1
|
Yin Z, Leonard AK, Porto CM, Xie Z, Silveira S, Culley DJ, Butovsky O, Crosby G. Microglia in the aged brain develop a hypoactive molecular phenotype after surgery. J Neuroinflammation 2024; 21:323. [PMID: 39696348 DOI: 10.1186/s12974-024-03307-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Microglia, the resident immune cells of the brain, play a crucial role in maintaining homeostasis in the central nervous system (CNS). However, they can also contribute to neurodegeneration through their pro-inflammatory properties and phagocytic functions. Acute post-operative cognitive deficits have been associated with inflammation, and microglia have been implicated primarily based on morphological changes. We investigated the impact of surgery on the microglial transcriptome to test the hypothesis that surgery produces an age-dependent pro-inflammatory phenotype in these cells. METHODS Three-to-five and 20-to-22-month-old C57BL/6 mice were anesthetized with isoflurane for an abdominal laparotomy, followed by sacrifice either 6 or 48 h post-surgery. Age-matched controls were exposed to carrier gas. Cytokine concentrations in plasma and brain tissue were evaluated using enzyme-linked immunosorbent assays (ELISA). Iba1+ cell density and morphology were determined by immunohistochemistry. Microglia from both surgically treated mice and age-matched controls were isolated by a well-established fluorescence-activated cell sorting (FACS) protocol. The microglial transcriptome was then analyzed using quantitative polymerase chain reaction (qPCR) and RNA sequencing (RNAseq). RESULTS Surgery induced an elevation in plasma cytokines in both age groups. Notably, increased CCL2 was observed in the brain post-surgery, with a greater change in old compared to young mice. Age, rather than the surgical procedure, increased Iba1 immunoreactivity and the number of Iba1+ cells in the hippocampus. Both qPCR and RNAseq analysis demonstrated suppression of neuroinflammation at 6 h after surgery in microglia isolated from aged mice. A comparative analysis of differentially expressed genes (DEGs) with previously published neurodegenerative microglia phenotype (MGnD), also referred to disease-associated microglia (DAM), revealed that surgery upregulates genes typically downregulated in the context of neurodegenerative diseases. These surgery-induced changes resolved by 48 h post-surgery and only a few DEGs were detected at that time point, indicating that the hypoactive phenotype of microglia is transient. CONCLUSIONS While anesthesia and surgery induce pro-inflammatory changes in the plasma and brain of mice, microglia adopt a homeostatic molecular phenotype following surgery. This effect seems to be more pronounced in aged mice and is transient. These results challenge the prevailing assumption that surgery activates microglia in the aged brain.
Collapse
Affiliation(s)
- Zhuoran Yin
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Anna K Leonard
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Carl M Porto
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Zhongcong Xie
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | | | - Deborah J Culley
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Oleg Butovsky
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gregory Crosby
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Roy B, Thedim M, Liew C, Kumar R, Vacas S. Distinct brain and neurocognitive transformations after bariatric surgery: a pilot study. Front Neurosci 2024; 18:1454284. [PMID: 39564525 PMCID: PMC11573770 DOI: 10.3389/fnins.2024.1454284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/16/2024] [Indexed: 11/21/2024] Open
Abstract
Background Obese patients have worse outcomes after surgery and are at increased risk for perioperative neurocognitive disorders (PND). Our aim was to detail the cognitive trajectories of patients undergoing bariatric surgery (BS) and map distinct structural brain changes using magnetic resonance imaging (MRI) to better understand the association between the vulnerable brain, surgery, and the arc of PND. Methods Prospective pilot study with longitudinal comprehensive cognitive assessments and MRI were performed on obese patients scheduled for BS. We analyzed baseline cognitive function and high-resolution T1-/T2-weighted brain images on 19 obese patients [age, 54 (9) years, BMI, 40 (36, 42) kg m-2] and compared with 50 healthy control subjects [age, 52 (6) years; BMI, 25 (24, 27) kg m-2]. Patients were evaluated within five days of BS (baseline), immediately after (within 48h), and follow up at six months. Results At baseline, obese patients had significant brain tissue changes seen in MRI and decreased cognitive scores compared to controls (MoCA 26 vs 28, P = 0.017). Surgery induced further gray matter volume and brain tissue changes along with reduced cognitive scores within the immediate postoperative period (MoCA 26 vs 24, P < 0.001). At six months, we observed reversal of brain alterations for most patients and a concomitant rebound of cognitive scores to patient's baseline status. Conclusions Bariatric surgery resulted in worsening of preexisting brain structural integrity and lower cognitive function for obese patients compared to baseline. These distinct brain lesions are consistent with specific domains of cognition. Most of these changes reverted to patient's baseline condition within six months after surgery.
