1
|
Bellini G, Di Rauso G, Fontanelli L, Benevento E, Becattini L, Frosini D, Ceravolo R, Del Prete E. Deep brain stimulation in progressive supranuclear palsy: a dead-end story? A narrative review. J Neural Transm (Vienna) 2025:10.1007/s00702-025-02904-4. [PMID: 40123032 DOI: 10.1007/s00702-025-02904-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/26/2025] [Indexed: 03/25/2025]
Abstract
Progressive supranuclear palsy (PSP) is a rare, debilitating neurodegenerative disorder that significantly impairs both motor and cognitive functions. Current pharmacological treatments offer only transient symptomatic relief, driving interest in the past in alternative therapeutic strategies such as deep brain stimulation. Deep brain stimulation (DBS), known for its success in treating motor symptoms of Parkinson's disease, has been explored as a possible symptomatic treatment for PSP, considering the pedunculopontine nucleus (PPN), involved in motor control and postural stability, as a promising target for deep brain stimulation in PSP. However, its complex anatomy and the clinical variability of PSP complicate the prediction and generalization of the effectiveness of DBS. The present review examines the existing studies in the literature about DBS in PSP patients. Some studies highlighted modest benefits in motor symptoms, while others reported variable outcomes and inherent risks of the procedure. Generally, patients with a parkinsonism predominant phenotype have shown some subjective or clinical improvements in gait and balance when subjected to low-frequency stimulation. While DBS of the PPN holds promise for ameliorating gait and balance of PSP, current evidence does not yet establish clear criteria for ideal candidates, nor does it provide overwhelmingly supportive results in favor of PPN-DBS in PSP patients. Without any further systematic study is not possible to define accurate candidate selection parameters and understand long-term outcomes and safety profiles.
Collapse
Affiliation(s)
- Gabriele Bellini
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Department of Neurology, the Marlene and Paolo Fresco Institute for Parkinson's Disease and Movement Disorders, New York University Langone Health, New York, NY, 10017, USA
| | - Giulia Di Rauso
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Lorenzo Fontanelli
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Health Science Interdisciplinary Centre, Sant'Anna School of Advanced Studies, PisaNeurology Unit, Department of Medical Specialties, AOUP, Pisa, Italy
| | - Elena Benevento
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lucrezia Becattini
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Daniela Frosini
- Neurology Unit, Department of Neuroscience, AOUP, Via Roman. 67, 56126, Pisa, Italy
| | - Roberto Ceravolo
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Center for Neurodegenerative Diseases, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Del Prete
- Neurology Unit, Department of Neuroscience, AOUP, Via Roman. 67, 56126, Pisa, Italy.
| |
Collapse
|
2
|
Witzig V, Pjontek R, Tan SKH, Schulz JB, Holtbernd F. Modulating the cholinergic system-Novel targets for deep brain stimulation in Parkinson's disease. J Neurochem 2025; 169:e16264. [PMID: 39556446 PMCID: PMC11808463 DOI: 10.1111/jnc.16264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/20/2024]
Abstract
Parkinson's disease (PD) is the second-fastest growing neurodegenerative disease in the world. The major clinical symptoms rigor, tremor, and bradykinesia derive from the degeneration of the nigrostriatal pathway. However, PD is a multi-system disease, and neurodegeneration extends beyond the degradation of the dopaminergic pathway. Symptoms such as postural instability, freezing of gait, falls, and cognitive decline are predominantly caused by alterations of transmitter systems outside the classical dopaminergic axis. While levodopa and deep brain stimulation (DBS) of the subthalamic nucleus or globus pallidus internus effectively address PD primary motor symptoms, they often fall short in mitigating axial symptoms and cognitive impairment. Along these lines, the cholinergic system is increasingly recognized to play a crucial role in governing locomotion, postural stability, and cognitive function. Thus, there is a growing interest in bolstering the cholinergic tone by DBS of cholinergic targets such as the pedunculopontine nucleus (PPN) and nucleus basalis of Meynert (NBM), aiming to alleviate these debilitating symptoms resistant to traditional treatment strategies targeting the dopaminergic network. This review offers a comprehensive overview of the role of cholinergic dysfunction in PD. We discuss the impact of PPN and NBM DBS on the management of symptoms not readily accessible to established DBS targets and pharmacotherapy in PD and seek to provide guidance on patient selection, surgical approach, and stimulation paradigms.
Collapse
Affiliation(s)
- V. Witzig
- Department of NeurologyRWTH Aachen UniversityAachenGermany
| | - R. Pjontek
- Department of NeurosurgeryRWTH Aachen UniversityAachenGermany
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital CologneCologneGermany
| | - S. K. H. Tan
- Department of NeurosurgeryAntwerp University HospitalEdegemBelgium
- Translational Neurosciences, Faculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium
| | - J. B. Schulz
- Department of NeurologyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and NeuroimagingJülich Research Center GmbH and RWTH Aachen UniversityAachenGermany
| | - F. Holtbernd
- Department of NeurologyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and NeuroimagingJülich Research Center GmbH and RWTH Aachen UniversityAachenGermany
- Jülich Research Center, Institutes of Neuroscience and Medicine (INM‐4, INM‐11)JülichGermany
| |
Collapse
|
3
|
Huang Y, Wang S, Wang Q, Zheng C, Yang F, Wei L, Zhou X, Wang Z. Glutamatergic Circuits in the Pedunculopontine Nucleus Modulate Multiple Motor Functions. Neurosci Bull 2024; 40:1713-1731. [PMID: 39527367 DOI: 10.1007/s12264-024-01314-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
The functional role of glutamatergic (vGluT2) neurons in the pedunculopontine nucleus (PPN) in modulating motor activity remains controversial. Here, we demonstrated that the activity of vGluT2 neurons in the rostral PPN is correlated with locomotion and ipsilateral head-turning. Beyond these motor functions, we found that these rostral PPN-vGluT2 neurons remarkably respond to salient stimuli. Furthermore, we systematically traced the upstream and downstream projections of these neurons and identified two downstream projections from these neurons to the caudal pontine reticular nucleus/anterior gigantocellular reticular nucleus (PnC/GiA) and the zona incerta (ZI). Our findings indicate that the projections to the PnC/GiA inhibit movement, consistent with 'pause-and-play' behavior, whereas those to the ZI promote locomotion, and others respond to a new 'pause-switch-play' pattern. Collectively, these findings elucidate the multifaceted influence of the PPN on motor functions and provide a robust theoretical framework for understanding its physiological and potential therapeutic implications.
Collapse
Affiliation(s)
- Yanwang Huang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shangyi Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingxiu Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chaowen Zheng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Wei
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xintong Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zuoren Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
4
|
Beauséjour PA, Veilleux JC, Condamine S, Zielinski BS, Dubuc R. Olfactory Projections to Locomotor Control Centers in the Sea Lamprey. Int J Mol Sci 2024; 25:9370. [PMID: 39273317 PMCID: PMC11395479 DOI: 10.3390/ijms25179370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Although olfaction is well known to guide animal behavior, the neural circuits underlying the motor responses elicited by olfactory inputs are poorly understood. In the sea lamprey, anatomical evidence shows that olfactory inputs project to the posterior tuberculum (PT), a structure containing dopaminergic (DA) neurons homologous to the mammalian ventral tegmental area and the substantia nigra pars compacta. Olfactory inputs travel directly from the medial olfactory bulb (medOB) or indirectly through the main olfactory bulb and the lateral pallium (LPal). Here, we characterized the transmission of olfactory inputs to the PT in the sea lamprey, Petromyzon marinus. Abundant projections from the medOB were observed close to DA neurons of the PT. Moreover, electrophysiological experiments revealed that PT neurons are activated by both the medOB and LPal, and calcium imaging indicated that the olfactory signal is then relayed to the mesencephalic locomotor region to initiate locomotion. In semi-intact preparations, stimulation of the medOB and LPal induced locomotion that was tightly associated with neural activity in the PT. Moreover, PT neurons were active throughout spontaneously occurring locomotor bouts. Altogether, our observations suggest that the medOB and LPal convey olfactory inputs to DA neurons of the PT, which in turn activate the brainstem motor command system to elicit locomotion.
Collapse
Affiliation(s)
| | - Jean-Christophe Veilleux
- Research Group in Adapted Physical Activity, Department of Exercise Sciences, Faculty of Sciences, University of Quebec in Montreal, Montreal, QC H2X 1Y4, Canada
| | - Steven Condamine
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Barbara S Zielinski
- Department of Integrative Biology, Faculty of Science, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Réjean Dubuc
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
- Research Group in Adapted Physical Activity, Department of Exercise Sciences, Faculty of Sciences, University of Quebec in Montreal, Montreal, QC H2X 1Y4, Canada
| |
Collapse
|
5
|
Gittis AH, Sillitoe RV. Circuit-Specific Deep Brain Stimulation Provides Insights into Movement Control. Annu Rev Neurosci 2024; 47:63-83. [PMID: 38424473 DOI: 10.1146/annurev-neuro-092823-104810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Deep brain stimulation (DBS), a method in which electrical stimulation is delivered to specific areas of the brain, is an effective treatment for managing symptoms of a number of neurological and neuropsychiatric disorders. Clinical access to neural circuits during DBS provides an opportunity to study the functional link between neural circuits and behavior. This review discusses how the use of DBS in Parkinson's disease and dystonia has provided insights into the brain networks and physiological mechanisms that underlie motor control. In parallel, insights from basic science about how patterns of electrical stimulation impact plasticity and communication within neural circuits are transforming DBS from a therapy for treating symptoms to a therapy for treating circuits, with the goal of training the brain out of its diseased state.
Collapse
Affiliation(s)
- Aryn H Gittis
- Department of Biological Sciences and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA;
| | - Roy V Sillitoe
- Departments of Neuroscience, Pathology & Immunology, and Pediatrics; and Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
6
|
Ryczko D. The Mesencephalic Locomotor Region: Multiple Cell Types, Multiple Behavioral Roles, and Multiple Implications for Disease. Neuroscientist 2024; 30:347-366. [PMID: 36575956 PMCID: PMC11107129 DOI: 10.1177/10738584221139136] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The mesencephalic locomotor region (MLR) controls locomotion in vertebrates. In humans with Parkinson disease, locomotor deficits are increasingly associated with decreased activity in the MLR. This brainstem region, commonly considered to include the cuneiform and pedunculopontine nuclei, has been explored as a target for deep brain stimulation to improve locomotor function, but the results are variable, from modest to promising. However, the MLR is a heterogeneous structure, and identification of the best cell type to target is only beginning. Here, I review the studies that uncovered the role of genetically defined MLR cell types, and I highlight the cells whose activation improves locomotor function in animal models of Parkinson disease. The promising cell types to activate comprise some glutamatergic neurons in the cuneiform and caudal pedunculopontine nuclei, as well as some cholinergic neurons of the pedunculopontine nucleus. Activation of MLR GABAergic neurons should be avoided, since they stop locomotion or evoke bouts flanked with numerous stops. MLR is also considered a potential target in spinal cord injury, supranuclear palsy, primary progressive freezing of gait, or stroke. Better targeting of the MLR cell types should be achieved through optimized deep brain stimulation protocols, pharmacotherapy, or the development of optogenetics for human use.
Collapse
Affiliation(s)
- Dimitri Ryczko
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Canada
- Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada
- Neurosciences Sherbrooke, Sherbrooke, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
7
|
Cavallieri F, Mulroy E, Moro E. The history of deep brain stimulation. Parkinsonism Relat Disord 2024; 121:105980. [PMID: 38161106 DOI: 10.1016/j.parkreldis.2023.105980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Deep brain stimulation (DBS) surgery is an established and effective treatment for several movement disorders (tremor, Parkinson's disease, and dystonia), and is under investigation in numerous other neurological and psychiatric disorders. However, the origins and development of this neurofunctional technique are not always well understood and recognized. In this mini-review, we review the history of DBS, highlighting important milestones and the most remarkable protagonists (neurosurgeons, neurologists, and neurophysiologists) who pioneered and fostered this therapy throughout the 20th and early 21st century. Alongside DBS historical markers, we also briefly discuss newer developments in the field, and the future challenges which accompany such progress.
