1
|
Ichimura H, Chino S, Shiba Y. Cardiac Regeneration Using Pluripotent Stem Cells and Controlling Immune Responses. Heart Lung Circ 2023:S1443-9506(23)00108-7. [PMID: 37029069 DOI: 10.1016/j.hlc.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/02/2022] [Accepted: 12/05/2022] [Indexed: 04/08/2023]
Abstract
Pluripotent stem cell (PSC)-derived cardiomyocytes are a promising source of cells in myocardial regeneration therapy for end-stage heart failure. Because most previous reports have focussed on xenotransplantation models using immunocompromised animals, studies on immune rejection in allogeneic transplantation models are needed for preclinical and clinical applications. Human leukocyte antigen (HLA) plays an important role in allogeneic transplantation, and cell bank projects are currently underway worldwide to stock induced pluripotent stem cells (iPSCs) generated from healthy individuals with homozygous HLA haplotypes. However, it is difficult to stock iPSCs that match the entire population in these cell banks; thus, several groups have produced hypoimmunogenic PSCs by knocking out HLA. These HLA-knockout PSCs were able to avoid rejection by T cells but still suffered rejection by natural killer (NK) cells caused by 'missing self-recognition'. Recent studies have attempted to generate hypoimmunogenic PSCs with gene editing to inhibit NK cell activation. Regenerative medicine using autologous iPSCs can be an ideal transplantation therapy, but, currently, there are major hurdles to its practical application. Hopefully, further research will resolve these issues. This review provides an overview of the current understanding and progress in this field.
Collapse
Affiliation(s)
- Hajime Ichimura
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, Matsumoto, Japan; Department of Surgery, Division of Cardiovascular Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shuji Chino
- Department of Surgery, Division of Cardiovascular Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yuji Shiba
- Department of Regenerative Science and Medicine, Shinshu University School of Medicine, Matsumoto, Japan; Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan.
| |
Collapse
|
2
|
The CD8 T-cell response during tolerance induction in liver transplantation. Clin Transl Immunology 2016; 5:e102. [PMID: 27867515 PMCID: PMC5099425 DOI: 10.1038/cti.2016.53] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 12/12/2022] Open
Abstract
Both experimental and clinical studies have shown that the liver possesses unique tolerogenic properties. Liver allografts can be spontaneously accepted across complete major histocompatibility mismatch in some animal models. In addition, some liver transplant patients can be successfully withdrawn from immunosuppressive medications, developing ‘operational tolerance'. Multiple mechanisms have been shown to be involved in inducing and maintaining alloimmune tolerance associated with liver transplantation. Here, we focus on CD8 T-cell tolerance in this setting. We first discuss how alloreactive cytotoxic T-cell responses are generated against allografts, before reviewing how the liver parenchyma, donor passenger leucocytes and the host immune system function together to attenuate alloreactive CD8 T-cell responses to promote the long-term survival of liver transplants.
Collapse
|
3
|
Liu Z, Yu X, Ren W, Zhang M, Wang HO, Sun Y, Jin L, Wang F, Shi M. CD152 and PD-1 down-regulation on CD8 T cells is associated with human acute liver allograft rejection. Transplant Proc 2015; 46:3511-4. [PMID: 25498082 DOI: 10.1016/j.transproceed.2014.06.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 06/17/2014] [Indexed: 11/18/2022]
Abstract
PURPOSE To investigate CD152 and PD-1 expression on T lymphocytes and the function of CD152- and PD-1-positive CD8 T cells in human acute liver allograft rejection. MATERIALS AND METHODS Sixty-three patients undergoing liver transplantation were enrolled in this study, including 26 cases with acute allograft rejection (Gr-AR) and 37 cases with stable allograft liver function (Gr-SF). The expression of CD152 and PD-1 on T lymphocytes and the expression of granzyme and perforin on CD152- and PD-1-positive CD8 T cells in peripheral blood were analyzed using flow cytometry. RESULTS The peripheral CD4/CD8 ratio in Gr-AR was significantly lower than that in Gr-SF (P < .01). The expression of CD152 and PD-1 on CD8 and CD4 T cells was significantly lower in Gr-AR than in Gr-SF (all P < .01). The expression of granzyme B and perforin was significantly higher in Gr-AR than in Gr-SF (P < .01). CONCLUSIONS Down-regulation of the expression of negative costimulatory molecules such as CD152 and PD-1 on CD8 T cells may be associated with human acute liver allograft rejection.
