1
|
Westerhausen R, Karlsson EM, Johnstone L, Carey DP. Corpus callosum morphology does not depend on hand preference or hemispheric dominance for language. Brain Res 2025; 1856:149574. [PMID: 40096939 DOI: 10.1016/j.brainres.2025.149574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/07/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025]
Abstract
It is traditionally assumed that the corpus callosum has a pivotal role in supporting hemispheric lateralisation, which originated from a series of studies suggesting differences in callosal morphology in relation to handedness. However, recent systematic reviews document that the callosal differences are only inconsistently reported, and it has been speculated that these inconsistencies might arise from focussing on handedness alone, without considering other lateralized functional modules. To address this short-coming, the present pre-registered study was designed to re-examine possible effects on callosal morphology while considering hand preference in interaction with hemispheric dominance for language. It was predicted that only those individuals who write with the hand ipsilateral to their language dominant hemisphere, have an increased need for interhemispheric integration that is reflected in detectable alteration to callosal morphology. That is, individual writing with the left hand (LW) while being left hemispheric dominant for language (LLD) are predicted to have a larger or thicker corpus callosum than individuals in which hand motor and language production are controlled by the same hemisphere. We tested this prediction by comparing the corpus callosum between the three common groups that result when combing the preferred writing hand (LW vs. right writers, RW) and the hemisphere dominant for language processing. For this purpose, language dominance (LLD vs. right dominance, RLD) was determined using a verbal-fluency task in functional magnetic resonance (fMRI) that has been previously validated. The study included N = 220 participants of both sexes, of which 97 were classified as LW/LLD, 73 as RW/LLD, and 50 as LW/RLD. The morphology of the corpus callosum was assessed on T1-weighted structural MR images as midsagittal surface area (subdivided into the three subregions genu, truncus, posterior third) as well as regional thickness (at 100 measuring points). The statistical analyses did not reveal any evidence to support our predictions and our sample size provides sufficient test power to rule out comparatively small effects with reasonable confidence. Thus, the midsagittal corpus callosum appears not substantially affected by the supposed increased requirement for interhemispheric integration in LW/LLD as compared with RW/LLD and LW/RLD individuals.
Collapse
Affiliation(s)
| | - Emma M Karlsson
- Institute of Cognitive Neuroscience, School of Human and Behavioural Sciences, Bangor University, Bangor, United Kingdom; Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Leah Johnstone
- Sport Psychology Group, UCFB, Manchester, United Kingdom
| | - David P Carey
- Institute of Cognitive Neuroscience, School of Human and Behavioural Sciences, Bangor University, Bangor, United Kingdom
| |
Collapse
|
2
|
Chen X, Liu X, Zhong X, Ren J, Wang H, Song X, Fan C, Xu J, Li C, Wang L, Hu Q, Lv J, Xing Y, Gao L, Xu H. Lifespan trajectories of the morphology and tractography of the corpus callosum: A 5.0 T MRI study. Brain Res 2025; 1850:149413. [PMID: 39719192 DOI: 10.1016/j.brainres.2024.149413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/29/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024]
Abstract
The corpus callosum (CC) is the largest white matter fiber bundle connecting the two hemispheres, facilitating interhemispheric integration and hemispheric specialization. Neuroimaging studies have identified the CC as a marker for aging and various neuropsychiatric disorders. However, studies focusing on high-resolution imaging and detailed lifespan characterizations of CC morphology and connectivity are still limited, highlighting the need for further investigation.Utilizing the high-resolution brain imaging capabilities of 5.0 T ultra-high-field MRI, we collected lifespan data from 266 healthy adults aged 18-89. We segmented and measured the midsagittal area, circularity, thickness, and tractography of the CC using both linear regression and nonlinear fitting models. Our analysis revealed that, despite regional variations, these measures generally exhibited a brief initial increase, likely reflecting developmental maturation, followed by a rapid decline associated with aging-related degeneration. Coupling analysis further indicated that the positive correlation between CC morphology and tractography becomes stronger with increasing age, suggesting age-related structural-functional coupling. External validation and correlation with cognitive-behavioral tests showed that CC subregions with significant age-related changes predominantly involve areas connecting the frontal and parietal networks, particularly those associated with executive function and attentional control. These findings provide new insights into the lifespan evolution of CC morphology and tractography, as well as their degeneration associated with cognitive processing and sensory-motor integration.
Collapse
Affiliation(s)
- Xiaohui Chen
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xitong Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiaoli Zhong
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jinxia Ren
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Huan Wang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiaopeng Song
- Shanghai United Imaging Healthcare Co Ltd, Shanghai 201815, China
| | - Chenhong Fan
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jia Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Chunyu Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Liang Wang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Qiang Hu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jinfeng Lv
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yaowen Xing
- Shanghai United Imaging Healthcare Co Ltd, Shanghai 201815, China.
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
3
|
Luders E, Spencer D, Dale C, Hughes IA, Thankamony A, Srirangalingam U, Gleeson H, Simpson H, Hines M, Kurth F. The corpus callosum in people with congenital adrenal hyperplasia (CAH). Sci Rep 2025; 15:4206. [PMID: 39905209 PMCID: PMC11794586 DOI: 10.1038/s41598-025-88870-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/31/2025] [Indexed: 02/06/2025] Open
Abstract
Congenital Adrenal Hyperplasia (CAH) is a group of genetic disorders that affect the adrenal glands. CAH manifests in abnormal levels of cortisol and androgens and is accompanied by white matter alterations. However, no CAH study has specifically targeted the corpus callosum, the brain's largest white matter fiber tract. To bridge that gap in the literature, we investigated callosal morphology in 53 individuals with CAH and 53 matched controls (66 women, 40 men). In addition to calculating areas for seven callosal subsections, we estimated the callosal thickness at 100 equidistant points. All statistical analyses were conducted while co-varying for age and total brain volume and applying corrections for multiple comparisons. There were no significant effects of biological sex and no significant group-by-sex interactions. However, there was a significant effect of group, both for area measures and thickness estimates, indicating smaller dimensions within the callosal splenium and isthmus in people with CAH. Our findings corroborate previous studies highlighting white matter alterations in CAH and may suggest that callosal integrity is compromised due to potentially adverse effects of glucocorticoids, a standard treatment for both men and women with CAH.
Collapse
Affiliation(s)
- Eileen Luders
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.
- School of Psychology, University of Auckland, Auckland, New Zealand.
- Laboratory of Neuro Imaging, USC Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA.
| | - Debra Spencer
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Caitlin Dale
- School of Psychology, University of Auckland, Auckland, New Zealand
| | - Ieuan A Hughes
- Department of Paediatrics, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Ajay Thankamony
- Department of Paediatrics, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- The Weston Centre for Paediatric Endocrinology and Diabetes, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Umasuthan Srirangalingam
- Department of Endocrinology and Diabetes, University College Hospital London, London, NW1 2BU, UK
| | | | - Helen Simpson
- Department of Endocrinology and Diabetes, University College Hospital London, London, NW1 2BU, UK
| | - Melissa Hines
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Florian Kurth
- School of Psychology, University of Auckland, Auckland, New Zealand
- Department of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| |
Collapse
|
4
|
Sanchis-Segura C, Wilcox RR, Cruz-Gómez AJ, Félix-Esbrí S, Sebastián-Tirado A, Forn C. Univariate and multivariate sex differences and similarities in gray matter volume within essential language-processing areas. Biol Sex Differ 2023; 14:90. [PMID: 38129916 PMCID: PMC10740309 DOI: 10.1186/s13293-023-00575-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Sex differences in language-related abilities have been reported. It is generally assumed that these differences stem from a different organization of language in the brains of females and males. However, research in this area has been relatively scarce, methodologically heterogeneous and has yielded conflicting results. METHODS Univariate and multivariate sex differences and similarities in gray matter volume (GMVOL) within 18 essential language-processing brain areas were assessed in a sex-balanced sample (N = 588) of right-handed young adults. Univariate analyses involved location, spread, and shape comparisons of the females' and males' distributions and were conducted with several robust statistical methods able to quantify the size of sex differences and similarities in a complementary way. Multivariate sex differences and similarities were estimated by the same methods in the continuous scores provided by two distinct multivariate procedures (logistic regression and a multivariate analog of the Wilcoxon-Mann-Whitney test). Additional analyses were addressed to compare the outcomes of these two multivariate analytical strategies and described their structure (that is, the relative contribution of each brain area to the multivariate effects). RESULTS When not adjusted for total intracranial volume (TIV) variation, "large" univariate sex differences (males > females) were found in all 18 brain areas considered. In contrast, "small" differences (females > males) in just two of these brain areas were found when controlling for TIV. The two multivariate methods tested provided very similar results. Multivariate sex differences surpassed univariate differences, yielding "large" differences indicative of larger volumes in males when calculated from raw GMVOL estimates. Conversely, when calculated from TIV-adjusted GMVOL, multivariate differences were "medium" and indicative of larger volumes in females. Despite their distinct size and direction, multivariate sex differences in raw and TIV-adjusted GMVOL shared a similar structure and allowed us to identify the components of the SENT_CORE network which more likely contribute to the observed effects. CONCLUSIONS Our results confirm and extend previous findings about univariate sex differences in language-processing areas, offering unprecedented evidence at the multivariate level. We also observed that the size and direction of these differences vary quite substantially depending on whether they are estimated from raw or TIV-adjusted GMVOL measurements.
Collapse
Affiliation(s)
- Carla Sanchis-Segura
- Departament de Psicologia Bàsica Clinica I Psicobiología, Facultat de Ciències de La Salut, Universitat Jaume I, Avda Sos Baynat, SN, 12071, Castelló, Spain.
| | - Rand R Wilcox
- Department of Psychology, University of Southern California, Los Angeles, USA
| | | | - Sonia Félix-Esbrí
- Departament de Psicologia Bàsica Clinica I Psicobiología, Facultat de Ciències de La Salut, Universitat Jaume I, Avda Sos Baynat, SN, 12071, Castelló, Spain
| | - Alba Sebastián-Tirado
- Departament de Psicologia Bàsica Clinica I Psicobiología, Facultat de Ciències de La Salut, Universitat Jaume I, Avda Sos Baynat, SN, 12071, Castelló, Spain
| | - Cristina Forn
- Departament de Psicologia Bàsica Clinica I Psicobiología, Facultat de Ciències de La Salut, Universitat Jaume I, Avda Sos Baynat, SN, 12071, Castelló, Spain
| |
Collapse
|
5
|
Fraize J, Leprince Y, Elmaleh-Bergès M, Kerdreux E, Delorme R, Hertz-Pannier L, Lefèvre J, Germanaud D. Spectral-based thickness profiling of the corpus callosum enhances anomaly detection in fetal alcohol spectrum disorders. Front Neurosci 2023; 17:1289013. [PMID: 38027471 PMCID: PMC10657855 DOI: 10.3389/fnins.2023.1289013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Fetal alcohol spectrum disorders (FASD) range from fetal alcohol syndrome (FAS) to non-syndromic forms (NS-FASD). The neuroanatomical consequences of prenatal alcohol exposure are mainly the reduction in brain size, but also focal abnormalities such as those of the corpus callosum (CC). We previously showed a narrowing of the CC for brain size, using manual measurement and its usefulness to improve diagnostic certainty. Our aim was to automate these measurements of the CC and identify more recurrent abnormalities in FAS subjects, independently of brain size reduction. Methods We developed a fast, automated, and normalization-free method based on spectral analysis to generate thicknesses of the CC continuously and at singular points (genu, body, isthmus, and splenium), and its length (LCC). We applied it on midsagittal section of the CC extracted from T1-anatomical brain MRI of 89 subjects with FASD (52 FAS, 37 NS-FASD) and 126 with typically development (6-20 y-o). After adjusting for batch effect, we compared the mean profiles and thicknesses of the singular points across the 3 groups. For each parameter, we established variations with age (growth charts) and brain size in the control group (scaling charts), then identified participants with abnormal measurements (<10th percentile). Results We confirmed the slimming of the posterior half of the CC in both FASD groups, and of the genu section in the FAS group, compared to the control group. We found a significant group effect for the LCC, genu, median body, isthmus, and splenium thicknesses (p < 0.05). We described a body hump whose morphology did not differ between groups. According to the growth charts, there was an excess of FASD subjects with abnormal LCC and isthmus, and of FAS subjects with abnormal genu and splenium. According to the scaling charts, this excess remained only for LCC, isthmus and splenium, undersized for brain size. Conclusion We characterized size-independent anomalies of the posterior part of the CC in FASD, with an automated method, confirming and extending our previous study. Our new tool brings the use of a neuroanatomical criterion including CC damage closer to clinical practice. Our results suggest that an FAS signature identified in NS-FASD, could improve diagnosis specificity.