Collapse
Affiliation(s)
- Francesco Cavallieri
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Eoin Mulroy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Elena Moro
- Grenoble Alpes University, Division of Neurology, Centre Hospitalier Universitaire de Grenoble, Grenoble Institute of Neuroscience, INSERM U1216, Grenoble, France.
| |
Collapse
|
8
|
Scheuber MI, Guidolin C, Martins S, Sartori AM, Hofer AS, Schwab ME. Electrical stimulation of the cuneiform nucleus enhances the effects of rehabilitative training on locomotor recovery after incomplete spinal cord injury. Front Neurosci 2024; 18:1352742. [PMID: 38595973 PMCID: PMC11002271 DOI: 10.3389/fnins.2024.1352742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
Most human spinal cord injuries are anatomically incomplete, leaving some fibers still connecting the brain with the sublesional spinal cord. Spared descending fibers of the brainstem motor control system can be activated by deep brain stimulation (DBS) of the cuneiform nucleus (CnF), a subnucleus of the mesencephalic locomotor region (MLR). The MLR is an evolutionarily highly conserved structure which initiates and controls locomotion in all vertebrates. Acute electrical stimulation experiments in female adult rats with incomplete spinal cord injury conducted in our lab showed that CnF-DBS was able to re-establish a high degree of locomotion five weeks after injury, even in animals with initially very severe functional deficits and white matter lesions up to 80-95%. Here, we analyzed whether CnF-DBS can be used to support medium-intensity locomotor training and long-term recovery in rats with large but incomplete spinal cord injuries. Rats underwent rehabilitative training sessions three times per week in an enriched environment, either with or without CnF-DBS supported hindlimb stepping. After 4 weeks, animals that trained under CnF-DBS showed a higher level of locomotor performance than rats that trained comparable distances under non-stimulated conditions. The MLR does not project to the spinal cord directly; one of its main output targets is the gigantocellular reticular nucleus in the medulla oblongata. Long-term electrical stimulation of spared reticulospinal fibers after incomplete spinal cord injury via the CnF could enhance reticulospinal anatomical rearrangement and in this way lead to persistent improvement of motor function. By analyzing the spared, BDA-labeled giganto-spinal fibers we found that their gray matter arborization density after discontinuation of CnF-DBS enhanced training was lower in the lumbar L2 and L5 spinal cord in stimulated as compared to unstimulated animals, suggesting improved pruning with stimulation-enhanced training. An on-going clinical study in chronic paraplegic patients investigates the effects of CnF-DBS on locomotor capacity.
Collapse
Affiliation(s)
- Myriam I. Scheuber
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- ETH Phenomics Center, ETH Zurich, Zurich, Switzerland
| | - Carolina Guidolin
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- ETH Phenomics Center, ETH Zurich, Zurich, Switzerland
| | - Suzi Martins
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- ETH Phenomics Center, ETH Zurich, Zurich, Switzerland
| | - Andrea M. Sartori
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- ETH Phenomics Center, ETH Zurich, Zurich, Switzerland
| | - Anna-Sophie Hofer
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- ETH Phenomics Center, ETH Zurich, Zurich, Switzerland
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Martin E. Schwab
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- ETH Phenomics Center, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Coulombe V, Goetz L, Bhattacharjee M, Gould PV, Saikali S, Takech MA, Philippe É, Parent A, Parent M. Cholinergic and Nadph-δ neurons in the pedunculopontine and laterodorsal tegmental nuclei of human and nonhuman primates. J Comp Neurol 2024; 532:e25570. [PMID: 38108576 DOI: 10.1002/cne.25570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/25/2023] [Accepted: 11/24/2023] [Indexed: 12/19/2023]
Abstract
The brainstem pedunculopontine (PPN) and laterodorsal tegmental (LDTg) nuclei are involved in multifarious activities, including motor control. Yet, their exact cytoarchitectural boundaries are still uncertain. We therefore initiated a comparative study of the topographical and neurochemical organization of the PPN and LDTg in cynomolgus monkeys (Macaca fascicularis) and humans. The distribution and morphological characteristics of neurons expressing choline acetyltransferase (ChAT) and/or nicotinamide adenine dinucleotide phosphate diaphorase (Nadph-δ) were documented. The number and density of the labeled neurons were obtained by stringent stereological methods, whereas their topographical distribution was reported upon corresponding magnetic resonance imaging (MRI) planes. In both human and nonhuman primates, the PPN and LDTg are populated by three neurochemically distinct types of neurons (ChAT-/Nadph-δ+, ChAT+/Nadph-δ-, and ChAT+/Nadph-δ+), which are distributed according to a complex spatial interplay. Three-dimensional reconstructions reveal that ChAT+ neurons in the PPN and LDTg form a continuum with some overlaps with pigmented neurons of the locus coeruleus, dorsally, and of the substantia nigra (SN) complex, ventrally. The ChAT+ neurons in the PPN and LDTg are -two to three times more numerous in humans than in monkeys but their density is -three to five times higher in monkeys than in humans. Neurons expressing both ChAT and Nadph-δ have a larger cell body and a longer primary dendritic arbor than singly labeled neurons. Stereological quantification reveals that 25.6% of ChAT+ neurons in the monkey PPN are devoid of Nadph-δ staining, a finding that questions the reliability of Nadph-δ as a marker for cholinergic neurons in primate brainstem.
Collapse
Affiliation(s)
| | - Laurent Goetz
- Hôpital Fondation Rothschild, Neurochirurgie pédiatrique - Unité Parkinson, Paris, France
| | - Manik Bhattacharjee
- Grenoble Institut des Neurosciences, Université Grenoble Alpes, Inserm, Grenoble, France
- CNRS, UMR, Grenoble INP, TIMC, Grenoble, France
| | - Peter V Gould
- Hôpital de L'Enfant-Jésus, CHU de Québec-Université Laval, Quebec City, QC, Canada
| | - Stephan Saikali
- Hôpital de L'Enfant-Jésus, CHU de Québec-Université Laval, Quebec City, QC, Canada
| | | | - Éric Philippe
- Laboratoire d'Anatomie, Université Laval, Quebec City, QC, Canada
| | - André Parent
- CERVO Brain Research Center, Quebec City, QC, Canada
| | - Martin Parent
- CERVO Brain Research Center, Quebec City, QC, Canada
| |
Collapse
|
10
|
Kroneberg D, Al-Fatly B, Morkos C, Steiner LA, Schneider GH, Kühn A. Kinematic Effects of Combined Subthalamic and Dorsolateral Nigral Deep Brain Stimulation in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:269-282. [PMID: 38363617 PMCID: PMC10977420 DOI: 10.3233/jpd-230181] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 02/17/2024]
Abstract
Background Additional stimulation of the substantia nigra (SNr) has been proposed to target axial symptoms and gait impairment in patients with Parkinson's disease (PD). Objective This study aimed to characterize effects of combined deep brain stimulation (DBS) of the subthalamic nucleus (STN) and SNr on gait performance in PD and to map stimulation sites within the SNr. Methods In a double-blinded crossover design, 10 patients with PD and gait impairment underwent clinical examination and kinematic assessment with STN DBS, combined STN+SNr DBS and OFF DBS 30 minutes after reprogramming. To confirm stimulation within the SNr, electrodes, active contacts, and stimulation volumes were modeled in a common space and overlap with atlases of SNr was computed. Results Overlap of stimulation volumes with dorsolateral SNr was confirmed for all patients. UPDRS III, scoring of freezing during turning and transitioning, stride length, stride velocity, and range of motion of shank, knee, arm, and trunk as well as peak velocities during turning and transitions and turn duration were improved with STN DBS compared to OFF. On cohort level, no further improvement was observed with combined STN+SNr DBS but additive improvement of spatiotemporal gait parameters was observed in individual subjects. Conclusions Combined high frequency DBS of the STN and dorsolateral SNr did not consistently result in additional short-term kinematic or clinical benefit compared to STN DBS. Stimulation intervals, frequency, and patient selection for target symptoms as well as target region within the SNr need further refinement in future trials.
Collapse
Affiliation(s)
- Daniel Kroneberg
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Bassam Al-Fatly
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Cornelia Morkos
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leon Amadeus Steiner
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Gerd-Helge Schneider
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - A. Kühn
- Department of Neurology with Experimental Neurology, Movement Disorders and Neuromodulation Unit, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Charite - Universitatsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Charité – Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
11
|
Goñi-Erro H, Selvan R, Caggiano V, Leiras R, Kiehn O. Pedunculopontine Chx10 + neurons control global motor arrest in mice. Nat Neurosci 2023; 26:1516-1528. [PMID: 37501003 PMCID: PMC10471498 DOI: 10.1038/s41593-023-01396-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/22/2023] [Indexed: 07/29/2023]
Abstract
Arrest of ongoing movements is an integral part of executing motor programs. Behavioral arrest may happen upon termination of a variety of goal-directed movements or as a global motor arrest either in the context of fear or in response to salient environmental cues. The neuronal circuits that bridge with the executive motor circuits to implement a global motor arrest are poorly understood. We report the discovery that the activation of glutamatergic Chx10-derived neurons in the pedunculopontine nucleus (PPN) in mice arrests all ongoing movements while simultaneously causing apnea and bradycardia. This global motor arrest has a pause-and-play pattern with an instantaneous interruption of movement followed by a short-latency continuation from where it was paused. Mice naturally perform arrest bouts with the same combination of motor and autonomic features. The Chx10-PPN-evoked arrest is different to ventrolateral periaqueductal gray-induced freezing. Our study defines a motor command that induces a global motor arrest, which may be recruited in response to salient environmental cues to allow for a preparatory or arousal state, and identifies a locomotor-opposing role for rostrally biased glutamatergic neurons in the PPN.
Collapse
Affiliation(s)
- Haizea Goñi-Erro
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Raghavendra Selvan
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Vittorio Caggiano
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Meta AI Research, New York, NY, USA
| | - Roberto Leiras
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Ole Kiehn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
12
|
Dubuc R, Cabelguen JM, Ryczko D. Locomotor pattern generation and descending control: a historical perspective. J Neurophysiol 2023; 130:401-416. [PMID: 37465884 DOI: 10.1152/jn.00204.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023] Open
Abstract
The ability to generate and control locomotor movements depends on complex interactions between many areas of the nervous system, the musculoskeletal system, and the environment. How the nervous system manages to accomplish this task has been the subject of investigation for more than a century. In vertebrates, locomotion is generated by neural networks located in the spinal cord referred to as central pattern generators. Descending inputs from the brain stem initiate, maintain, and stop locomotion as well as control speed and direction. Sensory inputs adapt locomotor programs to the environmental conditions. This review presents a comparative and historical overview of some of the neural mechanisms underlying the control of locomotion in vertebrates. We have put an emphasis on spinal mechanisms and descending control.
Collapse
Affiliation(s)
- Réjean Dubuc
- Groupe de Recherche en Activité Physique Adaptée, Département des Sciences de l'Activité Physique, Université du Québec à Montréal, Montreal, Quebec, Canada
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Marie Cabelguen
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 1215-Neurocentre Magendie, Université de Bordeaux, Bordeaux Cedex, France
| | - Dimitri Ryczko
- Département de Pharmacologie-Physiologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
- Neurosciences Sherbrooke, Sherbrooke, Quebec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
13
|
Roussel M, Lafrance-Zoubga D, Josset N, Lemieux M, Bretzner F. Functional contribution of mesencephalic locomotor region nuclei to locomotor recovery after spinal cord injury. Cell Rep Med 2023; 4:100946. [PMID: 36812893 PMCID: PMC9975330 DOI: 10.1016/j.xcrm.2023.100946] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/09/2022] [Accepted: 01/23/2023] [Indexed: 02/23/2023]
Abstract
Spinal cord injury (SCI) results in a disruption of information between the brain and the spinal circuit. Electrical stimulation of the mesencephalic locomotor region (MLR) can promote locomotor recovery in acute and chronic SCI rodent models. Although clinical trials are currently under way, there is still debate about the organization of this supraspinal center and which anatomic correlate of the MLR should be targeted to promote recovery. Combining kinematics, electromyographic recordings, anatomic analysis, and mouse genetics, our study reveals that glutamatergic neurons of the cuneiform nucleus contribute to locomotor recovery by enhancing motor efficacy in hindlimb muscles, and by increasing locomotor rhythm and speed on a treadmill, over ground, and during swimming in chronic SCI mice. In contrast, glutamatergic neurons of the pedunculopontine nucleus slow down locomotion. Therefore, our study identifies the cuneiform nucleus and its glutamatergic neurons as a therapeutical target to improve locomotor recovery in patients living with SCI.
