1
|
Ding X, Xie S, Zhang W, Zhu Y, Xu D, Xian S, Sun H, Guo X, Li Y, Lu J, Tong X, Huang R, Ji S, Xia Z. Current application of tissue-engineered dermal scaffolds mimicking the extracellular matrix microenvironment in wound healing. Regen Ther 2025; 28:371-382. [PMID: 39896445 PMCID: PMC11786805 DOI: 10.1016/j.reth.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/09/2024] [Accepted: 12/26/2024] [Indexed: 02/04/2025] Open
Abstract
With the continuous advancement of materials science, cell biology, and biotechnology, tissue engineering has introduced novel solutions to traditional wound healing approaches, particularly demonstrating significant potential in addressing complex or non-healing wounds. One of the key technologies in this field, dermal scaffolds, serve as wound coverage materials that mimic the structural framework of the dermis. They primarily assume the function of extracellular matrix, providing space for cell attachment, migration, and proliferation, thus supporting cellular growth and regulating multiple biological processes in healing. Tissue engineering utilizes combinations of natural or synthetic scaffolds, seeded cells, or growth factors to induce distinct effects in angiogenesis, extracellular matrix deposition, and functional recovery. Therefore, various bioengineered dermal scaffolds hold significant potential for clinical translation in wound healing. This review outlines various extracellular matrix molecules utilized in the development of dermal scaffolds, emphasizes recent progress in cell- and growth factor-modified scaffolds, and discusses the challenges and future perspectives in this evolving field.
Collapse
Affiliation(s)
| | | | | | - Yushu Zhu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Dayuan Xu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Shuyuan Xian
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Hanlin Sun
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Xinya Guo
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Yixu Li
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Jianyu Lu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Xirui Tong
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Runzhi Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Shizhao Ji
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| | - Zhaofan Xia
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China
| |
Collapse
|
2
|
Karimzadeh F, Soltani Fard E, Nadi A, Malekzadeh R, Elahian F, Mirzaei SA. Advances in skin gene therapy: utilizing innovative dressing scaffolds for wound healing, a comprehensive review. J Mater Chem B 2024; 12:6033-6062. [PMID: 38887828 DOI: 10.1039/d4tb00966e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The skin, serving as the body's outermost layer, boasts a vast area and intricate structure, functioning as the primary barrier against external threats. Disruptions in the composition and functionality of the skin can lead to a diverse array of skin conditions, such as wounds, burns, and diabetic ulcers, along with inflammatory disorders, infections, and various types of skin cancer. These disorders not only exacerbate concerns regarding skin health and beauty but also have a significant impact on mental well-being. Due to the complexity of these disorders, conventional treatments often prove insufficient, necessitating the exploration of new therapeutic approaches. Researchers develop new therapies by deciphering these intricacies and gaining a thorough understanding of the protein networks and molecular processes in skin. A new window of opportunity has opened up for improving wound healing processes because of recent advancements in skin gene therapy. To enhance skin regeneration and healing, this extensive review investigates the use of novel dressing scaffolds in conjunction with gene therapy approaches. Scaffolds that do double duty as wound protectors and vectors for therapeutic gene delivery are being developed using innovative biomaterials. To improve cellular responses and speed healing, these state-of-the-art scaffolds allow for the targeted delivery and sustained release of genetic material. The most recent developments in gene therapy techniques include RNA interference, CRISPR-based gene editing, and the utilization of viral and non-viral vectors in conjunction with scaffolds, which were reviewed here to overcome skin disorders and wound complications. In the future, there will be rare chances to develop custom methods for skin health care thanks to the combination of modern technology and collaboration among disciplines.
Collapse
Affiliation(s)
- Fatemeh Karimzadeh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Elahe Soltani Fard
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Akram Nadi
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Rahim Malekzadeh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Fatemeh Elahian
- Advanced Technology Cores, Baylor College of Medicine, Houston, Texas, USA
| | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
3
|
Wound Healing Impairment in Type 2 Diabetes Model of Leptin-Deficient Mice—A Mechanistic Systematic Review. Int J Mol Sci 2022; 23:ijms23158621. [PMID: 35955751 PMCID: PMC9369324 DOI: 10.3390/ijms23158621] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
Type II diabetes mellitus (T2DM) is one of the most prevalent diseases in the world, associated with diabetic foot ulcers and impaired wound healing. There is an ongoing need for interventions effective in treating these two problems. Pre-clinical studies in this field rely on adequate animal models. However, producing such a model is near-impossible given the complex and multifactorial pathogenesis of T2DM. A leptin-deficient murine model was developed in 1959 and relies on either dysfunctional leptin (ob/ob) or a leptin receptor (db/db). Though monogenic, this model has been used in hundreds of studies, including diabetic wound healing research. In this study, we systematically summarize data from over one hundred studies, which described the mechanisms underlying wound healing impairment in this model. We briefly review the wound healing dynamics, growth factors’ dysregulation, angiogenesis, inflammation, the function of leptin and insulin, the role of advanced glycation end-products, extracellular matrix abnormalities, stem cells’ dysregulation, and the role of non-coding RNAs. Some studies investigated novel chronic diabetes wound models, based on a leptin-deficient murine model, which was also described. We also discussed the interventions studied in vivo, which passed into human clinical trials. It is our hope that this review will help plan future research.
