1
|
Olyha SJ, O'Connor SK, Kribis M, Bucklin ML, Uthaya Kumar DB, Tyler PM, Alam F, Jones KM, Sheikha H, Konnikova L, Lakhani SA, Montgomery RR, Catanzaro J, Du H, DiGiacomo DV, Rothermel H, Moran CJ, Fiedler K, Warner N, Hoppenreijs EPAH, van der Made CI, Hoischen A, Olbrich P, Neth O, Rodríguez-Martínez A, Lucena Soto JM, van Rossum AMC, Dalm VASH, Muise AM, Lucas CL. "Deficiency in ELF4, X-Linked": a Monogenic Disease Entity Resembling Behçet's Syndrome and Inflammatory Bowel Disease. J Clin Immunol 2024; 44:44. [PMID: 38231408 PMCID: PMC10929603 DOI: 10.1007/s10875-023-01610-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/27/2023] [Indexed: 01/18/2024]
Abstract
Defining monogenic drivers of autoinflammatory syndromes elucidates mechanisms of disease in patients with these inborn errors of immunity and can facilitate targeted therapeutic interventions. Here, we describe a cohort of patients with a Behçet's- and inflammatory bowel disease (IBD)-like disorder termed "deficiency in ELF4, X-linked" (DEX) affecting males with loss-of-function variants in the ELF4 transcription factor gene located on the X chromosome. An international cohort of fourteen DEX patients was assessed to identify unifying clinical manifestations and diagnostic criteria as well as collate findings informing therapeutic responses. DEX patients exhibit a heterogeneous clinical phenotype including weight loss, oral and gastrointestinal aphthous ulcers, fevers, skin inflammation, gastrointestinal symptoms, arthritis, arthralgia, and myalgia, with findings of increased inflammatory markers, anemia, neutrophilic leukocytosis, thrombocytosis, intermittently low natural killer and class-switched memory B cells, and increased inflammatory cytokines in the serum. Patients have been predominantly treated with anti-inflammatory agents, with the majority of DEX patients treated with biologics targeting TNFα.
Collapse
Affiliation(s)
- Sam J Olyha
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Shannon K O'Connor
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Marat Kribis
- Section of Rheumatology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Molly L Bucklin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Paul M Tyler
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Faiad Alam
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kate M Jones
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Hassan Sheikha
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Liza Konnikova
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
- Division of Neonatal and Perinatal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Medical School, New Haven, CT, USA
- Program in Human and Translational Immunology, Yale University School of Medicine, New Haven, CT, USA
| | - Saquib A Lakhani
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
- Pediatric Genomics Discovery Program, Yale University School of Medicine, New Haven, CT, USA
| | - Ruth R Montgomery
- Section of Rheumatology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jason Catanzaro
- Division of Pediatric Allergy and Clinical Immunology, National Jewish Health, Denver, CO, USA
| | - Hongqiang Du
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Daniel V DiGiacomo
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, MA, USA
| | - Holly Rothermel
- Division of Pediatric Rheumatology, MassGeneral for Children, Boston, MA, USA
| | - Christopher J Moran
- Division of Pediatric Gastroenterology, MassGeneral for Children, Boston, MA, USA
| | - Karoline Fiedler
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Neil Warner
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Esther P A H Hoppenreijs
- Department of Pediatric Rheumatology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caspar I van der Made
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander Hoischen
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter Olbrich
- Inborn Errors of Immunity Group, Biomedicine Institute of Sevilla (IBiS), CSIC, Seville, Spain
- Pediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Seville, Spain
- Departamento de Farmacología, Pediatría y Radiología, Universidad de Sevilla, Seville, Spain
| | - Olaf Neth
- Inborn Errors of Immunity Group, Biomedicine Institute of Sevilla (IBiS), CSIC, Seville, Spain
- Pediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Alejandro Rodríguez-Martínez
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Hospital Universitario Virgen del Rocío, Seville, Spain
| | | | - Annemarie M C van Rossum
- Erasmus MC University Medical Center-Sophia Children's Hospital, Department of Pediatrics, Division of Infectious Diseases and Immunology, Rotterdam, The Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Virgil A S H Dalm
- Department of Immunology, Laboratory of Medical Immunology, Erasmus University Medical Centre, Rotterdam, The Netherlands
- Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Academic Center for Rare Immunological Diseases (RIDC), Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, Institute of Medical Science and Biochemistry, University of Toronto, The Hospital for Sick Children, Toronto, ON, Canada
| | - Carrie L Lucas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Program in Human and Translational Immunology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Abstract
Inflammatory bowel disease (IBD) represents a spectrum of disease, which is characterized by chronic gastrointestinal inflammation. Monogenic mutations driving IBD pathogenesis are more highly represented in early-onset compared to adult-onset disease. The pathogenic genes which dysregulate host immune responses in monogenic IBD affect both the innate (ie, intestinal barrier, phagocytes) and adaptive immune systems (ie, T cells, B cells). Advanced genomic and targeted functional testing can improve clinical decision making and present increased opportunities for precision medicine approaches in this important patient population.
Collapse
Affiliation(s)
- Atiye Olcay Bilgic Dagci
- Division of Pediatric Rheumatology, University of Michigan, C.S Mott Children's Hospital, 1500 East Medical Center Drive Medical Professional Building Floor 2, Ann Arbor, MI 48109-5718, USA.
| | - Kelly Colleen Cushing
- Division of Gastroenterology, U-M Inflammatory Bowel Disease Program, University of Michigan, 3912 Taubman Center, 1500 East Medical Center Drive, SPC 5362, Ann Arbor, MI 48109-5362, USA
| |
Collapse
|
3
|
Rasouli-Saravani A, Jahankhani K, Moradi S, Gorgani M, Shafaghat Z, Mirsanei Z, Mehmandar A, Mirzaei R. Role of microbiota short-chain fatty acids in the pathogenesis of autoimmune diseases. Biomed Pharmacother 2023; 162:114620. [PMID: 37004324 DOI: 10.1016/j.biopha.2023.114620] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
There is emerging evidence that microbiota and its metabolites play an important role in helath and diseases. In this regard, gut microbiota has been found as a crucial component that influences immune responses as well as immune-related disorders such as autoimmune diseases. Gut bacterial dysbiosis has been shown to cause disease and altered microbiota metabolite synthesis, leading to immunological and metabolic dysregulation. Of note, microbiota in the gut produce short-chain fatty acids (SCFAs) such as acetate, butyrate, and propionate, and remodeling in these microbiota metabolites has been linked to the pathophysiology of a number of autoimmune disorders such as type 1 diabetes, multiple sclerosis, inflammatory bowel disease, rheumatoid arthritis, celiac disease, and systemic lupus erythematosus. In this review, we will address the most recent findings from the most noteworthy studies investigating the impact of microbiota SCFAs on various autoimmune diseases.
