garcia Cid, State University of Londrina, Londrina, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Biological Sciences Center, Rodovia Celso Garcia Cid, State University of Londrina, Londrina, Brazil
| | - Sergio M Borghi
- Center for Research in Health Sciences, University of Northern Paraná, Londrina, Brazil.,Department of Pathology, Biological Sciences Center, Rodovia Celso Garcia Cid, State University of Londrina, Londrina, Brazil
| |
Collapse
|
37
|
Li X, Wang Q, Ding J, Wang S, Dong C, Wu Q. Exercise training modulates glutamic acid decarboxylase-65/67 expression through TrkB signaling to ameliorate neuropathic pain in rats with spinal cord injury. Mol Pain 2021; 16:1744806920924511. [PMID: 32418502 PMCID: PMC7235678 DOI: 10.1177/1744806920924511] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuropathic pain is one of the most frequently stated complications after spinal cord injury. In post-spinal cord injury, the decrease of gamma aminobutyric acid synthesis within the distal spinal cord is one of the main causes of neuropathic pain. The predominant research question of this study was whether exercise training may promote the expression of glutamic acid decarboxylase-65 and glutamic acid decarboxylase-67, which are key enzymes of gamma aminobutyric acid synthesis, within the distal spinal cord through tropomyosin-related kinase B signaling, as its synthesis assists to relieve neuropathic pain after spinal cord injury. Animal experiment was conducted, and all rats were allocated into five groups: Sham group, SCI/PBS group, SCI-TT/PBS group, SCI/tropomyosin-related kinase B-IgG group, and SCI-TT/tropomyosin-related kinase B-IgG group, and then T10 contusion SCI model was performed as well as the tropomyosin-related kinase B-IgG was used to block the tropomyosin-related kinase B activation. Mechanical withdrawal thresholds and thermal withdrawal latencies were used for assessing pain-related behaviors. Western blot analysis was used to detect the expression of brain-derived neurotrophic factor, tropomyosin-related kinase B, CREB, p-REB, glutamic acid decarboxylase-65, and glutamic acid decarboxylase-67 within the distal spinal cord. Immunohistochemistry was used to analyze the distribution of CREB, p-CREB, glutamic acid decarboxylase-65, and glutamic acid decarboxylase-67 within the distal spinal cord dorsal horn. The results showed that exercise training could significantly mitigate the mechanical allodynia and thermal hyperalgesia in post-spinal cord injury and increase the synthesis of brain-derived neurotrophic factor, tropomyosin-related kinase B, CREB, p-CREB, glutamic acid decarboxylase-65, and glutamic acid decarboxylase-67 within the distal spinal cord. After the tropomyosin-related kinase B signaling was blocked, the analgesic effect of exercise training was inhibited, and in the SCI-TT/tropomyosin-related kinase B-IgG group, the synthesis of CREB, p-CREB, glutamic acid decarboxylase-65, and glutamic acid decarboxylase-67 within the distal spinal cord were also significantly reduced compared with the SCI-TT/PBS group. This study shows that exercise training may increase the glutamic acid decarboxylase-65 and glutamic acid decarboxylase-67 expression within the spinal cord dorsal horn through the tropomyosin-related kinase B signaling, and this mechanism may play a vital role in relieving the neuropathic pain of rats caused by incomplete SCI.