Collapse
Affiliation(s)
- Z Liu
- Research Center for Liver Transplantation, Beijing 302 Hospital, Beijing, China
| | - X Yu
- Peking University 302 Hospital, Beijing, China
| | - W Ren
- Peking University 302 Hospital, Beijing, China
| | - M Zhang
- Research Center for Liver Transplantation, Beijing 302 Hospital, Beijing, China
| | - H o Wang
- Research Center for Liver Transplantation, Beijing 302 Hospital, Beijing, China
| | - Y Sun
- Research Center for Liver Transplantation, Beijing 302 Hospital, Beijing, China
| | - L Jin
- Research Center for Biological Therapy, Beijing 302 Hospital, Beijing, China
| | - F Wang
- Research Center for Liver Transplantation, Beijing 302 Hospital, Beijing, China
| | - M Shi
- Research Center for Liver Transplantation, Beijing 302 Hospital, Beijing, China.
| |
Collapse
|
4
|
Zhang Q, Reed EF. Array-based methods for diagnosis and prevention of transplant rejection. Expert Rev Mol Diagn 2014; 6:165-78. [PMID: 16512777 DOI: 10.1586/14737159.6.2.165] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
DNA microarray is a microhybridization-based assay that is used to simultaneously study the expression of thousands of genes, thus providing a global view of gene expression in a tissue sample. This powerful technique has been adopted by many biomedical disciplines and will likely have a profound impact on the diagnosis, treatment and prognosis of human diseases. This review article presents an overview of the application of microarray technology to the field of solid-organ transplantation.
Collapse
Affiliation(s)
- Qiuheng Zhang
- Immunogenetics Center, Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
5
|
Zhou L, Chen Z, Vanderslice P, So SP, Ruan KH, Willerson JT, Dixon RAF. Endothelial-like progenitor cells engineered to produce prostacyclin rescue monocrotaline-induced pulmonary arterial hypertension and provide right ventricle benefits. Circulation 2013; 128:982-94. [PMID: 23841984 DOI: 10.1161/circulationaha.113.003139] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Intravenous prostacyclin is approved for treating pulmonary arterial hypertension (PAH), but it has a short half-life and must be delivered systemically via an indwelling intravenous catheter. We hypothesize that localized jugular vein delivery of prostacyclin-producing cells may provide sustained therapeutic effects without the limitations of systemic delivery. METHODS AND RESULTS We generated a vector expressing a human cyclooxygenase isoform 1 and prostacyclin synthase fusion protein that produces prostacyclin from arachidonic acid. Endothelial-like progenitor cells (ELPCs) were transfected with the cyclooxygenase isoform 1-prostacyclin synthase plasmid and labeled with lentivirus expressing nuclear-localized red fluorescent protein (nuRFP). The engineered ELPCs (expressing cyclooxygenase isoform 1-prostacyclin synthase and nuRFP) were tested in rats with monocrotaline (MCT)-induced PAH. In PAH prevention studies, treatment with engineered ELPCs or control ELPCs (expressing nuRFP alone) attenuated MCT-induced right ventricular systolic pressure increase, right ventricular hypertrophy, and pulmonary vessel wall thickening. Engineered ELPCs were more effective than control ELPCs in all variables evaluated. In PAH reversal studies, engineered ELPCs or control ELPCs increased the survival rate of rats with established PAH and decreased right ventricular hypertrophy. Engineered ELPCs provided a survival benefit 2 weeks earlier than did control ELPCs. Microarray-based gene ontology analysis of the right ventricle revealed that a number of MCT-altered genes and neurotransmitter pathways (dopamine, serotonin, and γ-aminobutyric acid) were restored after ELPC-based prostacyclin gene therapy. CONCLUSIONS Cyclooxygenase isoform 1-prostacyclin synthase-expressing ELPCs reversed MCT-induced PAH. A single jugular vein injection offered survival benefits for at least 4 weeks and may provide a promising option for PAH patients.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Molecular Cardiology, Texas Heart Institute, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Frebel H, Oxenius A. The risks of targeting co-inhibitory pathways to modulate pathogen-directed T cell responses. Trends Immunol 2013; 34:193-9. [PMID: 23333205 PMCID: PMC7106470 DOI: 10.1016/j.it.2012.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 12/18/2012] [Accepted: 12/21/2012] [Indexed: 12/22/2022]
Abstract
The identification of T cell co-inhibition as a central mechanism in the regulation of adaptive immunity during infectious diseases provides new opportunities for immunotherapeutic interventions. However, the fact that T cell activity is frequently downregulated during pathogen-directed responses suggests a pivotal physiological role of co-inhibitory pathways during infectious disease. Reports of exacerbated immunopathology in conditions of impaired co-inhibition foster the view that downregulation of T cell activity is an essential negative feedback mechanism that protects from excessive pathogen-directed immunity. Thus, targeting co-inhibitory pathways can bear detrimental potential through the deregulation of physiological processes. Here, we summarize recent preclinical and clinical interventions that report immune-related adverse events after targeting co-inhibitory pathways.