Collapse
Affiliation(s)
- Justine Fraize
- UNIACT, NeuroSpin, Frederic Joliot Institute, Centre d’études de Saclay, CEA Paris-Saclay, Gif-sur-Yvette, France
- InDEV, NeuroDiderot, Inserm, Université Paris Cité, Paris, France
| | - Yann Leprince
- UNIACT, NeuroSpin, Frederic Joliot Institute, Centre d’études de Saclay, CEA Paris-Saclay, Gif-sur-Yvette, France
| | - Monique Elmaleh-Bergès
- Department of Pediatric Radiologic, Robert-Debré Hospital, AP-HP, Centre of Excellence InovAND, Paris, France
| | - Eliot Kerdreux
- UNIACT, NeuroSpin, Frederic Joliot Institute, Centre d’études de Saclay, CEA Paris-Saclay, Gif-sur-Yvette, France
- InDEV, NeuroDiderot, Inserm, Université Paris Cité, Paris, France
| | - Richard Delorme
- Department of Child and Adolescent Psychiatry, Robert-Debré Hospital, AP-HP, Centre of Excellence InovAND, Paris, France
| | - Lucie Hertz-Pannier
- UNIACT, NeuroSpin, Frederic Joliot Institute, Centre d’études de Saclay, CEA Paris-Saclay, Gif-sur-Yvette, France
- InDEV, NeuroDiderot, Inserm, Université Paris Cité, Paris, France
| | - Julien Lefèvre
- Institut de Neurosciences de La Timone, CNRS, Aix-Marseille Université, Marseille, France
| | - David Germanaud
- UNIACT, NeuroSpin, Frederic Joliot Institute, Centre d’études de Saclay, CEA Paris-Saclay, Gif-sur-Yvette, France
- InDEV, NeuroDiderot, Inserm, Université Paris Cité, Paris, France
- Department of Genetics, Robert-Debré Hospital, AP-HP, Centre de Référence Déficiences Intellectuelles de Causes Rares, Centre of Excellence InovAND, Paris, France
| |
Collapse
|
6
|
Urbanik A, Guz W, Gołębiowski M, Szurowska E, Majos A, Sąsiadek M, Stajgis M, Ostrogórska M. Assessment of the corpus callosum size in male individuals with high intelligence quotient (members of Mensa International). RADIOLOGIE (HEIDELBERG, GERMANY) 2023; 63:49-54. [PMID: 37160478 PMCID: PMC10689507 DOI: 10.1007/s00117-023-01146-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVES The aim of this study was to assess the size of the corpus callosum in members of Mensa International, which is the world's largest and oldest high-intelligence quotient (IQ) society. METHODS We performed T2-weighted magnetic resonance imaging (Repetition Time, TR = 3200 ms, Time of Echo, TE = 409 ms) to examine the brain of members of Mensa International (Polish national group) in order to assess the size of the corpus callosum. Results from 113 male MENSA members and 96 controls in the age range of 21-40 years were analyzed. RESULTS The comparative analysis showed that the mean length of the corpus callosum and the thickness of the isthmus were significantly greater in the Mensa members compared to the control groups. A statistically significant difference was also identified in the largest linear dimension of the brain from the frontal lobe to the occipital lobe. The mean corpus callosum cross-sectional area and its ratio to the brain area were significantly greater in the Mensa members. CONCLUSIONS The results show that the dimensions (linear measures and midsagittal cross-sectional surface area) of the corpus callosum were significantly greater in the group of Mensa members than in the controls.
Collapse
Affiliation(s)
- Andrzej Urbanik
- Department of Radiology, Collegium Medicum, Jagiellonian University, Kopernika 19, 31-501, Krakow, Poland
| | - Wiesław Guz
- Department of Electroradiology, University of Rzeszów, Rzeszów, Poland
| | - Marek Gołębiowski
- I-st Department of Clinical Radiology, Medical University of Warsaw, Warszawa, Poland
| | - Edyta Szurowska
- 2nd Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Agata Majos
- Chair of Radiology and Imaging Diagnostics, Medical University of Łódź, Łódź, Poland
| | - Marek Sąsiadek
- Department of Radiology, Wroclaw Medical University, Wrocław, Poland
| | - Marek Stajgis
- Department of General Radiology and Neuroradiology, Poznan University of Medical Sciences, Poznań, Poland
| | - Monika Ostrogórska
- Department of Radiology, Collegium Medicum, Jagiellonian University, Kopernika 19, 31-501, Krakow, Poland.
| |
Collapse
|
7
|
Raaf N, Westerhausen R. Hand preference and the corpus callosum: Is there really no association? NEUROIMAGE: REPORTS 2023. [DOI: 10.1016/j.ynirp.2023.100160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
8
|
Carmo GP, Grigioni J, Fernandes FAO, Alves de Sousa RJ. Biomechanics of Traumatic Head and Neck Injuries on Women: A State-of-the-Art Review and Future Directions. BIOLOGY 2023; 12:biology12010083. [PMID: 36671775 PMCID: PMC9855362 DOI: 10.3390/biology12010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
The biomechanics of traumatic injuries of the human body as a consequence of road crashes, falling, contact sports, and military environments have been studied for decades. In particular, traumatic brain injury (TBI), the so-called "silent epidemic", is the traumatic insult responsible for the greatest percentage of death and disability, justifying the relevance of this research topic. Despite its great importance, only recently have research groups started to seriously consider the sex differences regarding the morphology and physiology of women, which differs from men and may result in a specific outcome for a given traumatic event. This work aims to provide a summary of the contributions given in this field so far, from clinical reports to numerical models, covering not only the direct injuries from inertial loading scenarios but also the role sex plays in the conditions that precede an accident, and post-traumatic events, with an emphasis on neuroendocrine dysfunctions and chronic traumatic encephalopathy. A review on finite element head models and finite element neck models for the study of specific traumatic events is also performed, discussing whether sex was a factor in validating them. Based on the information collected, improvement perspectives and future directions are discussed.
Collapse
Affiliation(s)
- Gustavo P. Carmo
- Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jeroen Grigioni
- Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fábio A. O. Fernandes
- Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- LASI—Intelligent Systems Associate Laboratory, 4800-058 Guimaraes, Portugal
| | - Ricardo J. Alves de Sousa
- Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
- LASI—Intelligent Systems Associate Laboratory, 4800-058 Guimaraes, Portugal
- Correspondence: ; Tel.: +351-234-370-200
| |
Collapse
|
9
|
Wang Y, Peng W, Tapert SF, Zhao Q, Pohl KM. Imputing Brain Measurements Across Data Sets via Graph Neural Networks. PREDICTIVE INTELLIGENCE IN MEDICINE. PRIME (WORKSHOP) 2023; 14277:172-183. [PMID: 37946742 PMCID: PMC10634632 DOI: 10.1007/978-3-031-46005-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Publicly available data sets of structural MRIs might not contain specific measurements of brain Regions of Interests (ROIs) that are important for training machine learning models. For example, the curvature scores computed by Freesurfer are not released by the Adolescent Brain Cognitive Development (ABCD) Study. One can address this issue by simply reapplying Freesurfer to the data set. However, this approach is generally computationally and labor intensive (e.g., requiring quality control). An alternative is to impute the missing measurements via a deep learning approach. However, the state-of-the-art is designed to estimate randomly missing values rather than entire measurements. We therefore propose to re-frame the imputation problem as a prediction task on another (public) data set that contains the missing measurements and shares some ROI measurements with the data sets of interest. A deep learning model is then trained to predict the missing measurements from the shared ones and afterwards is applied to the other data sets. Our proposed algorithm models the dependencies between ROI measurements via a graph neural network (GNN) and accounts for demographic differences in brain measurements (e.g. sex) by feeding the graph encoding into a parallel architecture. The architecture simultaneously optimizes a graph decoder to impute values and a classifier in predicting demographic factors. We test the approach, called Demographic Aware Graph-based Imputation (DAGI), on imputing those missing Freesurfer measurements of ABCD (N=3760; minimum age 12 years) by training the predictor on those publicly released by the National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA, N=540). 5-fold cross-validation on NCANDA reveals that the imputed scores are more accurate than those generated by linear regressors and deep learning models. Adding them also to a classifier trained in identifying sex results in higher accuracy than only using those Freesurfer scores provided by ABCD.
Collapse
Affiliation(s)
- Yixin Wang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Wei Peng
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Susan F Tapert
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Qingyu Zhao
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Kilian M Pohl
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Center for Biomedical Sciences, SRI International, Menlo Park, CA, USA
| |
Collapse
|
10
|
Khasawneh RR, Abu-El-Rub E, Alzu’bi A, Abdelhady GT, Al-Soudi HS. Corpus callosum anatomical changes in Alzheimer patients and the effect of acetylcholinesterase inhibitors on corpus callosum morphometry. PLoS One 2022; 17:e0269082. [PMID: 35895623 PMCID: PMC9328497 DOI: 10.1371/journal.pone.0269082] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
The Corpus Callosum (CC) is an important structure that includes the majority of fibers connecting the two brain hemispheres. Several neurodegenerative diseases may alter CC size and morphology leading to its atrophy and malfunction which may play a role in the pathological manifestations found in these diseases. The purpose of the current study is to determine any possible changes in CC size in patients suffering from Alzheimer’s disease. The Study also investigated the effect of acetylcholinesterase inhibitors (AChEIs) on the size of CC and its association with improvement in the Alzheimer disease severity scores. Midsagittal size of CC were recorded prospectively from 439 routine T1-weighted MRI brain images in normal individuals. The internal skull surface was measured to calculate CC/ internal skull surface ratio. Two groups of patients were studied: 300 (150 male / 150 female) were healthy subjects and 130 (55 males / 75 females) had Alzheimer disease. Out of the 130 Alzheimer disease pateints, 70 patients were treated with Donepezil or Rivastigmine or both. The size of the CC was measured based on T1-weighted MRI images after the treatment to investigate any possible improvement in CC size. The mean surface area of CC in controls was 6.53±1.105 cm2. There was no significant difference between males and females (P < 0.627), and CC/ internal skull surface ratio was 4.41±0.77%. Patients with mild or severe Alzheimer disease showed a significant reduction in CC size compared to healthy controls. Treating mild Alzheimer patients with either Donepezil or Rivastigmine exerts a comparable therapeutic effect in improving the CC size. There was more improvement in the size of CC in patients with severe Alzheimer disease by using combined therapy of Donepezil and Rivastigmine than using single a medication. we measured the mean size of the various portions of the corpus callosum in normal individuals and Alzheimer patients before and after taking Donepezil and Rivastigmine. Alzheimer patients have pronounced reduction in CC which is corrected after taking Donepezil and Rivastigmine leading to remarkable improvement in Alzheimer disease severity scores.