Collapse
|
4
|
Hu WW, Lin YT. Alginate/polycaprolactone composite fibers as multifunctional wound dressings. Carbohydr Polym 2022; 289:119440. [DOI: 10.1016/j.carbpol.2022.119440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 12/20/2022]
|
5
|
Hwang J, Kiick KL, Sullivan MO. Modified hyaluronic acid-collagen matrices trigger efficient gene transfer and prohealing behavior in fibroblasts for improved wound repair. Acta Biomater 2022; 150:138-153. [PMID: 35907557 DOI: 10.1016/j.actbio.2022.07.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/01/2022]
Abstract
Growth factor therapy has demonstrated great promise for chronic wound repair, but controlling growth factor activity and cell phenotype over desired time frames remains a critical challenge. In this study, we developed a gene-activated hyaluronic acid-collagen matrix (GAHCM) comprising DNA/polyethylenimine (PEI) polyplexes retained on hyaluronic acid (HA)-collagen hydrogels using collagen mimetic peptides (CMPs). We hypothesized that manipulating both the number of CMP-collagen tethers and the ECM composition would provide a powerful strategy to control growth factor gene transfer kinetics while regulating cell behavior, resulting in enhanced growth factor activity for wound repair. We observed that polyplexes with 50% CMP-modified PEI (50 CP) showed enhanced retention of polyplexes in HCM hydrogels by 2.7-fold as compared to non-CMP modified polyplexes. Moreover, the incorporation of HA in the hydrogel promoted a significant increase in gene transfection efficiency based upon analysis of Gaussia luciferase (GLuc) reporter gene expression, and gene expression could be attenuated by blocking HA-CD44 signaling. Furthermore, when fibroblasts were exposed to vascular endothelial growth factor-A (VEGF-A)-GAHCM, the 50 CP matrix facilitated sustained VEGF-A production for up to 7 days, with maximal expression at day 5. Application of these VEGF-A-50 CP samples stimulated prolonged pro-healing responses, including the TGF-β1-induced myofibroblast-like phenotypes and enhanced closure of murine splinted wounds. Overall, these findings demonstrate the use of ECM-based materials to stimulate efficient gene transfer and regulate cellular phenotype, resulting in improved control of growth factor activity for wound repair. GAHCM have significant potential to overcome key challenges in growth factor therapy for regenerative medicine. STATEMENT OF SIGNIFICANCE: Despite great promise for growth factor therapies in wound treatment, controlling growth factor activity and providing a microenvironment for cells that maximizes growth factor signaling have continued to limit the success of existing formulations. Our GAHCM strategy, combining CMP gene delivery and hyaluronic acid-collagen matrix, enabled enhanced wound healing efficacy via the combination of controlled and localized growth factor expression and matrix-mediated regulation of cell behavior. Incorporation of CMPs and HA in the same matrix synergistically enhanced VEGF activity as compared with simpler matrices. Accordingly, GAHCM will advance our ability to leverage growth factor signaling for wound healing, resulting in new long-term treatments for recalcitrant wounds.
Collapse
Affiliation(s)
- Jeongmin Hwang
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Kristi L Kiick
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA; Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA.
| | - Millicent O Sullivan
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA; Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.
| |
Collapse
|
6
|
Tallapaneni V, Kalaivani C, Pamu D, Mude L, Singh SK, Karri VVSR. Acellular Scaffolds as Innovative Biomaterial Platforms for the Management of Diabetic Wounds. Tissue Eng Regen Med 2021; 18:713-734. [PMID: 34048000 PMCID: PMC8440725 DOI: 10.1007/s13770-021-00344-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/26/2022] Open
Abstract
Diabetic wound (DW) is one of the leading complications of patients having a long history of uncontrolled diabetes. Moreover, it also imposes an economic burden on people suffering from wounds to manage the treatment. The major impending factors in the treatment of DW are infection, prolonged inflammation and decreased oxygen levels. Since these non-healing wounds are associated with an extended recovery period, the existing therapies provide treatment for a limited period only. The areas covered in this review are general sequential events of wound healing along with DW's pathophysiology, the origin of DW and success, as well as limitations of existing therapies. This systematic review's significant aspect is to highlight the fabrication, characterization and applications of various acellular scaffolds used to heal DW. In addition to that, cellular scaffolds are also described to a limited extent.
Collapse
Affiliation(s)
- Vyshnavi Tallapaneni
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - C Kalaivani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Divya Pamu
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Lavanya Mude
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | | |
Collapse
|
7
|
Linares-Gonzalez L, Rodenas-Herranz T, Campos F, Ruiz-Villaverde R, Carriel V. Basic Quality Controls Used in Skin Tissue Engineering. Life (Basel) 2021; 11:1033. [PMID: 34685402 PMCID: PMC8541591 DOI: 10.3390/life11101033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/25/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022] Open
Abstract
Reconstruction of skin defects is often a challenging effort due to the currently limited reconstructive options. In this sense, tissue engineering has emerged as a possible alternative to replace or repair diseased or damaged tissues from the patient's own cells. A substantial number of tissue-engineered skin substitutes (TESSs) have been conceived and evaluated in vitro and in vivo showing promising results in the preclinical stage. However, only a few constructs have been used in the clinic. The lack of standardization in evaluation methods employed may in part be responsible for this discrepancy. This review covers the most well-known and up-to-date methods for evaluating the optimization of new TESSs and orientative guidelines for the evaluation of TESSs are proposed.