Collapse
Affiliation(s)
- Helge Frebel
- Institute of Microbiology, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich, Switzerland
| | | |
Collapse
|
7
|
Riella LV, Liu T, Yang J, Chock S, Shimizu T, Mfarrej B, Batal I, Xiao X, Sayegh MH, Chandraker A. Deleterious effect of CTLA4-Ig on a Treg-dependent transplant model. Am J Transplant 2012; 12:846-55. [PMID: 22300534 DOI: 10.1111/j.1600-6143.2011.03929.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Blockade of the B7:CD28 costimulatory pathway has emerged as a promising therapy to prevent allograft rejection. However, results from the belatacept phase III clinical trial demonstrated a higher rejection rate when compared to cyclosporine, raising concern about potential deleterious effects of this agent. In this study, we investigated the consequences of B7:CD28 blockade by hCTLA4Ig on regulator T cell (Treg) generation in different major histocompatibility complex (MHC) mismatch transplant models. Administration of hCTLA4Ig significantly decreased the amount of Tregs in B6 WT animals and this effect was predominant in thymus-induced Tregs (Helios(+) ). Although hCTLA4Ig prevented rejection in a fully allogeneic mismatch model, it accelerated rejection in a MHC class-II mismatch model (MST = 26, p < 0.0001), in which long-term allograft survival is dependent on Tregs. This accelerated rejection was associated with a marked reduction in thymus-induced Tregs and led to a higher effector/regulatory T-cell ratio in secondary lymphoid organs and in the allograft. This study confirms the importance of the B7:CD28 pathway in Treg homeostasis in an in vivo transplant model and suggests that hCTLA4Ig therapy may be deleterious in circumstances where engraftment is dependent on Tregs.
Collapse
Affiliation(s)
- L V Riella
- Renal Division, Transplantation Research Center, Brigham and Women's Hospital, Children's Hospital Boston, Harvard Medical School, Boston, MA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
McGrath MM, Najafian N. The role of coinhibitory signaling pathways in transplantation and tolerance. Front Immunol 2012; 3:47. [PMID: 22566929 PMCID: PMC3342378 DOI: 10.3389/fimmu.2012.00047] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 02/28/2012] [Indexed: 12/25/2022] Open
Abstract
Negative costimulatory molecules, acting through so-called inhibitory pathways, play a crucial role in the control of T cell responses. This negative “second signal” opposes T cell receptor activation and leads to downregulation of T cell proliferation and promotes antigen specific tolerance. Much interest has focused upon these pathways in recent years as a method to control detrimental alloresponses and promote allograft tolerance. However, recent experimental data highlights the complexity of negative costimulatory pathways in alloimmunity. Varying effects are observed from molecules expressed on donor and recipient tissues and also depending upon the activation status of immune cells involved. There appears to be significant overlap and redundancy within these systems, rendering this a challenging area to understand and exploit therapeutically. In this article, we will review the literature at the current time regarding the major negative costimulation pathways including CTLA-4:B7, PD-1:PD-L1/PD-L2 and PD-L1:B7-1, B7-H3, B7-H4, HVEM:BTLA/CD160, and TIM-3:Galectin-9. We aim to outline the role of these pathways in alloimmunity and discuss their potential applications for tolerance induction in transplantation.