Collapse
Affiliation(s)
- Marie Roussel
- Centre de Recherche du CHU de Québec, CHUL-Neurosciences, 2705 Boul. Laurier, Québec, QC G1V 4G2, Canada
| | - David Lafrance-Zoubga
- Centre de Recherche du CHU de Québec, CHUL-Neurosciences, 2705 Boul. Laurier, Québec, QC G1V 4G2, Canada
| | - Nicolas Josset
- Centre de Recherche du CHU de Québec, CHUL-Neurosciences, 2705 Boul. Laurier, Québec, QC G1V 4G2, Canada
| | - Maxime Lemieux
- Centre de Recherche du CHU de Québec, CHUL-Neurosciences, 2705 Boul. Laurier, Québec, QC G1V 4G2, Canada
| | - Frederic Bretzner
- Centre de Recherche du CHU de Québec, CHUL-Neurosciences, 2705 Boul. Laurier, Québec, QC G1V 4G2, Canada; Faculty of Medicine, Department of Psychiatry and Neurosciences, Université Laval, Québec, QC G1V 4G2, Canada.
| |
Collapse
|
14
|
Kroeger D, Thundercliffe J, Phung A, De Luca R, Geraci C, Bragg S, McCafferty KJ, Bandaru SS, Arrigoni E, Scammell TE. Glutamatergic pedunculopontine tegmental neurons control wakefulness and locomotion via distinct axonal projections. Sleep 2022; 45:zsac242. [PMID: 36170177 PMCID: PMC9742893 DOI: 10.1093/sleep/zsac242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/02/2022] [Indexed: 12/15/2022] Open
Abstract
STUDY OBJECTIVES The pedunculopontine tegmental (PPT) nucleus is implicated in many brain functions, ranging from sleep/wake control and locomotion, to reward mechanisms and learning. The PPT contains cholinergic, GABAergic, and glutamatergic neurons with extensive ascending and descending axonal projections. Glutamatergic PPT (PPTvGlut2) neurons are thought to promote wakefulness, but the mechanisms through which this occurs are unknown. In addition, some researchers propose that PPTvGlut2 neurons promote locomotion, yet even though the PPT is a target for deep brain stimulation in Parkinson's disease, the role of the PPT in locomotion is debated. We hypothesized that PPTvGluT2 neurons drive arousal and specific waking behaviors via certain projections and modulate locomotion via others. METHODS We mapped the axonal projections of PPTvGlut2 neurons using conditional anterograde tracing and then photostimulated PPTvGlut2 soma or their axon terminal fields across sleep/wake states and analyzed sleep/wake behavior, muscle activity, and locomotion in transgenic mice. RESULTS We found that stimulation of PPTvGlut2 soma and their axon terminals rapidly triggered arousals from non-rapid eye movement sleep, especially with activation of terminals in the basal forebrain (BF) and lateral hypothalamus (LH). With photoactivation of PPTvGlut2 terminals in the BF and LH, this wakefulness was accompanied by locomotion and other active behaviors, but stimulation of PPTvGlut2 soma and terminals in the substantia nigra triggered only quiet wakefulness without locomotion. CONCLUSIONS These findings demonstrate the importance of the PPTvGluT2 neurons in driving various aspects of arousal and show that heterogeneous brain nuclei, such as the PPT, can promote a variety of behaviors via distinct axonal projections.
Collapse
Affiliation(s)
- Daniel Kroeger
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Department of Anatomy, Physiology, and Pharmacology, Auburn University, Auburn, AL, USA
| | - Jack Thundercliffe
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Alex Phung
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Roberto De Luca
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Carolyn Geraci
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Samuel Bragg
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Kayleen J McCafferty
- Department of Anatomy, Physiology, and Pharmacology, Auburn University, Auburn, AL, USA
| | - Sathyajit S Bandaru
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Elda Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Hofer AS, Scheuber MI, Sartori AM, Good N, Stalder SA, Hammer N, Fricke K, Schalbetter SM, Engmann AK, Weber RZ, Rust R, Schneider MP, Russi N, Favre G, Schwab ME. Stimulation of the cuneiform nucleus enables training and boosts recovery after spinal cord injury. Brain 2022; 145:3681-3697. [PMID: 35583160 PMCID: PMC9586551 DOI: 10.1093/brain/awac184] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/07/2022] [Accepted: 05/04/2022] [Indexed: 11/15/2022] Open
Abstract
Severe spinal cord injuries result in permanent paraparesis in spite of the frequent sparing of small portions of white matter. Spared fibre tracts are often incapable of maintaining and modulating the activity of lower spinal motor centres. Effects of rehabilitative training thus remain limited. Here, we activated spared descending brainstem fibres by electrical deep brain stimulation of the cuneiform nucleus of the mesencephalic locomotor region, the main control centre for locomotion in the brainstem, in adult female Lewis rats. We show that deep brain stimulation of the cuneiform nucleus enhances the weak remaining motor drive in highly paraparetic rats with severe, incomplete spinal cord injuries and enables high-intensity locomotor training. Stimulation of the cuneiform nucleus during rehabilitative aquatraining after subchronic (n = 8 stimulated versus n = 7 unstimulated versus n = 7 untrained rats) and chronic (n = 14 stimulated versus n = 9 unstimulated versus n = 9 untrained rats) spinal cord injury re-established substantial locomotion and improved long-term recovery of motor function. We additionally identified a safety window of stimulation parameters ensuring context-specific locomotor control in intact rats (n = 18) and illustrate the importance of timing of treatment initiation after spinal cord injury (n = 14). This study highlights stimulation of the cuneiform nucleus as a highly promising therapeutic strategy to enhance motor recovery after subchronic and chronic incomplete spinal cord injury with direct clinical applicability.
Collapse
Affiliation(s)
- Anna-Sophie Hofer
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Myriam I Scheuber
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Andrea M Sartori
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Nicolas Good
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Stephanie A Stalder
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Nicole Hammer
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Kai Fricke
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Sina M Schalbetter
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Anne K Engmann
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Rebecca Z Weber
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Ruslan Rust
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Marc P Schneider
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Natalie Russi
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Giacomin Favre
- Department of Economics, University of Zurich, 8032 Zurich, Switzerland
| | - Martin E Schwab
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
16
|
Yako T, Kitazawa K, Kobayashi S, Yomo S, Sato H, Johnson LA, Vitek JL, Hashimoto T. Role of Microelectrode Recording in Deep Brain Stimulation of the Pedunculopontine Nucleus: A Physiological Study of Two Cases. Neuromodulation 2022; 25:925-934. [PMID: 34435731 DOI: 10.1111/ner.13479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/23/2021] [Accepted: 05/18/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the pedunculopontine nucleus (PPN) has been reported to improve gait disturbances in Parkinson's disease (PD); however, there are controversies on the radiological and electrophysiological techniques for intraoperative and postoperative confirmation of the target and determination of optimal stimulation parameters. OBJECTIVES We investigated the correlation between the location of the estimated PPN (ePPN) and neuronal activity collected during intraoperative electrophysiological mapping to evaluate the role of microelectrode recording (MER) in identifying the effective stimulation site in two PD patients. MATERIALS AND METHODS Bilateral PPN DBS was performed in two patients who had suffered from levodopa refractory gait disturbance. They had been implanted previously with DBS in the internal globus pallidus and the subthalamic nucleus, respectively. The PPN was determined on MRI and identified by intraoperative MER. Neuronal activity recorded was analyzed for mean discharge rate, bursting, and oscillatory activity. The effects were assessed by clinical ratings for motor signs before and after surgery. RESULTS The PPN location was detected by MER. Groups of neurons characterized by tonic discharges were found 9-10 mm below the thalamus. The mean discharge rate in the ePPN was 19.1 ± 15.1 Hz, and 33% of the neurons of the ePPN responded with increased discharge rate during passive manipulation of the limbs and orofacial structures. PPN DBS with bipolar stimulation at a frequency range 10-30 Hz improved gait disturbances in both patients. Although PPN DBS provided therapeutic effects post-surgery in both cases, the effects waned after a year in case 1 and three years in case 2. CONCLUSIONS Estimation of stimulation site within the PPN is possible by combining physiological guidance using MER and MRI findings. The PPN is a potential target for gait disturbances, although the efficacy of PPN DBS may depend on the location of the electrode and the stimulation parameters.
Collapse
Affiliation(s)
- Takehiro Yako
- Department of Neurosurgery, Aizawa Hospital, Matsumoto, Japan.
| | - Kazuo Kitazawa
- Department of Neurosurgery, Aizawa Hospital, Matsumoto, Japan
| | | | - Shoji Yomo
- Division of Radiation Oncology, Aizawa Comprehensive Cancer Center, Aizawa Hospital, Matsumoto, Japan
| | - Hiromasa Sato
- Department of Neurology, Aizawa Hospital, Matsumoto, Japan
| | - Luke A Johnson
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Jerrold L Vitek
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
17
|
Marquez-Franco R, Carrillo-Ruiz JD, Velasco AL, Velasco F. Deep Brain Stimulation Neuromodulation for the Treatment of Mood Disorders: Obsessive Compulsive Disorder and Treatment Resistant Depression. Front Psychiatry 2022; 12:764776. [PMID: 35250649 PMCID: PMC8888660 DOI: 10.3389/fpsyt.2021.764776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Rene Marquez-Franco
- Unit for Stereotactic and Functional Neurosurgery, Mexico General Hospital “Dr. Eduardo Liceaga”, Mexico City, Mexico
| | - Jose Damian Carrillo-Ruiz
- Unit for Stereotactic and Functional Neurosurgery, Mexico General Hospital “Dr. Eduardo Liceaga”, Mexico City, Mexico
- Facultad de Ciencias de la Salud, Universidad Anáhuac México, Mexico City, Mexico
| | - Ana Luisa Velasco
- Unit for Stereotactic and Functional Neurosurgery, Mexico General Hospital “Dr. Eduardo Liceaga”, Mexico City, Mexico
| | - Francisco Velasco
- Unit for Stereotactic and Functional Neurosurgery, Mexico General Hospital “Dr. Eduardo Liceaga”, Mexico City, Mexico
| |
Collapse
|
18
|
Tsytsarev V. Methodological aspects of studying the mechanisms of consciousness. Behav Brain Res 2022; 419:113684. [PMID: 34838578 DOI: 10.1016/j.bbr.2021.113684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022]
Abstract
There are at least two approaches to the definition of consciousness. In the first case, certain aspects of consciousness, called qualia, are considered inaccessible for research from a third person and can only be described through subjective experience. This approach is inextricably linked with the so-called "hard problem of consciousness", that is, the question of why consciousness has qualia or how any physical changes in the environment can generate subjective experience. With this approach, some aspects of consciousness, by definition, cannot be explained on the basis of external observations and, therefore, are outside the scope of scientific research. In the second case, a priori constraints do not constrain the field of scientific investigation, and the best explanation of the experience in the first person is included as a possible subject of empirical research. Historically, in the study of cause-and-effect relationships in biology, it was customary to distinguish between proximate causation and ultimate causation existing in biological systems. Immediate causes are based on the immediate influencing factors [1]. Proximate causation has evolutionary explanations. When studying biological systems themselves, such an approach is undoubtedly justified, but it often seems insufficient when studying the interaction of consciousness and the brain [2,3]. Current scientific communities proceed from the assumption that the physical substrate for the generation of consciousness is a neural network that unites various types of neurons located in various brain structures. Many neuroscientists attach a key role in this process to the cortical and thalamocortical neural networks. This question is directly related to experimental and clinical research in the field of disorder of consciousness. Progress in this area of medicine depends on advances in neuroscience in this area and is also a powerful source of empirical information. In this area of consciousness research, a large amount of experimental data has been accumulated, and in this review an attempt was made to generalize and systematize.
Collapse
|
19
|
Noga BR, Guest JD. Combined neuromodulatory approaches in the central nervous system for treatment of spinal cord injury. Curr Opin Neurol 2021; 34:804-811. [PMID: 34593718 PMCID: PMC8595808 DOI: 10.1097/wco.0000000000000999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW To report progress in neuromodulation following spinal cord injury (SCI) using combined brain and spinal neuromodulation.Neuromodulation refers to alterations in neuronal activity for therapeutic purposes. Beneficial effects are established in disease states such as Parkinson's Disease (PD), chronic pain, epilepsy, and SCI. The repertoire of neuromodulation and bioelectric medicine is rapidly expanding. After SCI, cohort studies have reported the benefits of epidural stimulation (ES) combined with training. Recently, we have explored combining ES with deep brain stimulation (DBS) to increase activation of descending motor systems to address limitations of ES in severe SCI. In this review, we describe the types of applied neuromodulation that could be combined in SCI to amplify efficacy to enable movement. These include ES, mesencephalic locomotor region (MLR) - DBS, noninvasive transcutaneous stimulation, transcranial magnetic stimulation, paired-pulse paradigms, and neuromodulatory drugs. We examine immediate and longer-term effects and what is known about: (1) induced neuroplastic changes, (2) potential safety concerns; (3) relevant outcome measures; (4) optimization of stimulation; (5) therapeutic limitations and prospects to overcome these. RECENT FINDINGS DBS of the mesencephalic locomotor region is emerging as a potential clinical target to amplify supraspinal command circuits for locomotion. SUMMARY Combinations of neuromodulatory methods may have additive value for restoration of function after spinal cord injury.
