1
|
Clark KL, George JW. Environmentally relevant concentrations of individual per- and polyfluoroalkyl substances (PFAS) and a PFAS mixture impact proliferation, migration, and gene transcription in a human myometrial cell line. Toxicology 2025; 515:154173. [PMID: 40334771 DOI: 10.1016/j.tox.2025.154173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 05/01/2025] [Accepted: 05/03/2025] [Indexed: 05/09/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental contaminants linked to adverse health effects. Epidemiological studies have linked PFAS with an increased risk of uterine diseases including fibroids however, the mechanisms involved remain to be elucidated. This study examined the impact of individual PFAS, such as legacy compounds [perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS)] and alternative short-chain compounds [GENX/HFPO-DA and perfluorobutanesulfonic acid (PFBS)], along with a PFAS mixture, on the function and transcriptome of immortalized human myometrial cells (UT-TERT). Exposure to these PFAS resulted in increased cell viability and proliferation. Flow cytometry showed that PFOS and the PFAS mixture altered cell cycle progression, while migration assays indicated significant enhancement of cell migration following PFOS and mixture exposure. Moreover, PFOA, PFBS, and the PFAS mixture impaired gap junction intercellular communication (GJIC), suggesting possible disruptions in cellular communication in the uterine environment. Transcriptomic analysis identified extensive changes in gene expression after exposure to environmentally relevant PFAS levels, revealing common molecular pathways involved in cell signaling, lipid metabolism, and cell survival. These findings provide crucial insights into how PFAS may contribute to reproductive health risks, warranting further investigation into the long-term effects of PFAS on uterine function and overall reproductive health.
Collapse
Affiliation(s)
- Kendra L Clark
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE, United States; Department of Environmental, Agricultural, and Occupational Health, University of Nebraska Medical Center, Omaha, NE, United States; Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States.
| | - Jitu W George
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE, United States; University of Minnesota Genomics Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
2
|
Komorowski AS, Coon V JS, Anton M, Zuberi A, Sotos O, Bulun SE, Yin P. Stearoyl-coenzyme A desaturase enhances cell survival in human uterine leiomyoma. F&S SCIENCE 2025; 6:202-212. [PMID: 40019411 DOI: 10.1016/j.xfss.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 03/01/2025]
Abstract
OBJECTIVE Stearoyl-CoA desaturase (SCD1) is an enzyme that catalyzes the conversion of saturated delta-9 fatty acids to monounsaturated fatty acids. SCD1 is highly expressed in various cancers and facilitates cancer cell survival, tumor growth, and metastasis. This study aimed to assess SCD1 expression and function in uterine leiomyoma and matched myometrial tissue and evaluate the impact of SCD1 inhibition on leiomyoma cell viability and apoptosis. DESIGN Gene set enrichment analysis was performed to determine whether lipid metabolism pathways are dysregulated in leiomyoma. To assess the function of SCD1, primary leiomyoma and myometrial cells, as well as a CRISPR-engineered leiomyoma-relevant MED12 mutant human uterine smooth muscle (UtSM) cell line, were treated with SCD1 small interfering RNA or a small molecule inhibitor of SCD1, CAY10566. Cell viability and apoptosis assays, real-time quantitative polymerase chain reaction, and immunoblot analyses were performed to evaluate cell function in response to treatment. SUBJECTS Leiomyoma and myometrial tissues were obtained from premenopausal individuals designated female at birth (n = 30) undergoing myomectomy or hysterectomy. EXPOSURE SCD1 inhibition by small interfering RNA and CAY10566 treatment. MAIN OUTCOME MEASURES Messenger RNA (mRNA) and protein levels and cell viability and apoptosis. RESULTS Gene set enrichment analysis revealed that the cholesterol homeostasis pathway was significantly different in leiomyoma vs. adjacent myometrial tissues. Among the genes in this pathway, SCD1 mRNA levels were found to be significantly higher in leiomyoma than in matched myometrium. SCD1 inhibition by small interfering RNA or CAY10566 decreased antiapoptotic BCL2 mRNA and protein levels and cell viability in primary leiomyoma but not myometrial cells. SCD1 protein levels were significantly higher in the mutant MED12 UtSM cell line than in the wild-type MED12 UtSM cell line. CAY10566 treatment specifically decreased cell viability and increased apoptosis in mutant MED12 UtSM cells, with increased protein levels of cleaved caspase 3, cleaved PARP, and DDIT3 in mutant MED12 UtSM but not in wild-type MED12 UtSM cells. CONCLUSION SCD1, an enzyme involved in lipid homeostasis, may play an important role in promoting leiomyoma growth and represents a novel target for the treatment of leiomyoma.
Collapse
Affiliation(s)
- Allison S Komorowski
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois
| | - John S Coon V
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois
| | - Melania Anton
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois
| | - Azna Zuberi
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois
| | - Olivia Sotos
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois
| | - Serdar E Bulun
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois
| | - Ping Yin
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois.
| |
Collapse
|
3
|
Iizuka T, Zuberi A, Wei H, Coon V JS, Anton ML, Buyukcelebi K, Adli M, Bulun SE, Yin P. Therapeutic targeting of the tryptophan-kynurenine-aryl hydrocarbon receptor pathway with apigenin in MED12-mutant leiomyoma cells. Cancer Gene Ther 2025; 32:393-402. [PMID: 40025195 DOI: 10.1038/s41417-025-00881-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 01/27/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Approximately 77.4% of uterine leiomyomas carry MED12 gene mutations (mut-MED12), which are specifically associated with strikingly upregulated expression and activity of the tryptophan 2,3-dioxygenase (TDO2) enzyme, leading to increased conversion of tryptophan to kynureine. Kynurenine increases leiomyoma cell survival by activating the aryl hydrocarbon receptor (AHR). We used a leiomyoma-relevant model, in which a MED12 Gly44 mutation was knocked in by CRISPR in a human uterine myometrial smooth muscle (UtSM) cell line, in addition to primary leiomyoma cells from 26 patients to ascertain the mechanisms responsible for therapeutic effects of apigenin, a natural compound. Apigenin treatment significantly decreased cell viability, inhibited cell cycle progression, and induced apoptosis preferentially in mut-MED12 versus wild-type primary leiomyoma and UtSM cells. Apigenin not only blocked AHR action but also decreased TDO2 expression and kynurenine production, preferentially in mut-MED12 cells. Apigenin did not alter TDO2 enzyme activity. TNF and IL-1β, cytokines upregulated in leiomyoma, strikingly induced TDO2 expression levels via activating the NF-κB and JNK pathways, which were abolished by apigenin. Apigenin or a TDO2 inhibitor decreased UtSM cell viability induced by TNF/IL-1β. We provide proof-of-principle evidence that apigenin is a potential therapeutic agent for mut-MED12 leiomyomas.
Collapse
Affiliation(s)
- Takashi Iizuka
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Azna Zuberi
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Helen Wei
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - John S Coon V
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Melania Lidia Anton
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Kadir Buyukcelebi
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Mazhar Adli
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Serdar E Bulun
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Ping Yin
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA.
| |
Collapse
|
4
|
Yang Q, Falahati A, Khosh A, Vafaei S, Al-Hendy A. Targeting Bromodomain-Containing Protein 9 in Human Uterine Fibroid Cells. Reprod Sci 2025; 32:103-115. [PMID: 38858328 DOI: 10.1007/s43032-024-01608-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024]
Abstract
Bromodomain (BRD)-containing proteins are evolutionarily conserved protein-protein interaction modules involved in many biological processes. BRDs selectively recognize and bind to acetylated lysine residues, particularly in histones, and thereby have a crucial role in the regulation of gene expression. BRD protein dysfunction has been linked to many diseases, including tumorigenesis. Previously, we reported the critical role of BRD-containing protein 9 (BRD9) in the pathogenesis of UFs. The present study aimed to extend our previous finding and further understand the role of the BRD9 in UFs. Our studies demonstrated that targeted inhibition of BRD9 with its potent inhibitor TP-472 inhibited the pathogenesis of UF through increased apoptosis and proliferation arrest and decreased extracellular matrix deposition in UF cells. High-throughput transcriptomic analysis further and extensively demonstrated that targeted inhibition of BRD9 by TP-472 impacted the biological pathways, including cell cycle progression, inflammatory response, E2F targets, ECM deposition, and m6A reprogramming. Compared with the previous study, we identified common enriched pathways induced by two BRD9 inhibitors, I-BRD9 and TP-472. Taken together, our studies further revealed the critical role of BRD9 in UF cells. We characterized the link between BRD9 and other vital pathways, as well as the connection between epigenetic and epitranscriptome involved in UF progression. Targeted inhibition of BRD proteins might provide a non-hormonal treatment strategy for this most common benign tumor in women of reproductive age.
Collapse
Affiliation(s)
- Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA.
| | - Ali Falahati
- DNA GTx LAB, Dubai Healthcare City, Dubai, 505262, UAE
| | - Azad Khosh
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Somayeh Vafaei
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA
| |
Collapse
|
5
|
Liu J, Yu L, Castro L, Yan Y, Bushel P, Scappini E, Dixon D. Induction of fibrosis following exposure to bisphenol A and its analogues in 3D human uterine leiomyoma cultures. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134772. [PMID: 38901254 PMCID: PMC11309888 DOI: 10.1016/j.jhazmat.2024.134772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/12/2024] [Accepted: 05/29/2024] [Indexed: 06/22/2024]
Abstract
Bisphenol A (BPA) and its analogues (BPAF, BPS) are ubiquitous environmental contaminants used as plastic additives in various daily life products, with many concerns on their role as environmental estrogens. Uterine leiomyomas (fibroids) are highly prevalent gynecologic tumors with progressive fibrosis. Fibroids are hormone-responsive and may be the target of environmental estrogens. However, the effects of BPA, BPAF, and BPS exposure on uterine fibrosis are largely unknown. Here, we evaluated fibrosis and the crucial role of TGF-beta signaling in human fibroid tumors, the profibrotic effects of BPA, BPAF or BPS in a human 3D uterine leiomyoma (ht-UtLM) in vitro model, and the long-term outcomes of BPAF exposure in rat uterus. In 3D ht-UtLM spheroids, BPA, BPAF, and BPS all promoted cell proliferation and fibrosis by increasing the production of extracellular matrices. Further mechanistic analysis showed the profibrotic effects were induced by TGF-beta signaling activation mainly through SMAD2/3 pathway and crosstalk with multiple non-SMAD pathways. Furthermore, the profibrotic effects of BPAF were supported by observation of uterine fibrosis in vivo in rats following long-term BPAF exposure. Overall, the 3D ht-UtLM spheroid can be an important model for investigating environment-induced fibrosis in uterine fibroids. BPA and its analogues can induce fibrosis via TGF-beta signaling.
Collapse
Affiliation(s)
- Jingli Liu
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of Translational Toxicology (DTT), NIEHS, NIH, Research Triangle Park, NC 27709, USA
| | - Linda Yu
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of Translational Toxicology (DTT), NIEHS, NIH, Research Triangle Park, NC 27709, USA
| | - Lysandra Castro
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of Translational Toxicology (DTT), NIEHS, NIH, Research Triangle Park, NC 27709, USA
| | - Yitang Yan
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of Translational Toxicology (DTT), NIEHS, NIH, Research Triangle Park, NC 27709, USA
| | - Pierre Bushel
- BlueRock Therapeutics, New York, NY 10016, United States
| | - Erica Scappini
- Signal Transduction Laboratory, DIR, NIEHS, NIH, Research Triangle Park, NC 27709, United States
| | - Darlene Dixon
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of Translational Toxicology (DTT), NIEHS, NIH, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
6
|
Fnu G, Weber GF. Targeting the core program of metastasis with a novel drug combination. Cancer Med 2024; 13:e7291. [PMID: 38826119 PMCID: PMC11145026 DOI: 10.1002/cam4.7291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND We previously reported that metastases are generally characterized by a core program of gene expression that activates tissue remodeling/vascularization, alters ion homeostasis, induces the oxidative metabolism, and silences extracellular matrix interactions. This core program distinguishes metastases from their originating primary tumors as well as from their destination host tissues. Therefore, the gene products involved are potential targets for anti-metastasis drug treatment. METHODS Because the silencing of extracellular matrix interactions predisposes to anoiks in the absence of active survival mechanisms, we tested inhibitors against the other three components. RESULTS Individually, the low-specificity VEGFR blocker pazopanib (in vivo combined with marimastat), the antioxidant dimethyl sulfoxide (or the substitute atovaquone, which is approved for internal administration), and the ionic modulators bumetanide and tetrathiomolybdate inhibited soft agar colony formation by breast and pancreatic cancer cell lines. The individual candidate agents have a record of use in humans (with limited efficacy when administered individually) and are available for repurposing. In combination, the effects of these drugs were additive or synergistic. In two mouse models of cancer (utilizing 4T1 cells or B16-F10 cells), the combination treatment with these medications, applied immediately (to prevent metastasis formation) or after a delay (to suppress established metastases), dramatically reduced the occurrence of disseminated foci. CONCLUSIONS The combination of tissue remodeling inhibitors, suppressors of the oxidative metabolism, and ion homeostasis modulators has very strong promise for the treatment of metastases by multiple cancers.
Collapse
Affiliation(s)
- Gulimirerouzi Fnu
- James L. Winkle College of PharmacyUniversity of Cincinnati Academic Health CenterCincinnatiOhioUSA
| | - Georg F. Weber
- James L. Winkle College of PharmacyUniversity of Cincinnati Academic Health CenterCincinnatiOhioUSA
| |
Collapse
|
7
|
Szucio W, Bernaczyk P, Ponikwicka-Tyszko D, Milewska G, Pawelczyk A, Wołczyński S, Rahman NA. Progesterone signaling in uterine leiomyoma biology: Implications for potential targeted therapy. Adv Med Sci 2024; 69:21-28. [PMID: 38278085 DOI: 10.1016/j.advms.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/19/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024]
Abstract
Uterine leiomyomas (ULs) are the most common benign smooth muscle cell steroid-dependent tumors that occur in women of reproductive age. Progesterone (P4) is a major hormone that promotes the ULs development and growth. P4 action in ULs is mediated mainly by its nuclear progesterone receptors (PGRs), although rapid non-genomic responses have also been observed. Data on the membrane progesterone receptors (mPRs) regulated signaling pathways in ULs in the available literature is still very limited. One of the essential characteristics of ULs is the excessive production of extracellular matrix (ECM). P4 has been shown to stimulate ECM production and collagen synthesis in ULs. Recent research demonstrated that, despite their benign nature, ULs may present with abnormal vasculature. P4 has been shown to regulate angiogenesis in ULs through the upregulation of vascular endothelial growth factor (VEGF) and by controlling the secretion of permeability factors. This review summarizes the key findings regarding the role of PGRs and mPRs in ULs, especially highlighting the potential ECM and angiogenesis modulation by P4. An increased understanding of this mechanistic role of nuclear and specifically mPRs in the biology of P4-modulated ECM and angiogenesis in the growth of ULs could turn out to be fundamental for developing effective targeted therapies for ULs.