Collapse
Affiliation(s)
- Ramada R. Khasawneh
- Faculty of Medicine, Department of Basic Medical Sciences, Yarmouk University, Irbid, Jordan
- * E-mail:
| | - Ejlal Abu-El-Rub
- Faculty of Medicine, Department of Basic Medical Sciences, Yarmouk University, Irbid, Jordan
| | - Ayman Alzu’bi
- Faculty of Medicine, Department of Basic Medical Sciences, Yarmouk University, Irbid, Jordan
| | - Gamal T. Abdelhady
- Faculty of Medicine, Department of Basic Medical Sciences, Yarmouk University, Irbid, Jordan
- Faculty of Medicine, Department of Anatomy, Ain Shams University, Cairo, Egypt
| | - Hana S. Al-Soudi
- Nuclear Medicine, King Hussein Medical Center, Royal Medical Services, Amman, Jordan
| |
Collapse
|
11
|
Piras F, Vecchio D, Kurth F, Piras F, Banaj N, Ciullo V, Luders E, Spalletta G. Corpus callosum morphology in major mental disorders: a magnetic resonance imaging study. Brain Commun 2021; 3:fcab100. [PMID: 34095833 PMCID: PMC8172496 DOI: 10.1093/braincomms/fcab100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 11/14/2022] Open
Abstract
Mental disorders diagnosis is based on specific clinical criteria. However, clinical studies found similarities and overlapping phenomenology across a variety of disorders, which suggests a common neurobiological substrate. Thus, there is a need to measure disease-related neuroanatomical similarities and differences across conditions. While structural alterations of the corpus callosum have been investigated in obsessive-compulsive disorder, schizophrenia, major depressive disorder and bipolar disorder, no study has addressed callosal aberrations in all diseases in a single study. Moreover, results from pairwise comparisons (patients vs. controls) show some inconsistencies, possibly related to the parcellation methods to divide the corpus callosum into subregions. The main aim of the present paper was to uncover highly localized callosal characteristics for each condition (i.e. obsessive-compulsive disorder, schizophrenia, major depressive disorder and bipolar disorder) as compared either to healthy control subjects or to each other. For this purpose, we did not rely on any sub-callosal parcellation method, but applied a well-validated approach measuring callosal thickness at 100 equidistant locations along the whole midline of the corpus callosum. One hundred and twenty patients (30 in each disorder) as well as 30 controls were recruited for the study. All groups were closely matched for age and gender, and the analyses were performed controlling for the impact of antipsychotic treatment and illness duration. There was a significant main effect of group along the whole callosal surface. Pairwise post hoc comparisons revealed that, compared to controls, patients with obsessive-compulsive disorder had the thinnest corpora callosa with significant effects almost on the entire callosal structure. Patients with schizophrenia also showed thinner corpora callosa than controls but effects were confined to the isthmus and the anterior part of the splenium. No significant differences were found in both major depressive disorder and bipolar disorder patients compared to controls. When comparing the disease groups to each other, the corpus callosum was thinner in obsessive-compulsive disorder patients than in any other group. The effect was evident across the entire corpus callosum, with the exception of the posterior body. Altogether, our study suggests that the corpus callosum is highly changed in obsessive-compulsive disorder, selectively changed in schizophrenia and not changed in bipolar disorder and major depressive disorder. These results shed light on callosal similarities and differences among mental disorders providing valuable insights regarding the involvement of the major brain commissural fibre tract in the pathophysiology of each specific mental illness.
Collapse
Affiliation(s)
- Fabrizio Piras
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Daniela Vecchio
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Florian Kurth
- School of Psychology, University of Auckland, Auckland, Private Bag 92019, New Zealand
| | - Federica Piras
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Valentina Ciullo
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Eileen Luders
- School of Psychology, University of Auckland, Auckland, Private Bag 92019, New Zealand.,Laboratory of Neuro Imaging, School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, 00179 Rome, Italy.,Menninger Department of Psychiatry and Behavioral Sciences, Division of Neuropsychiatry, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
12
|
Westerhausen R, Fjell AM, Kompus K, Schapiro SJ, Sherwood CC, Walhovd KB, Hopkins WD. Comparative morphology of the corpus callosum across the adult lifespan in chimpanzees (Pan troglodytes) and humans. J Comp Neurol 2021; 529:1584-1596. [PMID: 32978976 PMCID: PMC7987726 DOI: 10.1002/cne.25039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022]
Abstract
The human corpus callosum exhibits substantial atrophy in old age, which is stronger than what would be predicted from parallel changes in overall brain anatomy. To date, however, it has not been conclusively established whether this accentuated decline represents a common feature of brain aging across species, or whether it is a specific characteristic of the aging human brain. In the present cross-sectional study, we address this question by comparing age-related difference in corpus callosum morphology of chimpanzees and humans. For this purpose, we measured total midsagittal area and regional thickness of the corpus callosum from T1-weighted MRI data from 213 chimpanzees, aged between 9 and 54 years. The results were compared with data drawn from a large-scale human sample which was age-range matched using two strategies: (a) matching by chronological age (human sample size: n = 562), or (b) matching by accounting for differences in longevity and various maturational events between the species (i.e., adjusted human age range: 13.6 to 80.9 years; n = 664). Using generalized additive modeling to fit and compare aging trajectories, we found significant differences between the two species. The chimpanzee aging trajectory compared with the human trajectory was characterized by a slower increase from adolescence to middle adulthood, and by a lack of substantial decline from middle to old adulthood, which, however, was present in humans. Thus, the accentuated decline of the corpus callosum found in aging humans is not a universal characteristic of the aging brain, and appears to be human-specific.
Collapse
Affiliation(s)
- René Westerhausen
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway
| | - Anders M. Fjell
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Norway
| | - Kristiina Kompus
- Department of Biological and Medical Psychology, University of Bergen, Norway
- Institute of Psychology, University of Tartu, Estonia
| | - Steven J. Schapiro
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, UT MD Anderson Cancer Center, Bastrop, Texas, USA
- Department of Experimental Medicine, University of Copenhagen, Denmark
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
| | - Kristine B. Walhovd
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Norway
| | - William D. Hopkins
- Department of Comparative Medicine, Michael E. Keeling Center for Comparative Medicine and Research, UT MD Anderson Cancer Center, Bastrop, Texas, USA
| |
Collapse
|
13
|
Corpus callosum morphology across the lifespan in baboons (Papio anubis): A cross-sectional study of relative mid-sagittal surface area and thickness. Neurosci Res 2021; 171:19-26. [PMID: 33744333 DOI: 10.1016/j.neures.2021.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 11/22/2022]
Abstract
The corpus callosum enables integration and coordination of cognitive processing between the cerebral hemispheres. In the aging human brain, these functions are affected by progressive axon and myelin deteriorations, reflected as atrophy of the midsagittal corpus callosum in old age. In non-human primates, these degenerative processes are less pronounced as previous morphometric studies on capuchin monkey, rhesus monkeys, and chimpanzees do not find old-age callosal atrophy. In the present study, we extend these previous findings by studying callosal development of the olive baboon (Papio anubis) across the lifespan and compare it to chimpanzee and human data. For this purpose, total relative (to forebrain volume) midsagittal area, subsectional area, and regional thickness of the corpus callosum were assessed in 91 male and female baboons using non-invasive MRI-based morphometry. The studied age range was 2.5-26.6 years and lifespan trajectories were fitted using general additive modelling. Relative area of the total and anterior corpus callosum showed a positive linear trajectory. That is, both measures increased slowly but continuously from childhood into old age, and no decline was observed in old age. Thus, comparable with all other non-human primates studied to-date, baboons do not show callosal atrophy in old age. This observation lends supports to the notion that atrophy of the corpus callosum is a unique characteristic of human brain aging.
Collapse
|
14
|
Dump the "dimorphism": Comprehensive synthesis of human brain studies reveals few male-female differences beyond size. Neurosci Biobehav Rev 2021; 125:667-697. [PMID: 33621637 DOI: 10.1016/j.neubiorev.2021.02.026] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/01/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022]
Abstract
With the explosion of neuroimaging, differences between male and female brains have been exhaustively analyzed. Here we synthesize three decades of human MRI and postmortem data, emphasizing meta-analyses and other large studies, which collectively reveal few reliable sex/gender differences and a history of unreplicated claims. Males' brains are larger than females' from birth, stabilizing around 11 % in adults. This size difference accounts for other reproducible findings: higher white/gray matter ratio, intra- versus interhemispheric connectivity, and regional cortical and subcortical volumes in males. But when structural and lateralization differences are present independent of size, sex/gender explains only about 1% of total variance. Connectome differences and multivariate sex/gender prediction are largely based on brain size, and perform poorly across diverse populations. Task-based fMRI has especially failed to find reproducible activation differences between men and women in verbal, spatial or emotion processing due to high rates of false discovery. Overall, male/female brain differences appear trivial and population-specific. The human brain is not "sexually dimorphic."
Collapse
|
15
|
van Eijk L, Hansell NK, Strike LT, Couvy-Duchesne B, de Zubicaray GI, Thompson PM, McMahon KL, Zietsch BP, Wright MJ. Region-specific sex differences in the hippocampus. Neuroimage 2020; 215:116781. [DOI: 10.1016/j.neuroimage.2020.116781] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 02/12/2020] [Accepted: 03/27/2020] [Indexed: 01/11/2023] Open
|
16
|
Danielsen VM, Vidal-Piñeiro D, Mowinckel AM, Sederevicius D, Fjell AM, Walhovd KB, Westerhausen R. Lifespan trajectories of relative corpus callosum thickness: Regional differences and cognitive relevance. Cortex 2020; 130:127-141. [PMID: 32652340 DOI: 10.1016/j.cortex.2020.05.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 05/11/2020] [Accepted: 05/25/2020] [Indexed: 02/03/2023]
Abstract
The cerebral hemispheres are specialized for different cognitive functions and receive divergent information from the sensory organs, so that the interaction between the hemispheres is a crucial aspect of perception and cognition. At the same time, the major fiber tract responsible for this interaction, the corpus callosum, shows a structural development across the lifespan which is over-proportional. That is, compared to changes in overall forebrain volume, the corpus callosum shows an accentuated growth during childhood, adolescence, and early adulthood, as well as pronounced decline in older age. However, this over-proportionality of growth and decline along with potential consequences for cognition, have been largely overlooked in empirical research. In the present study we systematically address the proportionality of callosal development in a large mixed cross-sectional and longitudinal sample (1867 datasets from 1014 unique participants), covering the human lifespan (age range 4-93 years), and examine the cognitive consequences of the observed changes. Relative corpus callosum thickness was measured at 60 segments along the midsagittal surface, and lifespan trajectories were clustered to identify callosal subsections of comparable lifespan development. While confirming the expected inverted u-shaped lifespan trajectories, we also found substantial regional variation. Compared with anterior clusters, the most posterior sections exhibited an accentuated growth during development which extends well into the third decade of life, and a protracted decline in older age which is delayed by about 10 years (starting mid to late 50s). We further showed that the observed longitudinal changes in relative thickness of the mid splenium significantly mediates age-related changes in tests assessing verbal knowledge and non-verbal visual-spatial abilities across the lifespan. In summary, we demonstrate that analyzing the proportionality of callosal growth and decline offers valuable insight into lifespan development of structural connectivity between the hemispheres, and suggests consequences for the cognitive development of perception and cognition.