Collapse
Affiliation(s)
- Xiangzhe Li
- Rehabilitation Medical Center, the Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China
| | - Qinghua Wang
- Laboratory Animal Center, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Jie Ding
- Departments of Respiratory Care, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Sheng Wang
- Rehabilitation Medical Center, the Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China
| | - Chuanming Dong
- Department of Anatomy, Medical College of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Qinfeng Wu
- Rehabilitation Medical Center, the Affiliated Suzhou Science & Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|
38
|
Jiang J, Yu Y, Zhang Z, Ji Y, Guo H, Wang X, Yu S. Effects of Nogo-A and its receptor on the repair of sciatic nerve injury in rats. ACTA ACUST UNITED AC 2021; 54:e10842. [PMID: 34076142 PMCID: PMC8186374 DOI: 10.1590/1414-431x2020e10842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 04/06/2021] [Indexed: 11/22/2022]
Abstract
Regeneration of injured peripheral nerves is an extremely complex process. Nogo-A (neurite outgrowth inhibitor-A) inhibits axonal regeneration by interacting with Nogo receptor in the myelin sheath of the central nervous system (CNS). The aim of this study was to investigate the effects of Nogo-A and its receptor on the repair of sciatic nerve injury in rats. Sprague-Dawley rats (n=96) were randomly divided into 4 groups: control group (control), sciatic nerve transection group (model), immediate repair group (immediate repair), and delayed repair group (delayed repair). The rats were euthanized 1 week and 6 weeks after operation. The injured end tissues of the spinal cord and sciatic nerve were obtained. The protein expressions of Nogo-A and Nogo-66 receptor (NgR) were detected by immunohistochemistry. The protein expressions of Nogo-A, NgR, and Ras homolog family member A (RhoA) were detected by western blot. At 1 week after operation, the pathological changes in the immediate repaired group were less, and the protein expressions of Nogo-A, NgR, and RhoA in the spinal cord and sciatic nerve tissues were decreased (P<0.05) compared with the model group. After 6 weeks, the pathological changes in the immediate repair group and the delayed repair group were alleviated and the protein expressions decreased (P<0.05). The situation of the immediate repair group was better than that of the delayed repair group. Our data suggest that the expression of Nogo-A and its receptor increased after sciatic nerve injury, indicating that Nogo-A and its receptor play an inhibitory role in the repair process of sciatic nerve injury in rats.
Collapse
Affiliation(s)
- Junjie Jiang
- Department of Hand Surgery, Yantaishan Hospital, Yantai, China
| | - Yuanchen Yu
- Department of Clinical Laboratory, Yantaishan Hospital, Yantai, China
| | - Zhiwu Zhang
- Department of Hand Surgery, Yantaishan Hospital, Yantai, China
| | - Yuan Ji
- Department of Hand Surgery, Yantaishan Hospital, Yantai, China
| | - Hong Guo
- Yantai City Municipal Government Hospital, Yantai, China
| | - Xiaohua Wang
- Department of Clinical Laboratory, Yantaishan Hospital, Yantai, China
| | - Shengjun Yu
- Department of Hand Surgery, Yantaishan Hospital, Yantai, China
| |
Collapse
|
39
|
Eyolfson E, Bhatt D, Wang M, Lohman AW, Mychasiuk R. Paternal exposure to exercise and/or caffeine and alcohol modify offspring behavioral and pathophysiological recovery from repetitive mild traumatic brain injury in adolescence. GENES, BRAIN, AND BEHAVIOR 2021; 20:egbb12736. [PMID: 33876557 DOI: 10.1111/gbb.12736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 11/30/2022]
Abstract
Only recently has the scope of parental research expanded to include the paternal sphere with epidemiological studies implicating stress, nutrition and alcohol consumption in the neurobiological and behavioral characteristics of offspring. This study was designed to determine if paternal exposure to caffeine, alcohol and exercise prior to conception would improve or exacerbate offspring recovery from adolescent repetitive mild traumatic brain injury (RmTBI). Sires received 7 weeks of standard drinking water, or caffeine and ethanol and were housed in regular cages or cages with running wheels, prior to being mated to control females. At postnatal day 40, offspring were administered RmTBI or sham injuries and were assessed for post concussive symptomology. Post-mortem quantitative real-time polymerase chain reaction (qRT-PCR) was used to assess gene expression in the prefrontal cortex (PFC), nucleus accumbens (NAc) and changes in telomere length. Additionally, enzyme-linked immunosorbent assay (ELISA's) were run on serum to detect levels of cytokines, chemokines and sex hormones. Paternal experience did not improve or exacerbate RmTBI behavioral outcomes. However, female and male offspring displayed unique responses to RmTBI and paternal experience, resulting in changes in physical, behavioral and molecular outcomes. Injury and paternal exercise modified changes in female offspring, whereas male offspring were affected by paternal exercise, caffeine and alcohol treatment. Additionally, paternal experience and RmTBI modified expression of many genes in the PFC, NAc, telomere length and levels of sex hormones. Although further exploration is required to understand the heterogeneity that exists in disease risk and resiliency, this study provides corroborating evidence that paternal experiences prior to conception influences offspring development.