Collapse
Affiliation(s)
- Weronika Szucio
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Bernaczyk
- Department of Medical Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | - Donata Ponikwicka-Tyszko
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland; Institute of Biomedicine, University of Turku, Turku, Finland
| | - Gabriela Milewska
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| | - Adam Pawelczyk
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University, Szczecin, Poland
| | - Sławomir Wołczyński
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland; Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Nafis A Rahman
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland; Institute of Biomedicine, University of Turku, Turku, Finland.
| |
Collapse
|
8
|
Buyukcelebi K, Duval AJ, Abdula F, Elkafas H, Seker-Polat F, Adli M. Integrating leiomyoma genetics, epigenomics, and single-cell transcriptomics reveals causal genetic variants, genes, and cell types. Nat Commun 2024; 15:1169. [PMID: 38326302 PMCID: PMC10850163 DOI: 10.1038/s41467-024-45382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
Uterine fibroids (UF), that can disrupt normal uterine function and cause significant physical and psychological health problems, are observed in nearly 70% of women of reproductive age. Although heritable genetics is a significant risk factor, specific genetic variations and gene targets causally associated with UF are poorly understood. Here, we performed a meta-analysis on existing fibroid genome-wide association studies (GWAS) and integrated the identified risk loci and potentially causal single nucleotide polymorphisms (SNPs) with epigenomics, transcriptomics, 3D chromatin organization from diverse cell types as well as primary UF patient's samples. This integrative analysis identifies 24 UF-associated risk loci that potentially target 394 genes, of which 168 are differentially expressed in UF tumors. Critically, integrating this data with single-cell gene expression data from UF patients reveales the causal cell types with aberrant expression of these target genes. Lastly, CRISPR-based epigenetic repression (dCas9-KRAB) or activation (dCas9-p300) in a UF disease-relevant cell type further refines and narrows down the potential gene targets. Our findings and the methodological approach indicate the effectiveness of integrating multi-omics data with locus-specific epigenetic editing approaches for identifying gene- and celt type-targets of disease-relevant risk loci.
Collapse
Affiliation(s)
- Kadir Buyukcelebi
- Department of Obstetrics and Gynecology, Robert Lurie Comprehensive Cancer Center, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Alexander J Duval
- Department of Obstetrics and Gynecology, Robert Lurie Comprehensive Cancer Center, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Fatih Abdula
- Department of Obstetrics and Gynecology, Robert Lurie Comprehensive Cancer Center, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Hoda Elkafas
- Department of Obstetrics and Gynecology, Robert Lurie Comprehensive Cancer Center, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Fidan Seker-Polat
- Department of Obstetrics and Gynecology, Robert Lurie Comprehensive Cancer Center, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Mazhar Adli
- Department of Obstetrics and Gynecology, Robert Lurie Comprehensive Cancer Center, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA.
| |
Collapse
|
9
|
Yang Q, Vafaei S, Falahati A, Khosh A, Bariani MV, Omran MM, Bai T, Siblini H, Ali M, He C, Boyer TG, Al-Hendy A. Bromodomain-Containing Protein 9 Regulates Signaling Pathways and Reprograms the Epigenome in Immortalized Human Uterine Fibroid Cells. Int J Mol Sci 2024; 25:905. [PMID: 38255982 PMCID: PMC10815284 DOI: 10.3390/ijms25020905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Bromodomain-containing proteins (BRDs) are involved in many biological processes, most notably epigenetic regulation of transcription, and BRD dysfunction has been linked to many diseases, including tumorigenesis. However, the role of BRDs in the pathogenesis of uterine fibroids (UFs) is entirely unknown. The present study aimed to determine the expression pattern of BRD9 in UFs and matched myometrium and further assess the impact of a BRD9 inhibitor on UF phenotype and epigenetic/epitranscriptomic changes. Our studies demonstrated that the levels of BRD9 were significantly upregulated in UFs compared to matched myometrium, suggesting that the aberrant BRD expression may contribute to the pathogenesis of UFs. We then evaluated the potential roles of BRD9 using its specific inhibitor, I-BRD9. Targeted inhibition of BRD9 suppressed UF tumorigenesis with increased apoptosis and cell cycle arrest, decreased cell proliferation, and extracellular matrix deposition in UF cells. The latter is the key hallmark of UFs. Unbiased transcriptomic profiling coupled with downstream bioinformatics analysis further and extensively demonstrated that targeted inhibition of BRD9 impacted the cell cycle- and ECM-related biological pathways and reprogrammed the UF cell epigenome and epitranscriptome in UFs. Taken together, our studies support the critical role of BRD9 in UF cells and the strong interconnection between BRD9 and other pathways controlling the UF progression. Targeted inhibition of BRDs might provide a non-hormonal treatment option for this most common benign tumor in women of reproductive age.
Collapse
Affiliation(s)
- Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
| | - Somayeh Vafaei
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
| | - Ali Falahati
- DNA GTx LAB, Dubai Healthcare City, Dubai 505262, United Arab Emirates;
| | - Azad Khosh
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.K.); (T.G.B.)
| | - Maria Victoria Bariani
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
| | - Mervat M. Omran
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Tao Bai
- Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Hiba Siblini
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
| | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA;
| | - Thomas G. Boyer
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.K.); (T.G.B.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
| |
Collapse
|
10
|
Bai T, Ali M, Somers B, Yang Q, McKinney S, Al-Hendy A. The combination of natural compounds Crila and epigallocatechin gallate showed enhanced antiproliferative effects on human uterine fibroid cells compared with single treatments. F&S SCIENCE 2023; 4:341-349. [PMID: 37739343 DOI: 10.1016/j.xfss.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
OBJECTIVE To investigate the combined effects of Crila and green tea extract, epigallocatechin gallate (EGCG), compared with single treatments, on human uterine fibroid cells. DESIGN Human uterine leiomyoma (HuLM) cells were treated with different concentrations of Crila, alone or in combination with EGCG, and several experiments were employed. SETTING A laboratory study. PATIENTSS N/A. INTERVENTIONS Crila, EGCG. MAIN OUTCOME MEASURES Cell proliferation assay, drug synergy using combination index, protein and gene expression analysis of proliferation marker proliferating cell nuclear antigen, and apoptosis marker BAX using western blotting and quantitative polymerase chain reaction, respectively. RESULTS Results showed that tested Crila concentrations, when combined with 25 and 50 μM EGCG, exerted synergistic growth inhibitory effects on HuLM viability. This inhibitory effect on HuLM cell viability was because of decreased cell proliferation, as shown by a decrease in the proliferation marker proliferating cell nuclear antigen at messenger RNA and protein levels, rather than inducing apoptosis. CONCLUSION Our study concludes that the utility of natural compounds may provide a safe and cost-effective alternative to currently used short-term hormonal therapies against uterine fibroids.
Collapse
Affiliation(s)
- Tao Bai
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois
| | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois
| | - Bernard Somers
- Department of Medicinal Chemistry, Rutgers University, New Brunswick, New Jersey
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois
| | - Sue McKinney
- Altin Biosciences Corporation, Emeryville, California
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois.
| |
Collapse
|
11
|
Enazy SA, Kirschen GW, Vincent K, Yang J, Saada J, Shah M, Oberhauser AF, Bujalowski PJ, Motamedi M, Salama SA, Kilic G, Rytting E, Borahay MA. PEGylated Polymeric Nanoparticles Loaded with 2-Methoxyestradiol for the Treatment of Uterine Leiomyoma in a Patient-Derived Xenograft Mouse Model. J Pharm Sci 2023; 112:2552-2560. [PMID: 37482124 PMCID: PMC10529399 DOI: 10.1016/j.xphs.2023.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
Leiomyomas, the most common benign neoplasms of the female reproductive tract, currently have limited medical treatment options. Drugs targeting estrogen/progesterone signaling are used, but side effects and limited efficacy in many cases are major limitation of their clinical use. Previous studies from our laboratory and others demonstrated that 2-methoxyestradiol (2-ME) is promising treatment for uterine fibroids. However, its poor bioavailability and rapid degradation hinder its development for clinical use. The objective of this study is to evaluate the in vivo effect of biodegradable and biocompatible 2-ME-loaded polymeric nanoparticles in a patient-derived leiomyoma xenograft mouse model. PEGylated poly(lactide-co-glycolide) (PEG-PLGA) nanoparticles loaded with 2-ME were prepared by nanoprecipitation. Female 6-week age immunodeficient NOG (NOD/Shi-scid/IL-2Rγnull) mice were used. Estrogen-progesterone pellets were implanted subcutaneously. Five days later, patient-derived human fibroid tumors were xenografted bilaterally subcutaneously. Engrafted mice were treated with 2-ME-loaded or blank (control) PEGylated nanoparticles. Nanoparticles were injected intraperitoneally and after 28 days of treatment, tumor volume was measured by caliper following hair removal, and tumors were removed and weighed. Up to 99.1% encapsulation efficiency was achieved, and the in vitro release profile showed minimal burst release, thus confirming the high encapsulation efficiency. In vivo administration of the 2-ME-loaded nanoparticles led to 51% growth inhibition of xenografted tumors compared to controls (P < 0.01). Thus, 2-ME-loaded nanoparticles may represent a novel approach for the treatment of uterine fibroids.
Collapse
Affiliation(s)
- Sanaalarab Al Enazy
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gregory W Kirschen
- Department of Gynecology & Obstetrics, Johns Hopkins University, Baltimore, MD, USA
| | - Kathleen Vincent
- Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX, USA; Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jinping Yang
- Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX, USA
| | - Jamal Saada
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mansi Shah
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Andres F Oberhauser
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Paul J Bujalowski
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Massoud Motamedi
- Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX, USA
| | - Salama A Salama
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Gokhan Kilic
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Erik Rytting
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX, USA; Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mostafa A Borahay
- Department of Gynecology & Obstetrics, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
12
|
Ali M, Stone D, Laknaur A, Yang Q, Al-Hendy A. EZH2 activates Wnt/β-catenin signaling in human uterine fibroids, which is inhibited by the natural compound methyl jasmonate. F&S SCIENCE 2023; 4:239-256. [PMID: 37182601 PMCID: PMC10527015 DOI: 10.1016/j.xfss.2023.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
OBJECTIVE To investigate the link between EZH2 and Wnt/β-catenin signaling and its role in uterine fibroids (UFs) pathogenesis and explore the potential effect of natural compound methyl jasmonate (MJ) against UFs. DESIGN EZH2 overexpression or inhibition was achieved in human uterine leiomyoma (HuLM) cells using EZH2-expressing adenovirus or chemical EZH2 inhibitor (DZNep), respectively. The HuLM and normal uterine smooth muscle cells were treated with 0.1-3 mM of MJ, and several experiments were employed. SETTING Laboratory study. PATIENTS(S) None. INTERVENTION(S) Methyl jasmonate. MAIN OUTCOME MEASURE(S) Protein expression of EZH2, β-catenin, and proliferating cell nuclear antigen (PCNA) was measured by Western blot as well as gene expression alterations of Wnt ligands (Wnt5A, Wnt5b, and Wnt9A), WISP1, CTNNB1, and its responsive gene PITX2 using quantitative real-time polymerase chain reaction. The protein and ribonucleic acid (RNA) levels of several markers were measured in MJ-treated or untreated HuLM cells, including EZH2 and β-catenin, extracellular matrix markers collagen type 1 (COL1A1) and fibronectin (FN), proliferation markers cyclin D1 (CCND1) and PCNA, tumor suppressor marker p21, and apoptotic markers (BAX, cytochrome c, and cleaved caspase 3). RESULT(S) EZH2 overexpression significantly increased the gene expression of several Wnt ligands (PITX2, WISP1, WNT5A, WNT5B, and WNT9A), which increased nuclear translocation of β-catenin and PCNA and eventually HuLM cell proliferation. EZH2 inhibition blocked Wnt/β-catenin signaling activation where the aforementioned genes significantly decreased as well as PCNA, cyclin D1, and PITX2 protein expression compared with those in untreated HuLM. Methyl jasmonate showed a potent antiproliferative effect on HuLM cells in a dose- and time-dependent manner. Interestingly, the dose range (0.1-0.5 mM) showed a selective growth inhibitory effect on HuLM cells, not on normal uterine smooth muscle cells. Methyl jasmonate treatment at 0.5 mM for 24 hours significantly decreased both protein and RNA levels of EZH2, β-catenin, COL1A1, FN, CCND1, PCNA, WISP1, and PITX2 but increased the protein levels of p21, BAX, cytochrome, c and cleaved caspase 3 compared with untreated HuLM. Methyl jasmonate-treated cells exhibited down-regulation in the RNA expression of 36 genes, including CTNNB1, CCND1, Wnt5A, Wnt5B, and Wnt9A, and up-regulation in the expression of 34 genes, including Wnt antagonist genes WIF1, PRICKlE1, and DKK1 compared with control, confirming the quantitative real-time polymerase chain reaction results. CONCLUSION(S) Our studies provide a novel link between EZH2 and the Wnt/β-catenin signaling pathway in UFs. Targeting EZH2 with MJ interferes with the activation of wnt/β-catenin signaling in our model. Methyl jasmonate may offer a promising therapeutic option as a nonhormonal and cost-effective treatment against UFs with favorable clinical utility, pending proven safe and efficient in human clinical trials.
Collapse
Affiliation(s)
- Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois; Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - David Stone
- Department of hospital medicine, university of Colorado, Colorado Springs, Colorado
| | - Archana Laknaur
- Division of Translation Research, Augusta University, Augusta, Georgia
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois.
| |
Collapse
|
13
|
Buyukcelebi K, Chen X, Abdula F, Elkafas H, Duval AJ, Ozturk H, Seker-Polat F, Jin Q, Yin P, Feng Y, Bulun SE, Wei JJ, Yue F, Adli M. Engineered MED12 mutations drive leiomyoma-like transcriptional and metabolic programs by altering the 3D genome compartmentalization. Nat Commun 2023; 14:4057. [PMID: 37429859 DOI: 10.1038/s41467-023-39684-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
Nearly 70% of Uterine fibroid (UF) tumors are driven by recurrent MED12 hotspot mutations. Unfortunately, no cellular models could be generated because the mutant cells have lower fitness in 2D culture conditions. To address this, we employ CRISPR to precisely engineer MED12 Gly44 mutations in UF-relevant myometrial smooth muscle cells. The engineered mutant cells recapitulate several UF-like cellular, transcriptional, and metabolic alterations, including altered Tryptophan/kynurenine metabolism. The aberrant gene expression program in the mutant cells is, in part, driven by a substantial 3D genome compartmentalization switch. At the cellular level, the mutant cells gain enhanced proliferation rates in 3D spheres and form larger lesions in vivo with elevated production of collagen and extracellular matrix deposition. These findings indicate that the engineered cellular model faithfully models key features of UF tumors and provides a platform for the broader scientific community to characterize genomics of recurrent MED12 mutations.
Collapse
Affiliation(s)
- Kadir Buyukcelebi
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Xintong Chen
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Fatih Abdula
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Hoda Elkafas
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Alexander James Duval
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Harun Ozturk
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Fidan Seker-Polat
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Qiushi Jin
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Ping Yin
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Yue Feng
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Serdar E Bulun
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Jian Jun Wei
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Mazhar Adli
- Robert Lurie Comprehensive Cancer Center, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA.
| |
Collapse
|
14
|
Lenis YY, George JW, Lind S, Balboula A, Teixeira JM, Patterson AL. The Effects of Periostin Expression on Fibroid-Like Transition of Myometrial Cells. Reprod Sci 2023; 30:1616-1624. [PMID: 36418534 PMCID: PMC11389981 DOI: 10.1007/s43032-022-01128-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/11/2022] [Indexed: 11/26/2022]
Abstract
Fibroids, benign tumors of the myometrium, are the most common tumors in women and are associated with spontaneous abortion, preterm birth, placenta abruption, and infertility, among others. The incidence of fibroids in reproductive aged women is 20-89%. Fibroids are characterized by high production of extracellular matrix (ECM), particularly collagens, which play a role in their growth. However, their pathogenesis is poorly understood. Recently, we and others have found periostin (POSTN), a regulatory ECM protein, to be overexpressed in the majority of fibroids analyzed. Periostin is an ECM protein that is a critical regulator and well-established biomarker for fibrosis in tissues such as the lung, skin, and kidney. Our hypothesis was that periostin plays a role in the fibrotic transition of myometrial cells to fibroid cells. To test this, we evaluated the effects of POSTN overexpression in myometrial cells. Telomerase-immortalized myometrial cells were transduced with control or POSTN-overexpression lentivirus particles, generating one control (dCas9-Mock) and two overexpression (dCas9-POSTN-01, dCas9-POSTN-02) cell lines. Overexpression of POSTN in immortalized myometrial cells resulted in a change in phenotype consistent with fibroid cells. They upregulated expression of key fibroid genes and had increased proliferation, adhesion, and migration in vitro. Here, we show a potential role for periostin in the transition of myometrial cells to fibroid cells, giving rationale for future investigation into the role of periostin in fibroid pathogenesis and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Yasser Y Lenis
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Research Group OHVRI, School of Veterinary Medicine, Faculty of Agrarian Science, Universidad de Antioquia, Medellín, Colombia
| | - Jitu W George
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sarah Lind
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Ahmed Balboula
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Jose M Teixeira
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
| | - Amanda L Patterson
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA.