Collapse
Affiliation(s)
- V M Danielsen
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway
| | - D Vidal-Piñeiro
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway
| | - A M Mowinckel
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway
| | - D Sederevicius
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway
| | - A M Fjell
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway; Department of Radiology and Nuclear Medicine, Oslo University Hospital, Norway
| | - K B Walhovd
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway; Department of Radiology and Nuclear Medicine, Oslo University Hospital, Norway
| | - R Westerhausen
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Norway.
| |
Collapse
|
17
|
Uribe C, Junque C, Gómez-Gil E, Abos A, Mueller SC, Guillamon A. Brain network interactions in transgender individuals with gender incongruence. Neuroimage 2020; 211:116613. [DOI: 10.1016/j.neuroimage.2020.116613] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/04/2020] [Indexed: 12/31/2022] Open
|
18
|
Yang C, Li L, Hu X, Luo Q, Kuang W, Lui S, Huang X, Dai J, He M, Kemp GJ, Sweeney JA, Gong Q. Psychoradiologic abnormalities of white matter in patients with bipolar disorder: diffusion tensor imaging studies using tract-based spatial statistics. J Psychiatry Neurosci 2019; 44:32-44. [PMID: 30565904 PMCID: PMC6306286 DOI: 10.1503/jpn.170221] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND An increasing number of psychoradiology studies that use tract-based spatial statistics (TBSS) of diffusion tensor imaging have reported abnormalities of white matter in patients with bipolar disorder; however, robust conclusions have proven elusive, especially considering some important clinical and demographic factors. In the present study, we performed a quantitative meta-analysis of TBSS studies to elucidate the most consistent white-matter abnormalities in patients with bipolar disorder. METHODS We conducted a systematic search up to May 2017 for all TBSS studies comparing fractional anisotropy (FA) between patients with bipolar disorder and healthy controls. We performed anisotropic effect size–signed differential mapping meta-analysis. RESULTS We identified a total of 22 data sets including 556 patients with bipolar disorder and 623 healthy controls. We found significant FA reductions in the genu and body of the corpus callosum in patients with bipolar disorder relative to healthy controls. No regions of increased FA were reported. In subgroup analyses, the FA reduction in the genu of the corpus callosum retained significance in patients with bipolar disorder type I, and the FA reduction in the body of the corpus callosum retained significance in euthymic patients with bipolar disorder. Meta-regression analysis revealed that the percentage of female patients was negatively correlated with reduced FA in the body of the corpus callosum. LIMITATIONS Data acquisition, patient characteristics and clinical variables in the included studies were heterogeneous. The small number of diffusion tensor imaging studies using TBSS in patients with bipolar disorder type II, as well as the lack of other clinical information, hindered the application of subgroup meta-analyses. CONCLUSION Our study consistently identified decreased FA in the genu and body of the corpus callosum, suggesting that interhemispheric communication may be the connectivity most affected in patients with bipolar disorder.
Collapse
Affiliation(s)
- Cheng Yang
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Lei Li
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Xinyu Hu
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Qiang Luo
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Weihong Kuang
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Su Lui
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Xiaoqi Huang
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Jing Dai
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Manxi He
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Graham J. Kemp
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - John A Sweeney
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| | - Qiyong Gong
- From the Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, China (Yang, Li, Hu, Luo, Lui, Huang, Sweeney, Gong); the Department of Psychiatry, West China Hospital of Sichuan University, China (Kuang); the Department of Psychoradiology, Chengdu Mental Health Center, China (Kuang, Dai, He); the Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom (Kemp); the Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio, United States (Sweeney); and the Department of Psychology, School of Public Administration, Sichuan University, China (Gong)
| |
Collapse
|
19
|
Ethnicity Influences Corpus Callosum Dimensions. Neurol Res Int 2018; 2018:8916035. [PMID: 29854456 PMCID: PMC5954955 DOI: 10.1155/2018/8916035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/07/2018] [Accepted: 03/18/2018] [Indexed: 11/17/2022] Open
Abstract
Background and Objective Corpus callosum (CC), the main white matter cable which connects two hemispheres of brain, is important in special procedures such as stereotaxic surgeries vary in size, in different populations. Determination of possible size differences in ethnical groups has special values. Patients and Methods The size of the CC on midsagittal view was determined in 76 normal male subjects using MRI of brain hemispheres in northern Iran. The size of rostrum, body, splenium, length, and height of CC was measured for each subject. The width of the body of the corpus callosum (B), the anterior to posterior length (L) and the maximum height (H) of the corpus callosum, and ratios B/L and B/H were also calculated. Results The longitudinal dimensions of the CC were 70.21 mm and 74.05 mm in native Fars and Turkmens, respectively (P < 0.05). The heights were 25 mm and 25.75 mm in native Fars and Turkmen subjects, respectively. The width of CC in Turkmen people was significantly higher than native Fars people (P < 0.05). The Evans index in Turkmen group (0.314) was significantly higher than in native Fars (0.3). The B/L and B/H ratios were nonsignificantly different between two groups. Conclusion The CC parameters vary in different ethnical groups in northern Iran.
Collapse
|
20
|
Lee BY, Kim J, Connor JR, Podskalny GD, Ryu Y, Yang QX. Involvement of the central somatosensory system in restless legs syndrome. Neurology 2018; 90:e1834-e1841. [DOI: 10.1212/wnl.0000000000005562] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/23/2018] [Indexed: 01/18/2023] Open
Abstract
ObjectiveTo investigate morphologic changes in the somatosensory cortex and the thickness of the corpus callosum subdivisions that provide interhemispheric connections between the 2 somatosensory cortical areas.MethodsTwenty-eight patients with severe restless legs syndrome (RLS) symptoms and 51 age-matched healthy controls were examined with high-resolution MRI at 3.0 tesla. The vertex-wise analysis in conjunction with a novel cortical surface classification method was performed to assess the cortical thickness across the whole-brain structures. In addition, the thickness of the midbody of the corpus callosum that links postcentral gyri in the 2 hemispheres was measured.ResultsWe demonstrated that a morphologic change occurred in the brain somatosensory system in patients with RLS compared to controls. Patients with RLS exhibited a 7.5% decrease in average cortical thickness in the bilateral postcentral gyrus (p < 0.0001). Accordingly, there was a substantial decrease in the corpus callosum posterior midbody (p < 0.008) wherein the callosal fibers are connected to the postcentral gyrus, suggesting altered white matter properties in the somatosensory pathway.ConclusionOur results provide in vivo evidence of morphologic changes in the primary somatosensory system, which could be responsible for the sensory functional symptoms of RLS. These results provide a better understanding of the pathophysiology underlying the RLS sensory symptoms and could lead to a potential imaging marker for RLS.
Collapse
|
21
|
Chang CL, Chiu NC, Yang YC, Ho CS, Hung KL. Normal Development of the Corpus Callosum and Evolution of Corpus Callosum Sexual Dimorphism in Infancy. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2018; 37:869-877. [PMID: 28990212 DOI: 10.1002/jum.14420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/16/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVES The aim of this study was to establish reference ranges for the corpus callosum in infancy and to clarify how sexual dimorphism evolves between the fetal stage and infancy. METHODS Normal sonograms from cerebral ultrasonographic examinations of 1- to 6-month-old healthy full-term infants were selected. The length and thickness of the corpus callosum were determined, and the effect of sex on these values was analyzed. Studies on corpus callosum sexual dimorphism were reviewed. RESULTS In total, sonograms from 236 1- to 6-month-old infants (120 male and 116 female) were collected, and the typical values (5th-95th percentiles) of the corpus callosum were determined for each group. During the first 2 months, with and without brain size adjustment, the corpus callosum in female infants was significantly thicker than that in male infants (mean thickness ± SD: 1 month, male infant, 1.8 ± 0.3 mm; female infant, 2.1 ± 0.3 mm; P = .005; 2 months, male infant, 1.8 ± 0.2 mm; female infant, 2.0 ± 0.3 mm; P = .002). The corpus callosum thickness of male and female infants had no significant differences after 2 months of age. Sexual dimorphism was not detected in corpus callosum length. CONCLUSIONS Our study provides reference data on typical corpus callosum development in infants. In the fetal period and early infancy, the corpus callosum in female infants is thicker than that in male infants. From 3 months onward, the corpus callosum sexual dimorphism becomes insignificant throughout childhood. The evolvement of corpus callosum sexual dimorphism suggests that maternal factors may influence brain development.
Collapse
Affiliation(s)
- Chaw-Liang Chang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Department of Pediatrics, Cathay General Hospital, Hsinchu, Taiwan
- Department of Center for Medical Education and Research, Cathay General Hospital, Hsinchu, Taiwan
| | - Nan-Chang Chiu
- Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
- Department of Pediatrics, Mackay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan Department of Pediatrics (K.-L.H.), Cathay General Hospital, Taipei, Taiwan
| | - Yi-Chen Yang
- Department of Center for Medical Education and Research, Cathay General Hospital, Hsinchu, Taiwan
| | - Che-Sheng Ho
- Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
- Department of Pediatrics, Mackay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan Department of Pediatrics (K.-L.H.), Cathay General Hospital, Taipei, Taiwan
| | - Kun-Long Hung
- Department of Pediatrics, Cathay General Hospital, Hsinchu, Taiwan
- Department of Pediatrics School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
22
|
Ahmadvand A, Shahidi SB, Talari H, Ghoreishi FS, Mousavi GA. Morphology of the corpus callosum and schizophrenia: A case-control study in Kashan, Iran. Electron Physician 2017; 9:5478-5486. [PMID: 29238487 PMCID: PMC5718851 DOI: 10.19082/5478] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/12/2016] [Indexed: 12/22/2022] Open
Abstract
Background Corpus Callosum (CC) plays a significant role in hemispheric communication and in lateralized brain function and behaviors. Structural abnormalities in the corpus callosum of schizophrenic patients were reported. However, previous studies regarding the relationship between morphology of CC in patients with schizophrenia and healthy people are controversial. Objective To evaluate the morphological differences of the CC between patients with chronic schizophrenia and healthy people and to examine the relationship between the characteristics of the CC and schizophrenia severity. Methods This cross-sectional study was conducted on 63 patients with chronic schizophrenia (the case group) referred to Kargarnezhad Psychiatric Hospital in Kashan, Iran, and 63 healthy people (the control group) between January 2013 and December 2014. All participants underwent brain magnetic resonance imaging. Shape, anteroposterior length, and area of the CC were measured and compared in both groups. The severity of the symptoms occurring in patients with schizophrenia was evaluated using the positive and negative syndrome scale. In this study, we employed Chi-square test, t-test, Pearson product-moment correlation coefficient test, bivariate analysis of variance and logistic regression were used to test the association between different variables using SPSS software version 20. Results Results showed that the most common shape of the CC in each group was splenial bulbosity. The length and area of the CC in patients with schizophrenia were less than those of the control group and were greater in men compared with women in both groups. Although there was a significant difference in the surface area of the CC between the schizophrenic and control groups (p<0.001), no significant difference was seen regarding the anteroposterior length of CC (p=0.75). Moreover, a significant correlation was found between the surface area and anteroposterior length of the CC (p<0.001 and p<0.014, respectively). Conclusions Morphologic characteristics of the CC can be helpful to anticipate schizophrenia especially in patients’ family, and it can be used for suitable and faster treatment to prevent progressive cognitive dysfunction.