Collapse
Affiliation(s)
- Eric Eyolfson
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Dhyey Bhatt
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Melinda Wang
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Alexander W Lohman
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Richelle Mychasiuk
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
40
|
Takahara-Yamauchi R, Ikemoto H, Okumo T, Sakhri FZ, Horikawa H, Nakamura A, Sakaue S, Kato M, Adachi N, Sunagawa M. Analgesic effect of voluntary exercise in a rat model of persistent pain via suppression of microglial activation in the spinal cord. Biomed Res 2021; 42:67-76. [PMID: 33840672 DOI: 10.2220/biomedres.42.67] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this study, we employed a rodent model for persistent allodynia and hyperalgesia to determine whether voluntary exercise could exert analgesic effects on these pain symptoms. Rats were subcutaneously injected with formalin into the plantar surface of the right hind paw to induce mechanical allodynia and hyperalgesia. We assessed the analgesic effects of a voluntary wheel running (VWR) using the von Frey test and investigated microglial proliferation in the dorsal horn of the spinal cord. We also determined the effect of formalin and VWR on the protein expression levels of brain-derived neurotrophic factor (BDNF), its receptor TrkB, and K+-Cl- cotransporter 2 (KCC2), which play a key role in inducing allodynia and hyperalgesia. Rats with access to the running wheels showed beneficial effects on persistent formalin-induced mechanical allodynia and hyperalgesia. The effects of VWR were elicited through the suppression of formalin-induced microglial proliferation, TrkB up-regulation, and KCC2 down-regulation in the spinal cord. BDNF, however, might not contribute to the beneficial effects of VWR. Our results show an analgesic effect of voluntary physical exercise in a rodent model with persistent pain, possibly through the regulation of microglial proliferation and TrkB and KCC2 expression in the spinal cord.
Collapse
Affiliation(s)
- Risa Takahara-Yamauchi
- Department of Physiology, School of Medicine, Showa University.,Faculty of Arts and Sciences at Fujiyoshida, Showa University
| | - Hideshi Ikemoto
- Department of Physiology, School of Medicine, Showa University
| | - Takayuki Okumo
- Department of Physiology, School of Medicine, Showa University
| | | | | | - Akiou Nakamura
- Department of Physiology, School of Medicine, Showa University
| | - Satoshi Sakaue
- Department of Physiology, School of Medicine, Showa University
| | - Mami Kato
- Department of Physiology, School of Medicine, Showa University
| | - Naoki Adachi
- Department of Physiology, School of Medicine, Showa University
| | | |
Collapse
|
41
|
Leitzelar BN, Koltyn KF. Exercise and Neuropathic Pain: A General Overview of Preclinical and Clinical Research. SPORTS MEDICINE-OPEN 2021; 7:21. [PMID: 33751253 PMCID: PMC7984211 DOI: 10.1186/s40798-021-00307-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
Neuropathic pain is a disease of the somatosensory system that is characterized by tingling, burning, and/or shooting pain. Medication is often the primary treatment, but it can be costly, thus there is an interest in understanding alternative low-cost treatments such as exercise. The following review includes an overview of the preclinical and clinical literature examining the influence of exercise on neuropathic pain. Preclinical studies support the hypothesis that exercise reduces hyperalgesia and allodynia in animal models of neuropathic pain. In human research, observational studies suggest that those who are more physically active have lower risk of developing neuropathic pain compared to those who are less active. Exercise studies suggest aerobic exercise training (e.g., 16 weeks); a combination of aerobic and resistance exercise training (e.g., 10–12 weeks); or high-intensity interval training (e.g., 15 weeks) reduces aspects of neuropathic pain such as worst pain over the past month, pain over the past 24 h, pain scores, or pain interference. However, not all measures of pain improve following exercise training (e.g., current pain, heat pain threshold). Potential mechanisms and future directions are also discussed to aid in the goal of understanding the role of exercise in the management of neuropathic pain. Future research using standardized methods to further understanding of the dose of exercise needed to manage neuropathic pain is warranted.