Collapse
Affiliation(s)
- Ashkan Rasouli-Saravani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Jahankhani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Moradi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Melika Gorgani
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Shafaghat
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Mirsanei
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Mehmandar
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
4
|
Truta B, Begum F, Datta LW, Brant SR. Inflammatory Bowel Diseases Before and After 1990. GASTRO HEP ADVANCES 2023; 2:22-32. [PMID: 36686985 PMCID: PMC9851382 DOI: 10.1016/j.gastha.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND AIMS Inflammatory bowel disease (IBD) is caused by interaction of genetic and environmental risk factors. We evaluated potential determinants of the post-1990 increased incidence in North America. METHODS Using fitted generalized linear models, we assessed clinical features, smoking and genetic risk scores (GRS) for Crohn's disease (CD) and ulcerative colitis (UC) in the National Institutes of Diabetes, Digestion and Kidney Diseases IBD Genetics Consortium database, before and post 1990. RESULTS Among 2744 patients (55% CD, 42.2% UC), smoking status and GRS were the main determinants of diagnosis age. After 1990, smoking at diagnosis declined significantly in both UC and CD (34.1% vs 20.8%, P < .001, and 14.7% vs 8.7%, P = .06, respectively). In UC, ex-smoking increased (9% vs 15%, P < .001), and nonsmoking rates remained unchanged, whereas in CD, ex-smoking remained unchanged. CD-GRS and IBD-GRS were significantly associated with young diagnosis age, Jewish ethnicity, IBD family history, and surgery. CD-GRS showed a borderline significant decrease (P = .058) in multivariate analysis post 1990 but only when excluding surgery in the model; surgery significantly decreased post 1990 in both CD and UC. CD-GRS inversely correlated with smoking at diagnosis (P < .001) suggesting that, in the presence of smoking, CD may only require a low genetic risk to develop. CONCLUSION Significantly increase in ex-smoking correlates with UC incidence post 1990. Conversely, smoking risk decreased significantly post 1990 despite rising CD incidence. CD-GRS likewise trended to decrease post 1990 only when not accounting for a significant decrease in CD surgery. We therefore deduce that unaccounted risk factors (eg, dietary, obesity, antibiotic use, improved hygiene, etc.) or greater detection or presence of mild CD may underlie post-1990 increased CD incidence.
Collapse
Affiliation(s)
- Brindusa Truta
- Division of Gastroenterology, Harvey M. and Lyn P. Meyerhoff Inflammatory Bowel Disease Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ferdouse Begum
- Division of Gastroenterology, Harvey M. and Lyn P. Meyerhoff Inflammatory Bowel Disease Center, Johns Hopkins University School of Medicine, Baltimore, Maryland;,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Lisa Wu Datta
- Division of Gastroenterology, Harvey M. and Lyn P. Meyerhoff Inflammatory Bowel Disease Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Steven R. Brant
- Division of Gastroenterology, Harvey M. and Lyn P. Meyerhoff Inflammatory Bowel Disease Center, Johns Hopkins University School of Medicine, Baltimore, Maryland;,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland;,Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, the Rutgers Crohns and Colitis Center of New Jersey, New Brunswick, New Jersey,Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| |
Collapse
|
5
|
Dual Biologic Therapy in Moderate to Severe Pediatric Inflammatory Bowel Disease: A Retrospective Study. CHILDREN (BASEL, SWITZERLAND) 2022; 10:children10010011. [PMID: 36670562 PMCID: PMC9856313 DOI: 10.3390/children10010011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Inflammatory bowel diseases in children are characterized by a wide variety of symptoms and often a severe clinical course. In the treatment, we aimed to induce and maintain remission. We focused on assessing the efficacy and safety of the concomitant use of two biologic therapies including: anti-TNF (infliximab, adalimumab) vedolizumab and ustekinumab in a refractory pediatric IBD cohort. METHODS Fourteen children (nine ulcerative colitis, one ulcerative colitis/IBD-unspecified, four Crohn's disease) with a disease duration of 5.2 (8 months-14 years) years, initiated dual therapy at an age of 11.7 (3-17) years after failure of monotherapy with a biological drug. Five patients (36%) were treated with vedolizumab/adalimumab (VDZ + ADA), five (36%) with ustekinumab/adalimumab (UST + ADA), and three (21%) with infliximab/vedolizumab (IFX + VDZ). One patient (7%) was switched from a combination of vedolizumab and adalimumab to ustekinumab and adalimumab during follow-up. RESULTS A clinical improvement was obtained in ten children (73%; 5 UC, 1 UC/IBD-unspecified, 4 CD) on the PCDAI/PUCAI scale after 4 months of a second biological drug being added. The median fecal calprotectin decreased from 1610 µg/g (140-10,100) to 586 µg/g (5-3410; p = 0.028) between baseline and 4 months. CONCLUSIONS Our clinical experience suggests that dual therapy may be an option for pediatric patients with moderate and severe courses of IBD with limited therapeutic options.