Collapse
Affiliation(s)
- Laura Linares-Gonzalez
- Servicio de Dermatología, Hospital Universitario San Cecilio, 18016 Granada, Spain; (L.L.-G.); (T.R.-H.)
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| | - Teresa Rodenas-Herranz
- Servicio de Dermatología, Hospital Universitario San Cecilio, 18016 Granada, Spain; (L.L.-G.); (T.R.-H.)
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| | - Fernando Campos
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| | - Ricardo Ruiz-Villaverde
- Servicio de Dermatología, Hospital Universitario San Cecilio, 18016 Granada, Spain; (L.L.-G.); (T.R.-H.)
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| | - Víctor Carriel
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| |
Collapse
|
8
|
Oh JS, Lee EJ. Engineered dressing of hybrid chitosan-silica for effective delivery of keratin growth factor and acceleration of wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109815. [DOI: 10.1016/j.msec.2019.109815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 05/10/2019] [Accepted: 05/27/2019] [Indexed: 01/15/2023]
|
9
|
In situ eNOS/NO up-regulation-a simple and effective therapeutic strategy for diabetic skin ulcer. Sci Rep 2016; 6:30326. [PMID: 27453476 PMCID: PMC4958962 DOI: 10.1038/srep30326] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/04/2016] [Indexed: 01/04/2023] Open
Abstract
Decreased nitric oxide (NO) synthesis and increased NO consumption in diabetes induces the inadequate blood flow to tissues that is primarily responsible for the pathogenesis and refractoriness of diabetic skin ulcers. The present study proposed a simple and effective therapeutic strategy for diabetic skin ulcers—in situ up-regulation of endothelial nitric oxide synthase (eNOS) expression and NO synthesis by statin-loaded tissue engineering scaffold (TES). In vitro experiments on human umbilical vein endothelial cells indicated that the statin-loaded TES relieved the high-glucose induced decrease in cell viability and promoted NO synthesis under high-glucose conditions. In a rat model of diabetes, the statin-loaded TES promoted eNOS expression and NO synthesis in/around the regenerated tissues. Subsequently, accelerated vascularization and elevated blood supply were observed, followed by rapid wound healing. These findings suggest that the in situ up-regulation of eNOS/NO by a statin-loaded TES may be a useful therapeutic method for intractable diabetic skin wounds.
Collapse
|
10
|
Briquez PS, Hubbell JA, Martino MM. Extracellular Matrix-Inspired Growth Factor Delivery Systems for Skin Wound Healing. Adv Wound Care (New Rochelle) 2015; 4:479-489. [PMID: 26244104 DOI: 10.1089/wound.2014.0603] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 10/31/2014] [Indexed: 12/15/2022] Open
Abstract
Significance: Growth factors are very promising molecules for the treatment of skin wounds. However, their translation to clinical use has been seriously limited, facing issues related to safety and cost-effectiveness. These problems may derive from the fact that growth factors are used at vastly supra-physiological levels without optimized delivery systems. Recent Advances: The extracellular matrix (ECM) plays a fundamental role in coordinating growth factor signaling. Therefore, understanding the mechanisms by which the ECM modulates growth factor activity is key for designing efficient growth factor-based therapies. Recently, several growth factor-binding domains have been discovered within various ECM proteins, and growth factor delivery systems integrating these ECM growth factor-binding domains showed promising results in animal models of skin wound healing. Moreover, a novel strategy consisting of engineering growth factors to target endogenous ECM could substantially enhance their efficacy, even when used at low doses. Critical Issues: Optimal delivery of growth factors often requires complex engineered biomaterial matrices, which can face regulatory issues for clinical translation. To simplify delivery systems and render strategies more applicable, growth factors can be engineered to optimally function with clinically approved biomaterials or with endogenous ECM present at the delivery site. Future Directions: Further development and clinical trials will reveal whether growth factor-based therapies can be used as main therapeutic approaches for skin wound healing. The future impact of these therapies will depend on our capacity to deliver growth factors more precisely, to improve efficacy, safety, and cost-effectiveness.
Collapse
Affiliation(s)
- Priscilla S. Briquez
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jeffrey A. Hubbell
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois
| | - Mikaël M. Martino
- World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
11
|
Kaltalioglu K, Coskun-Cevher S. A bioactive molecule in a complex wound healing process: platelet-derived growth factor. Int J Dermatol 2014; 54:972-7. [PMID: 25312059 DOI: 10.1111/ijd.12731] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 03/20/2014] [Accepted: 04/04/2014] [Indexed: 11/28/2022]
Abstract
Wound healing is considered to be particularly important after surgical procedures, and the most important wounds related to surgical procedures are incisional, excisional, and punch wounds. Research is ongoing to identify methods to heal non-closed wounds or to accelerate wound healing; however, wound healing is a complex process that includes many biological and physiological events, and it is affected by various local and systemic factors, including diabetes mellitus, infection, ischemia, and aging. Different cell types (such as platelets, macrophages, and neutrophils) release growth factors during the healing process, and platelet-derived growth factor is a particularly important mediator in most stages of wound healing. This review explores the relationship between platelet-derived growth factor and wound healing.