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
15
|
Afrin S, Ramaiyer M, Begum UAM, Borahay MA. Adipocyte and Adipokines Promote a Uterine Leiomyoma Friendly Microenvironment. Nutrients 2023; 15:nu15030715. [PMID: 36771423 PMCID: PMC9919329 DOI: 10.3390/nu15030715] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
Uterine leiomyomas are the most common benign tumors of the female reproductive system. Obese individuals have a higher burden of uterine leiomyoma, yet the mechanism relating obesity and leiomyoma development remains unknown. In this study, we observe the effect of adipocyte coculture and leptin treatment on human myometrium and leiomyoma cells. We isolated primary leiomyoma and myometrium cells from hysterectomy or myomectomy patients. Protein expression levels of phosphorylated ERK1/2/total ERK1/2, phosphorylated STAT3/total STAT3, and phosphorylated AKT1/2/3/total AKT1/2/3 were quantified using immunoblotting in immortalized and primary leiomyoma and myometrial cells cocultured with human adipocytes and treated with leptin. An enzyme-linked immunosorbent assay (ELISA) was used to assess pro-inflammatory, fibrotic, and angiogenic factors in immortalized human myometrium and leiomyoma cells treated with leptin. The effects of STAT3, ERK, and AKT inhibitors were assessed in leiomyoma cell lines additionally cultured with adipocytes. Adipocyte coculture and leptin treatment increases the expression of JAK2/STAT3, MAPK/ERK, and PI3K/AKT signaling while inhibitors suppressed this effect. Leptin induces a tumor-friendly microenvironment through upregulation of pro-inflammatory (IFNγ, IL-8, IL-6, GM-CSF, MCP-1, and TNF-α), fibrotic (TGF-β1, TGF-β2, and TGF-β3), and angiogenic (VEGF-A, HGF, and Follistatin) factors in human leiomyoma cells. Furthermore, adipocyte coculture and leptin treatment increases leiomyoma cells growth through activation of MAPK/ERK, JAK2/STAT3, and PI3k/AKT signaling pathways. Finally, STAT3, ERK, and AKT inhibitor treatment suppressed PCNA, TNF-α, TGF-β3, and VEGF-A intracellular staining intensity in both adipocyte coculture and leptin treated leiomyoma cells. These findings suggest that, in obese women, adipocyte secreted hormone or adipocytes may contribute to leiomyoma development and growth by activating leptin receptor signaling pathways.
Collapse
Affiliation(s)
- Sadia Afrin
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Malini Ramaiyer
- School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Umme Aoufa Mafruha Begum
- Department of Gynecology and Obstetrics, Khulna City Medical College Hospital, 25-26, KDA Ave., Khulna 9100, Bangladesh
| | - Mostafa A. Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Correspondence: ; Tel.: +1-(410)-550-0337
| |
Collapse
|
16
|
Afrin S, El Sabah M, Manzoor A, Miyashita-Ishiwata M, Reschke L, Borahay MA. Adipocyte coculture induces a pro-inflammatory, fibrotic, angiogenic, and proliferative microenvironment in uterine leiomyoma cells. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166564. [PMID: 36181981 PMCID: PMC9719372 DOI: 10.1016/j.bbadis.2022.166564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 10/14/2022]
Abstract
OBJECTIVE Obesity and its consequences are among the biggest challenges facing the healthcare system. Uterine leiomyomas are the most common gynecologic tumors. The risk of leiomyoma increases with obesity, but the underlying mechanisms of this association remain unclear. The aim of the present study to determine the cellular and molecular mechanisms by which adipocyte contributes to both leiomyoma tumor initiation and promotion. METHODS Primary myometrium and leiomyoma cells were isolated from patients who underwent a hysterectomy or myomectomy. Pro-inflammatory, fibrotic, and angiogenic factors were measured using a multiplex cytokine array in human primary and immortalized myometrial and leiomyoma cells cocultured with human adipocyte (SW872) cells, or in animal ELT3 leiomyoma cells cocultured with 3 T3-L1 adipocytes. The free fatty acids (FFAs) and fatty acid-binding protein 4 (FABP4) levels were measured using immunofluorescence assays. Other protein abundances were determined using western blots. The expression levels of TNF-α, MCP-1, phospho-NF-κB, TGFβ3 and VEGF-A in lean and obese in different leiomyoma patients were determined by immunofluorescence staining. RESULTS Adipocytes promote inflammation, fibrosis, and angiogenesis in uterine leiomyoma cells by upregulating associated factors, such as IL-1β, TNF-α, MCP-1, GM-CSF, TGF-βs, PLGF, VEGF, HB-EGF, G-CSF and FGF2. Coculture led to the transfer of FFAs and FABP4 from adipocytes to leiomyoma cells, suggesting that adipocytes may modulate metabolic activity in these tumor cells. Increased levels of FFA and FABP4 expressions were detected in obese leiomyoma tissue compared to lean. The adipocyte-leiomyoma cell interaction increased the phospho-NF-κB level, which plays a key role in inflammation, restructuring metabolic pathways, and angiogenesis. Obese leiomyoma patients expressed a higher amount of TNF-α, MCP-1, phospho-NF-κB, TGFβ3 and VEGF-A than lean leiomyoma patients, consistent with in vitro findings. Furthermore, we found that adipocyte secretory factors enhance leiomyoma cell proliferation by increasing PCNA abundance. Finally, the inhibition of the inflammatory factors TNF-α, MCP-1, and NF-κB abrogated the adipocyte coculture-induced proliferation of leiomyoma cells. CONCLUSIONS Adipocytes release inflammatory, fibrotic, and angiogenic factors, along with FFAs, which contribute to a tumor-friendly microenvironment that may promote leiomyoma growth and can represent a new target for leiomyoma prevention and treatment.
Collapse
Affiliation(s)
- Sadia Afrin
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Malak El Sabah
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ahmed Manzoor
- School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Mariko Miyashita-Ishiwata
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lauren Reschke
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mostafa A Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
17
|
Reschke L, Afrin S, El Sabah M, Charewycz N, Miyashita-Ishiwata M, Borahay MA. Leptin induces leiomyoma cell proliferation and extracellular matrix deposition via JAK2/STAT3 and MAPK/ERK pathways. F&S SCIENCE 2022; 3:383-391. [PMID: 35598777 PMCID: PMC9669119 DOI: 10.1016/j.xfss.2022.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To investigate the molecular effects of leptin on uterine leiomyoma cells. DESIGN Experimental study using in vitro culture of immortalized human leiomyoma (HuLM) cells. SETTING Academic university center. PATIENT(S) Women with uterine fibroids who underwent a hysterectomy or myomectomy. INTERVENTION(S) Administration of human recombinant leptin to the media of cultured HuLM cells separately or in combination with pharmacologic Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) or mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) inhibitors. MAIN OUTCOME MEASURE(S) We examined HuLM tissues and cells for the expression of the leptin receptor, termed OB-R. Cellular proliferation was measured at 6, 24, and 48 hours using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay. Protein expression levels of proliferating cell nuclear antigen, collagen 1, phosphorylated STAT3/total STAT3, and phosphorylated ERK1/2 and total ERK1/2 were quantified using immunoblotting. Pharmacologic inhibitors were employed to further assess the role of the JAK2/STAT3 and MAPK/ERK pathways in the proliferative response. RESULT(S) The presence of OB-R was confirmed in clinical leiomyoma and myometrial tissue obtained from 3 separate human subjects using immunofluorescence staining, and the expression of OB-R in HuLM cells was identified using immunoblotting. There was no significant difference in the expression of the leptin receptor in the myometrium compared with that in the leiomyoma tissue. Leptin stimulated cell proliferation and extracellular matrix (ECM) deposition at 24 hours after treatment. Pretreatment with a JAK2/STAT3 inhibitor attenuated ECM deposition, and pretreatment with a MAPK/ERK inhibitor significantly decreased leptin's stimulatory effect on cell proliferation and ECM deposition. CONCLUSION(S) Leptin induces a proliferative response and ECM deposition in HuLM cells. These findings suggest that leptin, acting through the JAK2/STAT3 and MAPK/ERK pathways, is involved in the development of uterine leiomyomas, which may partly explain their increased incidence in obese women.
Collapse
Affiliation(s)
- Lauren Reschke
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sadia Afrin
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Malak El Sabah
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Natasha Charewycz
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mariko Miyashita-Ishiwata
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mostafa A Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
18
|
Afrin S, El Sabeh M, Miyashita-Ishiwata M, Charewycz N, Singh B, Borahay MA. Simvastatin reduces plasma membrane caveolae and caveolin-1 in uterine leiomyomas. Life Sci 2022; 304:120708. [PMID: 35705139 DOI: 10.1016/j.lfs.2022.120708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022]
Abstract
AIMS Uterine leiomyomas, or fibroids, are estrogen dependent benign tumor in women, however, they have limited treatment options. Simvastatin, a drug commonly used to treat high cholesterol. Recently we demonstrated that simvastatin alters estrogen signaling by reducing the expression and trafficking of the estrogen receptor-α (ER-α) in human uterine leiomyoma cells. Caveolae are invaginations of the plasma membrane where ER-α is known to localize and directly interacts with the caveolar protein caveolin-1 (CAV1). This study examines the effects of simvastatin on plasma membrane caveolae and the expression and palmitoylation of CAV1 in human leiomyomas which may influence ER-α signaling. MAIN METHODS We performed in vitro experiments using primary and immortalized human uterine leiomyoma cells. The caveolae were quantified using transmission electron microscopy. Additionally, we examined the impact of simvastatin treatment (40 mg orally per day for 12 weeks) on human leiomyoma tissue obtained from a randomized controlled trial. The CAV1 protein and mRNA levels were determined using quantitative real-time polymerase chain reactions, western blotting, and immunofluorescence analyses. KEY FINDINGS Simvastatin decreased the number of caveolae in primary leiomyoma cells and reduced CAV1 abundance in whole cells and remarkably the plasma protein fraction. It also decreased CAV1 palmitoylation, a post-translational modification associated with CAV1 activation. The effects of simvastatin on CAV1 were recapitulated in human leiomyoma tissue samples. SIGNIFICANCE Our results identify caveolae and CAV1 as novel targets of simvastatin which may contribute to the recently described effects of simvastatin on ER-α signaling and plasma membrane trafficking.
Collapse
Affiliation(s)
- Sadia Afrin
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Malak El Sabeh
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mariko Miyashita-Ishiwata
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Natasha Charewycz
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bhuchitra Singh
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mostafa A Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
19
|
Chen L, Chen H, Yang Q, Jiang Y, Liu L, Yu H, Chen Y, Li J, Chen N, Wang H, Wang Q. Guizhi Fuling Capsule inhibits uterine fibroids growth by modulating Med12-mediated Wnt/β-Catenin signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 290:115115. [PMID: 35181487 DOI: 10.1016/j.jep.2022.115115] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Guizhi Fuling Capsule (GFC) is a famous traditional Chinese medicine (TCM) formula recorded in Synopsis of the Golden Chamber, which has achieved obvious effects in the treatment of uterine fibroids (UFs). AIM OF STUDY Mediator complex subunit 12 (Med12) mutations were closely related to UFs in 85% of fibroid cases. The Wnt/β-Catenin signaling pathway plays an important role in the occurrence and development of UFs. This study aims to explore the pharmacological mechanism of GFC against UFs in which the Med12-mediated Wnt/β-Catenin pathway is involved. MATERIALS AND METHODS Med12 was silenced in uterine fibroid cells (UFCs) using a lentivirus-based Med12 gene-specific RNA interference (RNAi) strategy. Cell proliferation was performed by CCK-8 assay, cell apoptosis and cell cycle were measured by flow cytometry. The rat model of UFs was established by injecting estradiol benzoate and progesterone. Forty-eight rats were divided into six groups, the low-dose GFC (L-GFC) group, the medium-dose GFC (M-GFC) group and the high-dose GFC (H-GFC) group were intragastrically treated with GFC solution at 0.25 g/kg, 0.50 g/kg and 1.00 g/kg per day for 8 weeks, the positive control (PC) group was administrated with mifepristone (2.70 mg/kg/day), the normal control (NC) group and the model control (MC) group were given equal volume of normal saline once a day for 8 weeks. The histopathological changes of uterine tissues were evaluated by H&E staining. The expression of Med12 in uterine tissues were detected by immunohistochemistry. The protein and mRNA levels of associated genes were evaluated by western bolt and real time-PCR, respectively. Related indicators involved in Wnt/β-Catenin pathway, such as Wnt1, β-Catenin, Cyclin D1, TCF1/TCF7 and C-myc, were compared among different groups. RESULTS The Wnt/β-Catenin signaling pathway was inhibited after Med12 gene was knocked out in UFCs. GFC-containing serum could induce cell apoptosis, make the cell cycle stagnated in G0/G1 phase to inhibiting the proliferation and reduce the expression of Wnt1, β-Catenin, Cyclin D1, TCF1/TCF7, and C-myc in control-shRNA cells, while had no significant effect on Med12-shRNA cells. Compared with the MC group, the weight, endometrial thickness, and pathological structure of the uterus in the GFC treated groups were significantly improved. The expression of Med12, Wnt1, β-Catenin, Cyclin D1, TCF1/TCF7, and C-myc that related to Wnt/β-Catenin pathway in the GFC treated groups were decreased with the increase of dosage administration. CONCLUSIONS GFC inhibited UFs growth, which was directly associated with Med12 modulated Wnt/β-Catenin signaling pathway. This study provided new perspective to understand the therapeutic mechanism of UFs.