Collapse
Affiliation(s)
- Martina M McGrath
- Transplantation Research Center, Brigham and Women's Hospital and Children's Hospital, Harvard Medical School Boston, MA, USA
| | | |
Collapse
|
9
|
Burns AM, Chong AS. Alloantibodies prevent the induction of transplantation tolerance by enhancing alloreactive T cell priming. THE JOURNAL OF IMMUNOLOGY 2010; 186:214-21. [PMID: 21135169 DOI: 10.4049/jimmunol.1001172] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Circulating alloantibodies in transplant recipients are often associated with increased Ab-mediated as well as cellular rejection. We tested the hypothesis that alloantibodies facilitate cellular rejection by functioning as opsonins to enhance T cell activation using a BALB/c to C57BL/6 heart or skin transplant model. Long-term heart and skin survival induced with anti-CD154 alone or in combination with donor-specific transfusion (DST), respectively, was abrogated by the presence of anti-K(d) mAbs, and alloreactive T cell activation as well as acute rejection was observed. The prevention of graft acceptance in the skin model was dependent on anti-K(d) binding to and converting DST from tolerigenic to immunogenic. Adoptive transfer of CFSE-labeled TCR-transgenic T cells into B6 recipients treated with anti-CD154/DST revealed the ability of anti-K(d) to enhance the proliferation of anti-K(d)-specific T cells via the indirect pathway as well as of non-K(d)-reactive, recipient MHC-restricted CD4(+) and CD8(+) T cells. Thus, alloantibodies with restricted specificity are able to facilitate the indirect presentation as well as the cross-presentation of a larger repertoire of "linked" donor-derived Ags. These observations highlight the ability of alloantibodies to function not only in classical humoral rejection but also as opsonins that facilitate the CD40-CD154-independent activation of alloreactive T cells.
Collapse
Affiliation(s)
- Audrea M Burns
- Section of Transplantation, Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
10
|
Gorczynski RM, Chen Z, He W, Khatri I, Sun Y, Yu K, Boudakov I. Expression of a CD200 transgene is necessary for induction but not maintenance of tolerance to cardiac and skin allografts. THE JOURNAL OF IMMUNOLOGY 2009; 183:1560-8. [PMID: 19592654 DOI: 10.4049/jimmunol.0900200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD200, a type 2 transmembrane molecule of the Ig supergene family, can induce immunosuppression in a number of biological systems, as well as promote increased graft acceptance, following binding to its receptors (CD200Rs). Skin and cardiac allograft acceptance are readily induced in transgenic mice overexpressing CD200 under control of a doxycycline-inducible promoter, both of which are associated with increased intragraft expression of mRNAs for a number of genes associated with altered T cell subset differentiation, including GATA-3, type 2 cytokines (IL-4, IL-13), GITR, and Foxp3. Interestingly, some 12-15 days after grafting, induction of transgenic CD200 expression can be stopped (by doxycycline withdrawal), without obvious significant effect on graft survival. However, neutralization of all CD200 expression (including endogenous CD200 expression) by anti-CD200 mAb caused graft loss, as did introduction of an acute inflammatory stimulus (LPS, 10 microg/mouse, delivered by i.p. injection). We conclude that even with apparently stably accepted tissue allografts, disruption of the immunoregulatory balance by an intense inflammatory stimulus can cause graft loss.
Collapse
|
11
|
Liu W, Gao C, Zhou BG, Li WM. Effects of adenovirus-mediated gene transfer of ICOSIg and CTLA4Ig fusion protein on experimental autoimmune myocarditis. Autoimmunity 2009; 39:83-92. [PMID: 16698663 DOI: 10.1080/08916930500507870] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To explore the therapeutic alliance effects of adenovirus vector-mediated gene transfer of ICOSIg and CTLA4Ig fusion protein on experimental autoimmune myocarditis (EAM). METHODS Expression vector pAdeno-CTLA4Ig and pAdeno-ICOSIg was constructed and transfected into HEK293 cells. Adenovirus expresses CTLA4Ig and ICOSIg was produced. Ad-CMV-GFP was used as controls. EAM was induced in Lewis rats by injection of procine cardiac myosin. All the immunized rats were divided into four groups. Group A (n = 15) received adenovirus containing CTLA4Ig and ICOSIg from day 14-28; group B (n = 15), group C (n = 15) and group D (n = 15) received adenovirus containing CTLA4Ig, ICOSIg and GFP, respectively. Group E (n = 10) was normal controls never received immunization. On day 28, all the rats were killed after echocardiography examination. Histopathological examination was used to observe inflammation in the myocardium. Western blot was used to detect CTLA4, ICOS, ICOSL and competitive RT-PCR for B7-1, B7-2 expression. T lymphocyte proliferation assay was performed and ELISPOT was used to detect the Th1 and Th2 production. RESULTS Alliance application of CTLA4Ig and ICOSIg exerts therapeutic effects on EAM. After a treatment duration of 14 days, cardiac function and myocardial inflammation improved significantly compared to group D. Expression of CTLA-4, ICOS and ICOSL, B7-1 was statistically decreased in group A, B and C compared with group D. T-cell proliferation was inhibited by costimulatory blockade in a dose-dependent style. ICOSIg blockade significantly augments IL-4 and IL-10 production while diminished IFN-gamma production. CONCLUSIONS Blockade of costimulatory pathway with alliance therapy of CTLA4Ig and ICOSIg alleviated autoimmune damage in EAM and improved cardiac function. The mechanisms may be downregulation of costimulatory molecules and anti-inflammation.
