1
|
Xu W, Wei H, Zhang T. Methods of prolonging the effect of caudal block in children. Front Pediatr 2024; 12:1406263. [PMID: 38887564 PMCID: PMC11180814 DOI: 10.3389/fped.2024.1406263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Caudal epidural blockade is one of the most frequently administered regional anesthesia techniques in children. It is a supplement during general anesthesia and for providing postoperative analgesia in pediatrics for sub-umbilical surgeries, especially for genitourinary surgeries. However, the duration of the analgesic effect is occasionally unsatisfactory. In this review, we discuss the main advantages and disadvantages of different techniques to prolong postoperative analgesia for single-injection caudal blockade in children. A literature search of the keywords "caudal", "analgesia", "pediatric", and "children" was performed using PubMed and Web of Science databases. We highlight that analgesic quality correlates substantially with the local anesthetic's type, dose, the timing relationship between caudal block and surgery, caudal catheterization, and administration of epidural opioids or other adjuvant drugs.
Collapse
Affiliation(s)
| | | | - Tao Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Liu AR, Lin ZJ, Wei M, Tang Y, Zhang H, Peng XG, Li Y, Zheng YF, Tan Z, Zhou LJ, Feng X. The potent analgesia of intrathecal 2R, 6R-HNK via TRPA1 inhibition in LF-PENS-induced chronic primary pain model. J Headache Pain 2023; 24:141. [PMID: 37858040 PMCID: PMC10585932 DOI: 10.1186/s10194-023-01667-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Chronic primary pain (CPP) is an intractable pain of unknown cause with significant emotional distress and/or dysfunction that is a leading factor of disability globally. The lack of a suitable animal model that mimic CPP in humans has frustrated efforts to curb disease progression. 2R, 6R-hydroxynorketamine (2R, 6R-HNK) is the major antidepressant metabolite of ketamine and also exerts antinociceptive action. However, the analgesic mechanism and whether it is effective for CPP are still unknown. METHODS Based on nociplastic pain is evoked by long-term potentiation (LTP)-inducible high- or low-frequency electrical stimulation (HFS/LFS), we wanted to develop a novel CPP mouse model with mood and cognitive comorbidities by noninvasive low-frequency percutaneous electrical nerve stimulation (LF-PENS). Single/repeated 2R, 6R-HNK or other drug was intraperitoneally (i.p.) or intrathecally (i.t.) injected into naïve or CPP mice to investigate their analgesic effect in CPP model. A variety of behavioral tests were used to detect the changes in pain, mood and memory. Immunofluorescent staining, western blot, reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) and calcium imaging of in cultured dorsal root ganglia (DRG) neurons by Fluo-8-AM were used to elucidate the role and mechanisms of 2R, 6R-HNK in vivo or in vitro. RESULTS Intrathecal 2R, 6R-HNK, rather than intraperitoneal 2R, 6R-HNK or intrathecal S-Ketamine, successfully mitigated HFS-induced pain. Importantly, intrathecal 2R, 6R-HNK displayed effective relief of bilateral pain hypersensitivity and depressive and cognitive comorbidities in a dose-dependent manner in LF-PENS-induced CPP model. Mechanically, 2R, 6R-HNK markedly attenuated neuronal hyperexcitability and the upregulation of calcitonin gene-related peptide (CGRP), transient receptor potential ankyrin 1 (TRPA1) or vanilloid-1 (TRPV1), and vesicular glutamate transporter-2 (VGLUT2) in peripheral nociceptive pathway. In addition, 2R, 6R-HNK suppressed calcium responses and CGRP overexpression in cultured DRG neurons elicited by the agonists of TRPA1 or/and TRPV1. Strikingly, the inhibitory effects of 2R, 6R-HNK on these pain-related molecules and mechanical allodynia were substantially occluded by TRPA1 antagonist menthol. CONCLUSIONS In the newly designed CPP model, our findings highlighted the potential utility of intrathecal 2R, 6R-HNK for preventing and therapeutic modality of CPP. TRPA1-mediated uprgulation of CGRP and neuronal hyperexcitability in nociceptive pathways may undertake both unique characteristics and solving process of CPP.
Collapse
Affiliation(s)
- An-Ran Liu
- Department of Anesthesiology and Pain Clinic, First Affiliated Hospital of Sun Yat-Sen University, No.58, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Zhen-Jia Lin
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Ming Wei
- Department of Anesthesiology and Pain Clinic, First Affiliated Hospital of Sun Yat-Sen University, No.58, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Yuan Tang
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Hui Zhang
- Department of Anesthesiology, Guangdong Second Provincial General Hospital, No.466, Mid Xingang Road, Haizhu District, Guangzhou, 510317, China
| | - Xiang-Ge Peng
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Ying Li
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Yu-Fan Zheng
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Zhi Tan
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China.
| | - Li-Jun Zhou
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China.
| | - Xia Feng
- Department of Anesthesiology and Pain Clinic, First Affiliated Hospital of Sun Yat-Sen University, No.58, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China.
| |
Collapse
|
3
|
Dawes JM, Howard RF. Neonatal Pain: Significance, Assessment, and Management. NEONATAL ANESTHESIA 2023:505-527. [DOI: 10.1007/978-3-031-25358-4_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
LncRNA TUG1 Promoted Stabilization of BAG5 by Binding DDX3X to Exacerbate Ketamine-Induced Neurotoxicity. Neurotox Res 2022; 40:1989-2000. [PMID: 36151390 DOI: 10.1007/s12640-022-00580-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/07/2022] [Accepted: 09/11/2022] [Indexed: 12/31/2022]
Abstract
As a clinically widely used anesthetic, ketamine (KET) has been reported to cause neurotoxicity in patients. Our work aimed to probe the function of long-chain non-coding RNA taurine-upregulated gene 1 (lncRNA TUG1) in KET-induced neurotoxicity. HT22 cells were subjected to KET to build the cell model. 3-(4, 5-Dimethylthiazolyl2)-2, 5-diphenyltetrazolium bromide (MTT) assay was employed to determine cell viability. Additionally, cell apoptosis was evaluated by flow cytometry. The binding relationships among TUG1, DEAD-box RNA helicase 3X (DDX3X), and Bcl-2-associated athanogene 5 (BAG5) were verified by RIP and RNA pull-down assays. Cell viability was impaired and cell apoptosis was increased in KET-treated HT22 cells accompanied by increased TUG1, DDX3X, and BAG5 expressions. TUG1 knockdown dramatically enhanced cell viability and repressed the of KET-induced apoptosis in HT22 cells, while TUG1 overexpression presented the opposite effects. In addition, we found that TUG1 promoted DDX3X expression via directly binding with DDX3X. As expected, DDX3X overexpression abolished the palliative effect of TUG1 knockdown on KET-induced neurotoxicity. Further research proved that TUG1 increased the stability of BAG5 through interacting with DDX3X. Finally, as expected, the moderating effect of TUG1 knockdown on KET-induced neuron injury was abolished by BAG5 overexpression. Taken together, TUG1 promoted BAG5 expression by binding DDX3X to exacerbate KET-induced neurotoxicity.
Collapse
|
5
|
Simonini A, Brogi E, Cascella M, Vittori A. Advantages of ketamine in pediatric anesthesia. Open Med (Wars) 2022; 17:1134-1147. [PMID: 35859796 PMCID: PMC9263896 DOI: 10.1515/med-2022-0509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/29/2022] Open
Abstract
Although ketamine is primarily used for induction and maintenance of general anesthesia, it also presents sedative, amnestic, anesthetics, analgesic, antihyperalgesia, neuroprotective, anti-inflammatory, immunomodulant, and antidepressant effects. Its unique pharmacodynamics and pharmacokinetic properties allow the use of ketamine in various clinical settings including sedation, ambulatory anesthesia, and intensive care practices. It has also adopted to manage acute and chronic pain management. Clinically, ketamine produces dissociative sedation, analgesia, and amnesia while maintaining laryngeal reflexes, with respiratory and cardiovascular stability. Notably, it does not cause respiratory depression, maintaining both the hypercapnic reflex and the residual functional capacity with a moderate bronchodilation effect. In the pediatric population, ketamine can be administered through practically all routes, making it an advantageous drug for the sedation required setting such as placement of difficult vascular access and in uncooperative and oppositional children. Consequently, ketamine is indicated in prehospital induction of anesthesia, induction of anesthesia in potentially hemodynamic unstable patients, and in patients at risk of bronchospasm. Even more, ketamine does not increase intracranial pressure, and it can be safely used also in patients with traumatic brain injuries. This article is aimed to provide a brief and practical summary of the role of ketamine in the pediatric field.
Collapse
Affiliation(s)
- Alessandro Simonini
- Department of Pediatric Anaesthesia and Intensive Care, S.C. SOD Anestesia e Rianimazione Pediatrica, Ospedale G. Salesi, Ancona, 60123, Italy
| | - Etrusca Brogi
- Department Anesthesia and Intensive Care, University of Pisa, Pisa, 56126, Italy
| | - Marco Cascella
- Department of Supportive Care, Division of Anesthesia and Pain Medicine, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Naples, 80100, Italy
| | - Alessandro Vittori
- Department of Anesthesia and Critical Care, ARCO Roma Ospedale Pediatrico Bambino Gesù IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| |
Collapse
|
6
|
De Andres J, Hayek S, Perruchoud C, Lawrence MM, Reina MA, De Andres-Serrano C, Rubio-Haro R, Hunt M, Yaksh TL. Intrathecal Drug Delivery: Advances and Applications in the Management of Chronic Pain Patient. FRONTIERS IN PAIN RESEARCH 2022; 3:900566. [PMID: 35782225 PMCID: PMC9246706 DOI: 10.3389/fpain.2022.900566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/02/2022] [Indexed: 11/19/2022] Open
Abstract
Advances in our understanding of the biology of spinal systems in organizing and defining the content of exteroceptive information upon which higher centers define the state of the organism and its role in the regulation of somatic and automatic output, defining the motor response of the organism, along with the unique biology and spatial organization of this space, have resulted in an increased focus on therapeutics targeted at this extracranial neuraxial space. Intrathecal (IT) drug delivery systems (IDDS) are well-established as an effective therapeutic approach to patients with chronic non-malignant or malignant pain and as a tool for management of patients with severe spasticity and to deliver therapeutics that address a myriad of spinal pathologies. The risk to benefit ratio of IDD makes it a useful interventional approach. While not without risks, this approach has a significant therapeutic safety margin when employed using drugs with a validated safety profile and by skilled practioners. The present review addresses current advances in our understanding of the biology and dynamics of the intrathecal space, therapeutic platforms, novel therapeutics, delivery technology, issues of safety and rational implementation of its therapy, with a particular emphasis upon the management of pain.