Collapse
Affiliation(s)
- Bhaswati Roy
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Mariana Thedim
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Chiewlin Liew
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rajesh Kumar
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Radiology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Susana Vacas
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Chu JMT, Chiu SPW, Wang J, Chang RCC, Wong GTC. Adiponectin deficiency is a critical factor contributing to cognitive dysfunction in obese mice after sevoflurane exposure. Mol Med 2024; 30:177. [PMID: 39415089 PMCID: PMC11481458 DOI: 10.1186/s10020-024-00954-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND The number of major operations performed in obese patients is expected to increase given the growing prevalence of obesity. Obesity is a risk factor for a range of postoperative complications including perioperative neurocognitive disorders. However, the mechanisms underlying this vulnerability are not well defined. We hypothesize that obese subjects are more vulnerable to general anaesthesia induced neurotoxicity due to reduced levels of adiponectin. This hypothesis was tested using a murine surgical model in obese and adiponectin knockout mice exposed to the volatile anaesthetic agent sevoflurane. METHODS Obese mice were bred by subjecting C57BL/6 mice to a high fat diet. Cognitive function, neuroinflammatory responses and neuronal degeneration were assessed in both obese and lean mice following exposure to 2 h of sevoflurane to confirm sevoflurane-induced neurotoxicity. Thereafter, to confirm the role of adiponectin deficiency in, adiponectin knockout mice were established and exposed to the sevoflurane. Finally, the neuroprotective effects of adiponectin receptor agonist (AdipoRon) were examined. RESULTS Sevoflurane triggered significant cognitive dysfunction, neuroinflammatory responses and neuronal degeneration in the obese mice while no significant impact was observed in the lean mice. Similar cognitive dysfunction and neuronal degeneration were also observed in the adiponectin knockout mice after sevoflurane exposure. Administration of AdipoRon partially prevented the deleterious effects of sevoflurane in both obese and adiponectin knockout mice. CONCLUSIONS Our findings demonstrate that obese mice are more susceptible to sevoflurane-induced neurotoxicity and cognitive impairment in which adiponectin deficiency is one of the underlying mechanisms. Treatment with adiponectin receptor agonist ameliorates this vulnerability. These findings may have therapeutic implications in reducing the incidence of anaesthesia related neurotoxicity in obese subjects.
Collapse
Affiliation(s)
- John Man Tak Chu
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Room K424, Queen Mary Hospital, Pokfulam, Hong Kong, HKSAR, China
- Laboratory of Neurodegenerative Disease, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, L4-49, Laboratory Block, 21 Sassoon Road, Hong Kong, HKSAR, China
| | - Suki Pak Wing Chiu
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Room K424, Queen Mary Hospital, Pokfulam, Hong Kong, HKSAR, China
| | - Jiaqi Wang
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Room K424, Queen Mary Hospital, Pokfulam, Hong Kong, HKSAR, China
| | - Raymond Chuen Chung Chang
- Laboratory of Neurodegenerative Disease, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, L4-49, Laboratory Block, 21 Sassoon Road, Hong Kong, HKSAR, China.