Collapse
Affiliation(s)
- Brian R Noga
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | |
Collapse
|
20
|
Stieglitz LH, Hofer AS, Bolliger M, Oertel MF, Filli L, Willi R, Cathomen A, Meyer C, Schubert M, Hubli M, Kessler TM, Baumann CR, Imbach L, Krüsi I, Prusse A, Schwab ME, Regli L, Curt A. Deep brain stimulation for locomotion in incomplete human spinal cord injury (DBS-SCI): protocol of a prospective one-armed multi-centre study. BMJ Open 2021; 11:e047670. [PMID: 34593490 PMCID: PMC8487195 DOI: 10.1136/bmjopen-2020-047670] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 09/09/2021] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Spinal cord injury (SCI) is a devastating condition with immediate impact on the individual's health and quality of life. Major functional recovery reaches a plateau 3-4 months after injury despite intensive rehabilitative training. To enhance training efficacy and improve long-term outcomes, the combination of rehabilitation with electrical modulation of the spinal cord and brain has recently aroused scientific interest with encouraging results. The mesencephalic locomotor region (MLR), an evolutionarily conserved brainstem locomotor command and control centre, is considered a promising target for deep brain stimulation (DBS) in patients with SCI. Experiments showed that MLR-DBS can induce locomotion in rats with spinal white matter destructions of >85%. METHODS AND ANALYSIS In this prospective one-armed multi-centre study, we investigate the safety, feasibility, and therapeutic efficacy of MLR-DBS to enable and enhance locomotor training in severely affected, subchronic and chronic American Spinal Injury Association Impairment Scale C patients in order to improve functional recovery. Patients undergo an intensive training programme with MLR-DBS while being regularly followed up until 6 months post-implantation. The acquired data of each timepoint are compared with baseline while the primary endpoint is performance in the 6-minute walking test. The clinical trial protocol was written in accordance with the Standard Protocol Items: Recommendations for Interventional Trials checklist. ETHICS AND DISSEMINATION This first in-man study investigates the therapeutic potential of MLR-DBS in SCI patients. One patient has already been implanted with electrodes and underwent MLR stimulation during locomotion. Based on the preliminary results which promise safety and feasibility, recruitment of further patients is currently ongoing. Ethical approval has been obtained from the Ethical Committee of the Canton of Zurich (case number BASEC 2016-01104) and Swissmedic (10000316). Results will be published in peer-reviewed journals and presented at conferences. TRIAL REGISTRATION NUMBER NCT03053791.
Collapse
Affiliation(s)
| | - Anna-Sophie Hofer
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Marc Bolliger
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Markus F Oertel
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Linard Filli
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Romina Willi
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Adrian Cathomen
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Christian Meyer
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Martin Schubert
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Thomas M Kessler
- Department of Neuro-Urology, Balgrist University Hospital, Zurich, Switzerland
| | | | - Lukas Imbach
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Iris Krüsi
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Andrea Prusse
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Martin E Schwab
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
| | - Luca Regli
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| |
Collapse
|
21
|
Insola A, Mazzone P, Scarnati E, Restuccia D, Valeriani M. Contribution of different somatosensory afferent input to subcortical somatosensory evoked potentials in humans. Clin Neurophysiol 2021; 132:2357-2364. [PMID: 34454262 DOI: 10.1016/j.clinph.2021.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/04/2021] [Accepted: 06/23/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES To investigate the subcortical somatosensory evoked potentials (SEPs) to electrical stimulation of either muscle or cutaneous afferents. METHODS SEPs were recorded in 6 patients suffering from Parkinson's disease (PD) who underwent electrode implantation in the pedunculopontine (PPTg) nucleus area. We compared SEPs recorded from the scalp and from the intracranial electrode contacts to electrical stimuli applied to: 1) median nerve at the wrist, 2) abductor pollicis brevis motor point, and 3) distal phalanx of the thumb. Also the high-frequency oscillations (HFOs) were analysed. RESULTS After median nerve and pure cutaneous (distant phalanx of the thumb) stimulation, a P1-N1 complex was recorded by the intracranial lead, while the scalp electrodes recorded the short-latency far-field responses (P14 and N18). On the contrary, motor point stimulation did not evoke any low-frequency component in the PPTg traces, nor the N18 potential on the scalp. HFOs were recorded to stimulation of all modalities by the PPTg electrode contacts. CONCLUSIONS Stimulus processing within the cuneate nucleus depends on modality, since only the cutaneous input activates the complex intranuclear network possibly generating the scalp N18 potential. SIGNIFICANCE Our results shed light on the subcortical processing of the somatosensory input of different modalities.
Collapse
Affiliation(s)
- Angelo Insola
- Unità Operativa di Neurofisiopatologia, CTO, Rome, Italy
| | - Paolo Mazzone
- Unità Operativa di Neurochirurgia funzionale e stereotassica, CTO, Rome, Italy
| | - Eugenio Scarnati
- Dipartimento di Scienze Cliniche e Biotecnologiche Applicate, Università dell'Aquila, Italy
| | - Domenico Restuccia
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Massimiliano Valeriani
- Divisione di Neurologia, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy; Center for Sensory-Motor Interaction, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
22
|
Insola A, Mazzone P, Della Marca G, Capozzo A, Vitale F, Scarnati E. Pedunculopontine tegmental Nucleus-evoked prepulse inhibition of the blink reflex in Parkinson's disease. Clin Neurophysiol 2021; 132:2729-2738. [PMID: 34417108 DOI: 10.1016/j.clinph.2021.06.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To investigate the effects on the blink reflex (BR) of single stimuli applied to the pedunculopontine tegmental nucleus (PPTg). METHODS The BR was evoked by stimulating the supraorbital nerve (SON) in fifteen patients suffering from idiopathic Parkinson's disease (PD) who had electrodes monolaterally or bilaterally implanted in the PPTg for deep brain stimulation (DBS). Single stimuli were delivered to the PPTg through externalized electrode connection wires 3-4 days following PPTg implantation. RESULTS PPTg stimuli increased the latency and reduced duration, amplitude and area of the R2 component of the BR in comparison to the response recorded in the absence of PPTg stimulation. These effects were independent of the side of SON stimulation and were stable for interstimulus interval (ISI) between PPTg prepulse and SON stimulus from 0 to 110 ms. The PPTg-induced prepulse inhibition of the BR was bilaterally present in the brainstem. The R1 component was unaffected. CONCLUSIONS The prepulse inhibition of the R2 component may be modulated by the PPTg. SIGNIFICANCE These findings suggest that abnormalities of BR occurring in PD may be ascribed to a reduction of basal ganglia-mediated inhibition of brainstem excitability.
Collapse
Affiliation(s)
- Angelo Insola
- Clinical Neurophysiopathology, CTO Andrea Alesini Hospital, ASL Roma 2, Via San Nemesio 21, 00145 Rome, Italy.
| | - Paolo Mazzone
- Functional and Stereotactic Neurosurgery, CTO Andrea Alesini Hospital, ASL Roma 2, Via San Nemesio 21, 00145 Rome, Italy
| | - Giacomo Della Marca
- Institute of Neurology, Catholic University, Largo A.Gemelli 8, 00168 Rome, Italy
| | - Annamaria Capozzo
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio Coppito 2, 67100 L'Aquila, Italy
| | - Flora Vitale
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio Coppito 2, 67100 L'Aquila, Italy
| | - Eugenio Scarnati
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio Coppito 2, 67100 L'Aquila, Italy
| |
Collapse
|
23
|
Chang SJ, Cajigas I, Guest JD, Noga BR, Widerström-Noga E, Haq I, Fisher L, Luca CC, Jagid JR. MR Tractography-Based Targeting and Physiological Identification of the Cuneiform Nucleus for Directional DBS in a Parkinson's Disease Patient With Levodopa-Resistant Freezing of Gait. Front Hum Neurosci 2021; 15:676755. [PMID: 34168545 PMCID: PMC8217631 DOI: 10.3389/fnhum.2021.676755] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Freezing of gait (FOG) is a debilitating motor deficit in a subset of Parkinson's Disease (PD) patients that is poorly responsive to levodopa or deep brain stimulation (DBS) of established PD targets. The proposal of a DBS target in the midbrain, known as the pedunculopontine nucleus (PPN), to address FOG was based on its observed neuropathology in PD and its hypothesized involvement in locomotor control as a part of the mesencephalic locomotor region (MLR). Initial reports of PPN DBS were met with enthusiasm; however, subsequent studies reported mixed results. A closer review of the MLR basic science literature, suggests that the closely related cuneiform nucleus (CnF), dorsal to the PPN, may be a superior site to promote gait. Although suspected to have a conserved role in the control of gait in humans, deliberate stimulation of a homolog to the CnF in humans using directional DBS electrodes has not been attempted. METHODS As part of an open-label Phase 1 clinical study, one PD patient with predominantly axial symptoms and severe FOG refractory to levodopa therapy was implanted with directional DBS electrodes (Boston Science Vercise CartesiaTM) targeting the CnF bilaterally. Since the CnF is a poorly defined reticular nucleus, targeting was guided both by diffusion tensor imaging (DTI) tractography and anatomical landmarks. Intraoperative stimulation and microelectrode recordings were performed near the targets with leg EMG surface recordings in the subject. RESULTS Post-operative imaging revealed accurate targeting of both leads to the designated CnF. Intraoperative stimulation near the target at low thresholds in the awake patient evoked involuntary electromyography (EMG) oscillations in the legs with a peak power at the stimulation frequency, similar to observations with CnF DBS in animals. Oscillopsia was the primary side effect evoked at higher currents, especially when directed posterolaterally. Directional DBS could mitigate oscillopsia. CONCLUSION DTI-based targeting and intraoperative stimulation to evoke limb EMG activity may be useful methods to help target the CnF accurately and safely in patients. Long term follow-up and detailed gait testing of patients undergoing CnF stimulation will be necessary to confirm the effects on FOG. CLINICAL TRIAL REGISTRATION Clinicaltrials.gov identifier: NCT04218526.
Collapse
Affiliation(s)
- Stephano J. Chang
- The Miami Project to Cure Paralysis, Miami, FL, United States
- Department of Neurosurgery, University of British Columbia, Vancouver, BC, Canada
| | - Iahn Cajigas
- The Miami Project to Cure Paralysis, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - James D. Guest
- The Miami Project to Cure Paralysis, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Brian R. Noga
- The Miami Project to Cure Paralysis, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Eva Widerström-Noga
- The Miami Project to Cure Paralysis, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ihtsham Haq
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Letitia Fisher
- The Miami Project to Cure Paralysis, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Corneliu C. Luca
- The Miami Project to Cure Paralysis, Miami, FL, United States
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jonathan R. Jagid
- The Miami Project to Cure Paralysis, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
24
|
Chang SJ, Cajigas I, Guest JD, Noga BR, Widerström-Noga E, Haq I, Fisher L, Luca CC, Jagid JR. Deep brain stimulation of the Cuneiform nucleus for levodopa-resistant freezing of gait in Parkinson's disease: study protocol for a prospective, pilot trial. Pilot Feasibility Stud 2021; 7:117. [PMID: 34078477 PMCID: PMC8169408 DOI: 10.1186/s40814-021-00855-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 05/21/2021] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Freezing of gait (FOG) is a particularly debilitating motor deficit seen in a subset of Parkinson's disease (PD) patients that is poorly responsive to standard levodopa therapy or deep brain stimulation (DBS) of established PD targets such as the subthalamic nucleus and the globus pallidus interna. The proposal of a DBS target in the midbrain, known as the pedunculopontine nucleus (PPN) to address FOG, was based on its observed pathology in PD and its hypothesized involvement in locomotor control as a part of the mesencephalic locomotor region, a functionally defined area of the midbrain that elicits locomotion in both intact animals and decerebrate animal preparations with electrical stimulation. Initial reports of PPN DBS were met with much enthusiasm; however, subsequent studies produced mixed results, and recent meta-analysis results have been far less convincing than initially expected. A closer review of the extensive mesencephalic locomotor region (MLR) preclinical literature, including recent optogenetics studies, strongly suggests that the closely related cuneiform nucleus (CnF), just dorsal to the PPN, may be a superior target to promote gait initiation. METHODS We will conduct a prospective, open-label, single-arm pilot study to assess safety and feasibility of CnF DBS in PD patients with levodopa-refractory FOG. Four patients will receive CnF DBS and have gait assessments with and without DBS during a 6-month follow-up. DISCUSSION This paper presents the study design and rationale for a pilot study investigating a novel DBS target for gait dysfunction, including targeting considerations. This pilot study is intended to support future larger scale clinical trials investigating this target. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT04218526 (registered January 6, 2020).