Collapse
|
12
|
Barker JC, Barker AD, Bills J, Huang J, Wight-Carter M, Delgado I, Noble DL, Huang LJ, Porteus MH, Davis KE. Genome Editing of Mouse Fibroblasts by Homologous Recombination for Sustained Secretion of PDGF-B and Augmentation of Wound Healing. Plast Reconstr Surg 2014; 134:389e-401e. [DOI: 10.1097/prs.0000000000000427] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
13
|
Jin S, Zhang M, Gao Y, Zhang X, Cui G, Zhang Y. The efficacy of Jing Wan Hong ointment for nerve injury diabetic foot ulcer and its mechanisms. J Diabetes Res 2014; 2014:259412. [PMID: 25538944 PMCID: PMC4247915 DOI: 10.1155/2014/259412] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/17/2014] [Accepted: 10/28/2014] [Indexed: 01/09/2023] Open
Abstract
Jing Wan Hong ointment contains 30 kinds of Chinese herbs, with functions of activating blood circulation to disperse blood stasis, clearing heat, eliminating dampness, and reducing swelling by detoxification. Therefore, Jing Wan Hong ointment may facilitate the healing of ulcers. The aim of this study was to evaluate the efficacy and mechanisms of Jing Wan Hong ointment for healing diabetic foot ulceration in Wistar rats induced by streptozotocin and sciatic nerve damage. The results showed that Jing Wan Hong ointment had a marked effect on foot ulcers in diabetic rats induced by initial nerve injury. These effects were manifested by reducing the foot ulcer size and Wagner grade after seven days of treatment. The diabetic rats with foot ulcers were almost healed after 21 days of treatment. Moreover, the mechanisms of this effect seem to be dependent on increased expression of PDGF mRNA, but there was no influence on the expression of TGF-β, VEGF, and FLT-1 mRNA.
Collapse
Affiliation(s)
- Shumei Jin
- Tianjin Huanhu Hospital, Tianjin 300060, China
| | - Mixia Zhang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, No. 312 Anshanxi Road, Nankai District, Tianjin 300193, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yan Gao
- Tianjin Children's Hospital, Tianjin 300074, China
| | | | - Guangzhi Cui
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, No. 312 Anshanxi Road, Nankai District, Tianjin 300193, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- *Guangzhi Cui: and
| | - Yanjun Zhang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, No. 312 Anshanxi Road, Nankai District, Tianjin 300193, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- *Yanjun Zhang:
| |
Collapse
|
14
|
Sharifian Z, Bayat M, Alidoust M, Farahani RM, Bayat M, Rezaie F, Bayat H. Histological and gene expression analysis of the effects of pulsed low-level laser therapy on wound healing of streptozotocin-induced diabetic rats. Lasers Med Sci 2013; 29:1227-35. [PMID: 24362922 DOI: 10.1007/s10103-013-1500-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 07/22/2013] [Indexed: 12/30/2022]
Abstract
Diabetes mellitus (DM) is associated with poor wound healing. Studies have shown accelerated wound healing following pulsed low-level laser therapy (LLLT) in non-diabetic animals. The present study aims to evaluate the effect of pulsed LLLT on wound healing in streptozotocin-induced diabetic (STZ-D) rats. We divided 48 rats into two groups of non-diabetic and diabetic. Type 1 DM was induced in the diabetic rat group by injections of STZ. Two, full-thickness skin incisions were made on the dorsal region of each rat. One month after the STZ injection, wounds of the non-diabetic and diabetic rats were submitted to a pulsed, infrared 890-nm laser with an 80-Hz frequency and 0.2 J/cm(2) for each wound point. Control wounds did not receive LLLT. Animals were sacrificed on days 4, 7, and 15 post-injury for histomorphometry and reverse transcription polymerase chain reaction (RT-PCR) analyses of basic fibroblast growth factor (bFGF) gene expression. Pulsed LLLT significantly increased the numbers of macrophages, fibroblasts, and blood vessel sections compared to the corresponding control groups. Semi-quantitative analysis of bFGF gene expression at 48 h post-injury revealed a significant increase in gene expression in both non-diabetic and diabetic rats following LLLT (the ANOVA test). Pulsed LLLT at 0.2 J/cm(2) accelerated the wound healing process in both non-diabetic and diabetic rats as measured by histological characteristics and semi-quantitative bFGF gene expression.
Collapse
Affiliation(s)
- Zanelabedien Sharifian
- Department of Anatomy, Medical Faculty, Isfahan University of Medical Sciences, Isfahan, Iran,
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
BACKGROUND In the past two decades, regenerative surgeons have focused increasing attention on the potential of gene therapy for treatment of local disorders and injuries. Gene transfer techniques may provide an effective local and short-term induction of growth factors without the limits of other topical therapies. In 2002, Tepper and Mehrara accurately reviewed the topic: given the substantial advancement of research on this issue, an updated review is provided. METHODS Literature indexed in the National Center for Biotechnology Information database (PubMed) has been reviewed using variable combinations of keywords ("gene therapy," "regenerative medicine," "tissue regeneration," and "gene medicine"). Articles investigating the association between gene therapies and local pathologic conditions have been considered. Attention has been focused on articles published after 2002. Further literature has been obtained by analysis of references listed in reviewed articles. RESULTS Gene therapy approaches have been successfully adopted in preclinical models for treatment of a large variety of local diseases affecting almost every type of tissue. Experiences in abnormalities involving skin (e.g., chronic wounds, burn injuries, pathologic scars), bone, cartilage, endothelia, and nerves have been reviewed. In addition, the supporting role of gene therapies to other tissue-engineering approaches has been discussed. Despite initial reports, clinical evidence has been provided only for treatment of diabetic ulcers, rheumatoid arthritis, and osteoarthritis. CONCLUSIONS Translation of gene therapy strategies into human clinical trials is still a lengthy, difficult, and expensive process. Even so, cutting-edge gene therapy-based strategies in reconstructive procedures could soon set valuable milestones for development of efficient treatments in a growing number of local diseases and injuries.