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, HKSAR, China.
| | - Gordon Tin Chun Wong
- Department of Anaesthesiology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Room K424, Queen Mary Hospital, Pokfulam, Hong Kong, HKSAR, China.
| |
Collapse
|
4
|
Huang Y, Yang D, Liao S, Guan X, Zhou F, Liu Y, Wang Y, Zhang Y. Ginsenoside Rg1 protects the blood-brain barrier and myelin sheath to prevent postoperative cognitive dysfunction in aged mice. Neuroreport 2024; 35:925-935. [PMID: 39166417 DOI: 10.1097/wnr.0000000000002083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
In this study, the postoperative cognitive dysfunction (POCD) mouse model was established to observe the changes in inflammation, blood-brain barrier permeability, and myelin sheath, and we explore the effect of ginsenoside Rg1 pretreatment on improving POCD syndrome. The POCD model of 15- to 18-month-old mice was carried out with internal fixation of tibial fractures under isoflurane anesthesia. Pretreatment was performed by continuous intraperitoneal injection of ginsenoside Rg1(40 mg/kg/day) for 14 days before surgery. The cognitive function was detected by the Morris water maze. The contents of interleukin-1β and tumor necrosis factor-α in the hippocampus, cortex, and serum were detected by ELISA. The permeability of blood-brain barrier was observed by Evans blue. The mRNA levels and protein expression levels of 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), myelin basic protein (MBP), beta-catenin, and cyclin D1 in the hippocampus were analyzed by quantitative PCR and western blotting. The protein expression levels of ZO-1 and Wnt1 in the hippocampus were analyzed by western blotting. Finally, the localizations of CNPase and MBP in the hippocampus were detected by immunofluorescence. Ginsenoside Rg1 can prevent POCD, peripheral and central inflammation, and blood-brain barrier leakage, and reverse the downregulation of ZO-1, CNPase, MBP, and Wnt pathway-related molecules in aged mice. Preclinical studies suggest that ginsenoside Rg1 improves postoperative cognitive function in aged mice by protecting the blood-brain barrier and myelin sheath, and its specific mechanism may be related to the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yao Huang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University
| | - Dianping Yang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University
| | - Sijing Liao
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University
| | - Xilin Guan
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University
| | - Feiran Zhou
- Department of Pain, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University
| | - Yan Liu
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University
| | - Yong Wang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University
| | - Ying Zhang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University
- Department of Anesthesiology, Heiiang Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
5
|
Feng L, Liu Y, Li P, Wan H, Deng X, Wang T, Fu H, Duan X. Association between cerebrovascular disease and perioperative neurocognitive disorders: a retrospective cohort study. Int J Surg 2024; 110:353-360. [PMID: 37916928 PMCID: PMC10793752 DOI: 10.1097/js9.0000000000000842] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Previous studies have shown that patients with cerebrovascular disease (CVD) have a significantly increased risk of cognitive decline or dementia; however, the association between preoperative CVD and perioperative neurocognitive disorders (PNDs) remains unclear. This study aimed to explore the correlation between preoperative CVD and PNDs, as well as combine logistic regression and receiver operating characteristic (ROC) curves to construct a clinical prediction PND model. MATERIALS AND METHODS This retrospective cohort study evaluated 13 899 surgical patients of a large-scale comprehensive hospital between January 2021 and January 2022 to explore the association between preoperative CVD and PNDs, with follow-up to monitor postoperative survival until 28 February 2023, unless the patient died. The study participants comprised all inpatients from the Bone and Joint Surgery, Spine Surgery, Urology, Hepatobiliary Surgery, Gastrointestinal Surgery, and Thoracic Surgery departments. Patients were classified into two groups: the CVD group with a confirmed diagnosis and the noncerebrovascular disease group. The incidence of PNDs was measured, and potential associations between patient demographic information, preoperative comorbidities, and CVD, as well as the correlation between preoperative CVD and PNDs, were investigated by multivariate logistic regression analysis. Next, the authors constructed a clinical prediction PND model by drawing the ROC curve. The postoperative survival of all patients was tracked, and a survival curve was constructed and incorporated into the Cox proportional hazard regression model to analyze the relationship between preoperative CVD and the overall postoperative survival rate. RESULTS Of the included 13 899 patients, propensity score matching yielded 1006 patient pairs. Multivariate logistic regression analysis revealed that CVD was an independent risk factor for PNDs [odds ratio: 10.193; 95% CI: 7.454-13.938; P <0.001]. Subsequently, the authors developed a clinical prediction model for PNDs by multivariate logistic regression analysis. The area under the ROC curve was 0.798 (95% CI: 0.765-0.830). The survival of 11 702 patients was followed up. Multivariate Cox hazard ratio regression analysis revealed that CVD affected the overall postoperative survival rate (hazard ratio, 1.398; 95% CI: 1.112-1.758; P <0.001). CONCLUSION CVD was an independent risk factor for PNDs and affected the overall postoperative survival rate of surgical patients with preoperative CVD.