Collapse
Affiliation(s)
- Jose De Andres
- Surgical Specialties Department, Valencia University Medical School, Valencia, Spain
- Anesthesia Critical Care and Pain Management Department, Valencia, Spain
- *Correspondence: Jose De Andres
| | - Salim Hayek
- Department of Anesthesiology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Christophe Perruchoud
- Pain Center and Department of Anesthesia, La Tour Hospital, Geneva, Switzerland
- Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Melinda M. Lawrence
- Department of Anesthesiology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Miguel Angel Reina
- Department of Anesthesiology, Montepríncipe University Hospital, Madrid, Spain
- CEU-San-Pablo University School of Medicine, Madrid, Spain
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, United States
- Facultad de Ciencias de la Salud Universidad Francisco de Vitoria, Madrid, Spain
| | | | - Ruben Rubio-Haro
- Anesthesia and Pain Management Department, Provincial Hospital, Castellon, Spain
- Multidisciplinary Pain Clinic, Vithas Virgen del Consuelo Hospital, Valencia, Spain
| | - Mathew Hunt
- Department of Physiology, Karolinska Institute, Stockholm, Sweden
| | - Tony L. Yaksh
- Departments of Anesthesiology and Pharmacology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
7
|
Walker SM, Malkmus S, Eddinger K, Steinauer J, Roberts AJ, Shubayev VI, Grafe MR, Powell SB, Yaksh TL. Evaluation of neurotoxicity and long-term function and behavior following intrathecal 1 % 2-chloroprocaine in juvenile rats. Neurotoxicology 2021; 88:155-167. [PMID: 34801587 DOI: 10.1016/j.neuro.2021.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 01/20/2023]
Abstract
Spinally-administered local anesthetics provide effective perioperative anesthesia and/or analgesia for children of all ages. New preparations and drugs require preclinical safety testing in developmental models. We evaluated age-dependent efficacy and safety following 1 % preservative-free 2-chloroprocaine (2-CP) in juvenile Sprague-Dawley rats. Percutaneous lumbar intrathecal 2-CP was administered at postnatal day (P)7, 14 or 21. Mechanical withdrawal threshold pre- and post-injection evaluated the degree and duration of sensory block, compared to intrathecal saline and naive controls. Tissue analyses one- or seven-days following injection included histopathology of spinal cord, cauda equina and brain sections, and quantification of neuronal apoptosis and glial reactivity in lumbar spinal cord. Following intrathecal 2-CP or saline at P7, outcomes assessed between P30 and P72 included: spinal reflex sensitivity (hindlimb thermal latency, mechanical threshold); social approach (novel rat versus object); locomotor activity and anxiety (open field with brightly-lit center); exploratory behavior (rearings, holepoking); sensorimotor gating (acoustic startle, prepulse inhibition); and learning (Morris Water Maze). Maximum tolerated doses of intrathecal 2-CP varied with age (1.0 μL/g at P7, 0.75 μL/g at P14, 0.5 μL/g at P21) and produced motor and sensory block for 10-15 min. Tissue analyses found no significant differences across intrathecal 2-CP, saline or naïve groups. Adult behavioral measures showed expected sex-dependent differences, that did not differ between 2-CP and saline groups. Single maximum tolerated in vivo doses of intrathecal 2-CP produced reversible spinal anesthesia in juvenile rodents without detectable evidence of developmental neurotoxicity. Current results cannot be extrapolated to repeated dosing or prolonged infusion.
Collapse
Affiliation(s)
- Suellen M Walker
- Department of Anesthesiology, University of California San Diego, CA, USA; Developmental Neurosciences Department, UCL Great Ormond Street Institute of Child Health and Department of Anaesthesia and Pain Medicine, Great Ormond St Hospital Foundation Trust, London, United Kingdom.
| | - Shelle Malkmus
- Department of Anesthesiology, University of California San Diego, CA, USA
| | - Kelly Eddinger
- Department of Anesthesiology, University of California San Diego, CA, USA
| | - Joanne Steinauer
- Department of Anesthesiology, University of California San Diego, CA, USA
| | - Amanda J Roberts
- Animal Models Core, Scripps Research Institute, La Jolla, CA, USA
| | - Veronica I Shubayev
- Department of Anesthesiology, University of California San Diego, CA, USA; Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| | - Marjorie R Grafe
- Department of Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Susan B Powell
- Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Tony L Yaksh
- Department of Anesthesiology, University of California San Diego, CA, USA
| |
Collapse
|
8
|
Does Repeated Painful Stimuli Change Cerebral Near-Infrared Spectroscopy Response in Healthy, Term, Large for Gestational Age Newborns? Clin J Pain 2021; 36:110-116. [PMID: 31651426 DOI: 10.1097/ajp.0000000000000774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The objective of this study was to evaluate the effect of repeated painful stimuli on short-term pain response in healthy, term, large for gestational age newborns by measuring the regional cerebral oxygen saturation (rScO2), and behavioral and physiological responses. METHODS We compared term large for gestational age infants who received repeated painful stimuli (study group) with term, appropriate for gestational age infants (control group). A pulse oximeter and a near-infrared spectroscopy probe were connected to babies during the study period, and the responses of the babies were recorded by video, from which the crying time and the Neonatal Infant Pain Scale were obtained. The heart rate, peripheral oxygen saturation (SpO2), and rScO2 data were sampled every 1 second and exported to a personal computer via digital output during the study period. The maximum heart rate, the minimum SpO2, and peak, baseline, and mean rScO2 measurements following skin puncture were recorded. Data were compared within 1 group and between the 2 groups. RESULTS After the heel prick, crying time (P<0.001) and Neonatal Infant Pain Scale scores (P=0.024) increased, and SpO2 levels decreased significantly (P=0.012) in the study group versus the control group. Although mean rScO2 increased significantly within 1 group (P<0.001), it was not significant between the 2 groups. The percent change in rScO2 was greater in the study group (5.2 [2.5 to 9.3]) compared with the control group (2.8 [1.1 to 8.2], P=0.037). CONCLUSION We showed that rScO2 values changed significantly within the first few days of life in babies who received more painful stimuli compared with the control group, similar to behavioral and physiological responses.
Collapse
|
9
|
Yao Y, Wang X, Gao J. LncRNA KCNQ1OT1 Sponges miR-206 to Ameliorate Neural Injury Induced by Anesthesia via Up-Regulating BDNF. Drug Des Devel Ther 2020; 14:4789-4800. [PMID: 33204065 PMCID: PMC7667201 DOI: 10.2147/dddt.s256319] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/23/2020] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Widely used in anesthesia, ketamine is reported to induce neurotoxicity in patients. This study aimed to investigate the molecular regulatory mechanism of long non-coding RNA (lncRNA) KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) in ameliorating ketamine-induced neural injury. MATERIALS AND METHODS Sprague-Dawley rats were intraperitoneally injected with ketamine to induce neuronal injury. PC-12 cells treated with ketamine were used as the cell model. Ketamine-induced aberrant expression of KCNQ1OT1, miR-206 and brain-derived neurotrophic factor (BDNF) were examined by quantitative real-time polymerase chain reaction (qRT-PCR). The effects of KCNQ1OT1 and miR-206 on ketamine-induced neural injury in PC-12 cells were then examined by MTT and LDH assay. The regulatory relationships between KCNQ1OT1 and miR-206, and miR-206 and BDNF were detected by dual-luciferase reporter assay. RESULTS Ketamine induced the apoptosis of neurons of the hippocampus in rats, and the apoptosis of PC-12 cells, accompanied by down-regulation of KCNQ1OT1 and BDNF expressions, and up-regulation of miR-206 expression. Overexpression of KCNQ1OT1 enhanced the resistance to apoptosis of PC-12 cells and significantly ameliorated ketamine-induced nerve injury, while transfection of miR-206 had opposite effects. Mechanistically, KCNQ1OT1 could target miR-206 and reduce its expression level, in turn indirectly increase the expression level of BDNF, and play a protective role in neural injury. CONCLUSION KCNQ1OT1/miR-206/BDNF axis is demonstrated to be an important regulatory mechanism in regulating ketamine-induced neural injury. Our study helps to clarify the mechanism by which ketamine exerts its toxicological effects and provides clues for the neuroprotection during anesthesia.
Collapse
Affiliation(s)
- Yao Yao
- Department of Anesthesiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei College of Arts and Science, Xiangyang441021, Hubei, People’s Republic of China
| | - Xuesong Wang
- Department of Anesthesiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei College of Arts and Science, Xiangyang441021, Hubei, People’s Republic of China
| | - Jin Gao
- Department of Anesthesiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei College of Arts and Science, Xiangyang441021, Hubei, People’s Republic of China
| |
Collapse
|
10
|
Guo C, Qi Y, Qu J, Gai L, Shi Y, Yuan C. Pathophysiological Functions of the lncRNA TUG1. Curr Pharm Des 2020; 26:688-700. [PMID: 31880241 DOI: 10.2174/1381612826666191227154009] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) with little or no coding capacity are associated with a plethora of cellular functions, participating in various biological processes. Cumulative study of lncRNA provides explanations to the physiological and pathological processes and new perspectives to the diagnosis, prevention, and treatment of some clinical diseases. Long non-coding RNA taurine-upregulated gene 1(TUG1) is one of the first identified lncRNAs associated with human disease, which actively involved in various physiological processes, including regulating genes at epigenetics, transcription, post-transcription, translation, and posttranslation. The aim of this review was to explore the molecular mechanism of TUG1 in various types of human diseases. METHODS In this review, we summarized and analyzed the latest findings related to the physiologic and pathophysiological processes of TUG1 in human diseases. The related studies were retrieved and selected the last six years of research articles in PubMed with lncRNA and TUG1 as keywords. RESULTS TUG1 is a valuable lncRNA that its dysregulated expression and regulating the biological processes were found in a variety of human diseases. TUG1 is found to exhibit aberrant expression in a variety of malignancies. Dysregulation of TUG1 has been shown to contribute to proliferation, migration, cell cycle changes, inhibited apoptosis, and drug resistance of cancer cells, which revealed an oncogenic role for this lncRNA, but some reports have shown downregulation of TUG1 in lung cancer samples compared with noncancerous samples. In addition, the molecular and biological functions of TUG1 in physiology and disease (relevant to endocrinology, metabolism, immunology, neurobiology) have also been highlighted. Finally, we discuss the limitations and tremendous diagnostic/therapeutic potential of TUG1 in cancer and other diseases. CONCLUSION Long non-coding RNA-TUG1 likely served as useful disease biomarkers or therapy targets and effectively applied in different kinds of diseases, such as human cancer and cardiovascular diseases.