Collapse
Affiliation(s)
- Afshin Ahmadvand
- M.D., Psychiatrist, Associate Professor, Department of Psychiatry, Kashan University of Medical Sciences, Kashan, Iran
| | - Shahab Bagherzadeh Shahidi
- M.D., Psychiatrist, Faculty Member, Department of Psychiatry, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamidreza Talari
- M.D., Psychiatrist, Assistant Professor, Department of Psychiatry, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Sadat Ghoreishi
- M.D., Psychiatrist, Assistant Professor, Department of Psychiatry, Kashan University of Medical Sciences, Kashan, Iran
| | - Gholam Abbas Mousavi
- M.S., Faculty of Health, Department of Statistics and Public Health, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
23
|
Kurth F, Thompson PM, Luders E. Investigating the differential contributions of sex and brain size to gray matter asymmetry. Cortex 2017; 99:235-242. [PMID: 29287244 DOI: 10.1016/j.cortex.2017.11.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 09/05/2017] [Accepted: 11/28/2017] [Indexed: 12/28/2022]
Abstract
Scientific reports of sex differences in brain asymmetry - the difference between the two hemispheres - are rather inconsistent. Some studies report no sex differences whatsoever, others reveal striking sex effects, with large discrepancies across studies in the magnitude, direction, and location of the observed effects. One reason for the lack of consistency in findings may be the confounding effects of brain size as male brains are usually larger than female brains. Thus, the goal of this study was to investigate the differential contributions of sex and brain size to asymmetry with a particular focus on gray matter. For this purpose, we applied a well-validated workflow for voxel-wise gray matter asymmetry analyses in a sample of 96 participants (48 males/48 females), in which a subsample of brains (24 males/24 females) were matched for size. By comparing outcomes based on three different contrasts - all males versus all females; all large brains versus all small brains; matched males versus matched females - we were able to disentangle the contributing effects of sex and brain size, to reveal true (size-independent) sex differences in gray matter asymmetry: Males show a significantly stronger rightward asymmetry than females within the cerebellum, specifically in lobules VII, VIII, and IX. This finding agrees closely with prior research suggesting sex differences in sensorimotor, cognitive and emotional function, which are all moderated by the respective cerebellar sections. No other significant sex effects on gray matter were detected across the remainder of the brain.
Collapse
Affiliation(s)
- Florian Kurth
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, UCLA School of Medicine, Los Angeles, USA.
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Institute for Neuroimaging & Informatics, Keck USC School of Medicine, Marina Del Rey, CA, USA
| | - Eileen Luders
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, UCLA School of Medicine, Los Angeles, USA
| |
Collapse
|
24
|
Marwha D, Halari M, Eliot L. Meta-analysis reveals a lack of sexual dimorphism in human amygdala volume. Neuroimage 2016; 147:282-294. [PMID: 27956206 DOI: 10.1016/j.neuroimage.2016.12.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/27/2016] [Accepted: 12/08/2016] [Indexed: 12/31/2022] Open
Abstract
The amygdala plays a key role in many affective behaviors and psychiatric disorders that differ between men and women. To test whether human amygdala volume (AV) differs reliably between the sexes, we performed a systematic review and meta-analysis of AVs reported in MRI studies of age-matched healthy male and female groups. Using four search strategies, we identified 46 total studies (58 matched samples) from which we extracted effect sizes for the sex difference in AV. All data were converted to Hedges g values and pooled effect sizes were calculated using a random-effects model. Each dataset was further meta-regressed against study year and average participant age. We found that uncorrected amygdala volume is about 10% larger in males, with pooled sex difference effect sizes of g=0.581 for right amygdala (κ=28, n=2022), 0.666 for left amygdala (κ=28, n=2006), and 0.876 for bilateral amygdala (κ=16, n=1585) volumes (all p values < 0.001). However, this difference is comparable to the sex differences in intracranial volume (ICV; g=1.186, p<.001, 11.9% larger in males, κ=11) and total brain volume (TBV; g=1.278, p<0.001, 11.5% larger in males, κ=15) reported in subsets of the same studies, suggesting the sex difference in AV is a product of larger brain size in males. Among studies reporting AVs normalized for ICV or TBV, sex difference effect sizes were small and not statistically significant: g=0.171 for the right amygdala (p=0.206, κ=13, n=1560); 0.233 for the left amygdala (p=0.092, κ=12, n=1512); and 0.257 for bilateral volume (p=0.131, κ=5, n=1629). These values correspond to less than 0.1% larger corrected right AV and 2.5% larger corrected left AV in males compared to females. In summary, AV is not selectively enhanced in human males, as often claimed. Although we cannot rule out subtle male-female group differences, it is not accurate to refer to the human amygdala as "sexually dimorphic."
Collapse
Affiliation(s)
- Dhruv Marwha
- Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine & Science, United States
| | - Meha Halari
- Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine & Science, United States
| | - Lise Eliot
- Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine & Science, United States.
| |
Collapse
|
25
|
Westerhausen R, Fjell AM, Krogsrud SK, Rohani DA, Skranes JS, Håberg AK, Walhovd KB. Selective increase in posterior corpus callosum thickness between the age of 4 and 11 years. Neuroimage 2016; 139:17-25. [DOI: 10.1016/j.neuroimage.2016.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/03/2016] [Accepted: 06/06/2016] [Indexed: 11/26/2022] Open
|
26
|
Guillamon A, Junque C, Gómez-Gil E. A Review of the Status of Brain Structure Research in Transsexualism. ARCHIVES OF SEXUAL BEHAVIOR 2016; 45:1615-48. [PMID: 27255307 PMCID: PMC4987404 DOI: 10.1007/s10508-016-0768-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/22/2015] [Accepted: 04/29/2016] [Indexed: 05/22/2023]
Abstract
The present review focuses on the brain structure of male-to-female (MtF) and female-to-male (FtM) homosexual transsexuals before and after cross-sex hormone treatment as shown by in vivo neuroimaging techniques. Cortical thickness and diffusion tensor imaging studies suggest that the brain of MtFs presents complex mixtures of masculine, feminine, and demasculinized regions, while FtMs show feminine, masculine, and defeminized regions. Consequently, the specific brain phenotypes proposed for MtFs and FtMs differ from those of both heterosexual males and females. These phenotypes have theoretical implications for brain intersexuality, asymmetry, and body perception in transsexuals as well as for Blanchard's hypothesis on sexual orientation in homosexual MtFs. Falling within the aegis of the neurohormonal theory of sex differences, we hypothesize that cortical differences between homosexual MtFs and FtMs and male and female controls are due to differently timed cortical thinning in different regions for each group. Cross-sex hormone studies have reported marked effects of the treatment on MtF and FtM brains. Their results are used to discuss the early postmortem histological studies of the MtF brain.
Collapse
Affiliation(s)
- Antonio Guillamon
- Departamento de Psicobiología, Universidad Nacional de Educación a Distancia, c/Juand del Rosal, 10, 28040, Madrid, Spain.
- Academia de Psicología de España, Madrid, Spain.
| | - Carme Junque
- Departamento de Psiquiatría y Psicobiología Clínica, Universidad de Barcelona, Barcelona, Spain
- Institute of Biomedical Research August Pi i Sunyer, Barcelona, Spain
| | - Esther Gómez-Gil
- Institute of Biomedical Research August Pi i Sunyer, Barcelona, Spain
- Unidad de Identidad de Género, Hospital Clinic, Barcelona, Spain
| |
Collapse
|
27
|
Newman SD. Differences in cognitive ability and apparent sex differences in corpus callosum size. PSYCHOLOGICAL RESEARCH 2015. [DOI: 10.1007/s00426-015-0688-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
28
|
Mottron L, Duret P, Mueller S, Moore RD, Forgeot d'Arc B, Jacquemont S, Xiong L. Sex differences in brain plasticity: a new hypothesis for sex ratio bias in autism. Mol Autism 2015; 6:33. [PMID: 26052415 PMCID: PMC4456778 DOI: 10.1186/s13229-015-0024-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 04/27/2015] [Indexed: 01/13/2023] Open
Abstract
Several observations support the hypothesis that differences in synaptic and regional cerebral plasticity between the sexes account for the high ratio of males to females in autism. First, males are more susceptible than females to perturbations in genes involved in synaptic plasticity. Second, sex-related differences in non-autistic brain structure and function are observed in highly variable regions, namely, the heteromodal associative cortices, and overlap with structural particularities and enhanced activity of perceptual associative regions in autistic individuals. Finally, functional cortical reallocations following brain lesions in non-autistic adults (for example, traumatic brain injury, multiple sclerosis) are sex-dependent. Interactions between genetic sex and hormones may therefore result in higher synaptic and consecutively regional plasticity in perceptual brain areas in males than in females. The onset of autism may largely involve mutations altering synaptic plasticity that create a plastic reaction affecting the most variable and sexually dimorphic brain regions. The sex ratio bias in autism may arise because males have a lower threshold than females for the development of this plastic reaction following a genetic or environmental event.