Collapse
Affiliation(s)
- Lan Feng
- Department of Anesthesiology
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province
- Department of Anesthesiology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, People’s Republic of China
| | - Yuanhui Liu
- Department of Anesthesiology
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province
| | - PengFei Li
- Department of Anesthesiology
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province
| | - Hengjun Wan
- Department of Anesthesiology
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province
| | - Xiren Deng
- Department of Anesthesiology
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province
| | - Tingting Wang
- Department of Psychiatry, The Affiliated Hospital of Southwest Medical University
| | - Hong Fu
- Department of Anesthesiology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, People’s Republic of China
| | - Xiaoxia Duan
- Department of Anesthesiology
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province
| |
Collapse
|
6
|
Zhu Q, Huang Y, Zhu X, Peng L, Wang H, Gao S, Yang Z, Zhang J, Liu X. Mannose-coated superparamagnetic iron oxide nanozyme for preventing postoperative cognitive dysfunction. Mater Today Bio 2023; 19:100568. [PMID: 36846307 PMCID: PMC9945786 DOI: 10.1016/j.mtbio.2023.100568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/16/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is associated with increased postoperative morbidity and mortality in patients. Excessive production of reactive oxygen species (ROS) and the consequent inflammatory response in the postoperative brain play crucial roles in the development of POCD. However, effective ways to prevent POCD have yet to be developed. Moreover, effective penetration of the blood-brain barrier (BBB) and maintaining viability in vivo are major challenges for preventing POCD using traditional ROS scavengers. Herein, mannose-coated superparamagnetic iron oxide nanoparticles (mSPIONs) were synthesized by co-precipitation method. The BBB penetration of mSPIONs was verified through fluorescent imaging and ICP-MS quantification. The ROS scavenging and anti-inflammatory of mSPIONs were evaluated in H2O2-treated J774A.1 cells and in tibial fracture mice model. The novel object recognition (NOR) and trace-fear conditioning (TFC) were used to test the cognitive function of postoperative mice. The average diameter of mSPIONs was approximately 11 nm. mSPIONs significantly reduced ROS levels in H2O2-treated cells and in hippocampus of surgical mice. mSPIONs administration reduced the levels of IL-1β and TNF-α in the hippocampus and inhibited surgery-upregulated HIF1-α/NF-κB signaling pathway. Moreover, mSPIONs significantly improved the cognitive function of postoperative mice. This study provides a new approach for preventing POCD using a nanozyme.
Collapse
Affiliation(s)
- Qianyun Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, PR China
| | - Yuting Huang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, PR China
| | - Xiaoling Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, PR China
| | - Lijun Peng
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, PR China
| | - Huan Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, PR China
| | - Shan Gao
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, PR China
| | - Zhilai Yang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, PR China
| | - Jiqian Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, PR China
| | - Xuesheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, PR China
| |
Collapse
|
7
|
Saxena S, Nuyens V, Rodts C, Jamar K, Albert A, Seidel L, Cherkaoui-Malki M, Boogaerts JG, Wulff H, Maze M, Kruys V, Vamecq J. Involvement of KCa3.1 channel activity in immediate perioperative cognitive and neuroinflammatory outcomes. BMC Anesthesiol 2023; 23:80. [PMID: 36927341 PMCID: PMC10018926 DOI: 10.1186/s12871-023-02030-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Potassium channels (KCa3.1; Kv1.3; Kir2.1) are necessary for microglial activation, a pivotal requirement for the development of Perioperative Neurocognitive Disorders (PNDs). We previously reported on the role of microglial Kv1.3 for PNDs; the present study sought to determine whether inhibiting KCa3.1 channel activity affects neuroinflammation and prevents development of PND. METHODS Mice (wild-type [WT] and KCa3.1-/-) underwent aseptic tibial fracture trauma under isoflurane anesthesia or received anesthesia alone. WT