Collapse
Affiliation(s)
- Chong Guo
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China
| | - Yuying Qi
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China
| | - Jiayuan Qu
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China
| | - Liyue Gai
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China
| | - Yue Shi
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China
| | - Chengfu Yuan
- Department of Biochemistry, China Three Gorges University, Yichang City Hubei Province, China.,Tumor Microenvironment and Immunotherapy Key Laboratory of Hubei province in China, Yichang City, China
| |
Collapse
|
11
|
Lyu D, Tang N, Womack AW, He YJ, Lin Q. Neonatal ketamine exposure-induced hippocampal neuroapoptosis in the developing brain impairs adult spatial learning ability. Neural Regen Res 2020; 15:880-886. [PMID: 31719253 PMCID: PMC6990767 DOI: 10.4103/1673-5374.268929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 02/25/2019] [Accepted: 06/10/2019] [Indexed: 12/19/2022] Open
Abstract
Ketamine exposure can lead to selective neuroapoptosis in the developing brain. p66ShcA, the cellular adapter protein expressed selectively in immature neurons, is a known pro-apoptotic molecule that triggers neuroapoptosis when activated. Sprague-Dawley rats at postnatal day 7 were subcutaneously injected in the neck with ketamine 20 mg/kg, six times at 2-hour intervals. At 0, 1, 3, and 6 hours after final injection, western blot assay was used to detect the expression of cleaved caspase-3, p66ShcA, and phosphorylated p66ShcA. We found that the expression of activated p66ShcA and caspase-3 increased after ketamine exposure and peaked at 3 hours. The same procedure was performed on a different group of rats. At the age of 4 weeks, spatial learning and memory abilities were tested with the Morris water maze. Latency to find the hidden platform for these rats was longer than it was for control rats, although the residence time in the target quadrant was similar. These findings indicate that ketamine exposure resulted in p66ShcA being activated in the course of an apoptotic cascade during the neonatal period. This may have contributed to the deficit in spatial learning and memory that persisted into adulthood. The experimental protocol was approved by the Institutional Animal Care and Use Committee at the University of Texas at Arlington, USA (approval No. A13.008) on January 22, 2013.
Collapse
Affiliation(s)
- Dan Lyu
- Department of Pain Management, Tianjin First Center Hospital, Tianjin, China; Department of Psychology, College of Science, University of Texas at Arlington, Arlington, TX, USA
| | - Ning Tang
- Department of Psychology, College of Science, University of Texas at Arlington, Arlington, TX, USA; Reproductive Medicine Center, the 960th Hospital of the PLA Joint Logistics Support Force, Jinan, Shandong Province, China
| | - Andrew W Womack
- Department of Psychology, College of Science, University of Texas at Arlington, Arlington, TX, USA
| | - Yong-Jin He
- Department of Pain Management, Tianjin First Center Hospital, Tianjin, China
| | - Qing Lin
- Department of Psychology, College of Science, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
12
|
Cao C, Zhang Y, Zhang Z, Chen Q. Small interfering LncRNA-TUG1 (siTUG1) decreases ketamine-induced neurotoxicity in rat hippocampal neurons. Int J Neurosci 2019; 129:937-944. [PMID: 30995880 DOI: 10.1080/00207454.2019.1594805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Chunni Cao
- Department of Hyperbaric Oxygen Therapy, Yantai Yuhuangding Hospital, Yantai, China
| | - Yanxiang Zhang
- Department of Neurology, Yantai Yuhuangding Hospital, Yantai, China
| | - Zuofu Zhang
- Department of Joint Orthopedics, Yantai Yuhuangding Hospital, Yantai, China
| | - Qi Chen
- Department of Neurology, Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
13
|
Priming of Adult Incision Response by Early-Life Injury: Neonatal Microglial Inhibition Has Persistent But Sexually Dimorphic Effects in Adult Rats. J Neurosci 2019; 39:3081-3093. [PMID: 30796159 PMCID: PMC6468109 DOI: 10.1523/jneurosci.1786-18.2019] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/12/2019] [Accepted: 01/15/2019] [Indexed: 02/06/2023] Open
Abstract
Neonatal hindpaw incision primes developing spinal nociceptive circuitry, resulting in enhanced hyperalgesia following reinjury in adulthood. Spinal microglia contribute to this persistent effect, and microglial inhibition at the time of adult reincision blocks the enhanced hyperalgesia. Here, we pharmacologically inhibited microglial function with systemic minocycline or intrathecal SB203580 at the time of neonatal incision and evaluated sex-dependent differences following adult reincision. Incision in adult male and female rats induced equivalent hyperalgesia and spinal dorsal horn expression of genes associated with microglial proliferation (Emr1) and transformation to a reactive phenotype (Irf8). In control adults with prior neonatal incision, the enhanced degree and duration of incision-induced hyperalgesia and spinal microglial responses to reincision were equivalent in males and females. However, microglial inhibition at the time of the neonatal incision revealed sex-dependent effects: the persistent mechanical and thermal hyperalgesia following reincision in adulthood was prevented in males but unaffected in females. Similarly, reincision induced Emr1 and Irf8 gene expression was downregulated in males, but not in females, following neonatal incision with minocycline. To evaluate the distribution of reincision hyperalgesia, prior neonatal incision was performed at different body sites. Hyperalgesia was maximal when the same paw was reincised, and was increased following prior incision at ipsilateral, but not contralateral, sites, supporting a segmentally restricted spinal mechanism. These data highlight the contribution of spinal microglial mechanisms to persistent effects of early-life injury in males, and sex-dependent differences in the ability of microglial inhibition to prevent the transition to a persistent pain state span developmental stages.SIGNIFICANCE STATEMENT Following the same surgery, some patients develop persistent pain. Contributory mechanisms are not fully understood, but early-life experience and sex/gender may influence the transition to chronic pain. Surgery and painful procedural interventions in vulnerable preterm neonates are associated with long-term alterations in somatosensory function and pain that differ in males and females. Surgical injury in neonatal rodents primes the developing nociceptive system and enhances reinjury response in adulthood. Neuroimmune interactions are critical mediators of persistent pain, but sex-dependent differences in spinal neuroglial signaling influence the efficacy of microglial inhibitors following adult injury. Neonatal microglial inhibition has beneficial long-term effects on reinjury response in adult males only, emphasizing the importance of evaluating sex-dependent differences at all ages in preclinical studies.
Collapse
|
14
|
Cohen SP, Bhatia A, Buvanendran A, Schwenk ES, Wasan AD, Hurley RW, Viscusi ER, Narouze S, Davis FN, Ritchie EC, Lubenow TR, Hooten WM. Consensus Guidelines on the Use of Intravenous Ketamine Infusions for Chronic Pain From the American Society of Regional Anesthesia and Pain Medicine, the American Academy of Pain Medicine, and the American Society of Anesthesiologists. Reg Anesth Pain Med 2018; 43:521-546. [PMID: 29870458 PMCID: PMC6023575 DOI: 10.1097/aap.0000000000000808] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Over the past 2 decades, the use of intravenous ketamine infusions as a treatment for chronic pain has increased dramatically, with wide variation in patient selection, dosing, and monitoring. This has led to a chorus of calls from various sources for the development of consensus guidelines. METHODS In November 2016, the charge for developing consensus guidelines was approved by the boards of directors of the American Society of Regional Anesthesia and Pain Medicine and, shortly thereafter, the American Academy of Pain Medicine. In late 2017, the completed document was sent to the American Society of Anesthesiologists' Committees on Pain Medicine and Standards and Practice Parameters, after which additional modifications were made. Panel members were selected by the committee chair and both boards of directors based on their expertise in evaluating clinical trials, past research experience, and clinical experience in developing protocols and treating patients with ketamine. Questions were developed and refined by the committee, and the groups responsible for addressing each question consisted of modules composed of 3 to 5 panel members in addition to the committee chair. Once a preliminary consensus was achieved, sections were sent to the entire panel, and further revisions were made. In addition to consensus guidelines, a comprehensive narrative review was performed, which formed part of the basis for guidelines. RESULTS Guidelines were prepared for the following areas: indications; contraindications; whether there was evidence for a dose-response relationship, or a minimum or therapeutic dose range; whether oral ketamine or another N-methyl-D-aspartate receptor antagonist was a reasonable treatment option as a follow-up to infusions; preinfusion testing requirements; settings and personnel necessary to administer and monitor treatment; the use of preemptive and rescue medications to address adverse effects; and what constitutes a positive treatment response. The group was able to reach consensus on all questions. CONCLUSIONS Evidence supports the use of ketamine for chronic pain, but the level of evidence varies by condition and dose range. Most studies evaluating the efficacy of ketamine were small and uncontrolled and were either unblinded or ineffectively blinded. Adverse effects were few and the rate of serious adverse effects was similar to placebo in most studies, with higher dosages and more frequent infusions associated with greater risks. Larger studies, evaluating a wider variety of conditions, are needed to better quantify efficacy, improve patient selection, refine the therapeutic dose range, determine the effectiveness of nonintravenous ketamine alternatives, and develop a greater understanding of the long-term risks of repeated treatments.