Collapse
Affiliation(s)
- Laurent Mottron
- Centre d'excellence en Troubles envahissants du dévelopement de l'Université de Montréal (CETEDUM), Montréal, Canada.,Hôpital Rivière-des-Prairies, Département de Psychiatrie, Montréal, Canada.,Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Québec, Canada.,Department of Psychiatry, University of Montreal, Québec, Canada
| | - Pauline Duret
- Centre d'excellence en Troubles envahissants du dévelopement de l'Université de Montréal (CETEDUM), Montréal, Canada.,Hôpital Rivière-des-Prairies, Département de Psychiatrie, Montréal, Canada.,Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Québec, Canada.,Department of Psychiatry, University of Montreal, Québec, Canada.,Département de Biologie, École Normale Supérieure de Lyon, Lyon, CEDEX 07 France
| | - Sophia Mueller
- Institute of Clinical Radiology, University Hospitals, Munich, Germany.,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129 USA.,Harvard University, Center for Brain Science, Cambridge, MA 02138 USA
| | - Robert D Moore
- Department of Psychiatry, University of Montreal, Québec, Canada.,Department of Health Sciences, University of Montreal, Montreal, Canada.,College of Applied Health Sciences, University of Illinois, Urbana-Champaign, USA
| | - Baudouin Forgeot d'Arc
- Centre d'excellence en Troubles envahissants du dévelopement de l'Université de Montréal (CETEDUM), Montréal, Canada.,Hôpital Rivière-des-Prairies, Département de Psychiatrie, Montréal, Canada.,Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Québec, Canada.,Department of Psychiatry, University of Montreal, Québec, Canada
| | - Sebastien Jacquemont
- Department of Psychiatry, University of Montreal, Québec, Canada.,Centre de recherche, Centre Hospitalier Universitaire Sainte Justine, Montréal, Canada.,Service of Medical Genetics, University Hospital of Lausanne, University of Lausanne, Lausanne, 1011 Switzerland
| | - Lan Xiong
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Québec, Canada.,Department of Psychiatry, University of Montreal, Québec, Canada
| |
Collapse
|
29
|
Nordahl CW, Iosif AM, Young GS, Perry LM, Dougherty R, Lee A, Li D, Buonocore MH, Simon T, Rogers S, Wandell B, Amaral DG. Sex differences in the corpus callosum in preschool-aged children with autism spectrum disorder. Mol Autism 2015; 6:26. [PMID: 25973163 PMCID: PMC4429319 DOI: 10.1186/s13229-015-0005-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/02/2015] [Indexed: 11/29/2022] Open
Abstract
Background Abnormalities in the corpus callosum have been reported in individuals with autism spectrum disorder (ASD), but few studies have evaluated young children. Sex differences in callosal organization and diffusion characteristics have also not been evaluated fully in ASD. Methods Structural and diffusion-weighted images were acquired in 139 preschool-aged children with ASD (112 males/27 females) and 82 typically developing (TD) controls (53 males/29 females). Longitudinal scanning at two additional annual time points was carried out in a subset of these participants. Callosal organization was evaluated using two approaches: 1) diffusion tensor imaging (DTI) tractography to define subregions based on cortical projection zones and 2) as a comparison to previous studies, midsagittal area analysis using Witelson subdivisions. Diffusion measures of callosal fibers were also evaluated. Results Analyses of cortical projection zone subregions revealed sex differences in the patterns of altered callosal organization. Relative to their sex-specific TD counterparts, both males and females with ASD had smaller regions dedicated to fibers projecting to superior frontal cortex, but patterns differed in callosal subregions projecting to other parts of frontal cortex. While males with ASD had a smaller callosal region dedicated to the orbitofrontal cortex, females with ASD had a smaller callosal region dedicated to the anterior frontal cortex. There were also sex differences in diffusion properties of callosal fibers. While no alterations were observed in males with ASD relative to TD males, mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were all increased in females with ASD relative to TD females. Analyses of Witelson subdivisions revealed a decrease in midsagittal area of the corpus callosum in both males and females with ASD but no regional differences in specific subdivisions. Longitudinal analyses revealed no diagnostic or sex differences in the growth rate or change in diffusion measures of the corpus callosum from 3 to 5 years of age. Conclusions There are sex differences in the pattern of altered corpus callosum neuroanatomy in preschool-aged children with ASD. Electronic supplementary material The online version of this article (doi:10.1186/s13229-015-0005-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christine Wu Nordahl
- The MIND Institute, University of California at Davis, School of Medicine, 2805 50th Street, Sacramento, CA 95817 USA ; Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California at Davis, Sacramento, CA 95817 USA
| | - Ana-Maria Iosif
- The MIND Institute, University of California at Davis, School of Medicine, 2805 50th Street, Sacramento, CA 95817 USA ; Department of Public Health Sciences, School of Medicine, University of California at Davis, Davis, CA 95616 USA
| | - Gregory S Young
- The MIND Institute, University of California at Davis, School of Medicine, 2805 50th Street, Sacramento, CA 95817 USA ; Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California at Davis, Sacramento, CA 95817 USA
| | - Lee Michael Perry
- Department of Psychology, Stanford University, Stanford, CA 94305 USA
| | - Robert Dougherty
- Center for Cognitive and Neurobiological Imaging, Stanford University, Stanford, CA 94305 USA
| | - Aaron Lee
- The MIND Institute, University of California at Davis, School of Medicine, 2805 50th Street, Sacramento, CA 95817 USA ; Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California at Davis, Sacramento, CA 95817 USA
| | - Deana Li
- The MIND Institute, University of California at Davis, School of Medicine, 2805 50th Street, Sacramento, CA 95817 USA ; Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California at Davis, Sacramento, CA 95817 USA
| | - Michael H Buonocore
- Department of Radiology, School of Medicine, University of California at Davis, Sacramento, CA 95817 USA
| | - Tony Simon
- The MIND Institute, University of California at Davis, School of Medicine, 2805 50th Street, Sacramento, CA 95817 USA ; Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California at Davis, Sacramento, CA 95817 USA
| | - Sally Rogers
- The MIND Institute, University of California at Davis, School of Medicine, 2805 50th Street, Sacramento, CA 95817 USA ; Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California at Davis, Sacramento, CA 95817 USA
| | - Brian Wandell
- Department of Psychology, Stanford University, Stanford, CA 94305 USA
| | - David G Amaral
- The MIND Institute, University of California at Davis, School of Medicine, 2805 50th Street, Sacramento, CA 95817 USA ; Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California at Davis, Sacramento, CA 95817 USA
| |
Collapse
|
30
|
Tanaka-Arakawa MM, Matsui M, Tanaka C, Uematsu A, Uda S, Miura K, Sakai T, Noguchi K. Developmental changes in the corpus callosum from infancy to early adulthood: a structural magnetic resonance imaging study. PLoS One 2015; 10:e0118760. [PMID: 25790124 PMCID: PMC4366394 DOI: 10.1371/journal.pone.0118760] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 01/06/2015] [Indexed: 02/05/2023] Open
Abstract
Previous research has reported on the development trajectory of the corpus callosum morphology. However, there have been only a few studies that have included data on infants. The goal of the present study was to examine the morphology of the corpus callosum in healthy participants of both sexes, from infancy to early adulthood. We sought to characterize normal development of the corpus callosum and possible sex differences in development. We performed a morphometric magnetic resonance imaging (MRI) study of 114 healthy individuals, aged 1 month to 25 years old, measuring the size of the corpus callosum. The corpus callosum was segmented into seven subareas of the rostrum, genu, rostral body, anterior midbody, posterior midbody, isthmus and splenium. Locally weighted regression analysis (LOESS) indicated significant non-linear age-related changes regardless of sex, particularly during the first few years of life. After this increase, curve slopes gradually became flat during adolescence and adulthood in both sexes. Age of local maximum for each subarea of the corpus callosum differed across the sexes. Ratios of total corpus callosum and genu, posterior midbody, as well as splenium to the whole brain were significantly higher in females compared with males. The present results demonstrate that the developmental trajectory of the corpus callosum during early life in healthy individuals is non-linear and dynamic. This pattern resembles that found for the cerebral cortex, further suggesting that this period plays a very important role in neural and functional development. In addition, developmental trajectories and changes in growth do show some sex differences.
Collapse
Affiliation(s)
- Megumi M. Tanaka-Arakawa
- Department of Psychology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Mie Matsui
- Department of Psychology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- * E-mail:
| | - Chiaki Tanaka
- Department of Pediatrics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Akiko Uematsu
- Department of Psychology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Satoshi Uda
- Department of Psychology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kayoko Miura
- Department of Psychology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Tomoko Sakai
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Kyo Noguchi
- Department of Radiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
31
|
|
32
|
Ribolsi M, Daskalakis ZJ, Siracusano A, Koch G. Abnormal asymmetry of brain connectivity in schizophrenia. Front Hum Neurosci 2014; 8:1010. [PMID: 25566030 PMCID: PMC4273663 DOI: 10.3389/fnhum.2014.01010] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 11/26/2014] [Indexed: 01/09/2023] Open
Abstract
Recently, a growing body of data has revealed that beyond a dysfunction of connectivity among different brain areas in schizophrenia patients (SCZ), there is also an abnormal asymmetry of functional connectivity compared with healthy subjects. The loss of the cerebral torque and the abnormalities of gyrification, with an increased or more complex cortical folding in the right hemisphere may provide an anatomical basis for such aberrant connectivity in SCZ. Furthermore, diffusion tensor imaging studies have shown a significant reduction of leftward asymmetry in some key white-matter tracts in SCZ. In this paper, we review the studies that investigated both structural brain asymmetry and asymmetry of functional connectivity in healthy subjects and SCZ. From an analysis of the existing literature on this topic, we can hypothesize an overall generally attenuated asymmetry of functional connectivity in SCZ compared to healthy controls. Such attenuated asymmetry increases with the duration of the disease and correlates with psychotic symptoms. Finally, we hypothesize that structural deficits across the corpus callosum may contribute to the abnormal asymmetry of intra-hemispheric connectivity in schizophrenia.
Collapse
Affiliation(s)
- Michele Ribolsi
- Dipartimento di Medicina dei Sistemi, Clinica Psichiatrica, Università di Roma Tor Vergata , Rome , Italy ; Laboratorio di Neurologia Clinica e Comportamentale, Fondazione Santa Lucia IRCCS , Rome , Italy
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto , Toronto, ON , Canada
| | - Alberto Siracusano
- Dipartimento di Medicina dei Sistemi, Clinica Psichiatrica, Università di Roma Tor Vergata , Rome , Italy
| | - Giacomo Koch
- Laboratorio di Neurologia Clinica e Comportamentale, Fondazione Santa Lucia IRCCS , Rome , Italy
| |
Collapse
|
33
|
Corre C, Friedel M, Vousden DA, Metcalf A, Spring S, Qiu LR, Lerch JP, Palmert MR. Separate effects of sex hormones and sex chromosomes on brain structure and function revealed by high-resolution magnetic resonance imaging and spatial navigation assessment of the Four Core Genotype mouse model. Brain Struct Funct 2014; 221:997-1016. [PMID: 25445841 DOI: 10.1007/s00429-014-0952-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 11/22/2014] [Indexed: 12/18/2022]
Abstract
Males and females exhibit several differences in brain structure and function. To examine the basis for these sex differences, we investigated the influences of sex hormones and sex chromosomes on brain structure and function in mice. We used the Four Core Genotype (4CG) mice, which can generate both male and female mice with XX or XY sex chromosome complement, allowing the decoupling of sex chromosomes from hormonal milieu. To examine whole brain structure, high-resolution ex vivo MRI was performed, and to assess differences in cognitive function, mice were trained on a radial arm maze. Voxel-wise and volumetric analyses of MRI data uncovered a striking independence of hormonal versus chromosomal influences in 30 sexually dimorphic brain regions. For example, the bed nucleus of the stria terminalis and the parieto-temporal lobe of the cerebral cortex displayed steroid-dependence while the cerebellar cortex, corpus callosum, and olfactory bulbs were influenced by sex chromosomes. Spatial learning and memory demonstrated strict hormone-dependency with no apparent influence of sex chromosomes. Understanding the influences of chromosomes and hormones on brain structure and function is important for understanding sex differences in brain structure and function, an endeavor that has eventual implications for understanding sex biases observed in the prevalence of psychiatric disorders.