mice received either TRAM34 (a specific KCa3.1 channel inhibitor) dissolved in its vehicle (miglyol) or miglyol alone. Spatial memory was assessed in the Y-maze paradigm 6 h post-surgery/anesthesia. Circulating interleukin-6 (IL-6) and high mobility group box-1 protein (HMGB1) were assessed by ELISA, and microglial activitation Iba-1 staining. RESULTS In WT mice surgery induced significant cognitive decline in the Y-maze test, p = 0.019), microgliosis (p = 0.001), and increases in plasma IL-6 (p = 0.002) and HMGB1 (p = 0.001) when compared to anesthesia alone. TRAM34 administration attenuated the surgery-induced changes in cognition, microglial activation, and HMGB1 but not circulating IL-6 levels. In KCa3.1-/- mice surgery neither affected cognition nor microgliosis, although circulating IL-6 levels did increase (p < 0.001). CONCLUSION Similar to our earlier report with Kv1.3, perioperative microglial KCa3.1 blockade decreases immediate perioperative cognitive changes, microgliosis as well as the peripheral trauma marker HMGB1 although surgery-induced IL-6 elevation was unchanged. Future research should address whether a synergistic interaction exists between blockade of Kv1.3 and KCa3.1 for preventing PNDs.
Collapse
Affiliation(s)
- Sarah Saxena
- Department of Anesthesia and Critical Care, AZ Sint-Jan Brugge Oostende AV, Bruges, Belgium.
| | - Vincent Nuyens
- Experimental Medicine Laboratory, ULB 222 Unit, CHU-Charleroi, Université Libre de Bruxelles, Montigny-Le-Tilleul, Belgium
| | - Christopher Rodts
- Department of Anesthesiology, CHU-Charleroi, Université Libre de Bruxelles, Charleroi, Belgium
| | - Kristina Jamar
- Department of Anesthesiology, CHU-Charleroi, Université Libre de Bruxelles, Charleroi, Belgium
| | - Adelin Albert
- Department of Biostatistics (B-STAT), University Hospital of Liège, Liège, Belgium
| | - Laurence Seidel
- Department of Biostatistics (B-STAT), University Hospital of Liège, Liège, Belgium
| | - Mustapha Cherkaoui-Malki
- Laboratoire Bio-PeroxIL EA7270, Univ. Bourgogne Franche-Comté, 6 Bd Gabriel, 21000, Dijon, France
| | - Jean G Boogaerts
- Department of Anesthesiology, CHU-Charleroi, Université Libre de Bruxelles, Charleroi, Belgium
| | - Heike Wulff
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Mervyn Maze
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, UCSF, San Francisco, CA, USA
| | - Véronique Kruys
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Joseph Vamecq
- Inserm, Biochemistry and Molecular Biology Laboratory, HMNO, CBP, CHU Lille & EA 7364 - RADEME, North France University Lille, Lille, France
| |
Collapse
|
8
|
Wang Y, Cai Z, Zhan G, Li X, Li S, Wang X, Li S, Luo A. Caffeic Acid Phenethyl Ester Suppresses Oxidative Stress and Regulates M1/M2 Microglia Polarization via Sirt6/Nrf2 Pathway to Mitigate Cognitive Impairment in Aged Mice following Anesthesia and Surgery. Antioxidants (Basel) 2023; 12:714. [PMID: 36978961 PMCID: PMC10045012 DOI: 10.3390/antiox12030714] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a severe neurological complication after anesthesia and surgery. However, there is still a lack of effective clinical pharmacotherapy due to its unclear pathogenesis. Caffeic acid phenethyl ester (CAPE), which is obtained from honeybee propolis and medicinal plants, shows powerful antioxidant, anti-inflammatory, and immunomodulating properties. In this study, we aimed to evaluate whether CAPE mitigated cognitive impairment following anesthesia and surgery and its potential underlying mechanisms in aged mice. Here, isoflurane anesthesia and tibial fracture surgery were used as the POCD model, and H2O2-induced BV2 cells were established as the microglial oxidative stress model. We revealed that CAPE pretreatment suppressed oxidative stress and promoted the switch of microglia from the M1 to the M2 type in the hippocampus, thereby ameliorating cognitive impairment caused by anesthesia and surgery. Further investigation indicated that CAPE pretreatment upregulated hippocampal Sirt6/Nrf2 expression after anesthesia and surgery. Moreover, mechanistic studies in BV2 cells demonstrated that the potent effects of CAPE pretreatment on reducing ROS generation and promoting protective polarization were attenuated by a specific Sirt6 inhibitor, OSS_128167. In summary, our findings opened a promising avenue for POCD prevention through CAPE pretreatment that enhanced the Sirt6/Nrf2 pathway to suppress oxidative stress as well as favor microglia protective polarization.