Collapse
|
16
|
Kaltalioglu K, Coskun-Cevher S, Tugcu-Demiroz F, Celebi N. PDGF supplementation alters oxidative events in wound healing process: a time course study. Arch Dermatol Res 2013; 305:415-22. [DOI: 10.1007/s00403-013-1326-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 02/04/2013] [Accepted: 02/08/2013] [Indexed: 12/19/2022]
|
17
|
Abstract
In this chapter a review of animal model systems already being utilized to study normal and pathologic wound healing is provided. We also go into details on alternatives for animal wound model systems. The case is made for limitations in the various approaches. We also discuss the benefits/limitations of in vitro/ex vivo systems bringing everything up to date with our current work on developing a cell-based reporter system for diabetic wound healing.
Collapse
Affiliation(s)
- Phil Stephens
- Wound Biology Group, Cardiff Institute of Tissue Engineering and Repair Tissue Engineering and Reparative Dentistry, School of Dentistry, Cardiff University, Cardiff, Wales, UK
| | | | | |
Collapse
|
18
|
Abstract
Researchers have identified several of the cellular events associated with wound healing. Platelets, neutrophils, macrophages, and fibroblasts primarily contribute to the process. They release cytokines including interleukins (ILs) and TNF-α, and growth factors, of which platelet-derived growth factor (PDGF) is perhaps the most important. The cytokines and growth factors manipulate the inflammatory phase of healing. Cytokines are chemotactic for white cells and fibroblasts, while the growth factors initiate fibroblast and keratinocyte proliferation. Inflammation is followed by the proliferation of fibroblasts, which lay down the extracellular matrix. Simultaneously, various white cells and other connective tissue cells release both the matrix metalloproteinases (MMPs) and the tissue inhibitors of these metalloproteinases (TIMPs). MMPs remove damaged structural proteins such as collagen, while the fibroblasts lay down fresh extracellular matrix proteins. Fluid collected from acute, healing wounds contains growth factors, and stimulates fibroblast proliferation, but fluid collected from chronic, nonhealing wounds does not. Fibroblasts from chronic wounds do not respond to chronic wound fluid, probably because the fibroblasts of these wounds have lost the receptors that respond to cytokines and growth factors. Nonhealing wounds contain high levels of IL1, IL6, and MMPs, and an abnormally high MMP/TIMP ratio. Clinical examination of wounds inconsistently predicts which wounds will heal when procedures like secondary closure are planned. Surgeons therefore hope that these chemicals can be used as biomarkers of wounds which have impaired ability to heal. There is also evidence that the application of growth factors like PDGF will help the healing of chronic, nonhealing wounds.
Collapse
Affiliation(s)
- Jumaat Mohd Yussof Shah
- Discipline of Plastic Surgery, Universiti Teknologi MARA, Jalan Selayang Prima 1, Batu Caves, Selangor, Malaysia
| | | | | | | |
Collapse
|
19
|
Effects of pulsed infra-red low level-laser irradiation on open skin wound healing of healthy and streptozotocin-induced diabetic rats by biomechanical evaluation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 111:1-8. [DOI: 10.1016/j.jphotobiol.2012.03.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 02/18/2012] [Accepted: 03/01/2012] [Indexed: 01/12/2023]
|
20
|
Randomized comparison of OASIS wound matrix versus moist wound dressing in the treatment of difficult-to-heal wounds of mixed arterial/venous etiology. Adv Skin Wound Care 2011; 23:34-8. [PMID: 20101114 DOI: 10.1097/01.asw.0000363485.17224.26] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE In this study, a biological extracellular matrix was compared with a moist wound dressing to determine its effectiveness in the treatment of mixed arterial/venous and venous ulcers. METHODS Patients were evaluated for complete wound healing, time to dressing change, and formation of granulation tissue. RESULTS Extracellular matrix-treated ulcers achieved complete healing on average in 5.4 weeks as compared with 8.3 weeks for the control group treated with moist wound dressing (P = .02). At the primary time point evaluated (8 weeks), complete wound closure was achieved in 80% of extracellular matrix-treated ulcers compared with 65% of ulcers in the control group (P < .05). Statistically significant differences favoring the extracellular-matrix treatment group were also reported for time to dressing change (P < .05), and for percentage of granulation tissue formed (P < .05). CONCLUSION Overall, the biological extracellular matrix was more beneficial than moist wound dressings for the treatment of patients with mixed arterial/venous or venous ulcers.