Collapse
|
6
|
Cho YH, Renouf MJ, Omotoso O, McPhee JB. Inflammatory bowel disease-associated adherent-invasive Escherichia coli have elevated host-defense peptide resistance. FEMS Microbiol Lett 2022; 369:6754321. [PMID: 36208952 DOI: 10.1093/femsle/fnac098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/28/2022] [Accepted: 10/06/2022] [Indexed: 12/13/2022] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) are isolated from inflammatory bowel disease (IBD) patients at a higher rate than from control patients. Using a collection of E. coli strains collected from Crohn's disease (CD), ulcerative colitis (UC), or non-IBD control patients, antibiotic and resistance to the antimicrobial peptides HBD-3 and LL-37 was assessed. Carriage of bacterial-encoded omptin protease genes was assessed by PCR and omptin protease activity was measured using a whole-cell based fluorescence assay. Elevated resistance to antibiotics and host defense peptides in IBD-associated AIEC were observed. IBD-associated strains showed increased (but statistically non-significant) antibiotic resistance. CD-associated strains showed greater (but statistically non-significant) resistance to HBD3-mediated killing while UC-associated strains showed statistically greater resistance to LL-37 mediated killing. High-level resistance to LL-37 was associated with carriage of omptin protease genes and with increased omptin protease activity. Antimicrobial host defense peptide resistance may be an adaptive feature of AIEC leading to enhanced pathogenesis during the initiation or progression of IBD.
Collapse
Affiliation(s)
- Youn Hee Cho
- Department of Chemistry and Biology, Toronto Metropolitan University (Formerly Ryerson University), 350 Victoria St., Toronto, ON M5B 2K3, Canada
| | - Michael J Renouf
- Department of Chemistry and Biology, Toronto Metropolitan University (Formerly Ryerson University), 350 Victoria St., Toronto, ON M5B 2K3, Canada
| | - Oluwafikemi Omotoso
- Department of Chemistry and Biology, Toronto Metropolitan University (Formerly Ryerson University), 350 Victoria St., Toronto, ON M5B 2K3, Canada
| | - Joseph B McPhee
- Department of Chemistry and Biology, Toronto Metropolitan University (Formerly Ryerson University), 350 Victoria St., Toronto, ON M5B 2K3, Canada
| |
Collapse
|
7
|
Movva R, Murtaza N, Giri R, Png CW, Davies J, Alabbas S, Oancea I, O'Cuiv P, Morrison M, Begun J, Florin TH. Successful Manipulation of the Gut Microbiome to Treat Spontaneous and Induced Murine Models of Colitis. GASTRO HEP ADVANCES 2022; 1:359-374. [PMID: 39131681 PMCID: PMC11307790 DOI: 10.1016/j.gastha.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/31/2021] [Indexed: 08/13/2024]
Abstract
Background and Aims There is clinical interest in the sustainability or otherwise of prebiotic, microbial, and antibiotic treatments to both prevent and treat inflammatory bowel diseases. This study examined the role of antibiotic manipulation of the gut microbiome to treat spontaneous and induced murine models of colitis. Methods Symptomatic, histological, molecular, and microbial ecology and bioinformatic readouts were used to study the effect of a 10-day antibiotic cocktail and then follow-up over 2 months in the spontaneous Winnie colitis mouse preclinical model of ulcerative colitis and also the indirect antibiotic and Winnie microbiotic gavage effects in an acute dextran sodium sulfate-induced colitis model in wild-type mice. Results The antibiotics elicited a striking reduction in both colitis symptoms and blinded histological colitis scores, together with a convergence of the microbial taxonomy of the spontaneous colitis and wild-type control mice, toward a taxonomic phenotype usually considered to be dysbiotic. The improvement in colitis was sustained over the following 8 weeks although the microbial taxonomy changed. In vitro, fecal waters from the antibiotic-treated colitis and wild-type mice suppressed the inflammatory tenor of colonic epithelial cells, and gavaged cecal slurries from these mice moderated the acute induced colitis. Conclusion The results clearly show the possibility of a sustained remission of colitis by microbial manipulation, which is relevant to clinical management of inflammatory bowel diseases. The beneficial effects appeared to depend on the microbial metabolome rather than its taxonomy.
Collapse
Affiliation(s)
- Ramya Movva
- IBD Program, Translational Research Institute, Mater Research – University of Queensland, Brisbane, Queensland, Australia
| | - Nida Murtaza
- Translational Research Institute, Queensland University of Technology
| | - Rabina Giri
- IBD Program, Translational Research Institute, Mater Research – University of Queensland, Brisbane, Queensland, Australia
| | - Chin Wen Png
- IBD Program, Translational Research Institute, Mater Research – University of Queensland, Brisbane, Queensland, Australia
| | - Julie Davies
- IBD Program, Translational Research Institute, Mater Research – University of Queensland, Brisbane, Queensland, Australia
| | - Saleh Alabbas
- IBD Program, Translational Research Institute, Mater Research – University of Queensland, Brisbane, Queensland, Australia
| | - Iulia Oancea
- IBD Program, Translational Research Institute, Mater Research – University of Queensland, Brisbane, Queensland, Australia
| | - Páraic O'Cuiv
- Microbial Biology and Metagenomics Program, UQ Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Mark Morrison
- Microbial Biology and Metagenomics Program, UQ Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Jakob Begun
- IBD Program, Translational Research Institute, Mater Research – University of Queensland, Brisbane, Queensland, Australia
| | - Timothy H. Florin
- IBD Program, Translational Research Institute, Mater Research – University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
8
|
Feakins R, Torres J, Borralho-Nunes P, Burisch J, Cúrdia Gonçalves T, De Ridder L, Driessen A, Lobatón T, Menchén L, Mookhoek A, Noor N, Svrcek M, Villanacci V, Zidar N, Tripathi M. ECCO Topical Review on Clinicopathological Spectrum and Differential Diagnosis of Inflammatory Bowel Disease. J Crohns Colitis 2022; 16:343-368. [PMID: 34346490 DOI: 10.1093/ecco-jcc/jjab141] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Many diseases can imitate inflammatory bowel disease [IBD] clinically and pathologically. This review outlines the differential diagnosis of IBD and discusses morphological pointers and ancillary techniques that assist with the distinction between IBD and its mimics. METHODS European Crohn's and Colitis Organisation [ECCO] Topical Reviews are the result of an expert consensus. For this review, ECCO announced an open call to its members and formed three working groups [WGs] to study clinical aspects, pathological considerations, and the value of ancillary techniques. All WGs performed a systematic literature search. RESULTS Each WG produced a draft text and drew up provisional Current Practice Position [CPP] statements that highlighted the most important conclusions. Discussions and a preliminary voting round took place, with subsequent revision of CPP statements and text and a further meeting to agree on final statements. CONCLUSIONS Clinicians and pathologists encounter a wide variety of mimics of IBD, including infection, drug-induced disease, vascular disorders, diverticular disease, diversion proctocolitis, radiation damage, and immune disorders. Reliable distinction requires a multidisciplinary approach.