Collapse
Affiliation(s)
- Stephano J Chang
- The Miami Project to Cure Paralysis, Miami, FL, USA.,Department of Neurosurgery, University of British Columbia, Vancouver, BC, Canada
| | - Iahn Cajigas
- The Miami Project to Cure Paralysis, Miami, FL, USA.,Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 N.W. 14th Terrace, Miami, FL, 33136, USA
| | - James D Guest
- The Miami Project to Cure Paralysis, Miami, FL, USA.,Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 N.W. 14th Terrace, Miami, FL, 33136, USA
| | - Brian R Noga
- The Miami Project to Cure Paralysis, Miami, FL, USA.,Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 N.W. 14th Terrace, Miami, FL, 33136, USA
| | - Eva Widerström-Noga
- The Miami Project to Cure Paralysis, Miami, FL, USA.,Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 N.W. 14th Terrace, Miami, FL, 33136, USA
| | - Ihtsham Haq
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Letitia Fisher
- The Miami Project to Cure Paralysis, Miami, FL, USA.,Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 N.W. 14th Terrace, Miami, FL, 33136, USA
| | - Corneliu C Luca
- The Miami Project to Cure Paralysis, Miami, FL, USA.,Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jonathan R Jagid
- The Miami Project to Cure Paralysis, Miami, FL, USA. .,Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 N.W. 14th Terrace, Miami, FL, 33136, USA.
| |
Collapse
|
25
|
Molina R, Hass CJ, Cernera S, Sowalsky K, Schmitt AC, Roper JA, Martinez-Ramirez D, Opri E, Hess CW, Eisinger RS, Foote KD, Gunduz A, Okun MS. Closed-Loop Deep Brain Stimulation to Treat Medication-Refractory Freezing of Gait in Parkinson's Disease. Front Hum Neurosci 2021; 15:633655. [PMID: 33732122 PMCID: PMC7959768 DOI: 10.3389/fnhum.2021.633655] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/19/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Treating medication-refractory freezing of gait (FoG) in Parkinson’s disease (PD) remains challenging despite several trials reporting improvements in motor symptoms using subthalamic nucleus or globus pallidus internus (GPi) deep brain stimulation (DBS). Pedunculopontine nucleus (PPN) region DBS has been used for medication-refractory FoG, with mixed findings. FoG, as a paroxysmal phenomenon, provides an ideal framework for the possibility of closed-loop DBS (CL-DBS). Methods: In this clinical trial (NCT02318927), five subjects with medication-refractory FoG underwent bilateral GPi DBS implantation to address levodopa-responsive PD symptoms with open-loop stimulation. Additionally, PPN DBS leads were implanted for CL-DBS to treat FoG. The primary outcome of the study was a 40% improvement in medication-refractory FoG in 60% of subjects at 6 months when “on” PPN CL-DBS. Secondary outcomes included device feasibility to gauge the recruitment potential of this four-lead DBS approach for a potentially larger clinical trial. Safety was judged based on adverse events and explantation rate. Findings: The feasibility of this approach was demonstrated as we recruited five subjects with both “on” and “off” medication freezing. The safety for this population of patients receiving four DBS leads was suboptimal and associated with a high explantation rate of 40%. The primary clinical outcome in three of the five subjects was achieved at 6 months. However, the group analysis of the primary clinical outcome did not reveal any benefit. Interpretation: This study of a human PPN CL-DBS trial in medication-refractory FoG showed feasibility in recruitment, suboptimal safety, and a heterogeneous clinical effect in FoG outcomes.
Collapse
Affiliation(s)
- Rene Molina
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States.,Norman Fixel Institute for Neurological Diseases and The Program for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States
| | - Chris J Hass
- Norman Fixel Institute for Neurological Diseases and The Program for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States.,Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Stephanie Cernera
- Norman Fixel Institute for Neurological Diseases and The Program for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States.,J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Kristen Sowalsky
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Abigail C Schmitt
- Norman Fixel Institute for Neurological Diseases and The Program for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States.,Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | - Jaimie A Roper
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
| | | | - Enrico Opri
- Norman Fixel Institute for Neurological Diseases and The Program for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States.,J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Christopher W Hess
- Norman Fixel Institute for Neurological Diseases and The Program for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States.,Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Robert S Eisinger
- Norman Fixel Institute for Neurological Diseases and The Program for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Kelly D Foote
- Norman Fixel Institute for Neurological Diseases and The Program for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States.,Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Aysegul Gunduz
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States.,Norman Fixel Institute for Neurological Diseases and The Program for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States.,J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases and The Program for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, United States.,Department of Neurology, University of Florida, Gainesville, FL, United States.,Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| |
Collapse
|
26
|
Sui Y, Tian Y, Ko WKD, Wang Z, Jia F, Horn A, De Ridder D, Choi KS, Bari AA, Wang S, Hamani C, Baker KB, Machado AG, Aziz TZ, Fonoff ET, Kühn AA, Bergman H, Sanger T, Liu H, Haber SN, Li L. Deep Brain Stimulation Initiative: Toward Innovative Technology, New Disease Indications, and Approaches to Current and Future Clinical Challenges in Neuromodulation Therapy. Front Neurol 2021; 11:597451. [PMID: 33584498 PMCID: PMC7876228 DOI: 10.3389/fneur.2020.597451] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/23/2020] [Indexed: 01/17/2023] Open
Abstract
Deep brain stimulation (DBS) is one of the most important clinical therapies for neurological disorders. DBS also has great potential to become a great tool for clinical neuroscience research. Recently, the National Engineering Laboratory for Neuromodulation at Tsinghua University held an international Deep Brain Stimulation Initiative workshop to discuss the cutting-edge technological achievements and clinical applications of DBS. We specifically addressed new clinical approaches and challenges in DBS for movement disorders (Parkinson's disease and dystonia), clinical application toward neurorehabilitation for stroke, and the progress and challenges toward DBS for neuropsychiatric disorders. This review highlighted key developments in (1) neuroimaging, with advancements in 3-Tesla magnetic resonance imaging DBS compatibility for exploration of brain network mechanisms; (2) novel DBS recording capabilities for uncovering disease pathophysiology; and (3) overcoming global healthcare burdens with online-based DBS programming technology for connecting patient communities. The successful event marks a milestone for global collaborative opportunities in clinical development of neuromodulation to treat major neurological disorders.
Collapse
Affiliation(s)
- Yanan Sui
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Ye Tian
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Wai Kin Daniel Ko
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Zhiyan Wang
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Fumin Jia
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Andreas Horn
- Charité, Department of Neurology, Movement Disorders and Neuromodulation Unit, University Medicine Berlin, Berlin, Germany
| | - Dirk De Ridder
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Ki Sueng Choi
- Department of Psychiatry and Behavioural Science, Emory University, Atlanta, GA, United States.,Department of Radiology, Mount Sinai School of Medicine, New York, NY, United States.,Department of Neurosurgery, Mount Sinai School of Medicine, New York, NY, United States
| | - Ausaf A Bari
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Clement Hamani
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Kenneth B Baker
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Andre G Machado
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Tipu Z Aziz
- Department of Neurosurgery, John Radcliffe Hospital, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Erich Talamoni Fonoff
- Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil.,Hospital Sírio-Libanês and Hospital Albert Einstein, São Paulo, Brazil
| | - Andrea A Kühn
- Charité, Department of Neurology, Movement Disorders and Neuromodulation Unit, University Medicine Berlin, Berlin, Germany
| | - Hagai Bergman
- Department of Medical Neurobiology (Physiology), Institute of Medical Research-Israel-Canada (IMRIC), Faculty of Medicine, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Research (ELSC), The Hebrew University and Department of Neurosurgery, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Terence Sanger
- University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Hesheng Liu
- Department of Neuroscience, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Suzanne N Haber
- Department of Pharmacology and Physiology, University of Rochester School of Medicine & Dentistry, Rochester, NY, United States.,McLean Hospital and Harvard Medical School, Belmont, MA, United States
| | - Luming Li
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| |
Collapse
|
27
|
Stefani A, Cerroni R, Pierantozzi M, D’Angelo V, Grandi L, Spanetta M, Galati S. Deep brain stimulation in Parkinson’s disease patients and routine 6‐OHDA rodent models: Synergies and pitfalls. Eur J Neurosci 2020; 53:2322-2343. [DOI: 10.1111/ejn.14950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 08/09/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Alessandro Stefani
- Department of System Medicine Faculty of Medicine and Surgery University of Rome “Tor Vergata” Rome Italy
| | - Rocco Cerroni
- Department of System Medicine Faculty of Medicine and Surgery University of Rome “Tor Vergata” Rome Italy
| | - Mariangela Pierantozzi
- Department of System Medicine Faculty of Medicine and Surgery University of Rome “Tor Vergata” Rome Italy
| | - Vincenza D’Angelo
- Department of System Medicine Faculty of Medicine and Surgery University of Rome “Tor Vergata” Rome Italy
| | - Laura Grandi
- Center for Movement Disorders Neurocenter of Southern Switzerland Lugano Switzerland
| | - Matteo Spanetta
- Department of System Medicine Faculty of Medicine and Surgery University of Rome “Tor Vergata” Rome Italy
| | - Salvatore Galati
- Center for Movement Disorders Neurocenter of Southern Switzerland Lugano Switzerland
- Faculty of Biomedical Sciences Università della Svizzera Italiana Lugano Switzerland
| |
Collapse
|
28
|
Bertino S, Basile GA, Anastasi G, Bramanti A, Fonti B, Cavallaro F, Bruschetta D, Milardi D, Cacciola A. Anatomical Characterization of the Human Structural Connectivity between the Pedunculopontine Nucleus and Globus Pallidus via Multi-Shell Multi-Tissue Tractography. ACTA ACUST UNITED AC 2020; 56:medicina56090452. [PMID: 32906651 PMCID: PMC7557768 DOI: 10.3390/medicina56090452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/22/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
Background and objectives: The internal (GPi) and external segments (GPe) of the globus pallidus represent key nodes in the basal ganglia system. Connections to and from pallidal segments are topographically organized, delineating limbic, associative and sensorimotor territories. The topography of pallidal afferent and efferent connections with brainstem structures has been poorly investigated. In this study we sought to characterize in-vivo connections between the globus pallidus and the pedunculopontine nucleus (PPN) via diffusion tractography. Materials and Methods: We employed structural and diffusion data of 100 subjects from the Human Connectome Project repository in order to reconstruct the connections between the PPN and the globus pallidus, employing higher order tractography techniques. We assessed streamline count of the reconstructed bundles and investigated spatial relations between pallidal voxels connected to the PPN and pallidal limbic, associative and sensorimotor functional territories. Results: We successfully reconstructed pallidotegmental tracts for the GPi and GPe in all subjects. The number of streamlines connecting the PPN with the GPi was greater than the number of those joining it with the GPe. PPN maps within pallidal segments exhibited a distinctive spatial organization, being localized in the ventromedial portion of the GPi and in the ventral-anterior portion in the GPe. Regarding their spatial relations with tractography-derived maps of pallidal functional territories, the highest value of percentage overlap was noticed between PPN maps and the associative territory. Conclusions: We successfully reconstructed the anatomical course of the pallidotegmental pathways and comprehensively characterized their topographical arrangement within both pallidal segments. PPM maps were localized in the ventromedial aspect of the GPi, while they occupied the anterior pole and the most ventral portion of the GPe. A better understanding of the spatial and topographical arrangement of the pallidotegmental pathways may have pathophysiological and therapeutic implications in movement disorders.
Collapse
Affiliation(s)
- Salvatore Bertino
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (G.A.B.); (G.A.); (D.M.)
- Correspondence: (S.B.); (A.C.); Tel.: +39-090-2217143 (S.B. & A.C.)
| | - Gianpaolo Antonio Basile
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (G.A.B.); (G.A.); (D.M.)
| | - Giuseppe Anastasi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (G.A.B.); (G.A.); (D.M.)
| | - Alessia Bramanti
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (A.B.); (B.F.)
| | - Bartolo Fonti
- IRCCS Centro Neurolesi “Bonino Pulejo”, 98124 Messina, Italy; (A.B.); (B.F.)
| | - Filippo Cavallaro
- Physical Rehabilitation Medicine and Sport Medicine Unit, University Hospital Policlinico “G. Martino”, 98124 Messina, Italy; (F.C.); (D.B.)
| | - Daniele Bruschetta
- Physical Rehabilitation Medicine and Sport Medicine Unit, University Hospital Policlinico “G. Martino”, 98124 Messina, Italy; (F.C.); (D.B.)
| | - Demetrio Milardi
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (G.A.B.); (G.A.); (D.M.)
- Physical Rehabilitation Medicine and Sport Medicine Unit, University Hospital Policlinico “G. Martino”, 98124 Messina, Italy; (F.C.); (D.B.)
| | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, 98125 Messina, Italy; (G.A.B.); (G.A.); (D.M.)