Collapse
Affiliation(s)
- Christina Corre
- Division of Endocrinology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
| | - Miriam Friedel
- Mouse Imaging Centre and Program in Neuroscience and Mental Health, The Hospital for Sick Children, 25 Orde Street, Toronto, ON, M5T 3H7, Canada
| | - Dulcie A Vousden
- Mouse Imaging Centre and Program in Neuroscience and Mental Health, The Hospital for Sick Children, 25 Orde Street, Toronto, ON, M5T 3H7, Canada.,Department of Medical Biophysics, The University of Toronto, Toronto, ON, Canada
| | - Ariane Metcalf
- Mouse Imaging Centre and Program in Neuroscience and Mental Health, The Hospital for Sick Children, 25 Orde Street, Toronto, ON, M5T 3H7, Canada
| | - Shoshana Spring
- Mouse Imaging Centre and Program in Neuroscience and Mental Health, The Hospital for Sick Children, 25 Orde Street, Toronto, ON, M5T 3H7, Canada
| | - Lily R Qiu
- Division of Endocrinology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.,Institute of Medical Science, The University of Toronto, Toronto, ON, Canada
| | - Jason P Lerch
- Mouse Imaging Centre and Program in Neuroscience and Mental Health, The Hospital for Sick Children, 25 Orde Street, Toronto, ON, M5T 3H7, Canada.,Department of Medical Biophysics, The University of Toronto, Toronto, ON, Canada
| | - Mark R Palmert
- Division of Endocrinology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada. .,Institute of Medical Science, The University of Toronto, Toronto, ON, Canada. .,Departments of Paediatrics and Physiology, The University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
34
|
Sex dependence of cognitive functions in bipolar disorder. ScientificWorldJournal 2014; 2014:418432. [PMID: 24616627 PMCID: PMC3926268 DOI: 10.1155/2014/418432] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 11/11/2013] [Indexed: 01/05/2023] Open
Abstract
The objective of the present study was to assess the performance of lithium treated euthymic bipolar patients in tests measuring spatial working memory (SWM), planning, and verbal fluency and to delineate the influence of gender on cognitive functioning. Fifty-nine euthymic bipolar patients, treated with lithium carbonate for at least 5 yr, were studied. Patients and controls underwent a neuropsychological assessment. Bipolar patients had significantly worse results than the healthy controls in the spatial memory and planning as well as verbal fluency tests. We detected a gender-related imbalance in the SWM results. Deficits in SWM were observed in male-only comparisons but not in female-only comparisons. The SWM scores were significantly poorer in male patients than in male controls. In female-only comparisons, female patients did not have significantly poorer SWM results in any category than their controls. Bipolar women scored worse in some other tests. The present study points to the different patterns of neuropsychological disturbances in female and male patients and suggests that sex-dependent differences should be taken into account in order to tailor the therapeutic intervention aimed at the improvement of cognitive functions.
Collapse
|
35
|
Luders E, Toga AW, Thompson PM. Why size matters: differences in brain volume account for apparent sex differences in callosal anatomy: the sexual dimorphism of the corpus callosum. Neuroimage 2013; 84:820-4. [PMID: 24064068 DOI: 10.1016/j.neuroimage.2013.09.040] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/06/2013] [Accepted: 09/17/2013] [Indexed: 10/26/2022] Open
Abstract
Numerous studies have demonstrated a sexual dimorphism of the human corpus callosum. However, the question remains if sex differences in brain size, which typically is larger in men than in women, or biological sex per se account for the apparent sex differences in callosal morphology. Comparing callosal dimensions between men and women matched for overall brain size may clarify the true contribution of biological sex, as any observed group difference should indicate pure sex effects. We thus examined callosal morphology in 24 male and 24 female brains carefully matched for overall size. In addition, we selected 24 extremely large male brains and 24 extremely small female brains to explore if observed sex effects might vary depending on the degree to which male and female groups differed in brain size. Using the individual T1-weighted brain images (n=96), we delineated the corpus callosum at midline and applied a well-validated surface-based mesh-modeling approach to compare callosal thickness at 100 equidistant points between groups determined by brain size and sex. The corpus callosum was always thicker in men than in women. However, this callosal sex difference was strongly determined by the cerebral sex difference overall. That is, the larger the discrepancy in brain size between men and women, the more pronounced the sex difference in callosal thickness, with hardly any callosal differences remaining between brain-size matched men and women. Altogether, these findings suggest that individual differences in brain size account for apparent sex differences in the anatomy of the corpus callosum.
Collapse
Affiliation(s)
- Eileen Luders
- Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, USA.
| | | | | |
Collapse
|
36
|
Savic I, Arver S. Sex differences in cortical thickness and their possible genetic and sex hormonal underpinnings. ACTA ACUST UNITED AC 2013; 24:3246-57. [PMID: 23926114 DOI: 10.1093/cercor/bht180] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although it has been shown that cortical thickness (Cth) differs between sexes, the underlying mechanisms are unknown. Seeing as XXY males have 1 extra X chromosome, we investigated the possible effects of X- and sex-chromosome dosage on Cth by comparing data from 31 XXY males with 39 XY and 47 XX controls. Plasma testosterone and estrogen were also measured in an effort to differentiate between possible sex-hormone and sex-chromosome gene effects. Cth was calculated with FreeSurfer software. Parietal and occipital Cth was greater in XX females than XY males. In these regions Cth was inversely correlated with z-normalized testosterone. In the motor strip, the cortex was thinner in XY males compared with both XX females and XXY males, indicating the possibility of an X-chromosome gene-dosage effect. XXY males had thinner right superior temporal and left middle temporal cortex, and a thicker right orbitofrontal cortex and lingual cortex than both control groups. Based on these data and previous reports from women with XO monosomy, it is hypothesized that programming of the motor cortex is influenced by processes linked to X-escapee genes, which do not have Y-chromosome homologs, and that programming of the superior temporal cortex is mediated by X-chromosome escapee genes with Y-homologs.
Collapse
Affiliation(s)
- I Savic
- Department of Women's and Children's Health, division of Pediatric Neurology, Neurology Clinic, Karolinska Hospital, Stockholm, Sweden
| | - S Arver
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
37
|
Lee DH, Woo YK, Hong CP. Evaluation of Callosal Motor Fiber Location in the Human Brain by Diffusion Tensor Tractography Combined with Functional MRI. J Phys Ther Sci 2013. [DOI: 10.1589/jpts.25.387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Dong-Hoon Lee
- Department of Radiological Science, College of Health Science, Yonsei University: 234 Maeji, Heungup, Wonju, Gangwondo 220-710, Republic of Korea
| | - Young-Keun Woo
- Department of Physical Therapy, College of Alternative Medicine, Jeonju University
| | - Cheol-Pyo Hong
- Department of Radiological Science, College of Health Science, Yonsei University: 234 Maeji, Heungup, Wonju, Gangwondo 220-710, Republic of Korea
| |
Collapse
|
38
|
Joshi SH, Narr KL, Philips OR, Nuechterlein KH, Asarnow RF, Toga AW, Woods RP. Statistical shape analysis of the corpus callosum in Schizophrenia. Neuroimage 2012; 64:547-59. [PMID: 23000788 DOI: 10.1016/j.neuroimage.2012.09.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/13/2012] [Accepted: 09/05/2012] [Indexed: 11/27/2022] Open
Abstract
We present a statistical shape-analysis framework for characterizing and comparing morphological variation of the corpus callosum. The midsagittal boundary of the corpus callosum is represented by a closed curve and analyzed using an invariant shape representation. The shape space of callosal curves is endowed with a Riemannian metric. Shape distances are given by the length of shortest paths (geodesics) that are invariant to shape-confounding transformations. The statistical framework enables computation of shape averages and covariances on the shape space in an intrinsic manner (unique to the shape space). The statistical framework makes use of the tangent principal component approach to achieve dimension reduction on the space of corpus callosum shapes. The advantages of this approach are - it is fully automatic, invariant, and avoids the use of landmarks to define shapes. We applied our method to determine the effects of sex, age, schizophrenia and schizophrenia-related genetic liability on callosal shape in a large sample of patients and controls and their first-degree relatives (N=218). Results showed significant age, sex, and schizophrenia effects on both global and local callosal shape structure.
Collapse
Affiliation(s)
- Shantanu H Joshi
- Laboratory of Neuro Imaging, University of California, Los Angeles, CA 90095-7334, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Zubiaurre-Elorza L, Junque C, Gomez-Gil E, Segovia S, Carrillo B, Rametti G, Guillamon A. Cortical Thickness in Untreated Transsexuals. Cereb Cortex 2012; 23:2855-62. [DOI: 10.1093/cercor/bhs267] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
Boos HBM, Cahn W, van Haren NEM, Derks EM, Brouwer RM, Schnack HG, Hulshoff Pol HE, Kahn RS. Focal and global brain measurements in siblings of patients with schizophrenia. Schizophr Bull 2012; 38:814-25. [PMID: 21242319 PMCID: PMC3406520 DOI: 10.1093/schbul/sbq147] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/04/2010] [Indexed: 12/28/2022]
Abstract
BACKGROUND It remains unclear whether structural brain abnormalities in schizophrenia are caused by genetic and/or disease-related factors. Structural brain abnormalities have been found in nonpsychotic first-degree relatives of patients with schizophrenia, but results are inconclusive. This large magnetic resonance imaging study examined brain structures in patients with schizophrenia, their nonpsychotic siblings, and healthy control subjects using global and focal brain measurements. METHODS From 155 patients with schizophrenia, their 186 nonpsychotic siblings, and 122 healthy controls (including 25 sibling pairs), whole-brain scans were obtained. Segmentations of total brain, gray matter (GM), and white matter of the cerebrum, lateral and third ventricle, and cerebellum volumes were obtained. For each subject, measures of cortical thickness and GM density maps were estimated. Group differences in volumes, cortical thickness, and GM density were analyzed using Structural Equation Modeling, hence controlling for familial dependency of the data. RESULTS Patients with schizophrenia, but not their nonpsychotic siblings, showed volumetric differences, cortical thinning, and reduced GM density as compared with control subjects. CONCLUSIONS This study did not reveal structural brain abnormalities in nonpsychotic siblings of patients with schizophrenia compared with healthy control subjects using multiple imaging methods. Therefore, the structural brain abnormalities observed in patients with schizophrenia are for the largest part explained by disease-related factors.
Collapse
Affiliation(s)
- Heleen B M Boos
- Rudolf Magnus Institute of Neuroscience, Department of Psychiatry, University Medical Center Utrecht, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Diesch E, Schummer V, Kramer M, Rupp A. Structural changes of the corpus callosum in tinnitus. Front Syst Neurosci 2012; 6:17. [PMID: 22470322 PMCID: PMC3312098 DOI: 10.3389/fnsys.2012.00017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 03/05/2012] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES In tinnitus, several brain regions seem to be structurally altered, including the medial partition of Heschl's gyrus (mHG), the site of the primary auditory cortex. The mHG is smaller in tinnitus patients than in healthy controls. The corpus callosum (CC) is the main interhemispheric commissure of the brain connecting the auditory areas of the left and the right hemisphere. Here, we investigate whether tinnitus status is associated with CC volume. METHODS The midsagittal cross-sectional area of the CC was examined in tinnitus patients and healthy controls in which an examination of the mHG had been carried out earlier. The CC was extracted and segmented into subregions which were defined according to the most common CC morphometry schemes introduced by Witelson (1989) and Hofer and Frahm (2006). RESULTS For both CC segmentation schemes, the CC posterior midbody was smaller in male patients than in male healthy controls and the isthmus, the anterior midbody, and the genou were larger in female patients than in female controls. With CC size normalized relative to mHG volume, the normalized CC splenium was larger in male patients than male controls and the normalized CC splenium, the isthmus and the genou were larger in female patients than female controls. Normalized CC segment size expresses callosal interconnectivity relative to auditory cortex volume. CONCLUSION It may be argued that the predominant function of the CC is excitatory. The stronger callosal interconnectivity in tinnitus patients, compared to healthy controls, may facilitate the emergence and maintenance of a positive feedback loop between tinnitus generators located in the two hemispheres.