Collapse
Affiliation(s)
- Roger Feakins
- Department of Cellular Pathology, Royal Free Hospital, London, and University College London, UK
| | - Joana Torres
- Department of Gastroenterology, Hospital Beatriz Ângelo, Loures, Portugal
| | - Paula Borralho-Nunes
- Department of Pathology, Hospital Cuf Descobertas, Lisboa and Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Johan Burisch
- Gastrounit, Medical Division, Hvidovre Hospital, University of Copenhagen, Denmark
| | - Tiago Cúrdia Gonçalves
- Department of Gastroenterology, Hospital da Senhora da Oliveira, Guimarães, Portugal.,School of Medicine, University of Minho, Braga/Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Lissy De Ridder
- Department of Paediatric Gastroenterology, Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam, The Netherlands
| | - Ann Driessen
- Department of Pathology, University Hospital Antwerp, University Antwerp, Edegem, Belgium
| | - Triana Lobatón
- Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - Luis Menchén
- Department of Digestive System Medicine, Hospital General Universitario-Insitituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Department of Medicine, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica En Red de Enfermedades Hepáticas y Digestivas [CIBEREHD], Madrid, Spain
| | - Aart Mookhoek
- Department of Pathology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Nurulamin Noor
- Department of Gastroenterology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - Magali Svrcek
- Department of Pathology, Sorbonne Université, AP-HP, Saint-Antoine Hospital, Paris, France
| | - Vincenzo Villanacci
- Department of Histopathology, Spedali Civili and University of Brescia, Brescia, Italy
| | - Nina Zidar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Monika Tripathi
- Department of Histopathology, Cambridge Biomedical Campus, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
9
|
Zhang Z, Qiao D, Zhang Y, Chen Q, Chen Y, Tang Y, Que R, Chen Y, Zheng L, Dai Y, Tang Z. Portulaca oleracea L. Extract Ameliorates Intestinal Inflammation by Regulating Endoplasmic Reticulum Stress and Autophagy. Mol Nutr Food Res 2022; 66:e2100791. [PMID: 34968000 PMCID: PMC9286603 DOI: 10.1002/mnfr.202100791] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/06/2021] [Indexed: 11/14/2022]
Abstract
SCOPE To investigate the role of endoplasmic reticulum stress (ERS)-induced autophagy in inflammatory bowel disease (IBD) and the intervention mechanism of Portulaca oleracea L. (POL) extract, a medicinal herb with anti-inflammatory, antioxidant, immune-regulating, and antitumor properties, in vitro and in vivo. METHODS AND RESULTS An IL-10-deficient mouse model is used for in vivo experiments; a thapsigargin (Tg)-stimulated ERS model of human colonic mucosal epithelial cells (HIECs) is used for in vitro experiments. The levels of ERS-autophagy-related proteins are examined by immunofluorescence and Western blot. Cellular ultrastructure is assessed with transmission electron microscopy. POL extract promotes a healing effect on colitis by regulating ERS-autophagy through the protein kinase R-like endoplasmic reticulum kinase (PERK)-eukaryotic initiation factor 2α (eIF2α)/Beclin1-microtubule-associated protein light chain 3II (LC3II) pathway. CONCLUSION Overall, the results of this study further confirm the anti-inflammatory mechanism and protective effect of POL extract and provide a new research avenue for the clinical treatment of IBD.
Collapse
Affiliation(s)
- Ziwei Zhang
- Institute of Digestive DiseasesLongHua HospitalShanghai University of Traditional Chinese MedicineShanghai200032China
| | - Dan Qiao
- Department of GastroenterologyShanghai Traditional Chinese Medicine‐Integrated HospitalShanghai University of Traditional Chinese MedicineShanghai200082China
| | - Yali Zhang
- Institute of Digestive DiseasesLongHua HospitalShanghai University of Traditional Chinese MedicineShanghai200032China
| | - Qian Chen
- Institute of Digestive DiseasesLongHua HospitalShanghai University of Traditional Chinese MedicineShanghai200032China
| | - Yujun Chen
- Institute of Digestive DiseasesLongHua HospitalShanghai University of Traditional Chinese MedicineShanghai200032China
| | - Yingjue Tang
- Institute of Digestive DiseasesLongHua HospitalShanghai University of Traditional Chinese MedicineShanghai200032China
| | - Renye Que
- Department of GastroenterologyShanghai Traditional Chinese Medicine‐Integrated HospitalShanghai University of Traditional Chinese MedicineShanghai200082China
| | - Ying Chen
- Department of GastroenterologyShanghai Traditional Chinese Medicine‐Integrated HospitalShanghai University of Traditional Chinese MedicineShanghai200082China
| | - Lie Zheng
- Department of GastroenterologyTraditional Chinese Medicine Hospital of Shaanxi ProvinceXi'an730000China
| | - Yancheng Dai
- Department of GastroenterologyShanghai Traditional Chinese Medicine‐Integrated HospitalShanghai University of Traditional Chinese MedicineShanghai200082China
| | - Zhipeng Tang
- Institute of Digestive DiseasesLongHua HospitalShanghai University of Traditional Chinese MedicineShanghai200032China
| |
Collapse
|
10
|
Zou J, Liu C, Jiang S, Qian D, Duan J. Cross Talk between Gut Microbiota and Intestinal Mucosal Immunity in the Development of Ulcerative Colitis. Infect Immun 2021; 89:e0001421. [PMID: 33526559 PMCID: PMC8370674 DOI: 10.1128/iai.00014-21] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ulcerative colitis (UC), a nonspecific inflammatory disease, is characterized by inflammation and mucosal damage in the colon, and its prevalence in the world is increasing. Nevertheless, the exact pathogenesis of UC is still unclear. Accumulating data have suggested that its pathogenesis is multifactorial, involving genetic predisposition, environmental factors, microbial dysbiosis, and dysregulated immune responses. Generally, UC is aroused by inappropriate immune activation based on the interaction of host and intestinal microbiota. The relationship between microbiota and host immune system in the pathogenesis of UC is complicated. However, increasing evidence indicates that the shift of microbiota composition can substantially influence intestinal immunity. In this review, we primarily focus on the delicate balance between microbiota and gut mucosal immunity during UC progression.