Collapse
Affiliation(s)
- Linwei Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Department of Science and Technology, Taizhou Hospital Affiliated to Nanjing University of Chinese Medicine, Taizhou, 225300, PR China.
| | - Honglin Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Qiaowei Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Yong Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Lunyuan Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Hui Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Yan Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Department of Science and Technology, Taizhou Hospital Affiliated to Nanjing University of Chinese Medicine, Taizhou, 225300, PR China.
| | - Jindong Li
- Department of Pharmacy, Taizhou People's Hospital, Taizhou, 225300, PR China.
| | - Nan Chen
- Department of Science and Technology, Taizhou Hospital Affiliated to Nanjing University of Chinese Medicine, Taizhou, 225300, PR China.
| | - Hua Wang
- Department of Pharmacy, Taizhou People's Hospital, Taizhou, 225300, PR China.
| | - Qin Wang
- Department of Science and Technology, Taizhou Hospital Affiliated to Nanjing University of Chinese Medicine, Taizhou, 225300, PR China.
| |
Collapse
|
20
|
Navarro A, Bariani MV, Park HS, Zota AR, Al-Hendy A. Report of Exosomes Isolated from a Human Uterine Leiomyoma Cell Line and Their Impact on Endometrial Vascular Endothelial Cells. Pharmaceuticals (Basel) 2022; 15:577. [PMID: 35631403 PMCID: PMC9143402 DOI: 10.3390/ph15050577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022] Open
Abstract
Uterine leiomyomas are the most common pelvic tumor in women of reproductive age; they cause irregular heavy menstrual bleeding leading to anemia and subsequent negative effects on quality of life. Exosomes have arisen as main players of disease progression in several illnesses, including a range of benign and malignant conditions; however, their role in leiomyomas' pathophysiology remains unknown. We investigated the effect of exosomes derived from human uterine leiomyoma tumor cells (HULM) and human myometrial cells (UTSM) on the behavior of human endometrial microvascular endothelial cells (HEMEC). HULM- and UTSM-derived exosomes were isolated and cocultured with HEMECs. Then, cell proliferation, mRNA expression, tube formation assay, and RNA-seq were performed. Treatment of HEMEC with HULM-derived exosomes increased cell proliferation by 60% compared to control untreated cells, upregulated C-MYC and VEGFA expression levels, and increased tube formation, length, and branching (markers of angiogenesis). Profiling of miRNA revealed that 84 miRNAs were significantly downregulated and 71 were upregulated in HULM-derived exosomes compared to UTSM-derived exosomes. These findings suggest that HULM-derived exosomes might have effects on HEMEC function, containing factors that enhance endometrial proliferation and angiogenesis, which may contribute to heavy menstrual bleeding. Further research on exosomes in uterine leiomyoma may identify possible novel biomarkers for treatment.
Collapse
Affiliation(s)
- Antonia Navarro
- Department of Obstetrics & Gynecology, University of Chicago, Chicago, IL 60637, USA; (A.N.); (M.V.B.); (H.-S.P.)
| | - Maria Victoria Bariani
- Department of Obstetrics & Gynecology, University of Chicago, Chicago, IL 60637, USA; (A.N.); (M.V.B.); (H.-S.P.)
| | - Hang-Soo Park
- Department of Obstetrics & Gynecology, University of Chicago, Chicago, IL 60637, USA; (A.N.); (M.V.B.); (H.-S.P.)
| | - Ami R. Zota
- Department of Environment Health, Milken School of Public Health, George Washington University, Washington, DC 20037, USA;
| | - Ayman Al-Hendy
- Department of Obstetrics & Gynecology, University of Chicago, Chicago, IL 60637, USA; (A.N.); (M.V.B.); (H.-S.P.)
| |
Collapse
|
21
|
Yan Y, Shi M, Fannin R, Yu L, Liu J, Castro L, Dixon D. Prolonged Cadmium Exposure Alters Migration Dynamics and Increases Heterogeneity of Human Uterine Fibroid Cells—Insights from Time Lapse Analysis. Biomedicines 2022; 10:biomedicines10040917. [PMID: 35453667 PMCID: PMC9031958 DOI: 10.3390/biomedicines10040917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022] Open
Abstract
Cadmium (Cd) is one of the most prevalent environmental heavy metal contaminants and is considered an endocrine disruptor and carcinogen. In women with uterine fibroids, there is a correlation between blood Cd levels and fibroid tumor size. In this study, fibroid cells were exposed to 10 µM CdCl2 for 6 months and a fast-growing Cd-Resistant Leiomyoma culture, termed CR-LM6, was recovered. To characterize the morphological and mechanodynamic features of uterine fibroid cells associated with prolonged Cd exposure, we conducted time lapse imaging using a Zeiss confocal microscope and analyzed data by Imaris and RStudio. Our experiments recorded more than 64,000 trackable nuclear surface objects, with each having multiple parameters such as nuclear size and shape, speed, location, orientation, track length, and track straightness. Quantitative analysis revealed that prolonged Cd exposure significantly altered cell migration behavior, such as increased track length and reduced track straightness. Cd exposure also significantly increased the heterogeneity in nuclear size. Additionally, Cd significantly increased the median and variance of instantaneous speed, indicating that Cd exposure results in higher speed and greater variation in motility. Profiling of mRNA by NanoString analysis and Ingenuity Pathway Analysis (IPA) strongly suggested that the direction of gene expression changes due to Cd exposure enhanced cell movement and invasion. The altered expression of extracellular matrix (ECM) genes such as collagens, matrix metallopeptidases (MMPs), secreted phosphoprotein 1 (SPP1), which are important for migration contact guidance, may be responsible for the greater heterogeneity. The significantly increased heterogeneity of nuclear size, speed, and altered migration patterns may be a prerequisite for fibroid cells to attain characteristics favorable for cancer progression, invasion, and metastasis.
Collapse
Affiliation(s)
- Yitang Yan
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, 111 TW Alexander Drive, Durham, NC 27709, USA; (Y.Y.); (L.Y.); (J.L.); (L.C.)
| | - Min Shi
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, 111 TW Alexander Drive, Durham, NC 27709, USA;
| | - Rick Fannin
- Molecular Genomics Core Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 TW Alexander Drive, Durham, NC 27709, USA;
| | - Linda Yu
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, 111 TW Alexander Drive, Durham, NC 27709, USA; (Y.Y.); (L.Y.); (J.L.); (L.C.)
| | - Jingli Liu
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, 111 TW Alexander Drive, Durham, NC 27709, USA; (Y.Y.); (L.Y.); (J.L.); (L.C.)
| | - Lysandra Castro
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, 111 TW Alexander Drive, Durham, NC 27709, USA; (Y.Y.); (L.Y.); (J.L.); (L.C.)
| | - Darlene Dixon
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, 111 TW Alexander Drive, Durham, NC 27709, USA; (Y.Y.); (L.Y.); (J.L.); (L.C.)
- Correspondence: ; Tel.: +1-984-287-3848
| |
Collapse
|
22
|
Miyashita-Ishiwata M, El Sabeh M, Reschke LD, Afrin S, Borahay MA. Differential response to hypoxia in leiomyoma and myometrial cells. Life Sci 2022; 290:120238. [PMID: 34942165 PMCID: PMC8757389 DOI: 10.1016/j.lfs.2021.120238] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/06/2021] [Accepted: 12/12/2021] [Indexed: 02/03/2023]
Abstract
AIMS Recent evidence suggests that repetitive hypoxia occurs during menstrual cycles due to vasoconstriction and myometrial contraction. It is unknown if hypoxia contributes to the development of uterine leiomyoma, the most common tumor of the female reproductive system. This study aims to characterize the response to hypoxia in leiomyoma and myometrial cells; and determine if an aberrant leiomyoma response to hypoxia may contribute to leiomyomatogenesis. MAIN METHODS Primary and immortalized leiomyoma and myometrial cells were cultured under normoxic and hypoxic conditions. Expression levels of vascular endothelial growth factor-A (VEGF-A), adrenomedullin (ADM), endothelin-1 (ET-1), and hypoxia-inducible factor-1 alpha (HIF-1α) were measured by qRT-PCR, western blotting and ELISA. Cell proliferation was assessed using MTT assay and proliferating-cell-nuclear-antigen (PCNA) expression. KC7F2 (HIF-1α inhibitor) was used to examine the regulating mechanisms. KEY FINDINGS As expected, hypoxia induced HIF-1α expression in both leiomyoma and myometrial cells. However, hypoxia induced VEGF-A, ET-1 and ADM expression and VEGF-A secretion into the culture media in leiomyoma but not myometrial cells. MTT assay and PCNA expression showed that hypoxia induces proliferation in leiomyoma, but not myometrial cells. HIF-1α inhibitor abrogated the hypoxia-induced VEGF-A, ET-1, ADM, and PCNA expression in leiomyoma cells. SIGNIFICANCE This study suggests an aberrant leiomyoma cellular response to hypoxia compared to myometrium. This differential response to menstruation-related repetitive hypoxia episodes may lead to selective proliferation of hypoxia-adaptive leiomyoma cells and contribute to leiomyoma growth. Thus, in addition to adding to our understanding of leiomyoma pathobiology, the study proposes angiogenic factors as a potential leiomyoma therapeutic target.
Collapse
Affiliation(s)
- Mariko Miyashita-Ishiwata
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA, Address: 4940 Eastern Ave, Baltimore, MD, USA 21224-2780
| | - Malak El Sabeh
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA, Address: 4940 Eastern Ave, Baltimore, MD, USA 21224-2780
| | - Lauren D Reschke
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA, Address: 4940 Eastern Ave, Baltimore, MD, USA 21224-2780
| | - Sadia Afrin
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA, Address: 4940 Eastern Ave, Baltimore, MD, USA 21224-2780
| | - Mostafa A Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA, Address: 4940 Eastern Ave, Baltimore, MD, USA 21224-2780,Correspondence address: Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD, 21205, USA,
| |
Collapse
|
23
|
Liu J, Yu L, Castro L, Yan Y, Clayton NP, Bushel P, Flagler ND, Scappini E, Dixon D. Short-term tetrabromobisphenol A exposure promotes fibrosis of human uterine fibroid cells in a 3D culture system through TGF-beta signaling. FASEB J 2022; 36:e22101. [PMID: 35032343 PMCID: PMC8852695 DOI: 10.1096/fj.202101262r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/12/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022]
Abstract
Tetrabromobisphenol A (TBBPA), a derivative of BPA, is a ubiquitous environmental contaminant with weak estrogenic properties. In women, uterine fibroids are highly prevalent estrogen-responsive tumors often with excessive accumulation of extracellular matrix (ECM) and may be the target of environmental estrogens. We have found that BPA has profibrotic effects in vitro, in addition to previous reports of the in vivo fibrotic effects of BPA in mouse uterus. However, the role of TBBPA in fibrosis is unclear. To investigate the effects of TBBPA on uterine fibrosis, we developed a 3D human uterine leiomyoma (ht-UtLM) spheroid culture model. Cell proliferation was evaluated in 3D ht-UtLM spheroids following TBBPA (10-6 -200 µM) administration at 48 h. Fibrosis was assessed using a Masson's Trichrome stain and light microscopy at 7 days of TBBPA (10-3 µM) treatment. Differential expression of ECM and fibrosis genes were determined using RT² Profiler™ PCR arrays. Network and pathway analyses were conducted using Ingenuity Pathway Analysis. The activation of pathway proteins was analyzed by a transforming growth factor-beta (TGFB) protein array. We found that TBBPA increased cell proliferation and promoted fibrosis in 3D ht-UtLM spheroids with increased deposition of collagens. TBBPA upregulated the expression of profibrotic genes and corresponding proteins associated with the TGFB pathway. TBBPA activated TGFB signaling through phosphorylation of TGFBR1 and downstream effectors-small mothers against decapentaplegic -2 and -3 proteins (SMAD2 and SMAD3). The 3D ht-UtLM spheroid model is an effective system for studying environmental agents on human uterine fibrosis. TBBPA can promote fibrosis in uterine fibroid through TGFB/SMAD signaling.
Collapse
Affiliation(s)
- Jingli Liu
- Mechanistic Toxicology Branch (MTB)Division of the National Toxicology Program (DNTP)National Institute of Environmental Health Sciences (NIEHS), NIHResearch Triangle ParkNorth CarolinaUSA
| | - Linda Yu
- Mechanistic Toxicology Branch (MTB)Division of the National Toxicology Program (DNTP)National Institute of Environmental Health Sciences (NIEHS), NIHResearch Triangle ParkNorth CarolinaUSA
| | - Lysandra Castro
- Mechanistic Toxicology Branch (MTB)Division of the National Toxicology Program (DNTP)National Institute of Environmental Health Sciences (NIEHS), NIHResearch Triangle ParkNorth CarolinaUSA
| | - Yitang Yan
- Mechanistic Toxicology Branch (MTB)Division of the National Toxicology Program (DNTP)National Institute of Environmental Health Sciences (NIEHS), NIHResearch Triangle ParkNorth CarolinaUSA
| | - Natasha P. Clayton
- Cellular & Molecular Pathogenesis BranchDNTP NIEHS, NIHResearch Triangle ParkNorth CarolinaUSA
| | - Pierre Bushel
- Biostatistics & Computational Biology Branch, Division of Intramural Research (DIR)NIEHS, NIHResearch Triangle ParkNorth CarolinaUSA
| | - Norris D. Flagler
- Cellular & Molecular Pathogenesis BranchDNTP NIEHS, NIHResearch Triangle ParkNorth CarolinaUSA
| | - Erica Scappini
- Signal Transduction Laboratory, DIRNIEHS, NIHResearch Triangle ParkNorth CarolinaUSA
| | - Darlene Dixon
- Mechanistic Toxicology Branch (MTB)Division of the National Toxicology Program (DNTP)National Institute of Environmental Health Sciences (NIEHS), NIHResearch Triangle ParkNorth CarolinaUSA
| |
Collapse
|
24
|
El Sabeh M, Saha SK, Afrin S, Borahay MA. Simvastatin Inhibits Wnt/β-Catenin Pathway in Uterine Leiomyoma. Endocrinology 2021; 162:6382454. [PMID: 34614511 PMCID: PMC8557633 DOI: 10.1210/endocr/bqab211] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Indexed: 12/16/2022]
Abstract
The Wnt/β-catenin pathway is upregulated in uterine leiomyomas, the most common benign tumors in the female reproductive tract. Simvastatin is an antihyperlipidemic drug, and previous in vitro and in vivo reports showed that it may have therapeutic effects in treating leiomyomas. The objective of this study was to examine the effects of simvastatin on the Wnt/β-catenin signaling pathway in leiomyoma. We treated primary and immortalized human leiomyoma cells with simvastatin and examined its effects using quantitative real-time polymerase chain reaction, Western blotting, and immunocytochemistry. We also examined the effects using human leiomyoma tissues from an ongoing randomized controlled trial in which women with symptomatic leiomyoma received simvastatin (40 mg) or placebo for 3 months prior to their surgery. The results of this study revealed that simvastatin significantly reduced the expression of Wnt4 and its co-receptor LRP5. After simvastatin treatment, levels of total β-catenin and its active form, nonphosphorylated β-catenin, were reduced in both cell types. Additionally, simvastatin reduced the expression of Wnt4 and total β-catenin, as well as nonphosphorylated β-catenin protein expression in response to estrogen and progesterone. Simvastatin also inhibited the expression of c-Myc, a downstream target of the Wnt/β-catenin pathway. The effect of simvastatin on nonphosphorylated-β-catenin, the key regulator of the Wnt/β-catenin pathway, was recapitulated in human leiomyoma tissue. These results suggest that simvastatin may have a beneficial effect on uterine leiomyoma through suppressing the overactive Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Malak El Sabeh
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Subbroto Kumar Saha
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sadia Afrin
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mostafa A Borahay
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Correspondence: Mostafa A. Borahay, M.D., Ph.D., Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| |
Collapse
|
25
|
Cytogenomic Profile of Uterine Leiomyoma: In Vivo vs. In Vitro Comparison. Biomedicines 2021; 9:biomedicines9121777. [PMID: 34944592 PMCID: PMC8698342 DOI: 10.3390/biomedicines9121777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
We performed a comparative cytogenomic analysis of cultured and uncultured uterine leiomyoma (UL) samples. The experimental approach included karyotyping, aCGH, verification of the detected chromosomal abnormalities by metaphase and interphase FISH, MED12 mutation analysis and telomere measurement by Q-FISH. An abnormal karyotype was detected in 12 out of 32 cultured UL samples. In five karyotypically abnormal ULs, MED12 mutations were found. The chromosomal abnormalities in ULs were present mostly by complex rearrangements, including chromothripsis. In both karyotypically normal and abnormal ULs, telomeres were ~40% shorter than in the corresponding myometrium, being possibly prerequisite to chromosomal rearrangements. The uncultured samples of six karyotypically abnormal ULs were checked for the detected chromosomal abnormalities through interphase FISH with individually designed DNA probe sets. All chromosomal abnormalities detected in cultured ULs were found in corresponding uncultured samples. In all tumors, clonal spectra were present by the karyotypically abnormal cell clone/clones which coexisted with karyotypically normal ones, suggesting that chromosomal abnormalities acted as drivers, rather than triggers, of the neoplastic process. In vitro propagation did not cause any changes in the spectrum of the cell clones, but altered their ratio compared to uncultured sample. The alterations were unique for every UL. Compared to its uncultured counterpart, the frequency of chromosomally abnormal cells in the cultured sample was higher in some ULs and lower in others. To summarize, ULs are characterized by both inter- and intratumor genetic heterogeneity. Regardless of its MED12 status, a tumor may be comprised of clones with and without chromosomal abnormalities. In contrast to the clonal spectrum, which is unique and constant for each UL, the clonal frequency demonstrates up or down shifts under in vitro conditions, most probably determined by the unequal ability of cells with different genetic aberrations to exist outside the body.