Collapse
Affiliation(s)
- Eugen Diesch
- Department of Clinical and Cognitive Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University Mannheim, Germany
| | | | | | | |
Collapse
|
42
|
Luders E, Phillips OR, Clark K, Kurth F, Toga AW, Narr KL. Bridging the hemispheres in meditation: thicker callosal regions and enhanced fractional anisotropy (FA) in long-term practitioners. Neuroimage 2012; 61:181-7. [PMID: 22374478 DOI: 10.1016/j.neuroimage.2012.02.026] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 02/02/2012] [Accepted: 02/10/2012] [Indexed: 12/12/2022] Open
Abstract
Recent findings suggest a close link between long-term meditation practices and the structure of the corpus callosum. Prior analyses, however, have focused on estimating mean fractional anisotropy (FA) within two large pre-defined callosal tracts only. Additional effects might exist in other, non-explored callosal regions and/or with respect to callosal attributes not captured by estimates of FA. To further explore callosal features in the framework of meditation, we analyzed 30 meditators and 30 controls, carefully matched for sex, age, and handedness. We applied a multimodal imaging approach using diffusion tensor imaging (DTI) in combination with structural magnetic resonance imaging (MRI). Callosal measures of tract-specific FA were complemented with other global (segment-specific) estimates as well as extremely local (point-wise) measures of callosal micro- and macro-structure. Callosal measures were larger in long-term meditators compared to controls, particularly in anterior callosal sections. However, differences achieved significance only when increasing the regional sensitivity of the measurement (i.e., using point-wise measures versus segment-specific measures) and were more prominent for microscopic than macroscopic characteristics (i.e., callosal FA versus callosal thickness). Thicker callosal regions and enhanced FA in meditators might indicate greater connectivity, possibly reflecting increased hemispheric integration during cerebral processes involving (pre)frontal regions. Such a brain organization might be linked to achieving characteristic mental states and skills as associated with meditation, though this hypothesis requires behavioral confirmation. Moreover, longitudinal studies are required to address whether the observed callosal effects are induced by meditation or constitute an innate prerequisite for the start or successful continuation of meditation.
Collapse
Affiliation(s)
- Eileen Luders
- Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, CA 90095-7334, USA
| | | | | | | | | | | |
Collapse
|
43
|
Mohammadi MR, Zhand P, Mortazavi Moghadam B, Golalipour MJ. Measurement of the corpus callosum using magnetic resonance imaging in the north of iran. IRANIAN JOURNAL OF RADIOLOGY 2011; 8:218-23. [PMID: 23329944 PMCID: PMC3522367 DOI: 10.5812/iranjradiol.4495] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 08/28/2011] [Accepted: 09/07/2011] [Indexed: 11/16/2022]
Abstract
Background Morphometric measurements of the corpus callosum (CC) are important to have normative values according to sex, age and race/ethnicity. Objectives This study was done to measure the size of CC and to identify its gender- and age-related differences in the North of Iran. Patients and Methods The size of CC on midsagittal section was measured in 100 (45 males, 55 females) normal subjects using magnetic resonance imaging (MRI) admitted to the Kowsar MRI center in Gorgan–Northern Iran. Longitudinal and vertical dimensions of the CC, longitudinal and vertical lengths of the brain and the length of genu and splenium were measured. Data were analyzed by student’s unpaired t test, ANOVA and regression analysis. Results The anteroposterior length and vertical dimension of the CC, the length of genu and splenium were larger in males than in females, but these differences were not significant. The anteroposterior and vertical lengths of the brain were significantly larger in males than in females (P < 0.05). The length of CC increased with age and regression equations for predicting age were derived from the length of the CC. There was also a positive significant correlation between the anteroposterior length of the CC and the length of the brain and vertical dimension of the CC. Conclusions This study showed that various CC parameters vary with the values documented in the Caucasian, Indian and Japanese population.
Collapse
Affiliation(s)
- Mohammad Reza Mohammadi
- Department of Neurosurgery, 5 Azar Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | - Pouya Zhand
- General physician and Researcher, 5 Azar Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Mohammad Jafar Golalipour
- Department of Anatomical Sciences, Dezyani Hospital, Golestan University of Medical Sciences, Gorgan, Iran
- Corresponding author: Mohammad Jafar Golalipour, Department of Anatomical Sciences, Dezyani Hospital, Golestan University of Medical Sciences, P O Box: 49175-553, Gorgan, Iran. Tel.: +98-1714425165, Fax: +98-1714425660, E-mail:
| |
Collapse
|
44
|
Westerhausen R, Kompus K, Dramsdahl M, Falkenberg LE, Grüner R, Hjelmervik H, Specht K, Plessen K, Hugdahl K. A critical re-examination of sexual dimorphism in the corpus callosum microstructure. Neuroimage 2011; 56:874-80. [DOI: 10.1016/j.neuroimage.2011.03.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 03/03/2011] [Accepted: 03/04/2011] [Indexed: 11/24/2022] Open
|
45
|
Wass S. Distortions and disconnections: Disrupted brain connectivity in autism. Brain Cogn 2011; 75:18-28. [PMID: 21055864 DOI: 10.1016/j.bandc.2010.10.005] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 07/22/2010] [Accepted: 10/12/2010] [Indexed: 11/29/2022]
Affiliation(s)
- Sam Wass
- Centre for Brain and Cognitive Development, School of Psychology, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom.
| |
Collapse
|
46
|
Park JS, Yoon U, Kwak KC, Seo SW, Kim SI, Na DL, Lee JM. The relationships between extent and microstructural properties of the midsagittal corpus callosum in human brain. Neuroimage 2011; 56:174-84. [PMID: 21281715 DOI: 10.1016/j.neuroimage.2011.01.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 01/19/2011] [Accepted: 01/24/2011] [Indexed: 11/26/2022] Open
Abstract
Recent quantitative analyses of the corpus callosum (CC) have tried to assess the interhemispheric connectivity. Based on histological results showing an expansion of callosal extent at the midsagittal plane, without fiber density alterations, callosal extent was interpreted as an index of interhemispheric connectivity. The microstructural properties of the CC have also been investigated extensively using diffusion tensor imaging, to assess interhemispheric connectivity. The relationships between axonal density and callosal extent need to be investigated to understand how these parameters reflect interhemispheric connectivity. We used a semi-automated CC segmentation scheme in T1-weighted magnetic resonance image and fractional anisotropy (FA) image, respectively. The parameterization method of the segmented CC was applied to 47 right-handed healthy adult subjects. The callosal extent and microstructural properties were measured using the callosal thickness and diffusion indices (FA, mean diffusivity, and axial and radial diffusivity), respectively. Our results revealed a correlation between callosal thickness and FA on the posterior body and isthmus of the CC, which suggests that these regions are more sensitive to fiber alterations than other regions. Based on this result, we suggest that both the extent of the CC and its microstructural properties should be considered together in the estimation of interhemispheric connectivity in healthy adult populations.
Collapse
Affiliation(s)
- Jun-Sung Park
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
47
|
Resting brain activity: Differences between genders. Neuropsychologia 2010; 48:3918-25. [DOI: 10.1016/j.neuropsychologia.2010.09.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 08/14/2010] [Accepted: 09/19/2010] [Indexed: 11/18/2022]
|
48
|
Luders E, Cherbuin N, Thompson PM, Gutman B, Anstey KJ, Sachdev P, Toga AW. When more is less: associations between corpus callosum size and handedness lateralization. Neuroimage 2010; 52:43-9. [PMID: 20394828 DOI: 10.1016/j.neuroimage.2010.04.016] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 03/25/2010] [Accepted: 04/06/2010] [Indexed: 11/28/2022] Open
Abstract
Although not consistently replicated, a substantial number of studies suggest that left-handers have larger callosal regions than right-handers. We challenge this notion and propose that callosal size is not linked to left-handedness or right-handedness per se but to the degree of handedness lateralization. To test this hypothesis, we investigated the thickness of the corpus callosum in a large data set (n=361). We analyzed the correlations between callosal thickness and the degree of handedness lateralization in 324 right-handers and 37 left-handers at 100 equidistant points across the corpus callosum. We revealed significant negative correlations within the anterior and posterior midbody suggesting that larger callosal dimensions in these regions are associated with a weaker handedness lateralization. Significant positive correlations were completely absent. In addition, we compared callosal thickness between moderately lateralized left-handers (n=37) and three equally sized groups (n=37) of right-handers (strongly, moderately, and weakly lateralized). The outcomes of these group analyses confirmed the negative association between callosal size and handedness lateralization, although callosal differences between right- and left-handers did not reach statistical significance. This suggests that callosal differences are rather small, if examined as a dichotomy between two handedness groups. Future studies will expand this line of research by increasing the number of left-handers to boost statistical power and by combining macro- and microstructural, as well as functional and behavioral measurements to identify the biological mechanisms linking callosal morphology and handedness lateralization.
Collapse
Affiliation(s)
- Eileen Luders
- Department of Neurology, UCLA School of Medicine, Los Angeles, CA 90095-7334, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Gorbet DJ, Mader LB, Staines WR. Sex-related differences in the hemispheric laterality of slow cortical potentials during the preparation of visually guided movements. Exp Brain Res 2010; 202:633-46. [PMID: 20135101 DOI: 10.1007/s00221-010-2170-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 01/12/2010] [Indexed: 12/01/2022]
Abstract
Previous work suggests the presence of sex differences in the laterality of brain activity in the premotor-parietal network during the preparation of visually guided reaching movements. In the current study, electroencephalography was used to test the hypothesis that women would have higher amplitude potentials over frontal and parietal regions ipsilateral to arm movements, relative to men. Event-related slow cortical potentials (SCPs) were collected from 30 participants (15 men and 15 women) during the performance of two visually guided reaching conditions (eyes and arm moved to the same spatial location or moved in opposite directions). The results of the study demonstrate that the amplitudes of SCPs were significantly higher overlying frontal regions of the right hemisphere of women relative to men. These differences were present both during an instructed-delay period prior to receiving a go-signal to initiate movement and during the period just prior to movement initiation. The study also revealed an interaction of Sex and Condition in the parietal region during the pre-movement period. These results suggest that motor preparatory activity in men mainly occurs in the hemisphere contralateral to reaching but that preparatory activity in women is distributed relatively more bilaterally. However, the nature of these differences changes over the time course of the preparatory period and is partially dependent on the type of visuomotor mapping being performed.
Collapse
Affiliation(s)
- Diana Judith Gorbet
- Department of Kinesiology, Faculty of Applied Health Sciences, University of Waterloo, 200 University Ave, West, Waterloo, ON, N2L 3G1, Canada.
| | | | | |
Collapse
|
50
|
Abstract
Over the past decades scientific studies have revealed a number of striking sex differences in the human brain. This chapter highlights some of the most important discoveries with particular emphasis on macro-anatomical observations based on magnetic resonance imaging (MRI) data. Cross-references to animal studies and to post mortem analyses, as well as an overview with respect to micro-anatomical findings, are provided. The chapter concludes with a discussion of possible determinants of sex differences in brain anatomy. The main goal of this chapter is to exemplify the variety of findings and to demonstrate how the presence, magnitude, and direction of observed sex differences strongly depend on a number of factors including (but not limited to) the following: the brain structure examined (cerebral cortex, corpus callosum, etc.), the specific brain feature assessed (cortical thickness, cortical convolution, etc.), the degree of regional specificity (global gray matter volume, voxel-wise gray matter volume, etc.), and whether measurements are adjusted for individual brain size or not.
Collapse
Affiliation(s)
- Eileen Luders
- Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, CA, USA
| | | |
Collapse
|