Collapse
Affiliation(s)
- Junfeng Zou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Chen Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
11
|
Docimo G, Cangiano A, Romano RM, Pignatelli MF, Offi C, Paglionico VA, Galdiero M, Donnarumma G, Nigro V, Esposito D, Rotondi M, Candela G, Pasquali D. The Human Microbiota in Endocrinology: Implications for Pathophysiology, Treatment, and Prognosis in Thyroid Diseases. Front Endocrinol (Lausanne) 2020; 11:586529. [PMID: 33343507 PMCID: PMC7746874 DOI: 10.3389/fendo.2020.586529] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
The human microbiota is an integral component in the maintenance of health and of the immune system. Microbiome-wide association studies have found numerous diseases associated to dysbiosis. Studies are needed to move beyond correlations and begin to address causation. Autoimmune thyroid diseases (ATD) are one of the most common organ-specific autoimmune disorders with an increasing prevalence, higher than 5% worldwide. Most frequent manifestations of ATD are Hashimoto's thyroiditis and Graves' disease. The exact etiology of ATD remains unknown. Until now it is not clear whether bacterial infections can trigger ATD or modulate the efficacy of treatment and prognosis. The aim of our review is to characterize the microbiota and in ATD and to evaluate the impact of dysbiosis on treatment and prognosis. Moreover, variation of gut microbiome has been associated with thyroid cancer and benign nodules. Here we will characterize the microbioma in benign thyroid nodules, and papillary thyroid cancer to evaluate their implications in the pathophysiology and progression.
Collapse
Affiliation(s)
- Giovanni Docimo
- Division of Thyroid Surgery, Department of Medical and Advanced Surgical Sciences, University of Campania “Luigi Vanvitelli”, School of Medicine, Naples, Italy
| | - Angelo Cangiano
- Division of Thyroid Surgery, Department of Medical and Advanced Surgical Sciences, University of Campania “Luigi Vanvitelli”, School of Medicine, Naples, Italy
| | - Roberto Maria Romano
- Division of Thyroid Surgery, Department of Medical and Advanced Surgical Sciences, University of Campania “Luigi Vanvitelli”, School of Medicine, Naples, Italy
| | - Marcello Filograna Pignatelli
- Division of Thyroid Surgery, Department of Medical and Advanced Surgical Sciences, University of Campania “Luigi Vanvitelli”, School of Medicine, Naples, Italy
| | - Chiara Offi
- Division of Thyroid Surgery, Department of Medical and Advanced Surgical Sciences, University of Campania “Luigi Vanvitelli”, School of Medicine, Naples, Italy
| | - Vanda Amoresano Paglionico
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Marilena Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giovanna Donnarumma
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania ”Luigi Vanvitelli”, Naples, Italy
| | - Daniela Esposito
- Department of Endocrinology, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mario Rotondi
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, University of Pavia, Pavia, Italy
| | - Giancarlo Candela
- Division of Thyroid Surgery, Department of Medical and Advanced Surgical Sciences, University of Campania “Luigi Vanvitelli”, School of Medicine, Naples, Italy
| | - Daniela Pasquali
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
12
|
Jezernik G, Mičetić-Turk D, Potočnik U. Molecular Genetic Architecture of Monogenic Pediatric IBD Differs from Complex Pediatric and Adult IBD. J Pers Med 2020; 10:E243. [PMID: 33255894 PMCID: PMC7712254 DOI: 10.3390/jpm10040243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022] Open
Abstract
Inflammatory bowel disease (IBD) manifests as a complex disease resulting from gene-environment interactions or as a monogenic disease resulting from deleterious mutations. While monogenic IBD is predominantly pediatric, only one-quarter of complex IBD is pediatric. In this study, we were the first to systematically compare genetic architecture between monogenic and complex pediatric and adult IBD on genetic and molecular pathway levels. Genes reported as causal for monogenic pediatric IBD and related syndromes and as risk factors for pediatric and adult complex IBD were analyzed using CytoScape and ClueGO software tools to elucidate significantly enriched Gene Ontology (GO) terms. Despite the small overlap (seven genes) between monogenic IBD genes (85) and complex IBD loci (240), GO analysis revealed several enriched GO terms shared between subgroups (13.9%). Terms Th17 cell differentiation and Jak/STAT signaling were enriched in both monogenic and complex IBD subgroups. However, primary immunodeficiency and B-cell receptor signaling pathway were specifically enriched only for pediatric subgroups, confirming existing clinical observations and experimental evidence of primary immunodeficiency in pediatric IBD patients. In addition, comparative analysis identified patients below 6 years of age to significantly differ from complex pediatric and adult IBD and could be considered a separate entity.
Collapse
Affiliation(s)
- Gregor Jezernik
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (G.J.); (D.M.-T.)
| | - Dušanka Mičetić-Turk
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (G.J.); (D.M.-T.)
| | - Uroš Potočnik
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (G.J.); (D.M.-T.)
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| |
Collapse
|
13
|
Kellermayer R, Zilbauer M. The Gut Microbiome and the Triple Environmental Hit Concept of Inflammatory Bowel Disease Pathogenesis. J Pediatr Gastroenterol Nutr 2020; 71:589-595. [PMID: 33093364 DOI: 10.1097/mpg.0000000000002908] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The incidence of chronic inflammatory bowel diseases (IBDs), such as Crohn's disease (CD) and ulcerative colitis (UC) have significantly increased in recent decades implicating environmental effects. The developmental origin of disease concept provides a theoretical framework by which the complex interplay between environmental factors and host cells, particularly during vulnerable time periods, ultimately cause disease, such as IBD. Epigenetics has been proposed as the underlying mechanism within this concept, turning environmental triggers into stable changes of cellular function. Adding further to the complexity of IBD is the gut microbiome, which is equally responsive to the environment, and can impact host cell function, where recent findings underscore the stochastic and individualized nature of such effects. We review the microbiome literature through a novel triple environmental hit concept (priming, modulation, and trigger) of IBD pathogenesis. We propose that there are at least 3 distinct stages during an individual's lifespan where random/stochastic events driven by environmental influences are necessary for ultimately developing IBD. By this means, we speculate that microbiome-directed therapeutics carry potential for individualized prevention and dynamic treatment of IBD.