Collapse
|
26
|
Yan Y, Liu J, Lawrence A, Dykstra MJ, Fannin R, Gerrish K, Tucker CJ, Scappini E, Dixon D. Prolonged cadmium exposure alters benign uterine fibroid cell behavior, extracellular matrix components, and TGFB signaling. FASEB J 2021; 35:e21738. [PMID: 34245615 PMCID: PMC8284923 DOI: 10.1096/fj.202100354r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 12/26/2022]
Abstract
The heavy metal Cadmium (Cd), a widespread environmental contaminant, poses serious hazards to human health and is considered a metallohormone and carcinogen. In women with uterine fibroids, there is a significant association between blood Cd levels and increased fibroid tumor size. The aim of this study was to determine if benign human uterine leiomyoma (fibroid) cells could be malignantly transformed in vitro by continuous Cd exposure and, if so, explore a molecular mechanism by which this could occur. We found when fibroid cells were exposed to 10 µM CdCl2 for 8 weeks, a robust and fast‐growing Cd‐Resistant Leiomyoma (CR‐LM) cell culture was established. The CR‐LM cells formed viable colonies in soft agar and had increased cytoplasmic glycogen aggregates, enhanced cell motility, a higher percentage of cells in G2/M phase, and increased expression of the proliferation marker Ki‐67. NanoString analysis showed downregulation of genes encoding for extracellular matrix (ECM) components, such as collagens, fibronectins, laminins, and SLRP family proteins, whereas genes involved in ECM degradation (MMP1, MMP3, and MMP10) were significantly upregulated. A volcano plot showed that the top differentially genes favored cancer progression. Functional analysis by ingenuity pathway analysis predicted a significant inhibition of TGFB1 signaling, leading to enhanced proliferation and attenuated fibrosis. Prolonged Cd exposure altered phenotypic characteristics and dysregulated genes in fibroid cells predicative of progression towards a cancer phenotype. Therefore, continuous Cd exposure alters the benign characteristics of fibroid cells in vitro, and Cd exposure could possibly pose a health hazard for women with uterine fibroids.
Collapse
Affiliation(s)
- Yitang Yan
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, NC, USA
| | - Jingli Liu
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, NC, USA
| | - Arianna Lawrence
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, NC, USA
| | - Michael J Dykstra
- Cellular & Molecular Pathogenesis Branch, DNTP, NIEHS, NIH, Research Triangle Park, NC, USA
| | - Rick Fannin
- Signal Transduction Laboratory, Molecular Genomics Core Laboratory, NIEHS, NIH, Research Triangle Park, NC, USA
| | - Kevin Gerrish
- Signal Transduction Laboratory, Molecular Genomics Core Laboratory, NIEHS, NIH, Research Triangle Park, NC, USA
| | - Charles J Tucker
- Signal Transduction Laboratory, Fluorescence Microscopy and Imaging Center, NIEHS, NIH, Research Triangle Park, NC, USA
| | - Erica Scappini
- Signal Transduction Laboratory, Fluorescence Microscopy and Imaging Center, NIEHS, NIH, Research Triangle Park, NC, USA
| | - Darlene Dixon
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park, NC, USA
| |
Collapse
|
27
|
"Metalloestrogenic" effects of cadmium downstream of G protein-coupled estrogen receptor and mitogen-activated protein kinase pathways in human uterine fibroid cells. Arch Toxicol 2021; 95:1995-2006. [PMID: 33818655 PMCID: PMC8166678 DOI: 10.1007/s00204-021-03033-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/18/2021] [Indexed: 10/25/2022]
Abstract
Cadmium (Cd) is a toxic metal reported to act as an estrogen "mimic" in the rat uterus and in vitro. We have reported that Cd stimulates proliferation of estrogen-responsive human uterine leiomyoma (ht-UtLM; fibroid) cells through nongenomic signaling involving the G protein-coupled estrogen receptor (GPER), with activation of epidermal growth factor receptor (EGFR) and mitogen-activated protein kinase (pMAPK44/42). In this study, we explored Cd-induced mechanisms downstream of MAPK and whether Cd could stimulate phosphorylation of Histone H3 at serine 10 (H3Ser10ph) through activated Aurora B kinase (pAurora B), a kinase important in activation of histone H3 at serine 10 during mitosis, and if this occurs via Fork head box M1 (FOXM1) and cyclin D1 immediately downstream of MAPK. We found that Cd increased proliferating cell nuclear antigen (PCNA) and H3Ser10ph expression by immunofluorescence, and that H3ser10ph and pAurora B were coexpressed along the metaphase plate in ht-UtLM cells. In addition, Cd-exposed cells showed higher expression of pMAPK44/42, FOXM1, pAurora B, H3ser10ph, and Cyclin D1 by western blotting. Immunoprecipitation and proximity ligation assays further indicated an association between FOXM1 and Cyclin D1 in Cd-exposed cells. These effects were attenuated by MAPK kinase (MEK1/2) inhibitor. In summary, Cd-induced proliferation of ht-UtLM cells occurred through activation of Histone H3 and Aurora B via FOXM1/Cyclin D1 interactions downstream of MAPK. This provides a molecular mechanism of how Cd acts as an "estrogen mimic" resulting in mitosis in hormonally responsive cells.
Collapse
|
28
|
Cordeiro Mitchell CN, Islam MS, Afrin S, Brennan J, Psoter KJ, Segars JH. Mechanical stiffness augments ligand-dependent progesterone receptor B activation via MEK 1/2 and Rho/ROCK-dependent signaling pathways in uterine fibroid cells. Fertil Steril 2021; 116:255-265. [PMID: 33676751 DOI: 10.1016/j.fertnstert.2020.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To test whether mechanical substrate stiffness would influence progesterone receptor B (PRB) signaling in fibroid cells. Uterine fibroids feature an excessive extracellular matrix, increased stiffness, and altered mechanical signaling. Fibroid growth is stimulated by progestins and opposed by anti-progestins, but a functional interaction between progesterone action and mechanical signaling has not been evaluated. DESIGN Laboratory studies. SETTING Translational science laboratory. PATIENT(S)/ANIMAL(S) Human fibroid cell lines and patient-matched fibroid and myometrial cell lines. INTERVENTION(S) Progesterone receptor B-dependent reporter assays and messenger RNA quantitation in cells cultured on stiff polystyrene plates (3GPa) or soft silicone plates (930KPa). Pharmacologic inhibitors of extracellular signal-related protein kinase (ERK) kinase 1/2 (MEK 1/2; PD98059), p38 mitogen-activated protein kinase (SB202190), receptor tyrosine kinases (RTKs; nintedanib), RhoA (A13), and Rho-associated coiled-coil kinase (ROCK; Y27632). MAIN OUTCOME MEASURE(S) Progesterone-responsive reporter activation. RESULT(S) Fibroid cells exhibited higher PRB-dependent reporter activity with progesterone (P4) in cells cultured on stiff vs. soft plates. Mechanically induced PRB activation with P4 was decreased 62% by PD98059, 78% by nintedanib, 38% by A13, and 50% by Y27632. Overexpression of the Rho-guanine nucleotide exchange factor (Rho-GEF), AKAP13, significantly increased PRB-dependent reporter activity. Collagen 1 messenger RNA levels were higher in fibroid cells grown on stiff vs. soft plates with P4. CONCLUSION(S) Cells cultured on mechanically stiff substrates had enhanced PRB activation via a mechanism that required MEK 1/2 and AKAP13/RhoA/ROCK signaling pathways. These studies provide a framework to explore the mechanisms by which mechanical stiffness affects progesterone receptor activation.
Collapse
Affiliation(s)
- Christina N Cordeiro Mitchell
- Department of Gynecology and Obstetrics, Division of Reproductive Endocrinology & Infertility, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - Md Soriful Islam
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - Sadia Afrin
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - Joshua Brennan
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - Kevin J Psoter
- Department of Pediatrics, Division of General Pediatrics and Adolescent Medicine, Johns Hopkins Medicine, Baltimore, Maryland
| | - James H Segars
- Department of Gynecology and Obstetrics, Division of Reproductive Endocrinology & Infertility, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, Maryland.
| |
Collapse
|
29
|
Bao H, Sin TK, Zhang G. Activin A induces tumorigenesis of leiomyoma via regulation of p38β MAPK-mediated signal cascade. Biochem Biophys Res Commun 2020; 529:379-385. [PMID: 32703439 DOI: 10.1016/j.bbrc.2020.05.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The objective of this study was to investigate the role of p38-C/EBPβ signaling in leiomyoma cells and myometrial cells challenged with Activin A, and to identify specifically the isoform of p38 MAPK that mediates the effects of Activin A. METHODS The immortalization human leiomyoma cells (HuLM) and human myometrial cells (HM), and mouse myometrial tissues were treated with Activin A (4 nM) in response to p38α/β inhibition (10 μM SB202190) or depletion (p38 α/β-targeting siRNA or p38β muscle specific-knock out mice). p38 MAPK signaling molecules (p-p38 and p-C/EBPβ) and ECM components (COL1A1 and/or FN) were analyzed by Western blotting. RESULTS Activin A induced ECM accumulation in leiomyoma cells and myofibroblastic transformation in myometrical cells specifically by p38β MAPK. CONCLUSION This study is the first to demonstrate that activation of C/EBPβ by p38β MAPK may contribute to tumorigenesis and progression of Activin A-induced leiomyoma. Specific p38β inhibition may represent a novel and promising intervention for leiomyoma.
Collapse
Affiliation(s)
- Huiqiong Bao
- Department of Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China; Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Thomas K Sin
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Guohua Zhang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
30
|
Nakajima T, Sakai N, Nogimura M, Tomooka Y. Developmental mechanisms regulating the formation of smooth muscle layers in the mouse uterus†. Biol Reprod 2020; 103:750-759. [DOI: 10.1093/biolre/ioaa104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/20/2020] [Accepted: 06/12/2020] [Indexed: 11/13/2022] Open
Abstract
Abstract
Uterine smooth muscle cells differentiate from mesenchymal cells, and gap junctions connect the muscle cells in the myometrium. At the neonatal stage, a uterine smooth muscle layer is situated away from the epithelium when smooth muscle cells are grafted near the epithelium, suggesting that the epithelium plays an important role in differentiation, proliferation, and/or migration of smooth muscle cells. In this study, developmental mechanisms regulating the formation of the smooth muscle layers in the mouse uterus were analyzed using an in vitro culture model. Differentiation of smooth muscle cells occurs at a neonatal stage because ACTA2 gene expression was increased at the outer layer, and GJA1 was not expressed in cellular membranes of uterine smooth muscle cells by postnatal day 15. To analyze the effects of the epithelium on the differentiation of smooth muscle cells, a bulk uterine mesenchymal cell line was established from p53−/− mice at postnatal day 3 (P3US cells). Co-culture with Müllerian ductal epithelial cells (E1 cells) induced repulsive migration of ACTA2-positive cells among bulk P3US cells from E1 cells, but it had no effects on the migration of any of 100% ACTA2-positive or negative smooth muscle cell lines cloned from P3US cells. Thus, uterine epithelial cells indirectly affected the repulsive migration of smooth muscle cells via mesenchymal cells. Conditioned medium by E1 cells inhibited differentiation into smooth muscle cells of clonal cells established from P3US cells. Therefore, the uterine epithelium inhibits the differentiation of stem-like progenitor mesenchymal cells adjacent to the epithelium into smooth muscle cells.
Collapse
Affiliation(s)
- Tadaaki Nakajima
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Naoto Sakai
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Miho Nogimura
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Yasuhiro Tomooka
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
31
|
Bar-Joseph H, Hikri E, Chuderland D, Ben-Ami I, Shalgi R. Pigment epithelium derived factor as a novel multi-target treatment for uterine fibroids. Reprod Biomed Online 2020; 41:335-342. [PMID: 32532667 DOI: 10.1016/j.rbmo.2020.03.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/12/2020] [Accepted: 03/31/2020] [Indexed: 01/11/2023]
Abstract
RESEARCH QUESTION Does recombinant pigment epithelium derived factor (PEDF) have potential in treating uterine fibroids? DESIGN In-vitro models that used human leiomyoma and Eker rat uterine leiomyoma (ELT-3) cell lines. The ELT-3 cell line was used to examine cellular targets after adding recombinant PEDF to the culture media. Athymic nude female mice were used as an in-vivo model. They were injected with ELT-3 cells to induce ectopic fibroid lesions, then treated with recombinant PEDF. RESULTS RNA expression of PEDF and its receptors was found in both leiomyoma cell lines, as well as the expression of PEDF receptors. Addition of recombinant PEDF to the culture medium of leiomyoma cell lines activated ERK in a time-dependent manner, induced down-regulation of vascular endothelial growth factor mRNA and protein, as well as the mRNAs of oestrogen receptors alpha and beta and inhibited cellular proliferation. Treatment of mice-bearing fibroids with recombinant PEDF reduced fibroid growth rate and resulted in smaller tumours. CONCLUSIONS This study suggests that recombinant PEDF is a putative novel potent physiological treatment for uterine fibroids. It targets several cornerstones of fibroid pathobiology in parallel, including vascular endothelial growth factor and oestrogen receptors, which are needed for vascularization, and restricts fibroid growth and final size in an animal model.