Collapse
Affiliation(s)
- Brianna N Leitzelar
- Department of Kinesiology, University of Wisconsin-Madison, 1300 University Ave., Madison, WI, 53706, USA
| | - Kelli F Koltyn
- Department of Kinesiology, University of Wisconsin-Madison, 1300 University Ave., Madison, WI, 53706, USA.
| |
Collapse
|
42
|
The Relationship between Corneal Nerve Morphology and Inflammatory Mediators and Neuropeptides in Healthy Individuals. Optom Vis Sci 2021; 97:145-153. [PMID: 32168236 DOI: 10.1097/opx.0000000000001484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
SIGNIFICANCE This study set out to explore the relationship between the ocular surface immune and nervous systems by exploring corneal nerve structure and the presence of inflammatory mediators and neuropeptides in the tear film. PURPOSE The purpose of this study was to determine the association between corneal nerve morphology and tear film inflammatory mediators and a neuropeptide in healthy individuals. METHODS Flush tears were collected from both eyes of 21 healthy participants aged 39.7 ± 9.9 years (10 females, 11 males) and analyzed for substance P, matrix metalloproteinase-9, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1), tumor necrosis factor α, and interleukin 6. In vivo central corneal confocal microscopy was performed on the right eye, and eight images were captured. Variables measured were corneal nerve fiber length (CNFL), corneal nerve density (CNFD), corneal nerve branch density, fiber total branch density, corneal nerve fiber area, corneal nerve fiber width (CNFW), and corneal nerve fractal dimension (CNFrac). For each eye, the average across the images and the maximum and minimum values were determined for each variable. Pearson correlation analysis was performed to test for associations. RESULTS Substance P correlated with CNFrac (max) (r = -0.48, P = .03) and CNFW (min) (r = -0.52, P = .02). TIMP-1 correlated with CNFD (average) (r = -0.53, P = .03), CNFL (average) (r = -0.49, P = .05), CNFrac (max) (r = -0.49, P = .05), and CNFD (min) (r = -0.55, P = .02). Interleukin 6 correlated with CNFW (average) (r = -0.49, P = .05), the standard deviation of CNFL (r = -0.51, P = .04), CNFL (max) (r = -0.50, P = .04), CNFrac (max) (r = -0.50, P = .04), and CNFW (min) (r = -0.55, P = .02). Tumor necrosis factor α, matrix metalloproteinase-9, and its ratio with TIMP-1 did not correlate with any corneal nerve parameters. CONCLUSIONS Both inflammatory mediators and neuropeptides correlated with measures of corneal nerve morphology, supporting the link between the inflammatory and nervous systems.
Collapse
|
43
|
Lopes BC, Medeiros LF, Stein DJ, Cioato SG, de Souza VS, Medeiros HR, Sanches PRS, Fregni F, Caumo W, Torres ILS. tDCS and exercise improve anxiety-like behavior and locomotion in chronic pain rats via modulation of neurotrophins and inflammatory mediators. Behav Brain Res 2021; 404:113173. [PMID: 33577881 DOI: 10.1016/j.bbr.2021.113173] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/16/2022]
Abstract
Anxiety disorders cause distress and are commonly found to be comorbid with chronic pain. Both are difficult-to-treat conditions for which alternative treatment options are being pursued. This study aimed to evaluate the effects of transcranial direct current stimulation (tDCS), treadmill exercise, or both, on anxiety-like behavior and associated growth factors and inflammatory markers in the hippocampus and sciatic nerve of rats with neuropathic pain. Male Wistar rats (n = 216) were subjected to sham-surgery or sciatic nerve constriction for pain induction. Fourteen days following neuropathic pain establishment, either bimodal tDCS, treadmill exercise, or a combination of both was used for 20 min a day for 8 consecutive days. The elevated plus-maze test was used to assess anxiety-like behavior and locomotor activity during the early (24 h) or late (7 days) phase after the end of treatment. BDNF, TNF-ɑ, and IL-10 levels in the hippocampus, and BDNF, NGF, and IL-10 levels in the sciatic nerve were assessed 48 h or 7 days after the end of treatment. Rats from the pain groups developed an anxiety-like state. Both tDCS and treadmill exercise provided ethological and neurochemical alterations induced by pain in the early and/or late phase, and a modest synergic effect between tDCS and exercise was observed. These results indicate that non-invasive neuromodulatory approaches can attenuate both anxiety-like status and locomotor activity and alter the biochemical profile in the hippocampus and sciatic nerve of rats with neuropathic pain and that combined interventions may be considered as a treatment option.