Collapse
Affiliation(s)
- W Liu
- The First Affiliated Hospital, Harbin Medical University, Department of Cardiology, Heilongjiang, 150001, PR China.
| | | | | | | |
Collapse
|
12
|
Guillonneau C, Séveno C, Dugast AS, Li XL, Renaudin K, Haspot F, Usal C, Veziers J, Anegon I, Vanhove B. Anti-CD28 antibodies modify regulatory mechanisms and reinforce tolerance in CD40Ig-treated heart allograft recipients. THE JOURNAL OF IMMUNOLOGY 2008; 179:8164-71. [PMID: 18056359 DOI: 10.4049/jimmunol.179.12.8164] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Blockade of CD40-CD40 ligand (CD40L) costimulation has been shown to synergize with that of CTLA4/CD28-B7 to promote transplant tolerance. To date, however, CD28-B7 interactions have been prevented using B7-blocking reagents like CTLA4-Ig that inhibit CD28-B7 together with CTLA4-B7 interactions. In this study, we have tested anti-CD28 Abs to prevent selectively CD28-B7 interactions while preserving CTLA4-B7 in addition to CD40-CD40L blockade. In the LEW.1W to LEW.1A rat combination, interfering with CD40-CD40L interactions by CD40Ig administration through gene transfer resulted in indefinite heart allograft survival due to the appearance of clonotypic CD8+CD45RClow regulatory T cells that were capable of transferring the tolerant state to naive animals. However, cardiac transplants in these recipients systematically developed chronic rejection lesions. Whereas anti-CD28 Ab monotherapy only delayed acute rejection and failed to induce tolerance, coadministration of anti-CD28 Abs and CD40Ig resulted in the long-term acceptation of allografts without chronic rejection lesions in 60% of the recipients, reduced the level of intragraft mRNA transcripts for cytokines and immune factors, and fully abrogated alloantibody production. In addition, the nature of regulatory cells was modified: the CD8+CD45RClow clonotypic T cells described in the CD40Ig-treated animals could not be found in cotreated animals, and the other CD8+CD45RClow cells had no regulatory activity and a different cytokine expression profile. Instead, in cotreated recipients we found IDO-dependent non-T cells with regulatory activity in vitro. Thus, the addition of a short-term anti-CD28 treatment with CD40Ig resulted in decreased heart allograft chronic rejection lesions, complete inhibition of Ab production, and modified regulatory mechanisms.
Collapse
Affiliation(s)
- Carole Guillonneau
- Institut National de la Santé et de la Recherche Médicale, Unité 643, Centre Hospitalier de l'Université Nantes, Institut de Transplantation et de Recherche en Transplantation, Université de Nantes, Faculté de Médecine, Nantes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Huurman VAL, Unger WWJ, Koeleman BPC, Oaks MK, Chandraker AK, Terpstra OT, Roep BO. Differential inhibition of autoreactive memory- and alloreactive naive T cell responses by soluble cytotoxic T lymphocyte antigen 4 (sCTLA4), CTLA4Ig and LEA29Y. Clin Exp Immunol 2007; 150:487-93. [PMID: 17924973 DOI: 10.1111/j.1365-2249.2007.03513.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cytotoxic T lymphocyte antigen 4 (CTLA4) is a potent inhibitory co-stimulatory molecule believed to be involved in type 1 diabetes and other autoimmune diseases. An association has been reported of both mRNA expression and serum levels of the soluble splice variant of CTLA4 (sCTLA4) with type 1 diabetes. Furthermore, recombinant fusion proteins CTLA4Ig and LEA29Y have been proposed as therapies for type 1 diabetes. We studied the role of (s)CTLA4 in islet autoimmunity. Binding capacity of the proteins to antigen-presenting cells was determined by flow cytometry in competition and binding assays. Functionality of sCTLA4 as well as the therapeutic inhibitory fusion proteins CTLA4Ig and LEA29Y was measured in a dose-response lymphocyte stimulation test, using a panel of diabetes-associated T cell clones reactive to islet autoantigens. As controls, mixed lymphocyte reactions (MLR) were performed to assess functionality of these proteins in a primary alloreactive setting. All three CTLA4 molecules were able to bind to antigen-presenting cells and inhibit the expression of CD80/CD86. sCTLA4 was able to suppress proliferation of different committed autoreactive T cell clones in a dose-dependent manner, whereas CTLA4Ig and LEA29Y were not. Conversely, CTLA4Ig and LEA29Y, rather than sCTLA4, were able to suppress naive alloreactive proliferation in a MLR. Our results indicate a differential role for sCTLA4, CTLA4Ig and LEA29Y proteins in memory versus primary immune responses with implications for efficacy in intervention therapy.