Collapse
Affiliation(s)
- Hadas Bar-Joseph
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Ramat-Aviv, Israel
| | - Elad Hikri
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Ramat-Aviv, Israel
| | - Dana Chuderland
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Ramat-Aviv, Israel
| | - Ido Ben-Ami
- IVF and Infertility Unit, Department of Obstetrics and Gynecology, Shaare Zedek Medical Center, affiliated with the Hebrew University Medical School of Jerusalem Jerusalem, Israel.
| | - Ruth Shalgi
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Ramat-Aviv, Israel
| |
Collapse
|
32
|
Small B, Millard CEF, Kisanga EP, Burman A, Anam A, Flannery C, Al-Hendy A, Whirledge S. The Selective Progesterone Receptor Modulator Ulipristal Acetate Inhibits the Activity of the Glucocorticoid Receptor. J Clin Endocrinol Metab 2020; 105:5609012. [PMID: 31665442 PMCID: PMC7112983 DOI: 10.1210/clinem/dgz139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/22/2019] [Indexed: 12/19/2022]
Abstract
CONTEXT The selective progesterone modulator ulipristal acetate (ulipristal) offers a much-needed therapeutic option for the clinical management of uterine fibroids. Although ulipristal initially passed safety evaluations in Europe, postmarketing analysis identified cases of hepatic injury and failure, leading to restrictions on the long-term use of ulipristal. One of the factors potentially contributing to significant side effects with the selective progesterone modulators is cross-reactivity with other steroid receptors. OBJECTIVE To determine whether ulipristal can alter the activity of the endogenous glucocorticoid receptor (GR) in relevant cell types. DESIGN Immortalized human uterine fibroid cells (UtLM) and hepatocytes (HepG2) were treated with the synthetic glucocorticoid dexamethasone and/or ulipristal. Primary uterine fibroid tissue was isolated from patients undergoing elective gynecological surgery and treated ex vivo with dexamethasone and/or ulipristal. In vivo ulipristal exposure was performed in C57Bl/6 mice to measure the effect on basal gene expression in target tissues throughout the body. RESULTS Dexamethasone induced the expression of established glucocorticoid-target genes period 1 (PER1), FK506 binding protein 51 (FKBP5), and glucocorticoid-induced leucine zipper (GILZ) in UtLM and HepG2 cells, whereas cotreatment with ulipristal blocked the transcriptional response to glucocorticoids in a dose-dependent manner. Ulipristal inhibited glucocorticoid-mediated phosphorylation, nuclear translocation, and DNA interactions of GR. Glucocorticoid stimulation of PER1, FKBP5, and GILZ was abolished by cotreatment with ulipristal in primary uterine fibroid tissue. The expression of glucocorticoid-responsive genes was decreased in the lung, liver, and uterus of mice exposed to 2 mg/kg ulipristal. Interestingly, transcript levels of Fkbp5 and Gilz were increased in the hippocampus and pituitary. CONCLUSIONS These studies demonstrate that ulipristal inhibits endogenous glucocorticoid signaling in human fibroid and liver cells, which is an important consideration for its use as a long-term therapeutic agent.
Collapse
Affiliation(s)
- Benjamin Small
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Charles E F Millard
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Edwina P Kisanga
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Andreanna Burman
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Anika Anam
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
- Department of Internal Medicine, Endocrinology, Yale School of Medicine, New Haven, Connecticut
| | - Clare Flannery
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
- Department of Internal Medicine, Endocrinology, Yale School of Medicine, New Haven, Connecticut
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, Chicago, Illinois
| | - Shannon Whirledge
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
- Correspondence and Reprint Requests: Shannon Whirledge, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, 310 Cedar St, Office LSOG 204C, New Haven, CT, 06510. E-mail:
| |
Collapse
|
33
|
Introduction of Somatic Mutation in MED12 Induces Wnt4/β-Catenin and Disrupts Autophagy in Human Uterine Myometrial Cell. Reprod Sci 2020; 27:823-832. [PMID: 32046450 DOI: 10.1007/s43032-019-00084-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/26/2019] [Indexed: 12/11/2022]
Abstract
Uterine fibroids (UFs) or leiomyoma are frequently associated with somatic mutations in the mediator complex subunit 12 (MED12) gene; however, the function of these mutations in human UF biology is yet to be determined. Herein, we determined the functional role of the most common MED12 somatic mutation in the modulation of oncogenic Wnt4/β-catenin and mammalian target of rapamycin (mTOR) signaling pathways. Using an immortalized human uterine myometrial smooth muscle cell line (UtSM), we constitutively overexpressed either MED12-Wild Type or the most common MED12 somatic mutation (c.131G>A), and the effects of this MED12 mutation were compared between these cell lines. This immortalized cell line was used as a model because it expresses wild type MED12 protein and do not possess MED12 somatic mutations. By comparing the effect between MED12-WT and MED12-mutant (mut) stable cell populations, we observed increased levels of protein expression of Wnt4 and β-catenin in MED12-mut cells as compared with MED12-WT cells. MED12-mut cells also expressed increased levels of mTOR protein and oncogenic cyclin D1 which are hallmarks of cell growth and tumorigenicity. This somatic mutation in MED12 showed an effect on cell-cycle progression by induction of S-phase cells. MED12-mut cells also showed inhibition of autophagy as compared with MED12-WT cells. Together, these findings indicate that the MED12 somatic mutation has the potentials for myometrial cell transformation by dysregulating oncogenic Wnt4/β-catenin and its downstream mTOR signaling which might be associated with autophagy abrogation, cell proliferation, and tumorigenicity.
Collapse
|
34
|
George JW, Fan H, Johnson B, Carpenter TJ, Foy KK, Chatterjee A, Patterson AL, Koeman J, Adams M, Madaj ZB, Chesla D, Marsh EE, Triche TJ, Shen H, Teixeira JM. Integrated Epigenome, Exome, and Transcriptome Analyses Reveal Molecular Subtypes and Homeotic Transformation in Uterine Fibroids. Cell Rep 2019; 29:4069-4085.e6. [PMID: 31851934 PMCID: PMC6956710 DOI: 10.1016/j.celrep.2019.11.077] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 09/20/2019] [Accepted: 11/19/2019] [Indexed: 11/29/2022] Open
Abstract
Uterine fibroids are benign myometrial smooth muscle tumors of unknown etiology that, when symptomatic, are the most common indication for hysterectomy in the United States. Unsupervised clustering of results from DNA methylation analyses segregates normal myometrium from fibroids and further segregates the fibroids into subtypes characterized by MED12 mutation or activation of either HMGA2 or HMGA1 expression. Upregulation of HMGA2 expression does not always appear to be dependent on translocation but is associated with hypomethylation in the HMGA2 gene body. HOXA13 expression is upregulated in fibroids and correlates with expression of typical uterine fibroid genes. Significant overlap of differentially expressed genes is observed between cervical stroma and uterine fibroids compared with normal myometrium. These analyses show a possible role of DNA methylation in fibroid biology and suggest that homeotic transformation of myometrial cells to a more cervical stroma phenotype could be an important mechanism for etiology of the disease.
Collapse
Affiliation(s)
- Jitu Wilson George
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Huihui Fan
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Benjamin Johnson
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Tyler James Carpenter
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | | | - Anindita Chatterjee
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Amanda Lynn Patterson
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA; Division of Animal Sciences, Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Julie Koeman
- Genomics Core, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Marie Adams
- Genomics Core, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Zachary Brian Madaj
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, MI, USA
| | - David Chesla
- Spectrum Health Universal Biorepository, Spectrum Health System, Grand Rapids, MI, USA
| | - Erica Elizabeth Marsh
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Hui Shen
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA.
| | - Jose Manuel Teixeira
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA.
| |
Collapse
|
35
|
Hyuga S, Danielsson J, Vink J, Fu XW, Wapner R, Gallos G. Functional comparison of anoctamin 1 antagonists on human uterine smooth muscle contractility and excitability. J Smooth Muscle Res 2019; 54:28-42. [PMID: 29937453 PMCID: PMC6013749 DOI: 10.1540/jsmr.54.28] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: Pre-term birth is a major health care challenge
throughout the world, and preterm labor represents a potentially reversible
component of this problem. Current tocolytics do not improve preterm labor
beyond 48 h. We have previously shown that anoctamin 1 (ANO1) channel blockade
results in relaxation of pre-contracted human uterine smooth muscle (USM). Three
drug classes with reported medicinal effects in humans also have members with
ANO1 antagonism. In this study, we compared the ability of representatives from
these 3 classes to reduce human USM contractility and excitability.
Objective: This study sought to examine the comparative potency
of 3 ANO1 antagonists on pregnant human USM relaxation, contraction frequency
reduction, inhibition of intracellular calcium release and membrane
hyperpolarization. Methods: Experiments were performed using: 1)
Ex vivo organ bath (human pregnant tissue), 2)
Oxytocin-induced calcium flux (in vitro human USM cells) and 3)
Membrane potential assay (in vitro human USM cells).
Results: Benzbromarone (BB) demonstrated the greatest potency
among the compounds tested with respect to force, frequency inhibition, reducing
calcium elevation and depolarizing membrane potential. Conclusion:
While all 3 ANO1 antagonists attenuate pregnant human uterine tissue
contractility and excitability, BB is the most potent tocolytic drug. Our
findings may serve as a foundation for future structure-function analyses for
novel tocolytic drug development.
Collapse
Affiliation(s)
- Shunsuke Hyuga
- Department of Anesthesiology, Columbia University College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
| | - Jennifer Danielsson
- Department of Anesthesiology, Columbia University College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
| | - Joy Vink
- Department of Obstetrics & Gynecology, Columbia University College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
| | - Xiao Wen Fu
- Department of Anesthesiology, Columbia University College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
| | - Ronald Wapner
- Department of Obstetrics & Gynecology, Columbia University College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
| | - George Gallos
- Department of Anesthesiology, Columbia University College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
| |
Collapse
|
36
|
A nongenomic mechanism for "metalloestrogenic" effects of cadmium in human uterine leiomyoma cells through G protein-coupled estrogen receptor. Arch Toxicol 2019; 93:2773-2785. [PMID: 31468104 DOI: 10.1007/s00204-019-02544-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/14/2019] [Indexed: 12/25/2022]
Abstract
Cadmium (Cd) is a ubiquitous environmental metal that is reported to be a "metalloestrogen." Uterine leiomyomas (fibroids) are estrogen-responsive gynecologic neoplasms that can be the target of xenoestrogens. Previous epidemiology studies have suggested Cd may be associated with fibroids. We have shown that Cd can stimulate proliferation of human uterine leiomyoma (ht-UtLM) cells, but not through classical estrogen receptor (ER) binding. Whether nongenomic ER pathways are involved in Cd-induced proliferation is unknown. In the present study, by evaluating G protein-coupled estrogen receptor (GPER), ERα36, and phospho-epidermal growth factor receptor (EGFR) expression in human tissues, we found that GPER, ERα36 and phospho-EGFR were all highly expressed in fibroids compared to patient-matched myometrial tissues. In ht-UtLM cells, cell proliferation was increased by low doses of Cd (0.1 µM and 10 µM), and this effect could be inhibited by GPER-specific antagonist (G15) pretreatment, or silencing (si) GPER, but not by siERα36. Cd-activated MAPK was dependent on GPER/EGFR transactivation, through significantly increased phospho-Src, matrix metalloproteinase-2 (MMP2) and MMP9, and heparin-binding EGF-like growth factor (HB-EGF) expression/activation. Also, phospho-Src could interact directly to phosphorylate EGFR. Overall, Cd-induced proliferation of human fibroid cells was through a nongenomic GPER/p-src/EGFR/MAPK signaling pathway that did not directly involve ERα36. This suggests that Cd may be a risk factor for uterine fibroids through cross talk between hormone and growth factor receptor pathways.
Collapse
|
37
|
Cao T, Jiang Y, Wang Z, Zhang N, Al-Hendy A, Mamillapalli R, Kallen AN, Kodaman P, Taylor HS, Li D, Huang Y. H19 lncRNA identified as a master regulator of genes that drive uterine leiomyomas. Oncogene 2019; 38:5356-5366. [PMID: 31089260 PMCID: PMC6755985 DOI: 10.1038/s41388-019-0808-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/11/2019] [Accepted: 03/19/2019] [Indexed: 12/17/2022]
Abstract
Uterine leiomyomas or fibroids (UFs) are benign tumors characterized by hyperplastic smooth muscle cells and excessive deposition of extracellular matrix (ECM). Afflicting ~80% of women, and symptomatic in 25%, UFs bring tremendous suffering and are an economic burden worldwide; they cause severe pain and bleeding, and are the leading cause of hysterectomy. Yet, UFs are severely understudied with few effective treatment options available; those that are available frequently have significant side effects such as menopausal symptoms. Recently, integrated genome-scale studies have revealed mutations and fibroid subtype-specific expression changes in key driver genes, with MED12 and HMGA2 together contributing to nearly 90% of all UFs, but their regulation of expression is poorly characterized. Here we report that the expression of H19 long noncoding RNA (lncRNA) is aberrantly increased in UFs. Using cell culture and genome-wide transcriptome and methylation profiling analyses, we demonstrate that H19 promotes expression of MED12, HMGA2, and key ECM-remodeling genes via multiple mechanisms including a new class of epigenetic modification by TET3. Our results mark the first example of an evolutionarily conserved lncRNA in pathogenesis of UFs and regulation of TET expression. Given the link between a H19 single-nucleotide polymorphism (SNP) and increased risk and tumor size of UFs, and the existence of multiple fibroid subtypes driven by key pathway genes regulated by H19, we propose a unifying mechanism for pathogenesis of uterine fibroids mediated by H19 and identify a pathway for future exploration of novel target therapies for uterine leiomyomas.
Collapse
Affiliation(s)
- Tiefeng Cao
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA
- Department of Gynecology and Obstetrics, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510070, China
| | - Ying Jiang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Zhangsheng Wang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA
- Department of Cardiology, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Na Zhang
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Amanda N Kallen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Pinar Kodaman
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, 110004, China.
| | - Yingqun Huang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
38
|
Yu L, Das P, Vall AJ, Yan Y, Gao X, Sifre MI, Bortner CD, Castro L, Kissling GE, Moore AB, Dixon D. Bisphenol A induces human uterine leiomyoma cell proliferation through membrane-associated ERα36 via nongenomic signaling pathways. Mol Cell Endocrinol 2019; 484:59-68. [PMID: 30615907 PMCID: PMC6450385 DOI: 10.1016/j.mce.2019.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 11/17/2022]
Abstract
The role of ERα36 in regulating BPA's effects and its potential as a risk factor for human uterine fibroids were evaluated. BPA at low concentrations (10-6 μM - 10 μM) increased proliferation by facilitating progression of hormonally regulated, immortalized human uterine leiomyoma (ht-UtLM; fibroid) cells from G0-G1 into S phase of the cell cycle; whereas, higher concentrations (100 μM-200 μM) decreased growth. BPA upregulated ERα36 gene and protein expression, and induced increased SOS1 and Grb2 protein expression, both of which are mediators of the MAPKp44/42/ERK1/2 pathway. EGFR (pEGFR), Ras, and MAPKp44/42 were phosphorylated with concurrent Src activation in ht-UtLM cells within 10 min of BPA exposure. BPA enhanced colocalization of phosphorylated Src (pSrc) to ERα36 and coimmunoprecipitation of pSrc with pEGFR. Silencing ERα36 with siERα36 abolished the above effects. BPA induced proliferation in ht-UtLM cells through membrane-associated ERα36 with activation of Src, EGFR, Ras, and MAPK nongenomic signaling pathways.