Collapse
Affiliation(s)
- Steven P. Cohen
- From the Departments of Anesthesiology & Critical Care Medicine, Neurology, and Physical Medicine & Rehabilitation, Johns Hopkins School of Medicine; and
- Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Anuj Bhatia
- Department of Anesthesiology, University of Toronto, Toronto Western Hospital, Toronto, Ontario, Canada
| | | | - Eric S. Schwenk
- Department of Anesthesiology, Jefferson Medical College, Philadelphia; and
| | - Ajay D. Wasan
- Departments of Anesthesiology and Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Robert W. Hurley
- Departments of Anesthesiology and Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC
| | - Eugene R. Viscusi
- Department of Anesthesiology, Jefferson Medical College, Philadelphia; and
| | - Samer Narouze
- Departments of Anesthesiology and Neurosurgery, Western Reserve Hospital, Akron, OH
| | - Fred N. Davis
- Procare Pain Solutions and
- Department of Anesthesiology, Michigan State University College of Human Medicine, Grand Rapids, MI
| | - Elspeth C. Ritchie
- Department of Psychiatry, Uniformed Services University of the Health Sciences, Georgetown University School of Medicine, Bethesda, MD; and
- Howard University College of Medicine, Washington, DC; and
| | | | - William M. Hooten
- Departments of Anesthesiology and Psychiatry, Mayo College of Medicine, Rochester, MN
| |
Collapse
|
15
|
Kawakami H, Mihara T, Nakamura N, Ka K, Goto T. Effect of magnesium added to local anesthetics for caudal anesthesia on postoperative pain in pediatric surgical patients: A systematic review and meta-analysis with Trial Sequential Analysis. PLoS One 2018; 13:e0190354. [PMID: 29293586 PMCID: PMC5749796 DOI: 10.1371/journal.pone.0190354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/13/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Magnesium has been investigated as an adjuvant for neuraxial anesthesia, but the effect of caudal magnesium on postoperative pain is inconsistent. The aim of this systematic review and meta-analysis was to evaluate the analgesic effect of caudal magnesium. METHODS We searched six databases, including trial registration sites. Randomized clinical trials reporting the effect of caudal magnesium on postoperative pain after general anesthesia were eligible. The risk ratio for use of rescue analgesics after surgery was combined using a random-effects model. We also assessed adverse events. The I2 statistic was used to assess heterogeneity. We assessed risk of bias with Cochrane domains. We controlled type I and II errors due to sparse data and repetitive testing with Trial Sequential Analysis. We assessed the quality of evidence with GRADE. RESULTS Four randomized controlled trials (247 patients) evaluated the need for rescue analgesics. In all four trials, 50 mg of magnesium was administered with caudal ropivacaine. The results suggested that the need for rescue analgesia was reduced significantly by caudal magnesium administration (risk ratio 0.45; 95% confidence interval 0.24-0.86). There was considerable heterogeneity as indicated by an I2 value of 62.5%. The Trial Sequential Analysis-adjusted confidence interval was 0.04-5.55, indicating that further trials are required. The quality of evidence was very low. The rate of adverse events was comparable between treatment groups. CONCLUSION Caudal magnesium may reduce the need for rescue analgesia after surgery, but further randomized clinical trials with a low risk of bias and a low risk of random errors are necessary to assess the effect of caudal magnesium on postoperative pain and adverse events. TRIAL REGISTRATION University Hospital Medical Information Network Clinical Trials Registry UMIN000025344.
Collapse
Affiliation(s)
- Hiromasa Kawakami
- Department of Anesthesiology, Kanagawa Children’s Medical Center, Yokohama, Kanagawa, Japan
| | - Takahiro Mihara
- Department of Anesthesiology, Kanagawa Children’s Medical Center, Yokohama, Kanagawa, Japan
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Nobuhito Nakamura
- Department of Anesthesiology, Kanagawa Children’s Medical Center, Yokohama, Kanagawa, Japan
| | - Koui Ka
- Department of Anesthesiology, Kanagawa Children’s Medical Center, Yokohama, Kanagawa, Japan
| | - Takahisa Goto
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| |
Collapse
|
16
|
Dhar D, Poree LR, Yaksh TL. Evolution of the Spinal Delivery of Opiate Analgesics. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00065-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
The European society of regional anesthesia and pain therapy and the American society of regional anesthesia and pain medicine joint committee practice advisory on controversial topics in pediatric regional anesthesia I and II. Curr Opin Anaesthesiol 2017; 30:613-620. [DOI: 10.1097/aco.0000000000000508] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Deer TR, Pope JE, Hayek SM, Bux A, Buchser E, Eldabe S, De Andrés JA, Erdek M, Patin D, Grider JS, Doleys DM, Jacobs MS, Yaksh TL, Poree L, Wallace MS, Prager J, Rauck R, DeLeon O, Diwan S, Falowski SM, Gazelka HM, Kim P, Leong M, Levy RM, McDowell II G, McRoberts P, Naidu R, Narouze S, Perruchoud C, Rosen SM, Rosenberg WS, Saulino M, Staats P, Stearns LJ, Willis D, Krames E, Huntoon M, Mekhail N. The Polyanalgesic Consensus Conference (PACC): Recommendations on Intrathecal Drug Infusion Systems Best Practices and Guidelines. Neuromodulation 2017; 20:96-132. [DOI: 10.1111/ner.12538] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/23/2016] [Accepted: 05/23/2016] [Indexed: 12/13/2022]
Affiliation(s)
| | | | | | - Anjum Bux
- Anesthesia and Chronic Pain Management; Ephraim McDowell Regional Medical Center; Danville KY USA
| | - Eric Buchser
- Anaesthesia and Pain Management Department; EHC Hosptial, Morges, and CHUV University Hospital; Lausanne Switzerland
| | - Sam Eldabe
- The James Cook University Hospital; Middlesbrough UK
| | - Jose A. De Andrés
- Valencia School of Medicine; Hospital General Universitario; Valencia Spain
| | - Michael Erdek
- Anesthesiology and Critical Care Medicine; Johns Hopkins University School of Medicine; Baltimore MD USA
| | | | - Jay S. Grider
- University of Kentucky College of Medicine, UK HealthCare Pain Services; Lexington KY USA
| | | | | | - Tony L. Yaksh
- Anesthesiology and Pharmacology; University of California; San Diego CA USA
| | - Lawrence Poree
- Pain Clinic of Monterey Bay, University of California at San Francisco; San Francisco CA USA
| | | | - Joshua Prager
- Center for the Rehabilitation Pain Syndromes (CRPS) at UCLA Medical Plaza; Los Angeles CA USA
| | - Richard Rauck
- Carolina Pain Institute, Wake Forest Baptist Health; Winston-Salem NC USA
| | - Oscar DeLeon
- Roswell Park Cancer Institute, SUNY; Buffalo NY USA
| | - Sudhir Diwan
- Manhattan Spine and Pain Medicine; Lenox Hill Hospital; New York NY USA
| | | | | | - Philip Kim
- Bryn Mawr Hospital; Bryn Mawr PA, USA
- Christiana Hospital; Newark DE USA
| | | | | | | | | | - Ramana Naidu
- San Francisco Medical Center, University of California; San Francisco CA USA
| | - Samir Narouze
- Summa Western Reserve Hospital; Cuyahoga Falls OH USA
| | | | | | | | | | - Peter Staats
- Premier Pain Management Centers; Shrewsbury NJ, USA
- Johns Hopkins University; Baltimore MD USA
| | | | | | - Elliot Krames
- Pacific Pain Treatment Center (ret.); San Francisco CA USA
| | - Marc Huntoon
- Vanderbilt University Medical Center; Nashville TN USA
| | | |
Collapse
|
19
|
Yaksh TL, Fisher CJ, Hockman TM, Wiese AJ. Current and Future Issues in the Development of Spinal Agents for the Management of Pain. Curr Neuropharmacol 2017; 15:232-259. [PMID: 26861470 PMCID: PMC5412694 DOI: 10.2174/1570159x14666160307145542] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 12/02/2015] [Accepted: 02/05/2016] [Indexed: 11/22/2022] Open
Abstract
Targeting analgesic drugs for spinal delivery reflects the fact that while the conscious experience of pain is mediated supraspinally, input initiated by high intensity stimuli, tissue injury and/or nerve injury is encoded at the level of the spinal dorsal horn and this output informs the brain as to the peripheral environment. This encoding process is subject to strong upregulation resulting in hyperesthetic states and downregulation reducing the ongoing processing of nociceptive stimuli reversing the hyperesthesia and pain processing. The present review addresses the biology of spinal nociceptive processing as relevant to the effects of intrathecally-delivered drugs in altering pain processing following acute stimulation, tissue inflammation/injury and nerve injury. The review covers i) the major classes of spinal agents currently employed as intrathecal analgesics (opioid agonists, alpha 2 agonists; sodium channel blockers; calcium channel blockers; NMDA blockers; GABA A/B agonists; COX inhibitors; ii) ongoing developments in the pharmacology of spinal therapeutics focusing on less studied agents/targets (cholinesterase inhibition; Adenosine agonists; iii) novel intrathecal targeting methodologies including gene-based approaches (viral vectors, plasmids, interfering RNAs); antisense, and toxins (botulinum toxins; resniferatoxin, substance P Saporin); and iv) issues relevant to intrathecal drug delivery (neuraxial drug distribution), infusate delivery profile, drug dosing, formulation and principals involved in the preclinical evaluation of intrathecal drug safety.
Collapse
Affiliation(s)
- Tony L. Yaksh
- University of California, San Diego, Anesthesia Research Lab 0818, 9500 Gilman Dr. LaJolla, CA 92093, USA
| | - Casey J. Fisher
- University of California, San Diego, Anesthesia Research Lab 0818, 9500 Gilman Dr. LaJolla, CA 92093, USA
| | - Tyler M. Hockman
- University of California, San Diego, Anesthesia Research Lab 0818, 9500 Gilman Dr. LaJolla, CA 92093, USA
| | - Ashley J. Wiese
- University of California, San Diego, Anesthesia Research Lab 0818, 9500 Gilman Dr. LaJolla, CA 92093, USA
| |
Collapse
|
20
|
Liu JY, Guo F, Wu HL, Wang Y, Liu JS. Midazolam anesthesia protects neuronal cells from oxidative stress-induced death via activation of the JNK-ERK pathway. Mol Med Rep 2016; 15:169-179. [PMID: 27959401 PMCID: PMC5355727 DOI: 10.3892/mmr.2016.6031] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 09/22/2016] [Indexed: 12/31/2022] Open
Abstract
Midazolam is an anesthetic agent commonly used during clinical and surgical procedures, which has been shown to exert ROS-suppressing and apoptosis-modulating pharmacological activities in various cellular systems. However, the effects of midazolam on oxidative stress in neuronal cells require elucidation. The present study investigated the effects of midazolam on buthionine sulfoximine (BSO)- and hydrogen peroxide (H2O2)-induced oxidative stress in primary cortical neuronal cells. In addition, the effects of midazolam on middle cerebral artery occlusion (MCAO) in mice and on ethanol-induced neuroapoptosis in the brains of neonatal mice were determined. Subsequently, cell viability was detected using the MTT assay; intracellular reactive oxygen species (ROS) generation was determined using the 2′,7′-dichlorodihydrofluorescein diacetate method with confocal microscopy; terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was conducted to detect apoptotic cells; immunohistochemistry was performed to detect activated caspase-3; neuronal deficit and infarct volume analyses were conducted; and quantitative polymerase chain reaction and western blotting were performed to detect the expression levels of genes and proteins associated with apoptosis and cell survival pathways. The results demonstrated that BSO (10 mM) and H2O2 (1 mM) suppressed proliferation of cortical neuronal cells by inducing apoptosis. These effects were suppressed following treatment with midazolam in a dose-dependent manner. In addition, BSO and H2O2 induced ROS generation in neuronal cells; however, this was effectively suppressed by midazolam (100 µM). Beneficial synergistic effects were detected when midazolam was used in combination with the known antioxidant trolox. BSO and H2O2 also suppressed the protein expression levels of c-Jun N-terminal kinases (JNK), phosphorylated (p)JNK, extracellular signal-regulated kinases (ERK)1/2, pERK1/2, AKT and nuclear factor-κB; however, expression was recovered following treatment with midazolam. Midazolam also activated protein kinase C-ε, which was suppressed by BSO, in cortical neuronal cells. In MCAO mice, midazolam post-conditioning significantly suppressed infarct size and reduced the number of TUNEL-positive cells. In addition, the expression levels of caspase-3 and poly (ADP-ribose) polymerase were suppressed in a dose-dependent manner. In neonatal mice, midazolam reduced ethanol-induced activated caspase-3 staining and apoptotic TUNEL staining. The results of the present study demonstrated that midazolam may protect against neuronal degeneration and neuroapoptosis induced by physiological and oxidative stress.