Collapse
Affiliation(s)
- Bettega Costa Lopes
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-Clínicas, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, 90035-007 Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), 90050-170 Porto Alegre, Brazil
| | - Liciane Fernandes Medeiros
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-Clínicas, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, 90035-007 Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal Rio Grande do Sul, 90050-170 Porto Alegre, Brazil; Programa de Pós-Graduação em Saúde e Desenvolvimento Humano, Universidade La Salle, 92010-000 Canoas, Brazil.
| | - Dirson João Stein
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-Clínicas, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, 90035-007 Porto Alegre, Brazil; Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, 90035-003 Porto Alegre, Brazil
| | - Stefania Giotti Cioato
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-Clínicas, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, 90035-007 Porto Alegre, Brazil
| | - Vanessa Silva de Souza
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-Clínicas, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, 90035-007 Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal Rio Grande do Sul, 90050-170 Porto Alegre, Brazil
| | - Helouise Richardt Medeiros
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-Clínicas, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, 90035-007 Porto Alegre, Brazil; Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, 90035-003 Porto Alegre, Brazil
| | - Paulo Roberto Stefani Sanches
- Laboratório de Engenharia Biomédica, Grupo de Pesquisa e Pós-Graduação, Hospital de Clínicas de Porto Alegre, 90035-003 Porto Alegre, Brazil
| | - Felipe Fregni
- Laboratory of Neuromodulation, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital & Massachusetts General Hospital. Harvard Medical School and Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 02215 Boston, USA
| | - Wolnei Caumo
- Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, 90035-003 Porto Alegre, Brazil
| | - Iraci L S Torres
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-Clínicas, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, 90035-007 Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), 90050-170 Porto Alegre, Brazil; Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, 90035-003 Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal Rio Grande do Sul, 90050-170 Porto Alegre, Brazil.
| |
Collapse
|
44
|
Running wheel exercise induces therapeutic and preventive effects on inflammatory stimulus-induced persistent hyperalgesia in mice. PLoS One 2020; 15:e0240115. [PMID: 33048957 PMCID: PMC7553300 DOI: 10.1371/journal.pone.0240115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 09/19/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic pain affects significant portion of the world's population and physical exercise has been extensively indicated as non-pharmacological clinical intervention to relieve symptoms in chronic pain conditions. In general, studies on pain chronification and physical exercise intervention have focused on neuropathic pain, although chronic pain commonly results from an original inflammatory episode. Based on this, the objective of the present study was to investigate the therapeutic and preventive effect of the running wheel exercise on the persistent hyperalgesia induced by repetitive inflammatory stimulus, a rodent model that simulates clinical conditions of chronic pain that persist even with no more inflammatory stimulus present. To evaluate the therapeutic effect of physical exercise, we first induced persistent hyperalgesia through 14 days of PGE2 hind paw injections and, after that, mice have access to the regular voluntary running wheel. To evaluate the preventive effect of physical exercise, we first left the mice with access to the regular voluntary running wheel and, after that, we performed 14 days of PGE2 hind paw injection. Our results showed that voluntary running wheel exercise reduced persistent mechanical and chemical hyperalgesia intensity induced by repetitive inflammatory stimulus. In addition, we showed that this therapeutic effect is long-lasting and is observed even if started belatedly, i.e. two weeks after the development of hyperalgesia. Also, our results showed that voluntary running wheel exercise absolutely prevented persistent mechanical and chemical hyperalgesia induction. We can conclude that physical exercise has therapeutic and preventive effect on inflammatory stimulus-induced persistent hyperalgesia. Our data from animal experiments bypass placebo effects bias of the human studies and reinforce physical exercise clinical recommendations to treat and prevent chronic pain.