- Correspondence: (S.B.); (A.C.); Tel.: +39-090-2217143 (S.B. & A.C.)
| |
Collapse
|
29
|
Chang SJ, Cajigas I, Opris I, Guest JD, Noga BR. Dissecting Brainstem Locomotor Circuits: Converging Evidence for Cuneiform Nucleus Stimulation. Front Syst Neurosci 2020; 14:64. [PMID: 32973468 PMCID: PMC7473103 DOI: 10.3389/fnsys.2020.00064] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/03/2020] [Indexed: 01/06/2023] Open
Abstract
There are a pressing and unmet need for effective therapies for freezing of gait (FOG) and other neurological gait disorders. Deep brain stimulation (DBS) of a midbrain target known as the pedunculopontine nucleus (PPN) was proposed as a potential treatment based on its postulated involvement in locomotor control as part of the mesencephalic locomotor region (MLR). However, DBS trials fell short of expectations, leading many clinicians to abandon this strategy. Here, we discuss the potential reasons for this failure and review recent clinical data along with preclinical optogenetics evidence to argue that another nearby nucleus, the cuneiform nucleus (CnF), may be a superior target.
Collapse
Affiliation(s)
- Stephano J. Chang
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL, United States
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
- Division of Neurosurgery, Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Iahn Cajigas
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ioan Opris
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - James D. Guest
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL, United States
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Brian R. Noga
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL, United States
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
30
|
Yu K, Ren Z, Guo S, Li J, Li Y. Effects of pedunculopontine nucleus deep brain stimulation on gait disorders in Parkinson's Disease: A meta-analysis of the literature. Clin Neurol Neurosurg 2020; 198:106108. [PMID: 32763669 DOI: 10.1016/j.clineuro.2020.106108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The pedunculopontine nucleus (PPN) is considered a promising target to alleviate gait disorders. We aimed to evaluate the effects of PPN stimulation on motor symptoms and gait disorders in patients with Parkinson's disease (PD) to help assess the potential role of PPN-DBS treatment in gait disorders. METHODS Studies were searched for low-frequency PPN stimulation to treat gait disorders and freezing of gait (FOG) in the PubMed, Embase, Cochrane Library, Web of Science, and ClinicalKey up to April 2020. Outcomes of Unified Parkinson's Disease Rating Scale (UPDRS) part III, subitems 27-30; UPDRS subitems 13 and 14; the Freezing of Gait Questionnaire (FOGQ), and the Gait and Falls Questionnaire (GFQ) were extracted and evaluated during PPN On-stimulation compared to preoperation or Off-stimulation in both Off- and On-medication states. RESULTS There was a significant improvement in subitems 27-30 with PPN On-stimulation versus Off-stimulation in Off-medication and On-medication states, but no improvement in UPDRS part III. The occurrence of FOG and falls also declined between PPN On-stimulation and presurgery, with a significant improvement in subitem 13 and subitem 14 in Off-medication and On-medication states, GFQ, and FQGQ. Heterogeneity in stimulation frequency, follow-up, electrode location, and unilateral or bilateral stimulation existed among the included studies. CONCLUSIONS In some conditions and in some selective PD patients, low-frequency PPN-DBS has beneficial effects on FOG and falls but no wider benefits on rigidity, resting tremor, or bradykinesia.
Collapse
Affiliation(s)
- Kaijia Yu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Zhiwei Ren
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Song Guo
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| | - Jianyu Li
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China.
| | - Yongjie Li
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, 100053, PR China
| |
Collapse
|
31
|
Gay M, Belaid H, Rogers A, Pérez-García F, Roustan M, Bardinet E, François C, Karachi C. Anatomo-Functional Mapping of the Primate Mesencephalic Locomotor Region Using Stereotactic Lesions. Mov Disord 2020; 35:789-799. [PMID: 31922282 DOI: 10.1002/mds.27983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Dysfunction of the mesencephalic locomotor region has been implicated in gait disorders. However, the role of its 2 components, the pedunculopontine and the cuneiform nuclei, in locomotion is poorly understood in primates. OBJECTIVES To analyze the effect of cuneiform lesions on gait and balance in 2 monkeys and to compare them with those obtained after cholinergic pedunculopontine lesions in 4 monkeys and after lesions in both the cuneiform and pedunculopontine nuclei in 1 monkey. METHODS After each stereotactic lesion, we performed a neurological examination and gait and balance assessments with kinematic measures during a locomotor task. The 3-dimensional location of each lesion was analyzed on a common brainstem space. RESULTS After each cuneiform lesion, we observed a contralateral cervical dystonia including an increased tone in the proximal forelimb and an increase in knee angle, back curvature and walking speed. Conversely, cholinergic pedunculopontine lesions increased tail rigidity and back curvature and an imbalance of the muscle tone between the ipsi- and contralateral hindlimb with decreased knee angles. The walking speed was decreased. Moreover, pedunculopontine lesions often resulted in a longer time to waking postsurgery. CONCLUSIONS The location of the lesions and their behavioral effects revealed a somatotopic organization of muscle tone control, with the neck and forelimb represented within the cuneiform nucleus and hindlimb and tail represented within the pedunculopontine nucleus. Cuneiform lesions increased speed, whereas pedunculopontine lesions decreased it. These findings confirm the complex and specific role of the cuneiform and pedunculopontine nuclei in locomotion and suggest the role of the pedunculopontine in sleep control. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Marion Gay
- Sorbonne University, Univ. Pierre & Marie Curie Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière, Paris, France
| | - Hayat Belaid
- Sorbonne University, Univ. Pierre & Marie Curie Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière, Paris, France.,Department of Neurosurgery, Rothschild Foundation, Paris, France
| | - Alister Rogers
- Sorbonne University, Univ. Pierre & Marie Curie Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière, Paris, France.,Department of Neurosurgery, Rothschild Foundation, Paris, France
| | - Fernando Pérez-García
- Sorbonne University, Univ. Pierre & Marie Curie Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière, Paris, France.,Center of NeuroImaging Research-CENIR, Paris, France
| | - Maxime Roustan
- Sorbonne University, Univ. Pierre & Marie Curie Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière, Paris, France
| | - Eric Bardinet
- Sorbonne University, Univ. Pierre & Marie Curie Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière, Paris, France.,Center of NeuroImaging Research-CENIR, Paris, France
| | - Chantal François
- Sorbonne University, Univ. Pierre & Marie Curie Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière, Paris, France
| | - Carine Karachi
- Sorbonne University, Univ. Pierre & Marie Curie Paris 06, CNRS, INSERM, APHP GH Pitié-Salpêtrière, Institut du cerveau et de la moelle épinière, Paris, France.,AP-HP, Department of Neurosurgery, La Pitié-Salpêtrière University Hospital, Paris, France
| |
Collapse
|
32
|
Garcia-Rill E. Neuroepigenetics of arousal: Gamma oscillations in the pedunculopontine nucleus. J Neurosci Res 2019; 97:1515-1520. [PMID: 30916810 PMCID: PMC6764922 DOI: 10.1002/jnr.24417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/06/2019] [Indexed: 01/20/2023]
Abstract
Four major discoveries on the function of the pedunculopontine nucleus (PPN) have significantly advanced our understanding of the role of arousal in neurodegenerative disorders. The first was the finding that stimulation of the PPN-induced controlled locomotion on a treadmill in decerebrate animals, the second was the revelation of electrical coupling in the PPN and other arousal and sleep-wake control regions, the third was the determination of intrinsic gamma band oscillations in PPN neurons, and the last was the discovery of gene transcription resulting from the manifestation of gamma activity in the PPN. These discoveries have led to novel therapies such as PPN deep brain stimulation (DBS) for Parkinson's disease (PD), identified the mechanism of action of the stimulant modafinil, determined the presence of separate mechanisms underlying gamma activity during waking versus REM sleep, and revealed the presence of gene transcription during the manifestation of gamma band oscillations. These discoveries set the stage for additional major advances in the treatment of a number of disorders.
Collapse
Affiliation(s)
- Edgar Garcia-Rill
- Center for Translational Neuroscience (CTN), University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
33
|
Abstract
Parkinson's disease (PD) and other synucleinopathies, namely dementia with Lewy bodies (DLB) and multiple system atrophy (MSA), are common degenerative neurological disorders that share synuclein pathology. Although certain cardinal features of parkinsonism, including bradykinesia and rigidity, respond well to levodopa, axial features, such as gait and balance impairment, are less reliably responsive to dopaminergic therapy and surgical interventions. Consequently, falls are common in PD and other synucleinopathies and are a major contributor toward injury and loss of independence. This underscores the need for appropriate fall risk assessment and implementation of preventative measures in all patients with parkinsonism. The aim of this review is therefore to explore modifiable and non-modifiable risk factors for falls in synucleinopathies. We next review and evaluate the evidence for pharmacological, nonpharmacological, and surgical approaches for fall prevention, and emphasize individualized and multifaceted approaches.
Collapse
|
34
|
Stefani A, Grandi LC, Galati S. Deep brain stimulation of the pedunculopontine nucleus modulates subthalamic pathological oscillations. Neurobiol Dis 2019; 128:49-52. [DOI: 10.1016/j.nbd.2018.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/29/2018] [Accepted: 11/09/2018] [Indexed: 01/24/2023] Open
|
35
|
Nowacki A, Galati S, Ai-Schlaeppi J, Bassetti C, Kaelin A, Pollo C. Pedunculopontine nucleus: An integrative view with implications on Deep Brain Stimulation. Neurobiol Dis 2019; 128:75-85. [DOI: 10.1016/j.nbd.2018.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/22/2018] [Accepted: 08/24/2018] [Indexed: 12/21/2022] Open
|
36
|
Hernandez-Baltazar D, Nadella R, Mireya Zavala-Flores L, Rosas-Jarquin CDJ, Rovirosa-Hernandez MDJ, Villanueva-Olivo A. Four main therapeutic keys for Parkinson's disease: A mini review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:716-721. [PMID: 32373291 PMCID: PMC7196346 DOI: 10.22038/ijbms.2019.33659.8025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/08/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Parkinson's disease (PD) is characterized by motor and cognitive dysfunctions. The progressive degeneration of dopamine-producing neurons that are present in the substantia nigra pars compacta (SNpc) has been the main focus of study and PD therapies since ages. MATERIALS AND METHODS In this manuscript, a systematic revision of experimental and clinical evidence of PD-associated cell process was conducted. RESULTS Classically, the damage in the dopaminergic neuronal circuits of SNpc is favored by reactive oxidative/nitrosative stress, leading to cell death. Interestingly, the therapy for PD has only focused on avoiding the symptom progression but not in finding a complete reversion of the disease. Recent evidence suggests that the renin-angiotensin system imbalance and neuroinflammation are the main keys in the progression of experimental PD. CONCLUSION The progression of neurodegeneration in SNpc is due to the complex interaction of multiple processes. In this review, we analyzed the main contribution of four cellular processes and discussed in the perspective of novel experimental approaches.
Collapse
Affiliation(s)
| | - Rasajna Nadella
- IIIT Srikakulam, Rajiv Gandhi University of Knowledge Technologies (RGUKT); International collaboration ID:1840; India
| | | | | | | | | |
Collapse
|
37
|
Galazky I, Kaufmann J, Voges J, Hinrichs H, Heinze HJ, Sweeney-Reed CM. Neuronal spiking in the pedunculopontine nucleus in progressive supranuclear palsy and in idiopathic Parkinson's disease. J Neurol 2019; 266:2244-2251. [PMID: 31155683 DOI: 10.1007/s00415-019-09396-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 12/24/2022]
Abstract
The pedunculopontine nucleus (PPN) is engaged in posture and gait control, and neuronal degeneration in the PPN has been associated with Parkinsonian disorders. Clinical outcomes of deep brain stimulation of the PPN in idiopathic Parkinson's disease (IPD) and progressive supranuclear palsy (PSP) differ, and we investigated whether the PPN is differentially affected in these conditions. We had the rare opportunity to record continuous electrophysiological data intraoperatively in 30 s blocks from single microelectrode contacts implanted in the PPN in six PSP patients and three IPD patients during rest, passive movement, and active movement. Neuronal spikes were sorted according to shape using a wavelet-based clustering approach to enable comparisons between individual neuronal firing rates in the two disease states. The action potential widths showed a bimodal distribution consistent with previous findings, suggesting spikes from noncholinergic (likely glutamatergic) and cholinergic neurons. A higher PPN spiking rate of narrow action potentials was observed in the PSP than in the IPD patients when pooled across all three conditions (Wilcoxon rank sum test: p = 0.0141). No correlation was found between firing rate and disease severity or duration. The firing rates were higher during passive movement than rest and active movement in both groups, but the differences between conditions were not significant. PSP and IPD are believed to represent distinct disease processes, and our findings that the neuronal firing rates differ according to disease state support the proposal that pathological processes directly involving the PPN may be more pronounced in PSP than IPD.