Collapse
Affiliation(s)
- V A L Huurman
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
14
|
Zhao GH, Sun HZ, Zhong XP, Zhang JX, Xu GY, Zhao N, Cheng Y, Zhang JL, Liu YF. Preventive effect of pcDNA3-CTLA4Ig plasmid transfection on islet allograft rejection in mice. Shijie Huaren Xiaohua Zazhi 2007; 15:1596-1601. [DOI: 10.11569/wcjd.v15.i14.1596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the effect of pcDNA3-CTLA4Ig plasmid on islet allograft rejection in mice.
METHODS: C57BL/6 mice were randomly divided into control group, blank group and experiment group (transfected with pcDNA3-CTLA4Ig plasmid). The level of serum CTLA4Ig was detected by Western blot on day 5 after transfection. Blood glucose was examined after operation every other day. Immunohistochemical staining was used to determine the expression of insulin. 3H-thymidine incorporation was performed to detect the ability of T lymphocyte increment and the levels of CD4+ and CD8+ T lymphocytes were detected by flow cytometry on day 7 after transplantation.
RESULTS: Five days after transfection, Western blot demonstrated serum expression of CTLA4Ig, and the transfection efficacy was 27.50%. Blood glucose maintained at the normal level for a longer period of time in the experiment group, and on day 7, the proliferation of lymphocytes was markedly decreased (P < 0.05). The levels of CD4+ and CD8+ T lymphocytes were significantly lower in the experiment group than those in the control and blank group (CD4+: 14.38% ± 0.84% vs 20.56% ± 0.68%, 21.04% ± 1.14%, P < 0.05; CD8+: 14.77% ± 0.92% vs 24.63% ± 1.30%, 23.84% ± 1.21%, P < 0.05), and the intensity of immunohistochemical staining was also stronger.
CONCLUSION: CTLA4 gene can be transferred into mouse muscular cells by cation liposome and express its products in the serum, which leads to the inhibition of islet allograft rejection by the blockage of B7/CD28 signal pathway.
Collapse
|
15
|
Bulwin GC, Heinemann T, Bugge V, Winter M, Lohan A, Schlawinsky M, Schulze A, Wälter S, Sabat R, Schülein R, Wiesner B, Veh RW, Löhler J, Blumberg RS, Volk HD, Utku N. TIRC7 inhibits T cell proliferation by modulation of CTLA-4 expression. THE JOURNAL OF IMMUNOLOGY 2007; 177:6833-41. [PMID: 17082597 DOI: 10.4049/jimmunol.177.10.6833] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ab targeting of TIRC7 has been shown previously to inhibit T cell proliferation and Th1 lymphocyte-associated cytokine production. In this study, we demonstrate that Ab targeting of TIRC7 induces early cell surface expression of CTLA-4. The majority of stimulated CD4+ and CD8+ human T cells coexpress CTLA-4 and TIRC7. Similar to CTLA-4, TIRC7 rapidly accumulates at the site of Ag adhesion upon T cell activation. TIRC7 seems to colocalize with CTLA-4 in human T cells, and both molecules are associated with clathrin-coated vesicles, indicating they share intracellular transport systems. Moreover, Ab targeting of TIRC7 results in an early activation of CTLA-4 transcription. The inhibition of cell proliferation mediated by TIRC7 is dependent on CTLA-4 expression because the TIRC7-mediated inhibitory effects on cell proliferation and cytokine expression are abolished by Ab blockade of CTLA-4. Splenocytes obtained from CTLA-4-deficient mice are not responsive to TIRC7 Ab targeting. Thus, TIRC7 acts as an upstream regulatory molecule of CTLA-4 expression.