Collapse
Affiliation(s)
- Linda Yu
- Molecular Pathogenesis Group, National Toxicology Program Laboratory (NTPL), Division of the NTP (DNTP), Research Triangle Park, NC, 27709, USA
| | - Parikshit Das
- Molecular Pathogenesis Group, National Toxicology Program Laboratory (NTPL), Division of the NTP (DNTP), Research Triangle Park, NC, 27709, USA
| | - Alejandra J Vall
- Molecular Pathogenesis Group, National Toxicology Program Laboratory (NTPL), Division of the NTP (DNTP), Research Triangle Park, NC, 27709, USA
| | - Yitang Yan
- Molecular Pathogenesis Group, National Toxicology Program Laboratory (NTPL), Division of the NTP (DNTP), Research Triangle Park, NC, 27709, USA
| | - Xioahua Gao
- Molecular Pathogenesis Group, National Toxicology Program Laboratory (NTPL), Division of the NTP (DNTP), Research Triangle Park, NC, 27709, USA
| | - Maria I Sifre
- Flow Cytometry Center, Signal Transduction Laboratory, Research Triangle Park, NC, 27709, USA
| | - Carl D Bortner
- Flow Cytometry Center, Signal Transduction Laboratory, Research Triangle Park, NC, 27709, USA
| | - Lysandra Castro
- Molecular Pathogenesis Group, National Toxicology Program Laboratory (NTPL), Division of the NTP (DNTP), Research Triangle Park, NC, 27709, USA
| | - Grace E Kissling
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (HHS), Research Triangle Park, NC, 27709, USA
| | - Alicia B Moore
- Molecular Pathogenesis Group, National Toxicology Program Laboratory (NTPL), Division of the NTP (DNTP), Research Triangle Park, NC, 27709, USA
| | - Darlene Dixon
- Molecular Pathogenesis Group, National Toxicology Program Laboratory (NTPL), Division of the NTP (DNTP), Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
39
|
Activin A induces leiomyoma cell proliferation, extracellular matrix (ECM) accumulation and myofibroblastic transformation of myometrial cells via p38 MAPK. Biochem Biophys Res Commun 2018; 504:447-453. [DOI: 10.1016/j.bbrc.2018.08.171] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 08/27/2018] [Indexed: 02/06/2023]
|
40
|
Development and Characterisation of a Human Chronic Skin Wound Cell Line-Towards an Alternative for Animal Experimentation. Int J Mol Sci 2018; 19:ijms19041001. [PMID: 29584680 PMCID: PMC5979489 DOI: 10.3390/ijms19041001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 12/30/2022] Open
Abstract
Background: Chronic skin wounds are a growing financial burden for healthcare providers, causing discomfort/immobility to patients. Whilst animal chronic wound models have been developed to allow for mechanistic studies and to develop/test potential therapies, such systems are not good representations of the human chronic wound state. As an alternative, human chronic wound fibroblasts (CWFs) have permitted an insight into the dysfunctional cellular mechanisms that are associated with these wounds. However, such cells strains have a limited replicative lifespan and therefore a limited reproducibility/usefulness. Objectives: To develop/characterise immortalised cell lines of CWF and patient-matched normal fibroblasts (NFs). Methods and Results: Immortalisation with human telomerase resulted in both CWF and NF proliferating well beyond their replicative senescence end-point (respective cell strains senesced as normal). Gene expression analysis demonstrated that, whilst proliferation-associated genes were up-regulated in the cell lines (as would be expected), the immortalisation process did not significantly affect the disease-specific genotype. Immortalised CWF (as compared to NF) also retained a distinct impairment in their wound repopulation potential (in line with CWF cell strains). Conclusions: These novel CWF cell lines are a credible animal alternative and could be a valuable research tool for understanding both the aetiology of chronic skin wounds and for therapeutic pre-screening.
Collapse
|
41
|
Danielsson J, Vink J, Hyuga S, Fu XW, Funayama H, Wapner R, Blanks AM, Gallos G. Anoctamin Channels in Human Myometrium: A Novel Target for Tocolysis. Reprod Sci 2018; 25:1589-1600. [PMID: 29471754 DOI: 10.1177/1933719118757683] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Spontaneous preterm labor leading to preterm birth is a significant obstetric problem leading to neonatal morbidity and mortality. Current tocolytics are not completely effective and novel targets may afford a therapeutic benefit. OBJECTIVE To determine whether the anoctamin (ANO) family, including the calcium-activated chloride channel ANO1, is present in pregnant human uterine smooth muscle (USM) and whether pharmacological and genetic modulation of ANO1 modulates USM contraction. METHODS Reverse transcription-polymerase chain reaction (RT-PCR), quantitative RT-PCR, and immunohistochemical staining were done to determine which members of the ANO family are expressed in human USM. Uterine smooth muscle strips were studied in an organ bath to determine whether ANO1 antagonists inhibit oxytocin-induced USM contractions. Anoctamin 1 small interfering RNA (siRNA) knockdown was performed to determine its effect on filamentous-/globular (F/G)-actin ratio, a measurement of actin polymerization's role in promoting smooth muscle contraction. RESULTS Messenger RNA (mRNA) encoding all members of the ANO family (except ANO7) are expressed in pregnant USM tissue. Anoctamin 1 mRNA expression was decreased 15.2-fold in pregnant USM compared to nonpregnant. Anoctamin 1 protein is expressed in pregnant human USM tissue. Functional organ bath studies with pregnant human USM tissue demonstrated that the ANO1 antagonist benzbromarone attenuates the force and frequency of oxytocin-induced contractions. In human USM cells, siRNA knockdown of ANO1 decreases F-/G-actin ratios. CONCLUSION Multiple members of the ANO family, including the calcium-activated chloride channel ANO1, are expressed in human USM. Antagonism of ANO1 by pharmacological inhibition and genetic knockdown leads to an attenuation of contraction in pregnant human USM. Anoctamin 1 is a potentially novel target for tocolysis.
Collapse
Affiliation(s)
- Jennifer Danielsson
- 1 Department of Anesthesiology, Columbia University Medical Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Joy Vink
- 2 Department of Obstetrics and Gynecology, Columbia University Medical Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Shunsuke Hyuga
- 1 Department of Anesthesiology, Columbia University Medical Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Xiao Wen Fu
- 1 Department of Anesthesiology, Columbia University Medical Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Hiromi Funayama
- 3 Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Ronald Wapner
- 2 Department of Obstetrics and Gynecology, Columbia University Medical Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Andrew M Blanks
- 4 Cell and Developmental Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - George Gallos
- 1 Department of Anesthesiology, Columbia University Medical Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
42
|
Yan Y, Yu L, Castro L, Dixon D. ERα36, a variant of estrogen receptor α, is predominantly localized in mitochondria of human uterine smooth muscle and leiomyoma cells. PLoS One 2017; 12:e0186078. [PMID: 29020039 PMCID: PMC5636123 DOI: 10.1371/journal.pone.0186078] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 09/25/2017] [Indexed: 01/22/2023] Open
Abstract
ERα36 is a naturally occurring, membrane-associated, isoform of estrogen receptor α. The expression of ERα36 is due to alternative splicing and different promoter usage. ERα36 is a dominant-negative effector of ERα66-mediated transactivational activities and has the potential to trigger membrane-initiated mitogenic, nongenomic, estrogen signaling; however, the subcellular localization of ERα36 remains controversial. To determine the cellular localization of ERα36 in estrogen-responsive human uterine smooth muscle (ht-UtSMC) and leiomyoma (fibroid; ht-UtLM) cells, we conducted systematic confocal microscopy and subcellular fractionation analysis using ERα36 antibodies. With Image J colocalizaton analysis plugin, confocal images were analyzed to obtain a Pearson’s Correlation Coefficient (PCC) to quantify signal colocalization of ERα36 with mitochondrial, endoplasmic reticulum, and cytoskeletal components in both cell lines. When cells were double-stained with an ERα36 antibody and a mitochondrial-specific dye, MitoTracker, the PCC for the two channel signals were both greater than 0.75, indicating strong correlation between ERα36 and mitochondrial signals in the two cell lines. A blocking peptide competition assay confirmed that the mitochondria-associated ERα36 signal detected by confocal analysis was specific for ERα36. In contrast, confocal images double-stained with an ERα36 antibody and endoplasmic reticulum or cytoskeletal markers, had PCCs that were all less than 0.4, indicating no or very weak signal correlation. Fractionation studies showed that ERα36 existed predominantly in membrane fractions, with minimal or undetected amounts in the cytosol, nuclear, chromatin, and cytoskeletal fractions. With isolated mitochondrial preparations, we confirmed that a known mitochondrial protein, prohibitin, was present in mitochondria, and by co-immunoprecipitation analysis that ERα36 was associated with prohibitin in ht-UtLM cells. The distinctive colocalization pattern of ERα36 with mitochondria in ht-UtSMC and ht-UtLM cells, and the association of ERα36 with a mitochondrial-specific protein suggest that ERα36 is localized primarily in mitochondria and may play a pivotal role in non-genomic signaling and mitochondrial functions.
Collapse
Affiliation(s)
- Yitang Yan
- Molecular Pathogenesis Group, National Toxicology Program Laboratory (NTPL), National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, North Carolina, United States of America
| | - Linda Yu
- Molecular Pathogenesis Group, National Toxicology Program Laboratory (NTPL), National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, North Carolina, United States of America
| | - Lysandra Castro
- Molecular Pathogenesis Group, National Toxicology Program Laboratory (NTPL), National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, North Carolina, United States of America
| | - Darlene Dixon
- Molecular Pathogenesis Group, National Toxicology Program Laboratory (NTPL), National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
43
|
Fletcher NM, Abusamaan MS, Memaj I, Saed MG, Al-Hendy A, Diamond MP, Saed GM. Oxidative stress: a key regulator of leiomyoma cell survival. Fertil Steril 2017; 107:1387-1394.e1. [PMID: 28483502 DOI: 10.1016/j.fertnstert.2017.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/10/2017] [Accepted: 04/19/2017] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To determine the effects of attenuating oxidative stress with the use of dichloroacetate (DCA) on the expression of key redox enzymes myeloperoxidase (MPO) and inducible nitric oxide synthase (iNOS) as well as on apoptosis. DESIGN Prospective experimental study. SETTING University medical center. PATIENT(S) Cells established from myometrium and uterine fibroid from the same patients. INTERVENTION(S) Cells were exposed to normal (20% O2) or hypoxic (2% O2) conditions for 24 hours with or without DCA (20 μg/mL), a metabolic modulator that shifts anaerobic to aerobic metabolism. MAIN OUTCOME MEASURE(S) Nitrate/nitrite (iNOS activity indicator), iNOS, Bcl-2/Bax ratio, MPO, and caspase-3 activities and levels were determined by means of Greiss assay, real-time reverse-transcription polymerase chain reaction, and ELISA. Data were analyzed with the use of SPSS by means of one-way analysis of variance with Tukey post hoc analysis and independent t tests. RESULT(S) MPO, iNOS, and nitrate/nitrite expression were higher in leiomyoma than in myometrial cells, and they were further enhanced by hypoxia in myometrial cells. Treatment with the use of DCA decreased MPO, iNOS, and nitrate/nitrite levels and negated the effect of hypoxia in both types of cells. Leiomyoma cells showed less apoptosis, as indicated by both caspase-3 activity and the Bcl-2/Bax ratio, than myometrial cells. Hypoxia further decreased apoptosis in myometrial cells with no further effect on leiomyoma cells. Treatment with DCA resulted in increased apoptosis in both types of cells, even in the presence of hypoxia. CONCLUSION(S) Shifting anaerobic to aerobic metabolism with the use of DCA resulted in an increase in apoptosis in leiomyoma cells and protected myometrial cells from the acquisition of the leiomyoma-like phenotype.
Collapse
Affiliation(s)
- Nicole M Fletcher
- Department of Obstetrics and Gynecology, C. S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan
| | - Mohammed S Abusamaan
- Department of Obstetrics and Gynecology, C. S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan
| | - Ira Memaj
- Department of Obstetrics and Gynecology, C. S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan
| | - Mohammed G Saed
- Department of Obstetrics and Gynecology, C. S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, Augusta University, Augusta, Georgia
| | - Michael P Diamond
- Department of Obstetrics and Gynecology, Augusta University, Augusta, Georgia
| | - Ghassan M Saed
- Department of Obstetrics and Gynecology, C. S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan.
| |
Collapse
|
44
|
Gueye NA, Mead TJ, Koch CD, Biscotti CV, Falcone T, Apte SS. Versican Proteolysis by ADAMTS Proteases and Its Influence on Sex Steroid Receptor Expression in Uterine Leiomyoma. J Clin Endocrinol Metab 2017; 102:1631-1641. [PMID: 28323982 PMCID: PMC5443325 DOI: 10.1210/jc.2016-3527] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/01/2017] [Indexed: 11/19/2022]
Abstract
CONTEXT Leiomyomas have abundant extracellular matrix (ECM), with upregulation of versican, a large proteoglycan. OBJECTIVE We investigated ADAMTS (a disintegrin-like and metalloprotease with thrombospondin type 1 motifs) protease-mediated versican cleavage in myometrium and leiomyoma and the effect of versican knockdown in leiomyoma cells. DESIGN We used quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blotting, immunohistochemistry, and RNA in situ hybridization for analysis of myometrium, leiomyoma and immortalized myometrium and leiomyoma cells. Short interfering RNA (siRNA) was used to knockdown versican in leiomyoma cells. SETTING This study was performed in an academic laboratory. PATIENTS Study subjects were women with symptomatic or asymptomatic leiomyoma. MAIN OUTCOME MEASURES We quantified messenger RNAs (mRNAs) for versican splice variants. We identified ADAMTS-cleaved versican in myometrium and leiomyoma and ADAMTS messenger RNAs and examined the effect of VCAN siRNA on smooth muscle differentiation and expression of estrogen and progesterone receptors. RESULTS The women in the symptomatic group (n = 7) had larger leiomyoma (P = 0.01), heavy menstrual bleeding (P < 0.01), and lower hemoglobin levels (P = 0.02) compared with the asymptomatic group (n = 7), but were similar in age and menopausal status. Versican V0 and V1 isoforms were upregulated in the leiomyomas of symptomatic versus asymptomatic women (P = 0.03 and P = 0.04, respectively). Abundant cleaved versican was detected in leiomyoma and myometrium, as well as in myometrial and leiomyoma cell lines. ADAMTS4 (P = 0.03) and ADAMTS15 (P = 0.04) were upregulated in symptomatic leiomyomas. VCAN siRNA did not effect cell proliferation, apoptosis, or smooth muscle markers, but reduced ESR1 and PR-A expression (P = 0.001 and P = 0.002, respectively). CONCLUSIONS Versican in myometrium, leiomyomas and in the corresponding immortalized cells is cleaved by ADAMTS proteases. VCAN siRNA suppresses production of estrogen receptor 1 and progesterone receptor-A. These findings have implications for leiomyoma growth.
Collapse
Affiliation(s)
- Ndeye-Aicha Gueye
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
- Department of Obstetrics and Gynecology and Women’s Health Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Timothy J. Mead
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Christopher D. Koch
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
- Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115
| | | | - Tommaso Falcone
- Department of Obstetrics and Gynecology and Women’s Health Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Suneel S. Apte
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
45
|
Al-Hendy A, Laknaur A, Diamond MP, Ismail N, Boyer TG, Halder SK. Silencing Med12 Gene Reduces Proliferation of Human Leiomyoma Cells Mediated via Wnt/β-Catenin Signaling Pathway. Endocrinology 2017; 158:592-603. [PMID: 27967206 PMCID: PMC5460776 DOI: 10.1210/en.2016-1097] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 12/08/2016] [Indexed: 12/28/2022]
Abstract
Uterine fibroids, or leiomyoma, are the most common benign tumors in women of reproductive age. In this work, the effect of silencing the mediator complex subunit 12 (Med12) gene in human uterine fibroid cells was evaluated. The role of Med12 in the modulation of Wnt/β-catenin and cell proliferation-associated signaling was evaluated in human uterine fibroid cells. Med12 was silenced in the immortalized human uterine fibroid cell line (HuLM) using a lentivirus-based Med12 gene-specific RNA interference strategy. HuLM cells were infected with lentiviruses carrying Med12-specific short hairpin RNA (shRNA) sequences or a nonfunctional shRNA scrambled control with green fluorescence protein. Stable cells that expressed low levels of Med12 protein were characterized. Wnt/β-catenin signaling, sex steroid receptor signaling, cell cycle-associated, and fibrosis-associated proteins were measured. Med12 knockdown cells showed significantly (P < 0.05) reduced levels of Wnt4 and β-catenin proteins as well as cell proliferation, as compared with scrambled control cells. Med12 knockdown cells also showed reduced levels of cell cycle-associated cyclin D1, Cdk1, and Cdk2 proteins as well as reduced activation of p-extracellular signal-regulated kinase, p-protein kinase B, and transforming growth factor (TGF)-β signaling pathways as compared with scrambled control cells. Moreover, TGF-β-regulated fibrosis-related proteins such as fibronectin, collagen type 1, and plasminogen activator inhibitor-1 were significantly (P < 0.05) reduced in Med12 knockdown cells as compared with scrambled control cells. Together, these results suggest that Med12 plays a key role in the regulation of HuLM cell proliferation through the modulation of Wnt/β-catenin, cell cycle-associated, and fibrosis-associated protein expression.