Collapse
|
21
|
Lammers G, Verhaegen PD, Ulrich MM, Schalkwijk J, Middelkoop E, Weiland D, Nillesen ST, Van Kuppevelt TH, Daamen WF. An Overview of Methods for the In Vivo Evaluation of Tissue-Engineered Skin Constructs. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:33-55. [DOI: 10.1089/ten.teb.2010.0473] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Gerwen Lammers
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Pauline D.H.M. Verhaegen
- Association of Dutch Burn Centres, Red Cross Hospital, Beverwijk, The Netherlands
- Department of Plastic, Reconstructive, and Hand Surgery, Academic Medical Centre, Amsterdam, The Netherlands
| | - Magda M.W. Ulrich
- Department of Plastic, Reconstructive, and Hand Surgery, Academic Medical Centre, Amsterdam, The Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, VU Medical Center, Amsterdam, The Netherlands
| | - Joost Schalkwijk
- Department of Dermatology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Esther Middelkoop
- Association of Dutch Burn Centres, Red Cross Hospital, Beverwijk, The Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, VU Medical Center, Amsterdam, The Netherlands
| | - Daniela Weiland
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Suzan T.M. Nillesen
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Toin H. Van Kuppevelt
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Willeke F. Daamen
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
22
|
Giordano C, Causa F, Bianco F, Perale G, Netti PA, Ambrosio L, Cigada A. Gene delivery systems for gene therapy in tissue engineering and central nervous system applications. Int J Artif Organs 2009; 31:1017-26. [PMID: 19115193 DOI: 10.1177/039139880803101205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The present review aims to describe the potential applications of gene delivery systems to tissue engineering and central nervous system diseases. Some key experimental work has been done with interesting results, but the subject is far from being fully explored. The combined approach of gene therapy and material science has a huge potential to improve the therapeutic approaches now available for a wide range of medical applications. Focus is given to this multidisciplinary strategy in neurodegenerative pathologies, where the use of polymeric matrices as gene carriers might make a crucial difference.
Collapse
Affiliation(s)
- C Giordano
- Department of Chemistry, Materials and Chemical Engineering G. Natta, Politecnico di Milano, Milano, Italy.
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Diabetic foot ulcers remain a major cause of morbidity. Significant progress has been accomplished in ulcer healing by improved management of both ischemia and neuropathy in the diabetic foot. Nevertheless, there is a vital need for further improvement. Becaplermin gel represents an important therapeutic advance for diabetic neuropathic foot ulcers with adequate blood supply. Randomized controlled trials have shown that it is effective in increasing healing rates. However, this efficacy has not translated to positive clinical experience, and the drug is not widely used. Moreover, becaplermin is an expensive medication. Even though it has repeatedly been estimated as cost-effective, its high cost may be prohibitive for some clinicians, especially in developing countries. Clearly, further work is needed to clarify whether use of becaplermin is justified in everyday clinical practice. Future research also needs to assess the potential room for improvement with becaplermin, for instance by combination with other growth factors or by exploring alternative modes of drug delivery.
Collapse
Affiliation(s)
- Nikolaos Papanas
- Outpatient Clinic of Obesity, Diabetes and Metabolism at the Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece.
| | | |
Collapse
|
24
|
Sun W, Lin H, Xie H, Chen B, Zhao W, Han Q, Zhao Y, Xiao Z, Dai J. Collagen membranes loaded with collagen-binding human PDGF-BB accelerate wound healing in a rabbit dermal ischemic ulcer model. Growth Factors 2007; 25:309-18. [PMID: 18236209 DOI: 10.1080/08977190701803885] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Studies have shown that exogenous platelet-derived growth factor-BB (PDGF-BB) could accelerate the ulcer healing, but the lack of efficient growth factor delivery system limits its clinical application. Our previous work has demonstrated that the native human PDGF-BB was added a collagen-binding domain (CBD), TKKTLRT, to develop a collagen-based PDGF targeting delivery system. Here, we showed that this CBD-fused PDGF-BB (CBD-PDGF) could bind to collagen membrane efficiently. We used the rabbit dermal ischemic ulcer model to study the effects of CBD-PDGF loaded on collagen membranes. Results revealed that this system maintained a higher concentration and stronger bioactivity of PDGF-BB on the collagen membranes and promoted the re-epithelialization of dermal ulcer wounds, the collagen deposition, and the formation of capillary lumens within the newly formed tissue area. It demonstrated that collagen membranes loaded with collagen-targeting human PDGF-BB could effectively promote ulcer healing.
Collapse
Affiliation(s)
- Wenjie Sun
- Key laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Aiming for regeneration of severed or lost parts of the body, the combined application of gene therapy and tissue engineering has received much attention by regenerative medicine. Techniques of molecular biology can enhance the regenerative potential of a biomaterial by co-delivery of therapeutic genes, and several different strategies have been used to achieve that goal. Possibilities for application are many-fold and have been investigated to regenerate tissues such as skin, cartilage, bone, nerve, liver, pancreas and blood vessels. This review discusses advantages and problems encountered with the different gene delivery strategies as far as they relate to tissue engineering, analyses the positive aspects of polymeric gene delivery from matrices and discusses advances and future challenges of gene transfer strategies in selected tissues.