Collapse
Affiliation(s)
- Jing-Yu Liu
- Department of Anesthesiology, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Feng Guo
- Department of Anesthesiology, Dongying District People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Hong-Ling Wu
- Department of Anesthesiology, Kenli People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Ying Wang
- Department of Anesthesiology, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Jin-Shan Liu
- Department of Anesthesiology, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| |
Collapse
|
21
|
Adjunct analgesic drugs to local anaesthetics for neuroaxial blocks in children. Curr Opin Anaesthesiol 2016; 29:626-31. [DOI: 10.1097/aco.0000000000000372] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Prenatal ketamine exposure causes abnormal development of prefrontal cortex in rat. Sci Rep 2016; 6:26865. [PMID: 27226073 PMCID: PMC4881038 DOI: 10.1038/srep26865] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 05/09/2016] [Indexed: 01/25/2023] Open
Abstract
Ketamine is commonly used for anesthesia and as a recreational drug. In pregnant users, a potential neurotoxicity in offspring has been noted. Our previous work demonstrated that ketamine exposure of pregnant rats induces affective disorders and cognitive impairments in offspring. As the prefrontal cortex (PFC) is critically involved in emotional and cognitive processes, here we studied whether maternal ketamine exposure influences the development of the PFC in offspring. Pregnant rats on gestational day 14 were treated with ketamine at a sedative dose for 2 hrs, and pups were studied at postnatal day 0 (P0) or P30. We found that maternal ketamine exposure resulted in cell apoptosis and neuronal loss in fetal brain. Upon ketamine exposure in utero, PFC neurons at P30 showed more dendritic branching, while cultured neurons from P0 PFC extended shorter neurites than controls. In addition, maternal ketamine exposure postponed the switch of NR2B/2A expression, and perturbed pre- and postsynaptic protein expression in the PFC. These data suggest that prenatal ketamine exposure impairs neuronal development of the PFC, which may be associated with abnormal behavior in offsprings.
Collapse
|
23
|
Dexmedetomidine Attenuates Neurotoxicity Induced by Prenatal Propofol Exposure. J Neurosurg Anesthesiol 2016; 28:51-64. [DOI: 10.1097/ana.0000000000000181] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
24
|
Surgical injury in the neonatal rat alters the adult pattern of descending modulation from the rostroventral medulla. Anesthesiology 2015; 122:1391-400. [PMID: 25871742 DOI: 10.1097/aln.0000000000000658] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Neonatal pain and injury can alter long-term sensory thresholds. Descending rostroventral medulla (RVM) pathways can inhibit or facilitate spinal nociceptive processing in adulthood. As these pathways undergo significant postnatal maturation, the authors evaluated long-term effects of neonatal surgical injury on RVM descending modulation. METHODS Plantar hind paw or forepaw incisions were performed in anesthetized postnatal day (P)3 Sprague-Dawley rats. Controls received anesthesia only. Hind limb mechanical and thermal withdrawal thresholds were measured to 6 weeks of age (adult). Additional groups received pre- and post-incision sciatic nerve levobupivacaine or saline. Hind paw nociceptive reflex sensitivity was quantified in anesthetized adult rats using biceps femoris electromyography, and the effect of RVM electrical stimulation (5-200 μA) measured as percentage change from baseline. RESULTS In adult rats with previous neonatal incision (n = 9), all intensities of RVM stimulation decreased hind limb reflex sensitivity, in contrast to the typical bimodal pattern of facilitation and inhibition with increasing RVM stimulus intensity in controls (n = 5) (uninjured vs. neonatally incised, P < 0.001). Neonatal incision of the contralateral hind paw or forepaw also resulted in RVM inhibition of hind paw nociceptive reflexes at all stimulation intensities. Behavioral mechanical threshold (mean ± SEM, 28.1 ± 8 vs. 21.3 ± 1.2 g, P < 0.001) and thermal latency (7.1 ± 0.4 vs. 5.3 ± 0.3 s, P < 0.05) were increased in both hind paws after unilateral neonatal incision. Neonatal perioperative sciatic nerve blockade prevented injury-induced alterations in RVM descending control. CONCLUSIONS Neonatal surgical injury alters the postnatal development of RVM descending control, resulting in a predominance of descending inhibition and generalized reduction in baseline reflex sensitivity. Prevention by local anesthetic blockade highlights the importance of neonatal perioperative analgesia.
Collapse
|
25
|
Yaksh TL, Woller SA, Ramachandran R, Sorkin LS. The search for novel analgesics: targets and mechanisms. F1000PRIME REPORTS 2015; 7:56. [PMID: 26097729 PMCID: PMC4447049 DOI: 10.12703/p7-56] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The management of the pain state is of great therapeutic relevance to virtually every medical specialty. Failure to manage its expression has deleterious consequence to the well-being of the organism. An understanding of the complex biology of the mechanisms underlying the processing of nociceptive information provides an important pathway towards development of novel and robust therapeutics. Importantly, preclinical models have been of considerable use in determining the linkage between mechanism and the associated behaviorally defined pain state. This review seeks to provide an overview of current thinking targeting pain biology, the use of preclinical models and the development of novel pain therapeutics. Issues pertinent to the strengths and weaknesses of current development strategies for analgesics are considered.
Collapse
|
26
|
Eizaga Rebollar R, García Palacios MV, Morales Guerrero J, Torres Morera LM. [Central blockades in Pediatrics: A review of current literature]. ACTA ACUST UNITED AC 2015; 63:91-100. [PMID: 25866132 DOI: 10.1016/j.redar.2015.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/28/2015] [Accepted: 03/02/2015] [Indexed: 10/23/2022]
Abstract
Pediatric neuraxial anesthesia is an effective tool that can be used as a supplement or alternative to general anesthesia. However, there have always been doubts about its usefulness and risk-benefit ratio. The purpose of this review is to describe the current role of central blockades in pediatric patients, upgrade practical and safety aspects, and review the latest technological advances applied to this procedure.
Collapse
Affiliation(s)
- R Eizaga Rebollar
- Servicio de Anestesiología, Reanimación y Terapéutica del Dolor, Hospital Universitario Puerta del Mar, Cádiz, España.
| | - M V García Palacios
- Servicio de Medicina Preventiva y Salud Pública, Hospital Universitario Puerta del Mar, Cádiz, España
| | - J Morales Guerrero
- Servicio de Anestesiología, Reanimación y Terapéutica del Dolor, Hospital Universitario Puerta del Mar, Cádiz, España
| | - L M Torres Morera
- Servicio de Anestesiología, Reanimación y Terapéutica del Dolor, Hospital Universitario Puerta del Mar, Cádiz, España
| |
Collapse
|
27
|
Lönnqvist PA. Adjuncts should always be used in pediatric regional anesthesia. Paediatr Anaesth 2015; 25:100-6. [PMID: 25230242 DOI: 10.1111/pan.12526] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/15/2014] [Indexed: 02/03/2023]
Abstract
A number of different adjuncts to local anesthetics can be used to prolong and optimize postoperative pain relief following regional anesthesia in children. The present text provides a slightly opinionated but evidence-based argument in favor of this practice.
Collapse
Affiliation(s)
- Per-Arne Lönnqvist
- Paediatric Anaesthesia & Intensive Care, Section of Anaesthesiology & Intensive Care, Department of Physiology & Pharmacology, Karolinska Institutet, Stockholm, Sweden; Paediatric Anaesthesia, Inetsive Care & ECMO Services, Astrid Lindgrens Children's Hospital/Karolinska University Hospital-Solna, Stockholm, Sweden
| |
Collapse
|
28
|
Ozturk AM, Ergun MA, Demir T, Gungor I, Yilmaz A, Kaya K. Ketamine is toxic to chondrocyte cell cultures. Bone Joint J 2014; 96-B:989-94. [DOI: 10.1302/0301-620x.96b7.33005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Ketamine has been used in combination with a variety of other agents for intra-articular analgesia, with promising results. However, although it has been shown to be toxic to various types of cell, there is no available information on the effects of ketamine on chondrocytes. We conducted a prospective randomised controlled study to evaluate the effects of ketamine on cultured chondrocytes isolated from rat articular cartilage. The cultured cells were treated with 0.125 mM, 0.250 mM, 0.5 mM, 1 mM and 2 mM of ketamine respectively for 6 h, 24 hours and 48 hours, and compared with controls. Changes of apoptosis were evaluated using fluorescence microscopy with a 490 nm excitation wavelength. Apoptosis and eventual necrosis were seen at each concentration. The percentage viability of the cells was inversely proportional to both the duration and dose of treatment (p = 0.002 and p = 0.009). Doses of 0.5 mM, 1 mM and 2mM were absolutely toxic. We concluded that in the absence of solid data to support the efficacy of intra-articular ketamine for the control of pain, and the toxic effects of ketamine on cultured chondrocytes shown by this study, intra-articular ketamine, either alone or in combination with other agents, should not be used to control pain. Cite this article: Bone Joint J 2014; 96-B:989–94.