Collapse
|
45
|
Lesnak JB, Sluka KA. Mechanism of exercise-induced analgesia: what we can learn from physically active animals. Pain Rep 2020; 5:e850. [PMID: 33490844 PMCID: PMC7808683 DOI: 10.1097/pr9.0000000000000850] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/26/2020] [Accepted: 07/31/2020] [Indexed: 12/29/2022] Open
Abstract
Physical activity has become a first-line treatment in rehabilitation settings for individuals with chronic pain. However, research has only recently begun to elucidate the mechanisms of exercise-induced analgesia. Through the study of animal models, exercise has been shown to induce changes in the brain, spinal cord, immune system, and at the site of injury to prevent and reduce pain. Animal models have also explored beneficial effects of exercise through different modes of exercise including running, swimming, and resistance training. This review will discuss the central and peripheral mechanisms of exercise-induced analgesia through different modes, intensity, and duration of exercise as well as clinical applications of exercise with suggestions for future research directions.
Collapse
Affiliation(s)
- Joseph B. Lesnak
- Department of Physical Therapy and Rehabilitation Sciences, University of Iowa, Iowa City, IA, USA
| | - Kathleen A. Sluka
- Department of Physical Therapy and Rehabilitation Sciences, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
46
|
Sex Difference in Trigeminal Neuropathic Pain Response to Exercise: Role of Oxidative Stress. Pain Res Manag 2020; 2020:3939757. [PMID: 32676135 PMCID: PMC7341438 DOI: 10.1155/2020/3939757] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/17/2020] [Accepted: 06/08/2020] [Indexed: 11/17/2022]
Abstract
Aim Orofacial chronic neuropathic pain commonly occurs following trigeminal nerve injuries. We investigated whether swimming exercise can reduce trigeminal neuropathic pain through improving antioxidant capacity. Materials and Methods Twenty-eight Wistar rats of either sex and 180–220 grams were divided into 4 groups as sham, neuropathy, neuropathy + single bout exercise, and neuropathy + 2 weeks of exercise. Trigeminal neuropathy was carried out through chronic constriction injury (CCI) of infraorbital nerve. Protocols of exercise were included a single bout session (45 minutes) and a 2-week (45 minutes/day/6 days a week) swimming exercise. Mechanical allodynia was detected using Von Frey filaments. The activity of the serum antioxidant enzymes glutathione peroxidase and superoxides dismutase was assayed using ELISA kits. Results We found that CCI significantly reduced facial pain threshold in both sexes (P < 0.05). Both swimming exercise protocols significantly reduced mechanical allodynia in female rats compared to the sham group; however, only 2 weeks of exercise were significantly effective in male rats. The activity of antioxidant enzyme glutathione peroxidase significantly (P < 0.05) decreased following CCI in female rats against that in the sham group and 2-week exercise significantly (P < 0.05) increased it toward the control level. The levels of glutathione peroxidase in male rats and superoxidase dismutase in both sexes were not significantly different compared to their sham groups. Conclusion Swimming exercise alleviates trigeminal neuropathic pain in both sexes. Oxidative stress as a possible mechanism was involved in the effect of exercise on female rat trigeminal neuropathy.