Collapse
Affiliation(s)
- Richard Kellermayer
- Section of Pediatric Gastroenterology, Texas Children's Hospital Baylor College of Medicine
- USDA/ARS Children's Nutrition Research Center, Houston, TX
| | | |
Collapse
|
14
|
Ma Y, Hu C, Yan W, Jiang H, Liu G. Lactobacillus pentosus Increases the Abundance of Akkermansia and Affects the Serum Metabolome to Alleviate DSS-Induced Colitis in a Murine Model. Front Cell Dev Biol 2020; 8:591408. [PMID: 33195257 PMCID: PMC7609924 DOI: 10.3389/fcell.2020.591408] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/22/2020] [Indexed: 12/28/2022] Open
Abstract
Lactobacillus pentosus has the beneficial function of regulating the host’s immune system and plays an indispensable role in intestinal health. The purpose of this study was to investigate the specific mechanism by which L. pentosus relieves dextran sulfate sodium (DSS) induced ulcerative colon inflammation. We randomly divided 24 mice into three groups, which were administered either a basic diet, drinking water with 2.5% DSS (DSS), or drinking water with 2.5% DSS and intragastric administration of L. pentosus (DSS + L. pentosus). DSS was added to the drinking water on days 8 to 12, and L. pentosus was administered on days 12 to 19. Serum was collected for metabolomic analysis, colon length and weight were measured, and colon contents were collected to detect microbial structural composition. Compared with the DSS group, the DSS + L. pentosus group had significantly higher levels of indolepyruvate and pantothenic acid in the serum and significantly lower levels of 3,4-dimethyl-5-pentyl-2-furannonanoic acid and 5-oxo-6-trans-leukotriene B4. Moreover, compared with the other two groups, the DSS + L. pentosus group had a significantly greater abundance of Akkermansia. The abundance of Akkermansia was positively correlated with indolepyruvate and pantothenic acid levels. Therefore, L. pentosus can interact with Akkermansia to increase its abundance in the intestinal tract. This results in the production of metabolites that are beneficial for the regulation of intestinal immunity, thereby alleviating DSS-induced ulcerative colon inflammation.
Collapse
Affiliation(s)
- Yong Ma
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Chao Hu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Wenxin Yan
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Hongmei Jiang
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Gang Liu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
15
|
Crowley E, Warner N, Pan J, Khalouei S, Elkadri A, Fiedler K, Foong J, Turinsky AL, Bronte-Tinkew D, Zhang S, Hu J, Tian D, Li D, Horowitz J, Siddiqui I, Upton J, Roifman CM, Church PC, Wall DA, Ramani AK, Kotlarz D, Klein C, Uhlig H, Snapper SB, Gonzaga-Jauregui C, Paterson A, McGovern DPB, Brudno M, Walters TD, Griffiths AM, Muise AM. Prevalence and Clinical Features of Inflammatory Bowel Diseases Associated With Monogenic Variants, Identified by Whole-Exome Sequencing in 1000 Children at a Single Center. Gastroenterology 2020; 158:2208-2220. [PMID: 32084423 PMCID: PMC7283012 DOI: 10.1053/j.gastro.2020.02.023] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS A proportion of infants and young children with inflammatory bowel diseases (IBDs) have subtypes associated with a single gene variant (monogenic IBD). We aimed to determine the prevalence of monogenic disease in a cohort of pediatric patients with IBD. METHODS We performed whole-exome sequencing analyses of blood samples from an unselected cohort of 1005 children with IBD, aged 0-18 years (median age at diagnosis, 11.96 years) at a single center in Canada and their family members (2305 samples total). Variants believed to cause IBD were validated using Sanger sequencing. Biopsies from patients were analyzed by immunofluorescence and histochemical analyses. RESULTS We identified 40 rare variants associated with 21 monogenic genes among 31 of the 1005 children with IBD (including 5 variants in XIAP, 3 in DOCK8, and 2 each in FOXP3, GUCY2C, and LRBA). These variants occurred in 7.8% of children younger than 6 years and 2.3% of children aged 6-18 years. Of the 17 patients with monogenic Crohn's disease, 35% had abdominal pain, 24% had nonbloody loose stool, 18% had vomiting, 18% had weight loss, and 5% had intermittent bloody loose stool. The 14 patients with monogenic ulcerative colitis or IBD-unclassified received their diagnosis at a younger age, and their most predominant feature was bloody loose stool (78%). Features associated with monogenic IBD, compared to cases of IBD not associated with a single variant, were age of onset younger than 2 years (odds ratio [OR], 6.30; P = .020), family history of autoimmune disease (OR, 5.12; P = .002), extra-intestinal manifestations (OR, 15.36; P < .0001), and surgery (OR, 3.42; P = .042). Seventeen patients had variants in genes that could be corrected with allogeneic hematopoietic stem cell transplantation. CONCLUSIONS In whole-exome sequencing analyses of more than 1000 children with IBD at a single center, we found that 3% had rare variants in genes previously associated with pediatric IBD. These were associated with different IBD phenotypes, and 1% of the patients had variants that could be potentially corrected with allogeneic hematopoietic stem cell transplantation. Monogenic IBD is rare, but should be considered in analysis of all patients with pediatric onset of IBD.