Collapse
Affiliation(s)
- Oliver Bleiziffer
- Department of Plastic and Hand Surgery, University of Erlangen Medical Center, Erlangen, Germany
- *Correspondence to: Ulrich KNESER, M.D. Department of Plastic and Hand Surgery, University of Erlangen Medical Center, Krankenhausstr. 12, 91054 Erlangen, Germany. Tel.: +49-9131-85-33277; Fax: +49-9131-85-39327 E-mail:
| | - Elof Eriksson
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Feng Yao
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, University of Erlangen Medical Center, Erlangen, Germany
| | - Ulrich Kneser
- Department of Plastic and Hand Surgery, University of Erlangen Medical Center, Erlangen, Germany
- *Correspondence to: Ulrich KNESER, M.D. Department of Plastic and Hand Surgery, University of Erlangen Medical Center, Krankenhausstr. 12, 91054 Erlangen, Germany. Tel.: +49-9131-85-33277; Fax: +49-9131-85-39327 E-mail:
| |
Collapse
|
26
|
Papanas N, Maltezos E. Growth factors in the treatment of diabetic foot ulcers: new technologies, any promises? INT J LOW EXTR WOUND 2007; 6:37-53. [PMID: 17344201 DOI: 10.1177/1534734606298416] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Foot ulcers remain a common problem, leading to increased morbidity in patients with diabetes. Despite the progress that has been achieved in revascularization techniques as well as in off-loading to relieve high-pressure areas, diabetic foot wounds remain a clinical challenge. Growth factors are a major technological advance that promised to change the face of wound healing. The most important of growth factors are recombinant human platelet-derived growth factor-BB and granulocyte colony-stimulating factor. The former has been approved by the FDA for the treatment of neuropathic ulcers when there is adequate blood supply. The latter is less demonstrably useful. Advances include methods of delivering growth factors.
Collapse
Affiliation(s)
- N Papanas
- Outpatient Department of Diabetes, Obesity and Metabolism at the Second Department of Internal Medicine, Democritus University of Thrace, Greece.
| | | |
Collapse
|
27
|
Andreadis ST, Geer DJ. Biomimetic approaches to protein and gene delivery for tissue regeneration. Trends Biotechnol 2006; 24:331-7. [PMID: 16716420 DOI: 10.1016/j.tibtech.2006.05.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 03/07/2006] [Accepted: 05/09/2006] [Indexed: 12/31/2022]
Abstract
Novel therapeutic strategies that promote wound healing seek to mimic the response of the body to wounding, to regenerate rather than repair injured tissues. Many synthetic or natural biomaterials have been developed for this purpose and are used to deliver wound therapeutics in a controlled manner that prevents unwanted and potentially harmful side-effects. Here, we review the natural and synthetic biomaterials that have been developed for protein and gene delivery to enhance tissue regeneration. Particular emphasis is placed on novel biomimetic materials that respond to environmental stimuli or release their cargo according to cellular demand. Engineering biomaterials to release therapeutic agents in response to physiologic signals mimics the natural healing process and can promote faster tissue regeneration and reduce scarring in severe acute or chronic wounds.
Collapse
Affiliation(s)
- Stelios T Andreadis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260, USA.
| | | |
Collapse
|
28
|
Chen RN, Wang GM, Chen CH, Ho HO, Sheu MT. Development ofN,O-(Carboxymethyl)chitosan/Collagen Matrixes as a Wound Dressing. Biomacromolecules 2006; 7:1058-64. [PMID: 16602721 DOI: 10.1021/bm050754b] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In an attempt to accelerate wound healing by stimulating the recruitment of fibroblasts and improve the mechanical properties of collagen matrixes, N,O-(carboxymethyl)chitosan (NOCC) was incorporated into the backbone of a collagen (COL) matrix without or with chondroitin sulfate (CS) or an acellular dermal matrix (ADM). The result of a cell migration study demonstrated that the migration of fibroblasts was significantly enhanced by NOCC in a concentration-dependent manner. In the analysis with a dynamic mechanical analyzer, NOCC/CS/COL matrixes presented higher tensile strengths than did NOCC/ADM/COL matrixes. Skin fibroblasts cultured on the matrixes containing NOCC showed increased proliferation and secretion of three kinds of cytokines compared with the control. Results of the in vivo wound healing study showed that matrixes incorporating NOCC showed markedly enhanced wound healing compared with the control. Therefore, the above results clearly suggest that NOCC/COL matrixes containing CS or ADM can be potential wound dressings for clinical applications.