Collapse
Affiliation(s)
- Grit-Carsta Bulwin
- Institut für Medizinische Immunologie, Campus Charité Mitte, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sansom DM, Walker LSK. The role of CD28 and cytotoxic T-lymphocyte antigen-4 (CTLA-4) in regulatory T-cell biology. Immunol Rev 2006; 212:131-48. [PMID: 16903911 DOI: 10.1111/j.0105-2896.2006.00419.x] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The profound influence of CD28 and cytotoxic T-lymphocyte antigen-4 (CTLA-4) on T-cell immunity has been known for over a decade, yet the precise roles played by these molecules still continue to emerge. Initially viewed as molecules that provide cell-intrinsic costimulatory and inhibitory signals, recent evidence suggests that both CD28 and CTLA-4 are also important in the homeostasis and function of a population of suppressive cells, termed regulatory T cells (Tregs). Here we review the main features of the CD28 and CTLA-4 system and examine how these impact upon Treg biology.
Collapse
Affiliation(s)
- David M Sansom
- MRC Centre for Immune Regulation, University of Birmingham Medical School, Birmingham, UK.
| | | |
Collapse
|
17
|
Hryniewicz A, Boasso A, Edghill-Smith Y, Vaccari M, Fuchs D, Venzon D, Nacsa J, Betts MR, Tsai WP, Heraud JM, Beer B, Blanset D, Chougnet C, Lowy I, Shearer GM, Franchini G. CTLA-4 blockade decreases TGF-beta, IDO, and viral RNA expression in tissues of SIVmac251-infected macaques. Blood 2006; 108:3834-42. [PMID: 16896154 PMCID: PMC1895471 DOI: 10.1182/blood-2006-04-010637] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Regulatory T (T(reg)) cells are a subset of CD25(+)CD4(+) T cells that constitutively express high levels of cytotoxic T lymphocyte antigen-4 (CTLA-4) and suppress T-cell activation and effector functions. T(reg) cells are increased in tissues of individuals infected with HIV-1 and macaques infected with simian immunodeficiency virus (SIV(mac251)). In HIV-1 infection, T(reg) cells could exert contrasting effects: they may limit viral replication by decreasing immune activation, or they may increase viral replication by suppressing virusspecific immune response. Thus, the outcome of blocking T(reg) function in HIV/SIV should be empirically tested. Here, we demonstrate that CD25(+) T cells inhibit virus-specific T-cell responses in cultured T cells from blood and lymph nodes of SIV-infected macaques. We investigated the impact of CTLA-4 blockade using the anti-CTLA-4 human antibody MDX-010 in SIV-infected macaques treated with antiretroviral therapy (ART). CTLA-4 blockade decreased expression of the tryptophan-depleting enzyme IDO and the level of the suppressive cytokine transforming growth factor-beta (TGF-beta) in tissues. CTLA-4 blockade was associated with decreased viral RNA levels in lymph nodes and an increase in the effector function of both SIV-specific CD4(+) and CD8(+) T cells. Therefore, blunting T(reg) function in macaques infected with SIV did not have detrimental virologic effects and may provide a valuable approach to complement ART and therapeutic vaccination in the treatment of HIV-1 infection.
Collapse
MESH Headings
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antigens, CD/immunology
- Antigens, Differentiation/immunology
- CTLA-4 Antigen
- Gene Expression Regulation, Viral/drug effects
- Gene Expression Regulation, Viral/immunology
- HIV Infections/genetics
- HIV Infections/immunology
- HIV Infections/therapy
- HIV-1/immunology
- Humans
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology
- Macaca mulatta
- RNA, Viral/genetics
- RNA, Viral/immunology
- Simian Acquired Immunodeficiency Syndrome/genetics
- Simian Acquired Immunodeficiency Syndrome/immunology
- Simian Acquired Immunodeficiency Syndrome/therapy
- Simian Immunodeficiency Virus/genetics
- Simian Immunodeficiency Virus/immunology
- T-Lymphocytes, Regulatory/immunology
- Transcription, Genetic/immunology
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/immunology
- Vaccination/methods
- Virus Replication/drug effects
- Virus Replication/immunology
Collapse
|
18
|
|