Collapse
Affiliation(s)
- Eileen Crowley
- SickKids Inflammatory Bowel Disease Center, The Hospital
for Sick Children, Toronto, ON, Canada,School of Medicine, Conway Institute, University College
Dublin, Dublin, Ireland,Division of Pediatric Gastroenterology, Western University,
Children’s Hospital, London Health Sciences Centre, London, ON, Canada
| | - Neil Warner
- SickKids Inflammatory Bowel Disease Center, The Hospital
for Sick Children, Toronto, ON, Canada
| | - Jie Pan
- SickKids Inflammatory Bowel Disease Center, The Hospital
for Sick Children, Toronto, ON, Canada
| | - Sam Khalouei
- Centre for Computational Medicine, The Hospital for Sick
Children, Toronto, ON, Canada
| | - Abdul Elkadri
- SickKids Inflammatory Bowel Disease Center, The Hospital
for Sick Children, Toronto, ON, Canada,Division of Pediatric Gastroenterology, Medical College of
Wisconsin, Milwaukee, WI, USA
| | - Karoline Fiedler
- SickKids Inflammatory Bowel Disease Center, The Hospital
for Sick Children, Toronto, ON, Canada
| | - Justin Foong
- Centre for Computational Medicine, The Hospital for Sick
Children, Toronto, ON, Canada
| | - Andrei L. Turinsky
- Centre for Computational Medicine, The Hospital for Sick
Children, Toronto, ON, Canada
| | - Dana Bronte-Tinkew
- SickKids Inflammatory Bowel Disease Center, The Hospital
for Sick Children, Toronto, ON, Canada
| | - Shiqi Zhang
- SickKids Inflammatory Bowel Disease Center, The Hospital
for Sick Children, Toronto, ON, Canada
| | - Jamie Hu
- SickKids Inflammatory Bowel Disease Center, The Hospital
for Sick Children, Toronto, ON, Canada
| | - David Tian
- SickKids Inflammatory Bowel Disease Center, The Hospital
for Sick Children, Toronto, ON, Canada
| | - Dalin Li
- F. Widjaja Foundation Inflammatory Bowel Disease Center and
Immunobiology Research Institute at Cedars-Sinai Medical Center, Los Angeles, CA,
USA
| | | | - Julie Horowitz
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc.,
Tarrytown, NY, USA
| | - Iram Siddiqui
- Division of Pathology, The Hospital for Sick Children,
Toronto, ON, Canada
| | - Julia Upton
- Division of Immunology, Department of Pediatrics,
University of Toronto, The Hospital for Sick Children, Toronto, ON, Canada
| | - Chaim M. Roifman
- Division of Immunology, Department of Pediatrics,
University of Toronto, The Hospital for Sick Children, Toronto, ON, Canada
| | - Peter C. Church
- SickKids Inflammatory Bowel Disease Center, The Hospital
for Sick Children, Toronto, ON, Canada
| | - Donna A. Wall
- Blood and Marrow Transplant/Cellular Therapy,
Haematology/Oncology, Department of Pediatrics, University of Toronto, The Hospital
for Sick Children, Toronto, ON, Canada
| | - Arun K. Ramani
- Centre for Computational Medicine, The Hospital for Sick
Children, Toronto, ON, Canada
| | - Daniel Kotlarz
- Dr. von Hauner Children’s Hospital, Department of
Pediatrics, University Hospital, LMU Munich, Munich, Germany
| | - Christoph Klein
- Dr. von Hauner Children’s Hospital, Department of
Pediatrics, University Hospital, LMU Munich, Munich, Germany
| | - Holm Uhlig
- Translational Gastroenterology Unit, University of
Oxford, UK, Department of Pediatrics, University of Oxford, UK
| | - Scott B. Snapper
- Division of Gastroenterology, Hepatology and Nutrition,
Boston Children’s Hospital, Harvard Medical School; Division of
Gastroenterology, Brigham and Women’s Hospital, Boston, MA, USA
| | | | - Andrew Paterson
- Dalla Lana School of Public Health, University of
Toronto, Toronto, ON, Canada
| | - Dermot PB. McGovern
- F. Widjaja Foundation Inflammatory Bowel Disease Center and
Immunobiology Research Institute at Cedars-Sinai Medical Center, Los Angeles, CA,
USA
| | - Michael Brudno
- Centre for Computational Medicine, The Hospital for Sick
Children, Toronto, ON, Canada,Department of Computer Science, University of Toronto,
Toronto, ON, Canada
| | - Thomas D. Walters
- SickKids Inflammatory Bowel Disease Center, The Hospital
for Sick Children, Toronto, ON, Canada
| | - Anne M. Griffiths
- SickKids Inflammatory Bowel Disease Center, The Hospital
for Sick Children, Toronto, ON, Canada
| | - Aleixo M. Muise
- SickKids Inflammatory Bowel Disease Center, The Hospital
for Sick Children, Toronto, ON, Canada,Cell Biology Program, Research Institute, The Hospital
for Sick Children, Toronto, ON, Canada,Department of Pediatrics, Institute of Medical Science
and Biochemistry, University of Toronto, The Hospital for Sick Children, Toronto,
ON, Canada,Correspondence and requests for materials should
be addressed to: Aleixo M. Muise MD, PhD, 555 University Ave., The Hospital for
Sick Children, Toronto, ON, Canada, M5G 1X8,
, Phone: 416-813-7735, Fax:
416-813-6531
| |
Collapse
|
16
|
Dhaliwal J, Walters TD, Mack DR, Huynh HQ, Jacobson K, Otley AR, Debruyn J, El-Matary W, Deslandres C, Sherlock ME, Critch JN, Bax K, Seidman E, Jantchou P, Ricciuto A, Rashid M, Muise AM, Wine E, Carroll M, Lawrence S, Van Limbergen J, Benchimol EI, Church P, Griffiths AM. Phenotypic Variation in Paediatric Inflammatory Bowel Disease by Age: A Multicentre Prospective Inception Cohort Study of the Canadian Children IBD Network. J Crohns Colitis 2020; 14:445-454. [PMID: 31136648 PMCID: PMC7242003 DOI: 10.1093/ecco-jcc/jjz106] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Incidence of paediatric inflammatory bowel disease [IBD] in Canada is among the highest worldwide, and age of onset may be decreasing. In a multicentre nationwide inception cohort study, we examined variation in phenotype of IBD throughout the paediatric age spectrum. METHODS Children aged ≥2 years [y] and <17y [A1 age at diagnosis], with new onset IBD, were systematically evaluated at sites of the Canadian Children IBD Network. Prospectively recorded phenotypic data were compared between age groups. RESULTS Among 1092 children (70% Caucasian; 64% Crohn's disease [CD], 36% ulcerative colitis/inflammatory bowel disease unclassified [UC/IBD-U]; median age 13 y, interquartile range [IQR] 11-15 y), 210 [19%] were diagnosed before the age of age 10 y [Paris A1a] and 43 [4%] before age 6 y (very-early-onset [VEO-IBD]). CD was less common in younger children [42%, 56%, 66%, respectively, of VEO-IBD, A1a; A1b]. Colon-only IBD [UC/IBDU or CD-colon] was present in 81% of VEO-IBD and 65% of A1a; ileal disease increased progressively, reaching plateau at age 10 y. CD location was ileocolonic [L3] in 53% overall. Ileitis [L1] increased with age [6% of VEO-IBD; 13% of A1a; 21% of A1b], as did stricturing/penetrating CD [4% of A1a; 11% of A1b]. At all ages UC was extensive [E3/E4] in >85%, and disease activity moderate to severe according to Physician's Global Assessment [PGA] and weighted Paediatric Crohn's Disease Activity Index/Paediatric Ulcerative Colitis Activity Index [wPCDAI/PUCAI] in >70%. Heights were modestly reduced in CD [mean height z score -0.30 ± 1.23], but normal in UC/IBD-U. CONCLUSIONS Paris classification of age at diagnosis is supported by age-related increases in ileal disease until age 10 years. Other phenotypic features, including severity, are similar across all ages. Linear growth is less impaired in CD than in historical cohorts, reflecting earlier diagnosis.