Collapse
|
47
|
Rabadán R, Ramos-Campos M, Redolat R, Mesa-Gresa P. Physical activity and environmental enrichment: Behavioural effects of exposure to different housing conditions in mice. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2019-035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Li HY, Rong SS, Hong X, Guo R, Yang FZ, Liang YY, Li A, So KF. Exercise and retinal health. Restor Neurol Neurosci 2019; 37:571-581. [DOI: 10.3233/rnn-190945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Hong-Ying Li
- Central Laboratory, Medical School, Jinan University, Guangzhou, China
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Sheng-Sheng Rong
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Xi Hong
- Central Laboratory, Medical School, Jinan University, Guangzhou, China
| | - Rui Guo
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Feng-Zhen Yang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Yi-Yao Liang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Ang Li
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- Guangdong Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- Guangdong Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, China
- State Key Laboratory of Brain and Cognitive Sciences and Department of Ophthalmology, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
49
|
Sun L, Lv Y, Tian J, Yu T, Niu F, Zhang X, Du D. Regular Swimming Exercise Attenuated Neuroma Pain in Rats: Involvement of Leptin and Adiponectin. THE JOURNAL OF PAIN 2019; 20:1112-1124. [DOI: 10.1016/j.jpain.2019.02.097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/22/2019] [Accepted: 02/18/2019] [Indexed: 02/07/2023]
|
50
|
Slivicki RA, Mali SS, Hohmann AG. Voluntary exercise reduces both chemotherapy-induced neuropathic nociception and deficits in hippocampal cellular proliferation in a mouse model of paclitaxel-induced peripheral neuropathy. NEUROBIOLOGY OF PAIN 2019; 6:100035. [PMID: 31528755 PMCID: PMC6739464 DOI: 10.1016/j.ynpai.2019.100035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/21/2019] [Accepted: 08/25/2019] [Indexed: 12/18/2022]
Abstract
Paclitaxel treatment did not alter voluntary running activity. Voluntary running reduced mechanical and cold allodynia induced by paclitaxel. Voluntary running reduced paclitaxel-induced deficits in hippocampal cellular proliferation.
Chemotherapy-induced peripheral neuropathy (CIPN) is a common dose-limiting side-effect of all major chemotherapeutic agents. Here, we explored efficacy of voluntary exercise as a nonpharmacological strategy for suppressing two distinct adverse side effects of chemotherapy treatment. We evaluated whether voluntary running would suppress both neuropathic pain and deficits in hippocampal cell proliferation in a mouse model of CIPN induced by the taxane chemotherapeutic agent paclitaxel. Mice were given free access to running wheels or were housed without running wheels during one of three different intervention phases: 1) during the onset (i.e. development phase) of paclitaxel-induced neuropathy, 2) prior to dosing with paclitaxel or its vehicle, or 3) following the establishment (i.e. maintenance phase) of paclitaxel-induced neuropathy. Paclitaxel treatment did not alter running wheel behavior relative to vehicle-treated animals in any study. Animals that engaged in voluntary running during the development phase of paclitaxel-induced neuropathy failed to display mechanical or cold hypersensitivities relative to sedentary control animals that did not have access to running wheels. A prior history of voluntary running delayed the onset of, but did not fully prevent, development of paclitaxel-induced neuropathic pain behavior. Voluntary running reduced already established mechanical and cold allodynia induced by paclitaxel. Importantly, voluntary running did not alter mechanical or cold responsivity in vehicle-treated animals, suggesting that the observed antinociceptive effect of exercise was dependent upon the presence of the pathological pain state. In the same animals evaluated for nociceptive responding, paclitaxel also reduced cellular proliferation but not cellular survival in the dentate gyrus of the hippocampus, as measured by immunohistochemistry for Ki67 and BrdU expression, respectively. Voluntary running abrogated paclitaxel-induced reductions in cellular proliferation to levels observed in vehicle-treated mice and also increased BrdU expression levels irrespective of chemotherapy treatment. Our studies support the hypothesis that voluntary exercise may be beneficial in suppressing both neuropathic pain and markers of hippocampal cellular function that are impacted by toxic challenge with chemotherapeutic agents.
Collapse
Affiliation(s)
- Richard A. Slivicki
- Program in Neuroscience, Indiana University, Bloomington, IN, United States
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Sonali S. Mali
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Andrea G. Hohmann
- Program in Neuroscience, Indiana University, Bloomington, IN, United States
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
- Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States
- Corresponding author at: Department of Psychological and Brain Sciences, Indiana University, 1101 E 10th Street, Bloomington, IN 47405-7007, United States.
| |
Collapse
|