Collapse
Affiliation(s)
- A. M. Ozturk
- Gazi Hospital, Gazi
University, Faculty of Medicine, Department
of Orthopaedics and Traumatology, 06200 Ankara, Turkey
| | - M. A. Ergun
- Gazi University , Faculty
of Medicine, Department of Medical Genetics, 06200
Ankara, Turkey
| | - T. Demir
- Bahcesehir University, Faculty
of Medicine, Department of Orthopaedics and
Traumatology, Istanbul, Turkey
| | - I. Gungor
- Gazi University , Faculty
of Medicine, Department of Anaesthesiology
and Reanimation, 06200 Ankara, Turkey
| | - A. Yilmaz
- Mehmet Akif Ersoy University, Faculty
of Engineering and Architecture, Department
of Bioengineering, Burdur, Turkey
| | - K. Kaya
- Gazi University , Faculty
of Medicine, Department of Anaesthesiology
and Reanimation, 06200 Ankara, Turkey
| |
Collapse
|
29
|
Abstract
SUMMARY Local anesthetics have a limited duration of action. Adjuvants are used to prolong the duration of action and to augment analgesia allowing lower concentrations of local anesthetic to be used. Adjuvants have been used more extensively with neuraxial blocks, particularly caudal epidural blocks, but more recently to supplement peripheral nerve blocks. Intrathecal adjuvants are not covered in this review since spinal anesthesia is not widely used in children except in ex-premature infants. Morphine is the historical gold-standard with which other adjuvants are compared. Clonidine is most useful and is becoming increasingly popular, while the side-effect profile of other agents reduces their utility. Concerns with regard to the neurotoxicity of ketamine in animal models has led to its withdrawal in some countries.
Collapse
Affiliation(s)
- Adrian Bosenberg
- Department of Anesthesiology & Pain Management, Faculty of Health Sciences, University of Washington, Seattle, USA and Seattle Children's Hospital, 4800 Sandpoint Way NE, Seattle, WA 98105, USA.
| |
Collapse
|
30
|
Lee JY, Sim WS, Kim KM, Oh MS, Lee JE. The effect of ketamine as an additive in epidural block on the intractable herpetic neuralgia: a case report. Korean J Anesthesiol 2014; 66:64-6. [PMID: 24567816 PMCID: PMC3927004 DOI: 10.4097/kjae.2014.66.1.64] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 11/28/2012] [Accepted: 12/10/2012] [Indexed: 11/10/2022] Open
Abstract
Ketamine has been shown to have analgesic effect by blocking N-methyl-D-aspartate receptor, thus preventing and reducing central sensitization caused by peripheral nociceptive stimulation. However, due to lack of knowledge about its safety and toxicity in the central nervous system, either epidural or intrathecal injection of ketamine still remains controversial. Here, we describe a case report of satisfactory pain relief after the addition of ketamine in epidural injection in a patient with severe herpes zoster pain that was refractory to conventional medication, intravenous opioids and continuous epidural block. This case indicates the viability of epidural ketamine injection in patients with intractable herpetic neuralgia.
Collapse
Affiliation(s)
- Jin Young Lee
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woo Seog Sim
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung Mi Kim
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Min Seok Oh
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji Eun Lee
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
31
|
Abstract
Effective management of procedural and postoperative pain in neonates is required to minimize acute physiological and behavioral distress and may also improve acute and long-term outcomes. Painful stimuli activate nociceptive pathways, from the periphery to the cortex, in neonates and behavioral responses form the basis for validated pain assessment tools. However, there is an increasing awareness of the need to not only reduce acute behavioral responses to pain in neonates, but also to protect the developing nervous system from persistent sensitization of pain pathways and potential damaging effects of altered neural activity on central nervous system development. Analgesic requirements are influenced by age-related changes in both pharmacokinetic and pharmacodynamic response, and increasing data are available to guide safe and effective dosing with opioids and paracetamol. Regional analgesic techniques provide effective perioperative analgesia, but higher complication rates in neonates emphasize the importance of monitoring and choice of the most appropriate drug and dose. There have been significant improvements in the understanding and management of neonatal pain, but additional research evidence will further reduce the need to extrapolate data from older age groups. Translation into improved clinical care will continue to depend on an integrated approach to implementation that encompasses assessment and titration against individual response, education and training, and audit and feedback.
Collapse
Affiliation(s)
- Suellen M Walker
- Correspondence Suellen Walker, Portex Unit: Pain Research; 6th Floor Cardiac Wing, UCL Institute of Child Health, 30 Guilford St, London WC1N 1EH, UK,
| |
Collapse
|
32
|
Abstract
Even after a vast safety record, the role of spinal anesthesia (SA) as a primary anesthetic technique in children remains contentious and is mainly limited to specialized pediatric centers. It is usually practiced on moribund former preterm infants (<60 weeks post-conception) to reduce the incidence of post-operative apnea when compared to general anesthesia (GA). However, there is ample literature to suggest its safety and efficacy for suitable procedures in older children as well. SA in children has many advantages as in adults with an added advantage of minimal cardio-respiratory disturbance. Recently, several reports from animal studies have raised serious concerns regarding the harmful effects of GA on young developing brain. This may further increase the utility of SA in children as it provides all components of balanced anesthesia technique. Also, SA can be an economical option for countries with finite resources. Limited duration of surgical anesthesia in children is one of the major deterrents for its widespread use in them. To overcome this, several additives like epinephrine, clonidine, fentanyl, morphine, neostigmine etc. have been used and found to be effective even in neonates. But, the developing spinal cord may also be vulnerable to drug-related toxicity, though this has not been systematically evaluated in children. So, adjuvants and drugs with widest therapeutic index should be preferred in children. Despite its widespread use, incidence of side-effects is low and permanent neurological sequalae have not been reported with SA. Literature yields encouraging results regarding its safety and efficacy. Technical skills and constant vigilance of experienced anesthesia providers is indispensable to achieve good results with this technique.
Collapse
Affiliation(s)
- Anju Gupta
- Department of Anesthesiology and Intensive Care, Delhi State Cancer Hospital, Dilshad Garden, New Delhi, India
| | - Usha Saha
- LHMC and Associated Hospitals, New Delhi, India
| |
Collapse
|
33
|
Evaluation of spinal toxicity and long-term spinal reflex function after intrathecal levobupivaciane in the neonatal rat. Anesthesiology 2013; 119:142-55. [PMID: 23514721 DOI: 10.1097/aln.0b013e31828fc7e7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neuraxial anesthesia is utilized in children of all ages. Local anesthetics produce dose-dependent toxicity in certain adult models, but the developing spinal cord may also be susceptible to drug-induced apoptosis. In postnatal rodents, we examined the effects of intrathecal levobupivacaine on neuropathology and long-term sensorimotor outcomes. METHODS Postnatal day 3 (P3) or P7 rat pups received intrathecal levobupivacaine 2.5 mg/kg (0.5%) or saline. Mechanical withdrawal thresholds and motor block were assessed. Spinal cord tissue analysis included apoptosis counts (activated caspase-3, Fluoro-Jade C) at 24 h, glial reactivity at 7 days, and histopathology in cord and cauda equina at 24 h and 7 days. Long-term spinal function in young adults (P35) was assessed by hind limb withdrawal thresholds, electromyography responses to suprathreshold stimuli, and gait analysis. RESULTS Intrathecal levobupivacaine produced spinal anesthesia at P3 and P7. No increase in apoptosis or histopathological change was seen in the cord or cauda equina. In the P3 saline group, activated caspase-3 (mean±SEM per lumbar cord section 6.1±0.3) and Fluoro-Jade C (12.1±1.2) counts were higher than at P7, but were not altered by levobupivacaine (P=0.62 and P=0.11, two-tailed Mann-Whitney test). At P35, mechanical withdrawal thresholds, thermal withdrawal latency, and electromyographic reflex responses did not differ across P3 or P7 levobupivacaine or saline groups (one way ANOVA with Bonferroni comparisons). Intrathecal bupivacaine at P3 did not alter gait. CONCLUSION Single dose intrathecal levobupivacaine 0.5% did not increase apoptosis or produce spinal toxicity in neonatal rat pups. This study provides preclinical safety data relevant to neonatal use of neuraxial local anesthesia.
Collapse
|
34
|
Mion G, Marchetti F, Samama CM. [Compassionate use of intrathecal ketamine for intractable cancer pain]. ANNALES FRANCAISES D'ANESTHESIE ET DE REANIMATION 2013; 32:621-622. [PMID: 23850219 DOI: 10.1016/j.annfar.2013.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 06/03/2013] [Indexed: 06/02/2023]
Affiliation(s)
- G Mion
- Service d'anesthésie, hôpital Cochin, 27, rue du Faubourg-Saint-Jacques, 75679 Paris cedex 14, France.
| | | | | |
Collapse
|
35
|
|
36
|
Sanders RD, Hassell J, Davidson AJ, Robertson NJ, Ma D. Impact of anaesthetics and surgery on neurodevelopment: an update. Br J Anaesth 2013; 110 Suppl 1:i53-72. [PMID: 23542078 DOI: 10.1093/bja/aet054] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Accumulating preclinical and clinical evidence suggests the possibility of neurotoxicity from neonatal exposure to general anaesthetics. Here, we review the weight of the evidence from both human and animal studies and discuss the putative mechanisms of injury and options for protective strategies. Our review identified 55 rodent studies, seven primate studies, and nine clinical studies of interest. While the preclinical data consistently demonstrate robust apoptosis in the nervous system after anaesthetic exposure, only a few studies have performed cognitive follow-up. Nonetheless, the emerging evidence that the primate brain is vulnerable to anaesthetic-induced apoptosis is of concern. The impact of surgery on anaesthetic-induced brain injury has not been adequately addressed yet. The clinical data, comprising largely retrospective cohort database analyses, are inconclusive, in part due to confounding variables inherent in these observational epidemiological approaches. This places even greater emphasis on prospective approaches to this problem, such as the ongoing GAS trial and PANDA study.
Collapse
Affiliation(s)
- R D Sanders
- Wellcome Department of Imaging Neuroscience, Institute for Women's Health, University College London, London, UK.
| | | | | | | | | |
Collapse
|
37
|
Marland S, Ellerton J, Andolfatto G, Strapazzon G, Thomassen O, Brandner B, Weatherall A, Paal P. Ketamine: use in anesthesia. CNS Neurosci Ther 2013; 19:381-9. [PMID: 23521979 DOI: 10.1111/cns.12072] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/07/2013] [Accepted: 01/07/2013] [Indexed: 12/23/2022] Open
Abstract
The role of ketamine anesthesia in the prehospital, emergency department and operating theater settings is not well defined. A nonsystematic review of ketamine was performed by authors from Australia, Europe, and North America. Results were discussed among authors and the final manuscript accepted. Ketamine is a useful agent for induction of anesthesia, procedural sedation, and analgesia. Its properties are appealing in many awkward clinical scenarios. Practitioners need to be cognizant of its side effects and limitations.