Collapse
Affiliation(s)
- J Dhaliwal
- SickKids Hospital, University of Toronto, Toronto, ON, Canada
| | - T D Walters
- SickKids Hospital, University of Toronto, Toronto, ON, Canada
| | - D R Mack
- Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
| | - H Q Huynh
- Stollery Children’s Hospital, University of Alberta, Edmonton, AB, Canada
| | - K Jacobson
- B.C. Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - A R Otley
- IWK Health Centre, Dalhousie University, Halifax, NS, Canada
| | - J Debruyn
- Alberta Children’s Hospital, University of Calgary, Calgary, AB, Canada
| | - W El-Matary
- Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - C Deslandres
- CHU Sainte-Justine, Universite de Montreal, Montreal, QC, Canada
| | - M E Sherlock
- McMaster Children’s Hospital, McMaster University, Hamilton, ON, Canada
| | - J N Critch
- Janeway Children’s Health and Rehabilitation Centre, Memorial University, St John’s, NL, Canada
| | - K Bax
- Children’s Hospital of Western Ontario, University of Western Ontario, London, ON, Canada
| | - E Seidman
- Montreal Children’s Hospital, McGill University Faculty of Medicine, Montreal, QC, Canada
| | - P Jantchou
- CHU Sainte-Justine, Universite de Montreal, Montreal, QC, Canada
| | - A Ricciuto
- SickKids Hospital, University of Toronto, Toronto, ON, Canada
| | - M Rashid
- IWK Health Centre, Dalhousie University, Halifax, NS, Canada
| | - A M Muise
- SickKids Hospital, University of Toronto, Toronto, ON, Canada
| | - E Wine
- Stollery Children’s Hospital, University of Alberta, Edmonton, AB, Canada
| | - M Carroll
- Stollery Children’s Hospital, University of Alberta, Edmonton, AB, Canada
| | - S Lawrence
- B.C. Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - J Van Limbergen
- IWK Health Centre, Dalhousie University, Halifax, NS, Canada
| | - E I Benchimol
- Montreal Children’s Hospital, McGill University Faculty of Medicine, Montreal, QC, Canada
| | - P Church
- SickKids Hospital, University of Toronto, Toronto, ON, Canada
| | - A M Griffiths
- SickKids Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Kechida M. Update on Autoimmune Diseases Pathogenesis. Curr Pharm Des 2020; 25:2947-2952. [PMID: 31686634 DOI: 10.2174/1381612825666190709205421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 06/30/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Autoimmune diseases result from the interplay of cellular effectors like T and B cells, regulatory cells in addition to molecular factors like cytokines and regulatory molecules. METHODS Different electronic databases were searched in a non-systematic way to find out the literature of interest. RESULTS Pathogenesis of autoimmune diseases involves typical factors such as genetic background including HLA and non HLA system genes, environmental factors such as infectious agents and inflammatory cells mainly T and B lymphocytes abnormally activated leading to immune dysfunction. Other recently reported less typical factors such as micro-RNAs, circular RNAs, myeloperoxidase, vimentine and microbiome dysbiosis seem to be potential target therapies. CONCLUSION We aimed in this manuscript to review common factors in the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
- Melek Kechida
- Internal Medicine and Endocrinology Department of Fattouma Bourguiba University Hospital, University of Monastir, BP 56 Avenue Taher Haddad, Monastir 5000, Tunisia
| |
Collapse
|
18
|
Gianchecchi E, Fierabracci A. Recent Advances on Microbiota Involvement in the Pathogenesis of Autoimmunity. Int J Mol Sci 2019; 20:283. [PMID: 30642013 PMCID: PMC6359510 DOI: 10.3390/ijms20020283] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 02/07/2023] Open
Abstract
Autoimmune disorders derive from genetic, stochastic, and environmental factors that all together interact in genetically predisposed individuals. The impact of an imbalanced gut microbiome in the pathogenesis of autoimmunity has been suggested by an increasing amount of experimental evidence, both in animal models and humans. Several physiological mechanisms, including the establishment of immune homeostasis, are influenced by commensal microbiota in the gut. An altered microbiota composition produces effects in the gut immune system, including defective tolerance to food antigens, intestinal inflammation, and enhanced gut permeability. In particular, early findings reported differences in the intestinal microbiome of subjects affected by several autoimmune conditions, including prediabetes or overt disease compared to healthy individuals. The present review focuses on microbiota-host homeostasis, its alterations, factors that influence its composition, and putative involvement in the development of autoimmune disorders. In the light of the existing literature, future studies are necessary to clarify the role played by microbiota modifications in the processes that cause enhanced gut permeability and molecular mechanisms responsible for autoimmunity onset.
Collapse
Affiliation(s)
- Elena Gianchecchi
- Infectivology and Clinical Trials Research Department, Children's Hospital Bambino Gesù, Viale San Paolo 15, 00146 Rome, Italy.
- VisMederi s.r.l., Strada del Petriccio e Belriguardo, 35, 53100 Siena, Italy.
| | - Alessandra Fierabracci
- Infectivology and Clinical Trials Research Department, Children's Hospital Bambino Gesù, Viale San Paolo 15, 00146 Rome, Italy.
| |
Collapse
|