Collapse
Affiliation(s)
- Yue Wang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Ziwen Cai
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Gaofeng Zhan
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Xing Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Shan Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Xuan Wang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Shiyong Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Ailin Luo
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| |
Collapse
|
9
|
Barreto Chang OL, Possin KL, Maze M. Age-Related Perioperative Neurocognitive Disorders: Experimental Models and Druggable Targets. Annu Rev Pharmacol Toxicol 2023; 63:321-340. [PMID: 36100220 DOI: 10.1146/annurev-pharmtox-051921-112525] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
With the worldwide increase in life span, surgical patients are becoming older and have a greater propensity for postoperative cognitive impairment, either new onset or through deterioration of an existing condition; in both conditions, knowledge of the patient's preoperative cognitive function and postoperative cognitive trajectory is imperative. We describe the clinical utility of a tablet-based technique for rapid assessment of the memory and attentiveness domains required for executive function. The pathogenic mechanisms for perioperative neurocognitive disorders have been investigated in animal models in which excessive and/or prolonged postoperative neuroinflammation has emerged as a likely contender. The cellular and molecular species involved in postoperative neuroinflammation are the putative targets for future therapeutic interventions that are efficacious and do not interfere with the surgical patient's healing process.
Collapse
Affiliation(s)
- Odmara L Barreto Chang
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California, USA;
| | - Katherine L Possin
- Memory and Aging Center, Department of Neurology, and Global Brain Health Institute, University of California San Francisco, San Francisco, California, USA
| | - Mervyn Maze
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, California, USA; .,Center for Cerebrovascular Research, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
10
|
Higher Circulating Trimethylamine N-Oxide Aggravates Cognitive Impairment Probably via Downregulating Hippocampal SIRT1 in Vascular Dementia Rats. Cells 2022; 11:cells11223650. [PMID: 36429082 PMCID: PMC9688447 DOI: 10.3390/cells11223650] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Oxidative stress and inflammation damage play pivotal roles in vascular dementia (VaD). Trimethylamine N-oxide (TMAO), an intestinal microbiota-stemming metabolite, was reported to promote inflammation and oxidative stress, involved in the etiology of several diseases. Still, these effects have not been investigated in VaD. Here, we tested whether pre-existing, circulating, high levels of TMAO could affect VaD-induced cognitive decline. TMAO (120 mg/kg) was given to rats for a total of 8 weeks, and these rats underwent a sham operation or bilateral common carotid artery (2VO) surgery after 4 weeks of treatment. Four weeks after surgery, the 2VO rats exhibited hippocampal-dependent cognitive function declines and synaptic plasticity dysfunction, accompanied by an increase in oxidative stress, neuroinflammation, and apoptosis. TMAO administration, which increased plasma and hippocampal TMAO at 4 weeks postoperatively, further aggravated these effects, resulting in exaggerated cognitive and synaptic plasticity impairment, though not within the Sham group. Moreover, TMAO treatment activated the NLRP3 inflammasome and decreased SIRT1 protein expression within the hippocampus. However, these effects of TMAO were significantly attenuated by the overexpression of SIRT1. Our findings suggest that TMAO increases oxidative stress-induced neuroinflammation and apoptosis by inhibiting the SIRT1 pathway, thereby exacerbating cognitive dysfunction and neuropathological changes in VaD rats.