Collapse
Affiliation(s)
- I Galazky
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - J Kaufmann
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Departments of Neurology and Stereotactic Neurosurgery, Otto-von-Guericke University, Magdeburg, Germany
| | - J Voges
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Stereotactic Neurosurgery, Otto-von-Guericke University, Magdeburg, Germany
| | - H Hinrichs
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- German Center for Neurodegenerative Disease (DZNE), Magdeburg, Germany
- Forschungscampus STIMULATE, Otto-von-Guericke University, Magdeburg, Germany
| | - H-J Heinze
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- German Center for Neurodegenerative Disease (DZNE), Magdeburg, Germany
| | - C M Sweeney-Reed
- Neurocybernetics and Rehabilitation, Departments of Neurology and Stereotactic Neurosurgery, Otto-Von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
38
|
Khan IS, D'Agostino EN, Calnan DR, Lee JE, Aronson JP. Deep Brain Stimulation for Memory Modulation: A New Frontier. World Neurosurg 2019; 126:638-646. [DOI: 10.1016/j.wneu.2018.12.184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 12/30/2022]
|
39
|
Garcia-Rill E, Saper CB, Rye DB, Kofler M, Nonnekes J, Lozano A, Valls-Solé J, Hallett M. Focus on the pedunculopontine nucleus. Consensus review from the May 2018 brainstem society meeting in Washington, DC, USA. Clin Neurophysiol 2019; 130:925-940. [PMID: 30981899 PMCID: PMC7365492 DOI: 10.1016/j.clinph.2019.03.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
Abstract
The pedunculopontine nucleus (PPN) is located in the mesopontine tegmentum and is best delimited by a group of large cholinergic neurons adjacent to the decussation of the superior cerebellar peduncle. This part of the brain, populated by many other neuronal groups, is a crossroads for many important functions. Good evidence relates the PPN to control of reflex reactions, sleep-wake cycles, posture and gait. However, the precise role of the PPN in all these functions has been controversial and there still are uncertainties in the functional anatomy and physiology of the nucleus. It is difficult to grasp the extent of the influence of the PPN, not only because of its varied functions and projections, but also because of the controversies arising from them. One controversy is its relationship to the mesencephalic locomotor region (MLR). In this regard, the PPN has become a new target for deep brain stimulation (DBS) for the treatment of parkinsonian gait disorders, including freezing of gait. This review is intended to indicate what is currently known, shed some light on the controversies that have arisen, and to provide a framework for future research.
Collapse
Affiliation(s)
- E Garcia-Rill
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - C B Saper
- Department of Neurology, Division of Sleep Medicine and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - David B Rye
- Department of Neurology, Division of Sleep Medicine and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - M Kofler
- Department of Neurology, Hochzirl Hospital, Zirl, Austria
| | - J Nonnekes
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Rehabilitation, Nijmegen, the Netherlands
| | - A Lozano
- Division of Neurosurgery, University of Toronto and Krembil Neuroscience Centre, University Health Network, Toronto, Canada
| | - J Valls-Solé
- Neurology Department, Hospital Clínic, University of Barcelona, IDIBAPS (Institut d'Investigació Biomèdica August Pi i Sunyer), Barcelona, Spain
| | - M Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
40
|
Koeglsperger T, Palleis C, Hell F, Mehrkens JH, Bötzel K. Deep Brain Stimulation Programming for Movement Disorders: Current Concepts and Evidence-Based Strategies. Front Neurol 2019; 10:410. [PMID: 31231293 PMCID: PMC6558426 DOI: 10.3389/fneur.2019.00410] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/04/2019] [Indexed: 11/16/2022] Open
Abstract
Deep brain stimulation (DBS) has become the treatment of choice for advanced stages of Parkinson's disease, medically intractable essential tremor, and complicated segmental and generalized dystonia. In addition to accurate electrode placement in the target area, effective programming of DBS devices is considered the most important factor for the individual outcome after DBS. Programming of the implanted pulse generator (IPG) is the only modifiable factor once DBS leads have been implanted and it becomes even more relevant in cases in which the electrodes are located at the border of the intended target structure and when side effects become challenging. At present, adjusting stimulation parameters depends to a large extent on personal experience. Based on a comprehensive literature search, we here summarize previous studies that examined the significance of distinct stimulation strategies for ameliorating disease signs and symptoms. We assess the effect of adjusting the stimulus amplitude (A), frequency (f), and pulse width (pw) on clinical symptoms and examine more recent techniques for modulating neuronal elements by electrical stimulation, such as interleaving (Medtronic®) or directional current steering (Boston Scientific®, Abbott®). We thus provide an evidence-based strategy for achieving the best clinical effect with different disorders and avoiding adverse effects in DBS of the subthalamic nucleus (STN), the ventro-intermedius nucleus (VIM), and the globus pallidus internus (GPi).
Collapse
Affiliation(s)
- Thomas Koeglsperger
- Department of Neurology, Ludwig Maximilians University, Munich, Germany.,Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Carla Palleis
- Department of Neurology, Ludwig Maximilians University, Munich, Germany.,Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Franz Hell
- Department of Neurology, Ludwig Maximilians University, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Jan H Mehrkens
- Department of Neurosurgery, Ludwig Maximilians University, Munich, Germany
| | - Kai Bötzel
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
41
|
Deep stimulation in neurosurgery. КЛИНИЧЕСКАЯ ПРАКТИКА 2019. [DOI: 10.17816/clinpract10163-71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The technique of deep brain stimulation is used to treat patients with various diseases of the central nervous system who are not amenable to conservative therapy, while open interventions in them are associated with a high risk of complications. In the review, we evaluate the efficiency of the deep stimulation of different regions of the brain in some pharmacoresistant forms of diseases.
Collapse
|
42
|
Effects of Deep Brain Stimulation of the Subthalamic Nucleus Settings on Voice Quality, Intensity, and Prosody in Parkinson’s Disease: Preliminary Evidence for Speech Optimization. Can J Neurol Sci 2019; 46:287-294. [DOI: 10.1017/cjn.2019.16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
ABSTRACT:Objective: To systematically evaluate how different deep brain stimulation of the subthalamic nucleus (STN-DBS) amplitude, frequency, and pulse-width electrical parameter settings impact speech intensity, voice quality, and prosody of speech in Parkinson’s disease (PD). Methods: Ten individuals with PD receiving bilateral STN-DBS treatments were seen for three baseline and five treatment visits. The five treatment visits involved an examination of the standard clinical settings as well as manipulation of different combinations of frequency (low, mid, and high), pulse width (low, mid, and high), and voltage (low, mid, and high) of stimulation. Measures of speech intensity, jitter, shimmer, harmonics–noise ratio, semitone standard deviation, and listener ratings of voice quality and prosody were obtained for each STN-DBS manipulation. Results: The combinations of lower frequency, lower pulse width, and higher voltage settings were associated with improved speech outcomes compared to the current standard clinical settings. In addition, decreased total electrical energy delivered to the STN appears to be associated with speech improvements. Conclusions: This study provides preliminary evidence that STN-DBS may be optimized for Parkinson-related problems with voice quality, speech intensity, and prosody of speech.
Collapse
|
43
|
Stefani A, Galati S. PPN-DBS: A utopic vision or a realistic perspective? Neurobiol Dis 2019; 128:1-2. [PMID: 30885790 DOI: 10.1016/j.nbd.2019.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
44
|
Local and Relayed Effects of Deep Brain Stimulation of the Pedunculopontine Nucleus. Brain Sci 2019; 9:brainsci9030064. [PMID: 30889866 PMCID: PMC6468768 DOI: 10.3390/brainsci9030064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/18/2022] Open
Abstract
Our discovery of low-threshold stimulation-induced locomotion in the pedunculopontine nucleus (PPN) led to the clinical use of deep brain stimulation (DBS) for the treatment of disorders such as Parkinson's disease (PD) that manifest gait and postural disorders. Three additional major discoveries on the properties of PPN neurons have opened new areas of research for the treatment of motor and arousal disorders. The description of (a) electrical coupling, (b) intrinsic gamma oscillations, and (c) gene regulation in the PPN has identified a number of novel therapeutic targets and methods for the treatment of a number of neurological and psychiatric disorders. We first delve into the circuit, cellular, intracellular, and molecular organization of the PPN, and then consider the clinical results to date on PPN DBS. This comprehensive review will provide valuable information to explain the network effects of PPN DBS, point to new directions for treatment, and highlight a number of issues related to PPN DBS.
Collapse
|
45
|
Di Giulio I, Kalliolia E, Georgiev D, Peters AL, Voyce DC, Akram H, Foltynie T, Limousin P, Day BL. Chronic Subthalamic Nucleus Stimulation in Parkinson's Disease: Optimal Frequency for Gait Depends on Stimulation Site and Axial Symptoms. Front Neurol 2019; 10:29. [PMID: 30800094 PMCID: PMC6375830 DOI: 10.3389/fneur.2019.00029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/10/2019] [Indexed: 11/28/2022] Open
Abstract
Axial symptoms emerge in a significant proportion of patients with Parkinson's disease (PD) within 5 years of deep brain stimulation (STN-DBS). Lowering the stimulation frequency may reduce these symptoms. The objectives of the current study were to establish the relationship between gait performance and STN-DBS frequency in chronically stimulated patients with PD, and to identify factors underlying variability in this relationship. Twenty-four patients treated chronically with STN-DBS (>4 years) were studied off-medication. The effect of stimulation frequency (40–140 Hz, 20 Hz-steps, constant energy) on gait was assessed in 6 sessions spread over 1 day. Half of the trials/session involved walking through a narrow doorway. The influence of stimulation voltage was investigated separately in 10 patients. Gait was measured using 3D motion capture and axial symptoms severity was assessed clinically. A novel statistical method established the optimal frequency(ies) for each patient by operating on frequency-tuning curves for multiple gait parameters. Narrowly-tuned optimal frequencies (20 Hz bandwidth) were found in 79% of patients. Frequency change produced a larger effect on gait performance than voltage change. Optimal frequency varied between patients (between 60 and 140 Hz). Contact site in the right STN and severity of axial symptoms were independent predictors of optimal frequency (P = 0.009), with lower frequencies associated with more dorsal contacts and worse axial symptoms. We conclude that gait performance is sensitive to small changes in STN-DBS frequency. The optimal frequency varies considerably between patients and is associated with electrode contact site and severity of axial symptoms. Between-subject variability of optimal frequency may stem from variable pathology outside the basal ganglia.
Collapse
Affiliation(s)
- Irene Di Giulio
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom.,Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London, United Kingdom
| | - Eirini Kalliolia
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom.,St. Luke's Hospital Thessaloniki, Thessaloniki, Greece
| | - Dejan Georgiev
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom.,Department of Neurology, University Medical Centre, Ljubljana, Slovenia
| | - Amy L Peters
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom.,Department of Physical Medicine and Rehabilitation, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Daniel C Voyce
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Harith Akram
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Patricia Limousin
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Brian L Day
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
46
|
Frequency-dependent effects of subthalamic deep brain stimulation on motor symptoms in Parkinson's disease: a meta-analysis of controlled trials. Sci Rep 2018; 8:14456. [PMID: 30262859 PMCID: PMC6160461 DOI: 10.1038/s41598-018-32161-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 09/03/2018] [Indexed: 11/08/2022] Open
Abstract
This study aims to investigate how the frequency settings of deep brain stimulation (DBS) targeting the subthalamic nucleus (STN) influence the motor symptoms of Parkinson's disease (PD). Stimulation with frequencies less than 100 Hz (mostly 60 or 80 Hz) is considered low-frequency stimulation (LFS) and with frequencies greater than 100 Hz (mostly 130 or 150 Hz) is considered high-frequency stimulation (HFS). We conducted a comprehensive literature review and meta-analysis with a random-effect model. Ten studies with 132 patients were included in our analysis. The pooled results showed no significant difference in the total Unified Parkinson Disease Rating Scale part III (UPDRS-III) scores (mean effect, -1.50; p = 0.19) or the rigidity subscore between HFS and LFS. Compared to LFS, HFS induced greater reduction in the tremor subscore within the medication-off condition (mean effect, 1.01; p = 0.002), while no significance was shown within the medication-on condition (mean effect, 0.01; p = 0.92). LFS induced greater reduction in akinesia subscore (mean effect, -1.68, p = 0.003), the time to complete the stand-walk-sit (SWS) test (mean effect, -4.84; p < 0.00001), and the number of freezing of gait (FOG) (mean effect, -1.71; p = 0.03). These results suggest that two types of frequency settings may have different effects, that is, HFS induces better responses for tremor and LFS induces greater response for akinesia, gait, and FOG, respectively, which are worthwhile to be confirmed in future study, and will ultimately inform the clinical practice in the management of PD using STN-DBS.