Collapse
Affiliation(s)
- Ayman Al-Hendy
- Department of Obstetrics and Gynecology, Augusta University, Medical College of Georgia, Augusta, Georgia 30912;
| | - Archana Laknaur
- Department of Obstetrics and Gynecology, Augusta University, Medical College of Georgia, Augusta, Georgia 30912;
| | - Michael P. Diamond
- Department of Obstetrics and Gynecology, Augusta University, Medical College of Georgia, Augusta, Georgia 30912;
| | - Nahed Ismail
- Clinical Microbiology Division, University of Pittsburgh, Pittsburgh, Pennsylvania 15261; and
| | - Thomas G. Boyer
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Sunil K. Halder
- Department of Obstetrics and Gynecology, Augusta University, Medical College of Georgia, Augusta, Georgia 30912;
| |
Collapse
|
46
|
Chuang TY, Min J, Wu HL, McCrary C, Layman LC, Diamond MP, Azziz R, Al-Hendy A, Chen YH. Berberine Inhibits Uterine Leiomyoma Cell Proliferation via Downregulation of Cyclooxygenase 2 and Pituitary Tumor-Transforming Gene 1. Reprod Sci 2016; 24:1005-1013. [DOI: 10.1177/1933719116675055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Tung-Yueh Chuang
- Department of Obstetrics/Gynecology, Augusta University, Augusta, GA, USA
| | - Jie Min
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hsiao-Li Wu
- Department of Obstetrics/Gynecology, Augusta University, Augusta, GA, USA
| | - Cristina McCrary
- Department of Obstetrics/Gynecology, Augusta University, Augusta, GA, USA
| | - Lawrence C. Layman
- Department of Obstetrics/Gynecology, Augusta University, Augusta, GA, USA
| | - Michael P. Diamond
- Department of Obstetrics/Gynecology, Augusta University, Augusta, GA, USA
| | - Ricardo Azziz
- Department of Obstetrics/Gynecology, Augusta University, Augusta, GA, USA
| | - Ayman Al-Hendy
- Department of Obstetrics/Gynecology, Augusta University, Augusta, GA, USA
| | - Yen-Hao Chen
- Department of Obstetrics/Gynecology, Augusta University, Augusta, GA, USA
| |
Collapse
|
47
|
Yu L, Ham K, Gao X, Castro L, Yan Y, Kissling GE, Tucker CJ, Flagler N, Dong R, Archer TK, Dixon D. Epigenetic regulation of transcription factor promoter regions by low-dose genistein through mitogen-activated protein kinase and mitogen-and-stress activated kinase 1 nongenomic signaling. Cell Commun Signal 2016; 14:18. [PMID: 27582276 PMCID: PMC5007815 DOI: 10.1186/s12964-016-0141-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/17/2016] [Indexed: 02/06/2023] Open
Abstract
Background The phytoestrogen, genistein at low doses nongenomically activates mitogen-activated protein kinase p44/42 (MAPKp44/42) via estrogen receptor alpha (ERα) leading to proliferation of human uterine leiomyoma cells. In this study, we evaluated if MAPKp44/42 could activate downstream effectors such as mitogen- and stress-activated protein kinase 1 (MSK1), which could then epigenetically modify histone H3 by phosphorylation following a low dose (1 μg/ml) of genistein. Results Using hormone-responsive immortalized human uterine leiomyoma (ht-UtLM) cells, we found that genistein activated MAPKp44/42 and MSK1, and also increased phosphorylation of histone H3 at serine10 (H3S10ph) in ht-UtLM cells. Colocalization of phosphorylated MSK1 and H3S10ph was evident by confocal microscopy in ht-UtLM cells (r = 0.8533). Phosphorylation of both MSK1and H3S10ph was abrogated by PD98059 (PD), a MEK1 kinase inhibitor, thereby supporting genistein’s activation of MSK1 and Histone H3 was downstream of MAPKp44/42. In proliferative (estrogenic) phase human uterine fibroid tissues, phosphorylated MSK1 and H3S10ph showed increased immunoexpression compared to normal myometrial tissues, similar to results observed in in vitro studies following low-dose genistein administration. Real-time RT-PCR arrays showed induction of growth-related transcription factor genes, EGR1, Elk1, ID1, and MYB (cMyb) with confirmation by western blot, downstream of MAPK in response to low-dose genistein in ht-UtLM cells. Additionally, genistein induced associations of promoter regions of the above transcription factors with H3S10ph as evidenced by Chromatin Immunoprecipitation (ChIP) assays, which were inhibited by PD. Therefore, genistein epigenetically modified histone H3 by phosphorylation of serine 10, which was regulated by MSK1 and MAPK activation. Conclusion Histone H3 phosphorylation possibly represents a mechanism whereby increased transcriptional activation occurs following low-dose genistein exposure. Electronic supplementary material The online version of this article (doi:10.1186/s12964-016-0141-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Linda Yu
- Molecular Pathogenesis Group, National Toxicology Program (NTP) Laboratory, Division of the NTP (DNTP), National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), U.S. Department of Health and Human Services (HHS), Research Triangle Park, North Carolina, 27709, USA
| | - Kyle Ham
- Molecular Pathogenesis Group, National Toxicology Program (NTP) Laboratory, Division of the NTP (DNTP), National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), U.S. Department of Health and Human Services (HHS), Research Triangle Park, North Carolina, 27709, USA
| | - Xiaohua Gao
- Molecular Pathogenesis Group, National Toxicology Program (NTP) Laboratory, Division of the NTP (DNTP), National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), U.S. Department of Health and Human Services (HHS), Research Triangle Park, North Carolina, 27709, USA
| | - Lysandra Castro
- Molecular Pathogenesis Group, National Toxicology Program (NTP) Laboratory, Division of the NTP (DNTP), National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), U.S. Department of Health and Human Services (HHS), Research Triangle Park, North Carolina, 27709, USA
| | - Yitang Yan
- Molecular Pathogenesis Group, National Toxicology Program (NTP) Laboratory, Division of the NTP (DNTP), National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), U.S. Department of Health and Human Services (HHS), Research Triangle Park, North Carolina, 27709, USA
| | - Grace E Kissling
- Biostatistics and Computational Biology Branch, Division of Intramural Research (DIR), NIEHS, NIH, HHS, Research Triangle Park, North Carolina, 27709, USA
| | - Charles J Tucker
- Signal Transduction Laboratory, DIR, NIEHS, NIH, HHS, Research Triangle Park, North Carolina, 27709, USA
| | - Norris Flagler
- Cellular and Molecular Pathology Branch, DNTP, NIEHS, NIH, HHS, Research Triangle Park, North Carolina, 27709, USA
| | - Ray Dong
- Molecular Pathogenesis Group, National Toxicology Program (NTP) Laboratory, Division of the NTP (DNTP), National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), U.S. Department of Health and Human Services (HHS), Research Triangle Park, North Carolina, 27709, USA
| | - Trevor K Archer
- Chromatin and Gene Expression Group, Epigenetics and Stem Cell Biology Laboratory, DIR, NIEHS, NIH, HHS, Research Triangle Park, North Carolina, 27709, USA
| | - Darlene Dixon
- Molecular Pathogenesis Group, National Toxicology Program (NTP) Laboratory, Division of the NTP (DNTP), National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), U.S. Department of Health and Human Services (HHS), Research Triangle Park, North Carolina, 27709, USA.
| |
Collapse
|
48
|
Al-Hendy A, Diamond MP, Boyer TG, Halder SK. Vitamin D3 Inhibits Wnt/β-Catenin and mTOR Signaling Pathways in Human Uterine Fibroid Cells. J Clin Endocrinol Metab 2016; 101:1542-51. [PMID: 26820714 PMCID: PMC4880168 DOI: 10.1210/jc.2015-3555] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CONTEXT Somatic mutations in the Med12 gene are known to activate Wnt/β-catenin signaling in human uterine fibroids (UFs). OBJECTIVE The objective of the study was to examine the role of vitamin D3 in the modulation of Wnt/β-catenin and mammalian target of rapamycin (mTOR) signaling in human UF cells. DESIGN Immortalized human UF cells (HuLM) and human primary UF (PUF) cells were treated with increasing concentrations of vitamin D3 and thereafter analyzed using Western blots and immunocytochemistry. MAIN OUTCOME MEASURES Wnt/β-catenin and mTOR signaling proteins in cultured HuLM and PUF cells were measured. RESULTS UF tumors with Med12 somatic mutations showed an up-regulation of Wnt4 and β-catenin as compared with adjacent myometrium. Vitamin D3 administration reduced the levels of Wnt4 and β-catenin in both HuLM and PUF cells. Vitamin D3 also reduced the expression/activation of mTOR signaling in both cell types. In contrast, vitamin D3 induced the expression of DNA damaged-induced transcription 4 (an inhibitor of mTOR) and tuberous sclerosis genes (TSC1/2) in a concentration-dependent manner in HuLM cells. Furthermore, we observed a concentration-dependent reduction of Wisp1 (Wnt induced signaling protein 1) and flap endonuclease 1 proteins in HuLM cells. Additionally, abrogation of vitamin D receptor expression (by silencing) in normal myometrial cells induces Wnt4/β-catenin as well as prompts a fibrotic process including an increase in cell proliferation and increased extracellular matrix production. Together these results suggest that vitamin D3 functions as an inhibitor of Wnt4/β-catenin and mTOR signaling pathways, which may play major roles in fibroid pathogenesis. CONCLUSIONS Vitamin D3 may have utility as a novel long-term therapeutic and/or preventive option for uterine fibroids.
Collapse
Affiliation(s)
- Ayman Al-Hendy
- Department of Obstetrics and Gynecology (A.A.-H., M.P.D., S.K.H.), Georgia Regents University, Medical College of Georgia, Augusta, Georgia 30912; and Department of Molecular Medicine (T.G.R.), Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900
| | - Michael P Diamond
- Department of Obstetrics and Gynecology (A.A.-H., M.P.D., S.K.H.), Georgia Regents University, Medical College of Georgia, Augusta, Georgia 30912; and Department of Molecular Medicine (T.G.R.), Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900
| | - Thomas G Boyer
- Department of Obstetrics and Gynecology (A.A.-H., M.P.D., S.K.H.), Georgia Regents University, Medical College of Georgia, Augusta, Georgia 30912; and Department of Molecular Medicine (T.G.R.), Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900
| | - Sunil K Halder
- Department of Obstetrics and Gynecology (A.A.-H., M.P.D., S.K.H.), Georgia Regents University, Medical College of Georgia, Augusta, Georgia 30912; and Department of Molecular Medicine (T.G.R.), Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900
| |
Collapse
|
49
|
Yang Q, Laknaur A, Elam L, Ismail N, Gavrilova-Jordan L, Lue J, Diamond MP, Al-Hendy A. Identification of Polycomb Group Protein EZH2-Mediated DNA Mismatch Repair Gene MSH2 in Human Uterine Fibroids. Reprod Sci 2016; 23:1314-25. [PMID: 27036951 DOI: 10.1177/1933719116638186] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Uterine fibroids (UFs) are benign smooth muscle neoplasms affecting up to 70% of reproductive age women. Treatment of symptomatic UFs places a significant economic burden on the US health-care system. Several specific genetic abnormalities have been described as etiologic factors of UFs, suggesting that a low DNA damage repair capacity may be involved in the formation of UF. In this study, we used human fibroid and adjacent myometrial tissues, as well as an in vitro cell culture model, to evaluate the expression of MutS homolog 2 (MSH2), which encodes a protein belongs to the mismatch repair system. In addition, we deciphered the mechanism by which polycomb repressive complex 2 protein, EZH2, deregulates MSH2 in UFs. The RNA expression analysis demonstrated the deregulation of MSH2 expression in UF tissues in comparison to its adjacent myometrium. Notably, protein levels of MSH2 were upregulated in 90% of fibroid tissues (9 of 10) as compared to matched adjacent myometrial tissues. Human fibroid primary cells treated with 3-deazaneplanocin A (DZNep), chemical inhibitor of EZH2, exhibited a significant increase in MSH2 expression (P < .05). Overexpression of EZH2 using an adenoviral vector approach significantly downregulated the expression of MSH2 (P < .05). Chromatin immunoprecipitation assay demonstrated that enrichment of H3K27me3 in promoter regions of MSH2 was significantly decreased in DZNep-treated fibroid cells as compared to vehicle control. These data suggest that EZH2-H3K27me3 regulatory mechanism dynamically changes the expression levels of DNA mismatch repair gene MSH2, through epigenetic mark H3K27me3. MSH2 may be considered as a marker for early detection of UFs.
Collapse
Affiliation(s)
- Qiwei Yang
- Division of Translational Research, Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Archana Laknaur
- Division of Translational Research, Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Lelyand Elam
- Division of Translational Research, Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Nahed Ismail
- Clinical Microbiology Division, Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Larisa Gavrilova-Jordan
- Division of Translational Research, Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - John Lue
- Division of Translational Research, Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Michael P Diamond
- Division of Translational Research, Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ayman Al-Hendy
- Division of Translational Research, Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
50
|
Ahmed RSI, Liu G, Renzetti A, Farshi P, Yang H, Soave C, Saed G, El-Ghoneimy AA, El-Banna HA, Foldes R, Chan TH, Dou QP. Biological and Mechanistic Characterization of Novel Prodrugs of Green Tea Polyphenol Epigallocatechin Gallate Analogs in Human Leiomyoma Cell Lines. J Cell Biochem 2016; 117:2357-69. [DOI: 10.1002/jcb.25533] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/03/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Reda Saber Ibrahim Ahmed
- Barbara Ann Karmanos Cancer Institute, and Departments of Oncology, Pharmacology and Pathology, School of Medicine; Wayne State University; Detroit Michigan
- Faculty of Veterinary Medicine, Department of Pharmacology; South Valley University; Qena Egypt
| | - Gang Liu
- Barbara Ann Karmanos Cancer Institute, and Departments of Oncology, Pharmacology and Pathology, School of Medicine; Wayne State University; Detroit Michigan
| | - Andrea Renzetti
- Department of Chemistry; McGill University; Montreal Quebec Canada
| | - Pershang Farshi
- Barbara Ann Karmanos Cancer Institute, and Departments of Oncology, Pharmacology and Pathology, School of Medicine; Wayne State University; Detroit Michigan
| | - Huanjie Yang
- Barbara Ann Karmanos Cancer Institute, and Departments of Oncology, Pharmacology and Pathology, School of Medicine; Wayne State University; Detroit Michigan
| | - Claire Soave
- Barbara Ann Karmanos Cancer Institute, and Departments of Oncology, Pharmacology and Pathology, School of Medicine; Wayne State University; Detroit Michigan
| | - Ghassan Saed
- Departments of Obstetrics & Gynecology and Anatomy & Cell Biology; School of Medicine; Wayne State University; Detroit Michigan
| | | | - Hossny Awad El-Banna
- Faculty of Veterinary Medicine, Department of Pharmacology; Cairo University; Giza Egypt
| | - Robert Foldes
- Viteava Pharmaceuticals Inc.; Toronto Ontario Canada
| | - Tak-Hang Chan
- Department of Chemistry; McGill University; Montreal Quebec Canada
| | - Q. Ping Dou
- Barbara Ann Karmanos Cancer Institute, and Departments of Oncology, Pharmacology and Pathology, School of Medicine; Wayne State University; Detroit Michigan
| |
Collapse
|