Collapse
|
38
|
Jin J, Gong K, Zou X, Wang R, Lin Q, Chen J. The blockade of NMDA receptor ion channels by ketamine is enhanced in developing rat cortical neurons. Neurosci Lett 2013; 539:11-5. [PMID: 23395831 DOI: 10.1016/j.neulet.2013.01.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 12/03/2012] [Accepted: 01/18/2013] [Indexed: 10/27/2022]
Abstract
Ketamine is a non-competitive antagonist of NMDA receptors (NMDARs) commonly used as a dissociative anesthetic in many pediatric procedures. Ketamine acts primarily by blocking NMDA ligand-gated channels. Experimental studies indicate that ketamine administration used for inducing clinically relevant anesthesia can lead to neurotoxic effects, such as apoptosis, selectively on immature brain neurons. However, the underlying mechanisms remain unclear. This study used whole-cell patch-clamp recordings in an in vitro preparation of forebrain slices to analyze pharmacologically the differences in the effects of ketamine administration on the NMDAR channel activity between immature and mature neurons. NMDAR channel activity was recorded in the form of evoked NMDAR-mediated excitatory postsynaptic currents (eEPSCs) from the forebrain of both neonatal and adult rats. Results show that ketamine inhibited eEPSCs in a dose-dependent manner in both immature and mature neurons. However, at each concentration of ketamine applied to the brain slice, a more extensive inhibition could be seen in neonatal neurons than in adult neurons. Further, the blocking effect of ketamine on eEPSCs was measured during the period of 1, 3, and 6h after ketamine washout. Inhibition of eEPSCs in immature neurons was still evident 6h after washout. In contrast, the blockade of eEPSCs in mature neurons recovered completely from the inhibition by ketamine in a time-dependent manner. These results indicate that ketamine produces a greater and longer blocking effect on NMDAR channels in immature neurons than in mature neurons. This differential effect is likely to be a critical link to the higher vulnerability to ketamine-induced neurotoxicity in neurons of the developing brain.
Collapse
Affiliation(s)
- Jianhui Jin
- Institute for Biomedical Sciences of Pain, Capital Medical University, Beijing, China
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
OBJECTIVE High doses or prolonged exposure to ketamine increase neuronal apoptosis in the developing brain, although effects on neural stem progenitor cells remain unexplored. This study investigated dose- and time-dependent responses to ketamine on cell death and neurogenesis in cultured rat fetal cortical neural stem progenitor cells. DESIGN Laboratory-based study. SETTING University research laboratory. SUBJECT Sprague-Dawley rats. INTERVENTIONS Neural stem progenitor cells were isolated from the cortex of Sprague-Dawley rat fetuses on embryonic day 17. In dose-response experiments, cultured neural stem progenitor cells were exposed to different concentrations of ketamine (0-100 µM) for 24 hrs. In time-course experiments, neural stem progenitor cells cultures were exposed to 10 µM ketamine for different durations (0-48 hrs). MEASUREMENTS AND MAIN RESULTS Apoptosis and necrosis in neural stem progenitor cells were assessed using activated caspase-3 immunostaining and lactate dehydrogenase assays, respectively. Proliferative changes in neural stem progenitor cells were detected using bromo-deoxyuridine incorporation and Ki67 immunostaining. Neuronal differentiation was assessed using Tuj-1 immunostaining. Cultured neural stem progenitor cells were resistant to apoptosis and necrosis following all concentrations and durations of ketamine exposure tested. Ketamine inhibited proliferation with decreased numbers of bromo-deoxyuridine-positive cells following ketamine exposure to 100 µM for 24 hrs (p<.005) or 10 µM for 48 hrs (p< .01), and reduced numbers of Ki67-positive cells following exposure to ketamine concentration>10 µM for 24 hrs (p<.001) or at 10 µM for 48 hrs (p<.01). Ketamine enhanced neuronal differentiation, with all ketamine concentrations increasing Tuj-1-positive neurons (p<.001) after 24-hrs of exposure. This also occurred with all exposures to 10 µM ketamine for >8 hrs (p<.001). CONCLUSIONS Clinically relevant concentrations of ketamine do not induce cell death in neural stem progenitor cells via apoptosis or necrosis. Ketamine alters the proliferation and increases the neuronal differentiation of neural stem progenitor cells isolated from the rat neocortex. These studies imply that ketamine exposure during fetal or neonatal life may alter neurogenesis and subsequent brain development.
Collapse
|
40
|
Lönnqvist PA, Walker SM. Ketamine as an adjunct to caudal block in neonates and infants: is it time to re-evaluate? Br J Anaesth 2012; 109:138-40. [PMID: 22782976 DOI: 10.1093/bja/aes228] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
41
|
Knaepen L, Patijn J, van Kleef M, Mulder M, Tibboel D, Joosten EAJ. Neonatal repetitive needle pricking: plasticity of the spinal nociceptive circuit and extended postoperative pain in later life. Dev Neurobiol 2012; 73:85-97. [PMID: 22821778 DOI: 10.1002/dneu.22047] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/11/2012] [Accepted: 07/12/2012] [Indexed: 12/21/2022]
Abstract
Repetitive exposure of neonates to noxious events is inherent to their health status monitoring in neonatal intensive care units (NICU). Altered basal nociception in the absence of an injury in later life has been demonstrated in ex-NICU children, but the impact on pain hypersensitivity following an injury in later life is unknown. Also, underlying mechanisms for such long-term changes are relatively unknown. The objective of this study is to investigate acute and long-term effects of neonatal repetitive painful skin-breaking procedures on nociception and to investigate plasticity of the nociceptive circuit. The repetitive needle prick animal model was used in which neonatal rats received four needle pricks into the left hind paw per day during the first postnatal week and control animals received nonpainful tactile stimuli. Repetitive needle pricking during the first week of life induced acute hypersensitivity to mechanical stimuli. At the age of 8 weeks, increased duration of postoperative hypersensitivity to mechanical stimuli after ipsilateral hind paw incision was shown in needle prick animals. Basal nociception from 3 to 8 weeks of age was unaffected by neonatal repetitive needle pricking. Increased calcitonin gene-related peptide expression was observed in the ipsilateral and contralateral lumbar spinal cord but not in the hind paw of needle prick animals at the age of 8 weeks. Innervation of tactile Aβ-fibers in the spinal cord was not affected. Our results indicate both acute and long-term effects of repetitive neonatal skin breaking procedures on nociception and long-term plasticity of spinal but not peripheral innervation of nociceptive afferents.
Collapse
Affiliation(s)
- Liesbeth Knaepen
- Department of Anesthesiology, Pain Management and Research Center, Maastricht University Medical Center, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
42
|
ENGELMAN E, MARSALA C. Bayesian enhanced meta-analysis of post-operative analgesic efficacy of additives for caudal analgesia in children. Acta Anaesthesiol Scand 2012; 56:817-32. [PMID: 22313028 DOI: 10.1111/j.1399-6576.2012.02651.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2011] [Indexed: 12/20/2022]
Abstract
BACKGROUND The authors calculated the effect size for post-operative analgesia of three additives, clonidine, neostigmine, and tramadol to bupivacaine, ropivacaine, or levobupivacaine used for single-dose caudal extradural blockade in children. METHODS A meta-analysis was performed for three end points of efficacy: the increase of time until administration of analgesic drugs, the proportion of patients requiring analgesic drugs during the initial 24 post-operative hours, and the amounts of post-operative analgesic drugs. A Bayesian inference supporting direct statements about the probability of the magnitude of an effect was used to compare the effects size. RESULTS Neostigmine increased the duration of analgesia by 9.96 h (95% confidence interval: 7.75 to 12.16), as compared with 3.68 h (2.65 to 4.7) with clonidine and 4.45 (2.84 to 6.07) with tramadol. There is a 95% probability that neostigmine increases the duration of post-operative analgesia by more than 8 h, clonidine by more than 2.8 h, and tramadol by more than 3.25 h, as compared with local anesthetics alone. The odds ratios for the proportion of patients requiring analgesic drugs were 0.22 [0.13 to 0.37] for clonidine and 0.28 [0.10 to 0.75] for neostigmine. With tramadol, there was no statistically significant difference. All three additives reduced the amounts of post-operative analgesic drugs. Neostigmine and tramadol increase the probability for post-operative nausea or vomiting (PONV). CONCLUSIONS Neostigmine provides the longest post-operative analgesia. With clonidine, the duration of analgesia is shorter and sedation is increased, but the probability for PONV could be decreased.
Collapse
Affiliation(s)
- E. ENGELMAN
- Department of Anaesthesia; CUB Hopital Erasme; Brussels; Belgium
| | - C. MARSALA
- Department of Anaesthesia; CUB Hopital Erasme; Brussels; Belgium
| |
Collapse
|
43
|
Walker SM, Yaksh TL. Neuraxial analgesia in neonates and infants: a review of clinical and preclinical strategies for the development of safety and efficacy data. Anesth Analg 2012; 115:638-62. [PMID: 22798528 DOI: 10.1213/ane.0b013e31826253f2] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neuraxial drugs provide robust pain control, have the potential to improve outcomes, and are an important component of the perioperative care of children. Opioids or clonidine improves analgesia when added to perioperative epidural infusions; analgesia is significantly prolonged by the addition of clonidine, ketamine, neostigmine, or tramadol to single-shot caudal injections of local anesthetic; and neonatal intrathecal anesthesia/analgesia is increasing in some centers. However, it is difficult to determine the relative risk-benefit of different techniques and drugs without detailed and sensitive data related to analgesia requirements, side effects, and follow-up. Current data related to benefits and complications in neonates and infants are summarized, but variability in current neuraxial drug use reflects the relative lack of high-quality evidence. Recent preclinical reports of adverse effects of general anesthetics on the developing brain have increased awareness of the potential benefit of neuraxial anesthesia/analgesia to avoid or reduce general anesthetic dose requirements. However, the developing spinal cord is also vulnerable to drug-related toxicity, and although there are well-established preclinical models and criteria for assessing spinal cord toxicity in adult animals, until recently there had been no systematic evaluation during early life. Therefore, in the second half of this review, we present preclinical data evaluating age-dependent changes in the pharmacodynamic response to different spinal analgesics, and recent studies evaluating spinal toxicity in specific developmental models. Finally, we advocate use of neuraxial drugs with the widest demonstrable safety margin and suggest minimum standards for preclinical evaluation before adoption of new analgesics or preparations into routine clinical practice.