Collapse
|
47
|
Xie T, Bloom L, Padmanaban M, Bertacchi B, Kang W, MacCracken E, Dachman A, Vigil J, Satzer D, Zadikoff C, Markopoulou K, Warnke P, Kang UJ. Long-term effect of low frequency stimulation of STN on dysphagia, freezing of gait and other motor symptoms in PD. J Neurol Neurosurg Psychiatry 2018; 89:989-994. [PMID: 29654112 DOI: 10.1136/jnnp-2018-318060] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/01/2018] [Accepted: 03/24/2018] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To evaluate the long-term effect of 60 Hz stimulation of the subthalamic nucleus (STN) on dysphagia, freezing of gait (FOG) and other motor symptoms in patients with Parkinson's disease (PD) who have FOG at the usual 130 Hz stimulation. METHODS This is a prospective, sequence randomised, crossover, double-blind study. PD patients with medication refractory FOG at 130 Hz stimulation of the STN were randomised to the sequences of 130 Hz, 60 Hz or deep brain stimulation off to assess swallowing function (videofluoroscopic evaluation and swallowing questionnaire), FOG severity (stand-walk-sit test and FOG questionnaire) and motor function (Unified PD Rating Scale, Part III motor examination (UPDRS-III)) at initial visit (V1) and follow-up visit (V2, after being on 60 Hz stimulation for an average of 14.5 months), in their usual medications on state. The frequency of aspiration events, perceived swallowing difficulty and FOG severity at 60 Hz compared with 130 Hz stimulation at V2, and their corresponding changes at V2 compared with V1 at 60 Hz were set as primary outcomes, with similar comparisons in UPDRS-III and its subscores as secondary outcomes. RESULTS All 11 enrolled participants completed V1 and 10 completed V2. We found the benefits of 60 Hz stimulation compared with 130 Hz in reducing aspiration frequency, perceived swallowing difficulty, FOG severity, bradykinesia and overall axial and motor symptoms at V1 and persistent benefits on all of them except dysphagia at V2, with overall decreasing efficacy when comparing V2 to V1. CONCLUSIONS The 60 Hz stimulation, when compared with 130 Hz, has long-term benefits on reducing FOG, bradykinesia and overall axial and motor symptoms except dysphagia, although the overall benefits decrease with long-term use. CLINICAL TRIAL REGISTRATION NCT02549859; Pre-results.
Collapse
Affiliation(s)
- Tao Xie
- Department of Neurology, University of Chicago Medicine, Chicago, Illinois, USA
| | - Lisa Bloom
- Speech and Swallowing Section, Department of Surgery, University of Chicago Medicine, Chicago, Illinois, USA
| | - Mahesh Padmanaban
- Department of Neurology, University of Chicago Medicine, Chicago, Illinois, USA
| | - Breanna Bertacchi
- Department of Neurology, University of Chicago Medicine, Chicago, Illinois, USA
| | - Wenjun Kang
- Center for Research Informatics, University of Chicago, Chicago, Illinois, USA
| | - Ellen MacCracken
- Speech and Swallowing Section, Department of Surgery, University of Chicago Medicine, Chicago, Illinois, USA
| | - Abraham Dachman
- Department of Radiology, University of Chicago Medicine, Chicago, Illinois, USA
| | - Julie Vigil
- Speech and Swallowing Section, Department of Surgery, University of Chicago Medicine, Chicago, Illinois, USA
| | - David Satzer
- Department of Neurosurgery, University of Chicago Medicine, Chicago, Illinois, USA
| | - Cindy Zadikoff
- Department of Neurology, Northwestern University Medical Center, Chicago, Illinois, USA
| | - Katerina Markopoulou
- Department of Neurology, NorthShore University HealthSystem, Glenview, Illinois, USA
| | - Peter Warnke
- Department of Neurosurgery, University of Chicago Medicine, Chicago, Illinois, USA
| | - Un Jung Kang
- Department of Neurology, Columbia University Medical Center, New York City, New York, USA
| |
Collapse
|
48
|
Spike discharge characteristic of the caudal mesencephalic reticular formation and pedunculopontine nucleus in MPTP-induced primate model of Parkinson disease. Neurobiol Dis 2018; 128:40-48. [PMID: 30086388 DOI: 10.1016/j.nbd.2018.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/24/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022] Open
Abstract
The pedunculopontine nucleus (PPN) included in the caudal mesencephalic reticular formation (cMRF) plays a key role in the control of locomotion and wake state. Regarding its involvement in the neurodegenerative process observed in Parkinson disease (PD), deep brain stimulation of the PPN was proposed to treat levodopa-resistant gait disorders. However, the precise role of the cMRF in the pathophysiology of PD, particularly in freezing of gait and other non-motor symptoms is still not clear. Here, using micro electrode recording (MER) in 2 primates, we show that dopamine depletion did not alter the mean firing rate of the overall cMRF neurons, particularly the putative non-cholinergic ones, but only a decreased activity of the regular neurons sub-group (though to be the cholinergic PPN neurons). Interestingly, a significant increase in the relative proportion of cMRF neurons with a burst pattern discharge was observed after MPTP intoxication. The present results question the hypothesis of an over-inhibition of the CMRF by the basal ganglia output structures in PD. The decreased activity observed in the regular neurons could explain some non-motor symptoms in PD regarding the strong involvement of the cholinergic neurons on the modulation of the thalamo-cortical system. The increased burst activity under dopamine depletion confirms that this specific spike discharge pattern activity also observed in other basal ganglia nuclei and in different pathologies could play a mojor role in the pathophysiology of the disease and could explain several symptoms of PD including the freezing of gait. The present data will have to be replicated in a larger number of animals and will have to investigate more in details how the modification of the spike discharge of the cMRF neurons in the parkinsonian state could alter functions such as locomotion and attentional state. This will ultimely allow a better comprehension of the pathophysiology of freezing of gait.
Collapse
|
49
|
Thevathasan W, Moro E. What is the therapeutic mechanism of pedunculopontine nucleus stimulation in Parkinson's disease? Neurobiol Dis 2018; 128:67-74. [PMID: 29933055 DOI: 10.1016/j.nbd.2018.06.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/08/2018] [Accepted: 06/15/2018] [Indexed: 10/28/2022] Open
Abstract
Pedunculopontine nucleus (PPN) deep brain stimulation (DBS) is an experimental treatment for Parkinson's disease (PD) which offers a fairly circumscribed benefit for gait freezing and perhaps balance impairment. The benefit on gait freezing is variable and typically incomplete, which may reflect that the clinical application is yet to be optimised or reflect a fundamental limitation of the therapeutic mechanism. Thus, a better understanding of the therapeutic mechanism of PPN DBS may guide the further development of this therapy. The available evidence supports that the PPN is underactive in PD due to a combination of both degeneration and excessive inhibition. Low frequency PPN DBS could enhance PPN network activity, perhaps via disinhibition. A clinical implication is that in some PD patients, the PPN may be too degenerate for PPN DBS to work. Reaction time studies report that PPN DBS mediates a very specific benefit on pre-programmed movement. This seems relevant to the pathophysiology of gait freezing, which can be argued to reflect impaired release of pre-programmed adjustments to locomotion. Thus, the benefit of PPN DBS on gait freezing could be akin to that mediated by external cues. Alpha band activity is a prominent finding in local field potential recordings from PPN electrodes in PD patients. Alpha band activity is implicated in the suppression of task irrelevant processes and thus the effective allocation of attention (processing resources). Attentional deficits are prominent in patients with PD and gait freezing and PPN alpha activity has been observed to drop out prior to gait freezing episodes and to increase with levodopa. This raises the hypothesis that PPN DBS could support or emulate PPN alpha activity and consequently enhance the allocation of attention. Although PPN DBS has not been convincingly shown to increase general alertness or attention, it remains possible that PPN DBS may enhance the allocation of processing resources within the motor system, or "motor attention". For example, this could facilitate the 'switching' of motor state between continuation of pattern generated locomotion towards the intervention of pre-programmed adjustments. However, if the downstream consequence of PPN DBS on movement is limited to a circumscribed unblocking of pre-programmed movement, then this may have a similarly circumscribed degree of benefit for gait. If this is the case, then it may be possible to identify patients who may benefit most from PPN DBS. For example, those in whom pre-programmed deficits are the major contributors to gait freezing.
Collapse
Affiliation(s)
- Wesley Thevathasan
- Departments of Neurology, Royal Melbourne Hospital and Austin Hospitals, University of Melbourne, Australia and the Bionics Institute of Australia, Melbourne, Australia
| | - Elena Moro
- Movement Disorders Center, Division of Neurology, CHU Grenoble, Grenoble Alpes University, INSERM U1214, Grenoble, France.
| |
Collapse
|
50
|
Goetz L, Bhattacharjee M, Ferraye MU, Fraix V, Maineri C, Nosko D, Fenoy AJ, Piallat B, Torres N, Krainik A, Seigneuret E, David O, Parent M, Parent A, Pollak P, Benabid AL, Debu B, Chabardès S. Deep Brain Stimulation of the Pedunculopontine Nucleus Area in Parkinson Disease: MRI-Based Anatomoclinical Correlations and Optimal Target. Neurosurgery 2018; 84:506-518. [DOI: 10.1093/neuros/nyy151] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 03/27/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Laurent Goetz
- Grenoble Institute of Neurosciences, INSERM U1216 CEA-UJF-CHUGA, Grenoble, France
- University Grenoble Alpes, Grenoble, France
- CERVO Brain Research Center, Institut Universitaire en Santé Mentale de Québec, Department of Psychiatry and Neuroscience, Université Laval, Québec City, Canada
| | - Manik Bhattacharjee
- Grenoble Institute of Neurosciences, INSERM U1216 CEA-UJF-CHUGA, Grenoble, France
- University Grenoble Alpes, Grenoble, France
| | - Murielle U Ferraye
- Grenoble Institute of Neurosciences, INSERM U1216 CEA-UJF-CHUGA, Grenoble, France
- University Grenoble Alpes, Grenoble, France
| | - Valérie Fraix
- Grenoble Institute of Neurosciences, INSERM U1216 CEA-UJF-CHUGA, Grenoble, France
- University Grenoble Alpes, Grenoble, France
- Department of Neurology, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Carina Maineri
- Department of Neurosurgery, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
- Department of Pediatric Neurosurgery, Italian Hospital of Buenos Aires, Buenos Aires, Argentina
| | - Daniela Nosko
- Grenoble Institute of Neurosciences, INSERM U1216 CEA-UJF-CHUGA, Grenoble, France
- University Grenoble Alpes, Grenoble, France
- Pediatric department, Örebro University Hospital, Örebro, Sweden
| | - Albert J Fenoy
- Department of Neurosurgery, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
- Department of Neurosurgery, University of Texas Houston, Health Science Center, Houston, Texas
| | - Brigitte Piallat
- Grenoble Institute of Neurosciences, INSERM U1216 CEA-UJF-CHUGA, Grenoble, France
- University Grenoble Alpes, Grenoble, France
| | - Napoléon Torres
- University Grenoble Alpes, Grenoble, France
- Department of Neurosurgery, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
- CEA Clinatec-Minatec, Grenoble, France
| | - Alexandre Krainik
- Grenoble Institute of Neurosciences, INSERM U1216 CEA-UJF-CHUGA, Grenoble, France
- University Grenoble Alpes, Grenoble, France
- Department of Neuroradiology, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Eric Seigneuret
- Grenoble Institute of Neurosciences, INSERM U1216 CEA-UJF-CHUGA, Grenoble, France
- University Grenoble Alpes, Grenoble, France
- Department of Neurosurgery, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Olivier David
- Grenoble Institute of Neurosciences, INSERM U1216 CEA-UJF-CHUGA, Grenoble, France
- University Grenoble Alpes, Grenoble, France
| | - Martin Parent
- CERVO Brain Research Center, Institut Universitaire en Santé Mentale de Québec, Department of Psychiatry and Neuroscience, Université Laval, Québec City, Canada
| | - André Parent
- CERVO Brain Research Center, Institut Universitaire en Santé Mentale de Québec, Department of Psychiatry and Neuroscience, Université Laval, Québec City, Canada
| | - Pierre Pollak
- Grenoble Institute of Neurosciences, INSERM U1216 CEA-UJF-CHUGA, Grenoble, France
- University Grenoble Alpes, Grenoble, France
- Department of Neurology, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Alim -Louis Benabid
- University Grenoble Alpes, Grenoble, France
- Department of Neurosurgery, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
- CEA Clinatec-Minatec, Grenoble, France
| | - Bettina Debu
- Grenoble Institute of Neurosciences, INSERM U1216 CEA-UJF-CHUGA, Grenoble, France
- University Grenoble Alpes, Grenoble, France
| | - Stéphan Chabardès
- Grenoble Institute of Neurosciences, INSERM U1216 CEA-UJF-CHUGA, Grenoble, France
- University Grenoble Alpes, Grenoble, France
- Department of Neurosurgery, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
- CEA Clinatec-Minatec, Grenoble, France
| |
Collapse
|