Collapse
Affiliation(s)
- Ray-Neng Chen
- Graduate Institute of Pharmaceutical Sciences, College of Pharmacy, and Department of Medical Technology, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 110, Taiwan
| | | | | | | | | |
Collapse
|
29
|
Man LX, Park JC, Terry MJ, Mason JM, Burrell WA, Liu F, Kimball BY, Moorji SM, Lee JA, Breitbart AS. Lentiviral gene therapy with platelet-derived growth factor B sustains accelerated healing of diabetic wounds over time. Ann Plast Surg 2006; 55:81-6; discussion 86. [PMID: 15985796 DOI: 10.1097/01.sap.0000168211.76318.fa] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The treatment of diabetic wounds is a formidable clinical challenge. In this study, lentiviral vectors carrying the human platelet-derived growth factor B (PDGF-B) gene were used to treated diabetic mouse wounds. Full-thickness 2.0-cm x 2.0-cm excisional wounds were created on the dorsa of genetically diabetic C57BL/KsJ-m+/+Lepr(db) mice. Lentiviral vectors containing the PDGF-B gene were injected into the wound margins and base. Mice were killed at 14-, 21-, and 35-day intervals. Measurement of the residual epithelial gap showed a trend towards increased healing in lentiviral PDGF-treated wounds compared with untreated and saline-treated wounds at all time points. At 21 days, there was significantly increased healing in lentiviral PDGF-treated wounds (0.98+/-0.17 cm) compared with saline-treated wounds (1.22+/-0.30 cm; P<0.05). Immunohistochemistry for CD31 revealed significantly increased neovascularization in lentiviral PDGF-treated wounds compared with untreated and saline-treated wounds at 14 and 21 days (P<0.01). Picrosirius red staining demonstrated thicker and more highly organized collagen fibers in treated wounds compared with untreated and saline-treated wounds. Quantitative analysis of collagen content showed a 3.5-fold and 2.3-fold increase in lentiviral PDGF-treated wounds versus untreated and saline-treated wounds, respectively (P<0.01). Lentiviral gene therapy with PDGF-B can sustain diabetic wound healing over time and may possess promising potential in the clinical setting.
Collapse
Affiliation(s)
- Li-Xing Man
- Division of Plastic and Reconstructive Surgery, New York Presbyterian Hospital, Columbia-Presbyterian Medical Center, Columbia University College of Physicians and Surgeons, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lee JA, Conejero JA, Mason JM, Parrett BM, Wear-Maggitti KD, Grant RT, Breitbart AS. Lentiviral Transfection with the PDGF-B Gene Improves Diabetic Wound Healing. Plast Reconstr Surg 2005; 116:532-8. [PMID: 16079687 DOI: 10.1097/01.prs.0000172892.78964.49] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The treatment of diabetic wounds remains a difficult challenge. The present study investigates whether platelet-derived growth factor (PDGF) lentiviral gene therapy can improve diabetic wound healing in the diabetic db/dbmouse. METHODS PDGF cDNA was cloned and lentiviral vectors were constructed with either the PDGF-B or green fluorescence protein (GFP) gene. A 2 x 2-cm full-thickness dermal wound was made on each db/db mouse. Animals were divided into three groups, with eight animals in each group as follows: group I, empty wound; group II, lentiviral PDGF; and group III, lentiviral GFP. Lentiviral vectors were injected into the wounds and healing was assessed at 21 days. Harvested wounds were assessed for residual epithelial gap, granulation tissue area, PDGF expression, collagen formation (picrosirius red), and angiogenesis (CD31 staining). RESULTS Lentiviral vectors were constructed and transfected dermal fibroblasts demonstrated in vitro production of PDGF mRNA as measured by reverse-transcriptase polymerase chain reaction. Immunohistochemistry for PDGF confirmed successful in vivo transfection of the PDGF gene. At 21 days, reepithelialization and granulation tissue area were similar in all groups. However, there was a statistically significant increase in angiogenesis and substantially thicker, more coherently aligned collagen fibers in the PDGF group compared with controls. CONCLUSIONS PDGF lentiviral vectors were successfully transfected into the regenerated dermis in diabetic wounds. Although reepithelialization was similar among the groups, there was enhanced angiogenesis and collagen deposition in the lentiviral PDGF group. These results demonstrate that lentiviral PDGF transfection of the diabetic wound enhances PDGF production, improves vascularization and collagen organization, and has potential clinical applications in diabetic wound treatment.
Collapse
Affiliation(s)
- James A Lee
- Division of Plastic and Reconstructive Surgery, New York Presbyterian Hospital, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Theopold C, Yao F, Eriksson E. Gene therapy in the treatment of lower extremity wounds. INT J LOW EXTR WOUND 2005; 3:69-79. [PMID: 15866792 DOI: 10.1177/1534734604265431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This article presents a brief overview of the etiology of chronic wounds of the lower extremities and their current medical and surgical treatment. Gene therapy as a potential tool for treating therapeutically challenging wounds is described in terms of the vectors employed in gene transfer, as well as the strategies used to promote wound healing. Results from animal model studies, as well as clinical trials, are presented.
Collapse
Affiliation(s)
- Christoph Theopold
- Division of Plastic Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | |
Collapse
|
32
|
Abstract
Cutaneous wounds inevitably heal with scars, which can be disfiguring and compromise function. In general, the greater the insult, the worse the scarring, although genetic make up, regional variations and age can influence the final result. Excessive scarring manifests as hypertrophic and keloid scars. At the other end of the spectrum are poorly healing chronic wounds, such as foot ulcers in diabetic patients and pressure sores. Current therapies to minimize scarring and accelerate wound healing rely on the optimization of systemic conditions, early wound coverage and closure of lacerations, and surgical incisions with minimal trauma to the surrounding skin. The possible benefits of topical therapies have also been assessed. Further major improvements in wound healing and scarring require an understanding of the molecular basis of this process. Promising strategies for modulating healing include the local administration of platelet derived growth factor (PDGF)-BB to accelerate the healing of chronic ulcers, and increasing the relative ratio of transforming growth factor (TGF)beta-3 to TGFbeta-1 and TGFbeta-2 in order to minimize scarring.
Collapse
|