Collapse
Affiliation(s)
- Suellen M Walker
- Portex Unit: Pain Research, UCL Institute of Child Health and Great Ormond Street Hospital NHS Trust, London, UK.
| | | |
Collapse
|
44
|
Deer TR, Prager J, Levy R, Rathmell J, Buchser E, Burton A, Caraway D, Cousins M, De Andrés J, Diwan S, Erdek M, Grigsby E, Huntoon M, Jacobs MS, Kim P, Kumar K, Leong M, Liem L, McDowell GC, Panchal S, Rauck R, Saulino M, Sitzman BT, Staats P, Stanton-Hicks M, Stearns L, Wallace M, Willis KD, Witt W, Yaksh T, Mekhail N. Polyanalgesic Consensus Conference 2012: recommendations for the management of pain by intrathecal (intraspinal) drug delivery: report of an interdisciplinary expert panel. Neuromodulation 2012; 15:436-64; discussion 464-6. [PMID: 22748024 DOI: 10.1111/j.1525-1403.2012.00476.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The use of intrathecal (IT) infusion of analgesic medications to treat patients with chronic refractory pain has increased since its inception in the 1980s, and the need for clinical research in IT therapy is ongoing. The Polyanalgesic Consensus Conference (PACC) panel of experts convened in 2000, 2003, and 2007 to make recommendations on the rational use of IT analgesics based on preclinical and clinical literature and clinical experiences. METHODS The PACC panel convened again in 2011 to update the standard of care for IT therapies to reflect current knowledge gleaned from literature and clinical experience. A thorough literature search was performed, and information from this search was provided to panel members. Analysis of published literature was coupled with the clinical experience of panel members to form recommendations regarding the use of IT analgesics to treat chronic pain. RESULTS After a review of literature published from 2007 to 2011 and discussions of clinical experience, the panel created updated algorithms for the rational use of IT medications for the treatment of neuropathic pain and nociceptive pain. CONCLUSIONS The advent of new algorithmic tracks for neuropathic and nociceptive pain is an important step in improving patient care. The panel encourages continued research and development, including the development of new drugs, devices, and safety recommendations to improve the care of patients with chronic pain.
Collapse
|
45
|
Walker SM, Grafe M, Yaksh TL. Intrathecal clonidine in the neonatal rat: dose-dependent analgesia and evaluation of spinal apoptosis and toxicity. Anesth Analg 2012; 115:450-60. [PMID: 22467896 DOI: 10.1213/ane.0b013e3182501a09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Neuraxial clonidine is used for perioperative analgesia in children of all ages. Preclinical studies in the postnatal rat allow comparison of the relative toxicity and safety of spinal analgesics throughout postnatal development. METHODS Rat pups aged 3, 7, or 21 postnatal (P) days were briefly anesthetized for intrathecal injections of saline or clonidine. At each age, the maximum tolerated, antinociceptive (increased hindlimb mechanical withdrawal threshold) and antihyperalgesic (hindpaw carrageenan inflammation) doses were determined. Lumbar spinal cord sections were assessed for apoptosis and cell death (histology, activated caspase-3 immunohistochemistry, Fluoro-Jade C staining), histopathology (hematoxylin and eosin staining), and increased glial reactivity (microglial and astrocytic markers). P3 intrathecal ketamine sections served as positive controls. In additional groups, thermal latency and mechanical withdrawal threshold were measured at P35. RESULTS Intrathecal clonidine produces age- and dose-dependent analgesia in rat pups. Maximal doses of clonidine did not alter the degree or distribution of apoptosis or increase glial reactivity in the neonatal spinal cord. No spinal histopathology was seen 1 or 7 days after injection at any age. Intrathecal clonidine did not produce persistent changes in reflex sensitivity to mechanical or thermal stimuli at P35. CONCLUSIONS Intrathecal clonidine in the postnatal rat did not produce signs of spinal cord toxicity, even at doses much larger than required for analgesia. The therapeutic ratio (maximum tolerated dose/antihyperalgesic dose) was >300 at P3, >30 at P7, and >10 at P21. These data provide additional information to inform the clinical choice of spinal analgesic drug in early life.
Collapse
Affiliation(s)
- Suellen M Walker
- Portex Unit: Pain Research, UCL Institute of Child Health and Great Ormond St. Hospital NHS Trust, 30 Guilford St., London WC1N 1EH, United Kingdom.
| | | | | |
Collapse
|
46
|
Schnabel A, Poepping DM, Pogatzki-Zahn EM, Zahn PK. Efficacy and safety of clonidine as additive for caudal regional anesthesia: a quantitative systematic review of randomized controlled trials. Paediatr Anaesth 2011; 21:1219-30. [PMID: 22023418 DOI: 10.1111/j.1460-9592.2011.03715.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Clonidine is still the most popular additive for caudal regional anesthesia. Aim of the present quantitative systematic review was to assess the efficacy and safety of the combined use of clonidine and local anesthetics in comparison with caudal local anesthetics alone. METHODS The systematic search, data extraction, critical appraisal and pooled analysis were performed according to the PRISMA statement. The systematic search included the Central register of controlled trials of the Cochrane Library (to present), MEDLINE (1966 to present), EMBASE (1980 to present) and CINAHL (1981 to present). Relative risk (RR), mean difference (MD) and the corresponding 95% confidence intervals (CI) were calculated using the Revman(®) statistical software for dichotomous and continuous outcomes. RESULTS Twenty randomized controlled trials (published between 1994 and 2010) including 993 patients met the inclusion criteria. There was a longer duration of postoperative analgesia in children receiving clonidine in addition to local anesthetic (MD: 3.98 h; 95% CI: 2.84-5.13; P < 0.00001). Furthermore, there was a lower number of patients requiring rescue analgesics in the clonidine group (RR: 0.72; 95% CI: 0.57-0.90; P = 0.003). The incidence of complications (e.g., respiratory depression) remained very low and was not different to caudal local anesthetics alone. CONCLUSIONS There is considerable evidence that caudally administered clonidine in addition to local anesthetics provides extended duration of analgesia with a decreased incidence for analgesic rescue requirement and little adverse effects compared to caudal local anesthetics alone.
Collapse
Affiliation(s)
- Alexander Schnabel
- Department of Anaesthesiology and Intensive Care, University Hospital of Muenster, Münster, Germany.
| | | | | | | |
Collapse
|
47
|
Hallett BR, Chalkiadis GA. Suspected opioid-induced hyperalgesia in an infant. Br J Anaesth 2011; 108:116-8. [PMID: 22021900 DOI: 10.1093/bja/aer332] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
One explanation for diminished opioid analgesic efficacy is opioid-induced hyperalgesia (OIH). We report a case of OIH in an infant with gastroschisis, requiring multiple surgical interventions and prolonged sedation for ventilation. This is the first report of OIH in an infant. On day 41 of life after nine separate surgical interventions, the patient's pain scores increased and remained elevated, despite increasing opioid administration. The patient also developed hyperalgesia, allodynia, and photophobia and became extremely irritable upon handling. Other possible causes were excluded, including interruption to opioid delivery, sepsis, acid-base and electrolyte disturbance, and ongoing surgical pathology. An opioid rotation to hydromorphone was initiated and ketamine was commenced. Sedation for ventilation was achieved with dexmedetomidine and midazolam infusions. Over a period of 24 h after opioid de-escalation, pain scores reduced rapidly and the patient became significantly less irritable with handling. All infusions were gradually weaned and eventually ceased.
Collapse
Affiliation(s)
- B R Hallett
- Department of Paediatric Anaesthesia and Pain Management, Royal Children's Hospital, Parkville, Victoria, Australia.
| | | |
Collapse
|
48
|
Schnabel A, Zahn PK, Pogatzki-Zahn EM. Use of ketamine in children - what are the next steps? Paediatr Anaesth 2011; 21:1080-1; author reply 1081-2. [PMID: 21981098 DOI: 10.1111/j.1460-9592.2011.03629.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Schnabel A, Poepping DM, Kranke P, Zahn PK, Pogatzki-Zahn EM. Efficacy and adverse effects of ketamine as an additive for paediatric caudal anaesthesia: a quantitative systematic review of randomized controlled trials. Br J Anaesth 2011; 107:601-11. [PMID: 21846679 DOI: 10.1093/bja/aer258] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The aim of this quantitative systematic review was to assess the efficacy and adverse effects of ketamine added to caudal local anaesthetics in comparison with local anaesthetics alone in children undergoing urological, lower abdominal, or lower limb surgery. METHODS The systematic search, data extraction, critical appraisal, and pooled data analysis were performed according to the PRISMA statement. All randomized controlled trials (RCTs) were included in this meta-analysis and relative risk (RR), mean difference (MD), and the corresponding 95% confidence intervals (CIs) were calculated using the Revman(®) statistical software for dichotomous and continuous outcomes. RESULTS Thirteen RCTs (published between 1991 and 2008) including 584 patients met the inclusion criteria. There was a significant longer time to first analgesic requirements in patients receiving ketamine in addition to a local anaesthetic compared with a local anaesthetic alone (MD: 5.60 h; 95% CI: 5.45-5.76; P<0.00001). There was a lower RR for the need of rescue analgesia in children receiving a caudal regional anaesthesia with ketamine in addition to local anaesthetics (RR: 0.71; 95% CI: 0.44-1.15; P=0.16). CONCLUSIONS Caudally administered ketamine, in addition to a local anaesthetic, provides prolonged postoperative analgesia with few adverse effects compared with local anaesthetics alone. There is a clear benefit of caudal ketamine, but the uncertainties about neurotoxicity relating to the dose of ketamine, single vs repeated doses and the child's age, still need to be clarified for use in clinical practice.
Collapse
Affiliation(s)
- A Schnabel
- Department of Anesthesiology and Intensive Care, University Hospital of Münster, Albert-Schweitzer-Str. 33, 48149 Münster, Germany
| | | | | | | | | |
Collapse
|
50
|
Abstract
Laboratory work has confirmed that general anesthetics cause increased neuronal apoptosis and changes to the morphology of dendritic spines in the developing brains of animals. It is an effect seen with most volatile anesthetics as well as with ketamine and propofol. The effects are dose dependent and seen over particular periods of early development. There is some evidence that rodents exposed to anesthesia during infancy have delayed neurobehavioral development. There are inherent limitations in translating the preclinical data to human practice but the data cannot be ignored. Some human clinical studies have found evidence for an association between major surgery and changes in neurobehavioral outcome, although the evidence is less clear for minor surgery. These associations are certainly at least partly because of factors apart from anesthesia, such as coexisting pathology or the effect of surgery itself. Other clinical studies have found no evidence for an association between surgery and outcome. These studies are also not without limitations. Thus it remains unclear what role anesthesia exposure in infancy actually plays in determining neurobehavioral outcome. To date studies can neither confirm that anesthesia plays a role nor rule it out.
Collapse
Affiliation(s)
- Andrew J Davidson
- Department of Anaesthesia, Royal Children's Hospital, Melbourne, Australia.
| |
Collapse
|