Collapse
|
11
|
Lu B, Yuan H, Mo L, Sun D, Liu R, Zhou H, Zhai X, Wang R, Chen J, Meng B. Effects of different types of non-cardiac surgical trauma on hippocampus-dependent memory and neuroinflammation. Front Behav Neurosci 2022; 16:950093. [PMID: 36035019 PMCID: PMC9399929 DOI: 10.3389/fnbeh.2022.950093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background Older individuals have been reported to suffer from cognitive disorders after surgery. Various types of surgical trauma have been used to establish postoperative cognitive dysfunction (POCD) animal models in preclinical studies. However, few comparative analyses of these animal models were conducted. Methods Tibial surgery, abdominal surgery, and extended abdominal surgery were performed on aged ICR mice to establish POCD models. Behavioral tests included open field, novel object recognition, fear conditioning, and Morris water maze tests. The Z-score methodology was adopted to obtain a comprehensive and integrated memory performance profile. The changes in hippocampal neuroinflammation were analyzed by ELISA, PCR, and immunofluorescence. Results In this study, we found that each type of non-cardiac surgical trauma has a different effects on locomotor activity. Tibial and extended abdominal surgeries led to more significant cognitive impairment than abdominal surgery. Inflammatory cytokines peaked on postoperative day 1 and decreased to control levels on days 3 and 7. Hippocampal neuroinflammation indicators between the three surgery types on postoperative day 1 had no statistical differences. Conclusion Overall, the type and intensity of non-cardiac surgical trauma can affect cognitive behavioral outcomes and central inflammation. The shortcomings and emerging issues of POCD animal research methods need to be further studied and solved.
Collapse
Affiliation(s)
- Bo Lu
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Hui Yuan
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Lan Mo
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Daofan Sun
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Rongjun Liu
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Han Zhou
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Xiaojie Zhai
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Ruichun Wang
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Junping Chen
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- *Correspondence: Junping Chen,
| | - Bo Meng
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Bo Meng,
| |
Collapse
|
12
|
Vacas S, Canales C, Deiner SG, Cole DJ. Perioperative Brain Health in the Older Adult: A Patient Safety Imperative. Anesth Analg 2022; 135:316-328. [PMID: 35584550 PMCID: PMC9288500 DOI: 10.1213/ane.0000000000006090] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
While people 65 years of age and older represent 16% of the population in the United States, they account for >40% of surgical procedures performed each year. Maintaining brain health after anesthesia and surgery is not only important to our patients, but it is also an increasingly important patient safety imperative for the specialty of anesthesiology. Aging is a complex process that diminishes the reserve of every organ system and often results in a patient who is vulnerable to the stress of surgery. The brain is no exception, and many older patients present with preoperative cognitive impairment that is undiagnosed. As we age, a number of changes occur in the human brain, resulting in a patient who is less resilient to perioperative stress, making older adults more susceptible to the phenotypic expression of perioperative neurocognitive disorders. This review summarizes the current scientific and clinical understanding of perioperative neurocognitive disorders and recommends patient-centered, age-focused interventions that can better mitigate risk, prevent harm, and improve outcomes for our patients. Finally, it discusses the emerging topic of sleep and cognitive health and other future frontiers of scientific inquiry that might inform clinical best practices.
Collapse
Affiliation(s)
- Susana Vacas
- From the Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Cecilia Canales
- From the Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Stacie G Deiner
- Department of Anesthesiology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
| | - Daniel J Cole
- From the Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
13
|
Electroacupuncture Ameliorates Tibial Fracture-Induced Cognitive Dysfunction by Elevating α7nAChR Expression and Suppressing Mast Cell Degranulation in the Hippocampus of Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3182220. [PMID: 35463074 PMCID: PMC9019405 DOI: 10.1155/2022/3182220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/24/2022] [Accepted: 03/16/2022] [Indexed: 11/17/2022]
Abstract
Intracerebral neuroinflammation, closely related to brain mast cell (MC) activation, performs an integral function in the pathogenic process of postoperative cognitive dysfunction (POCD). In addition to regulating cognitive activities, the alpha-7-nicotinic acetylcholine receptor (α7nAChR) engages in the progression of cognitive deficiency. In this research, we aimed to investigate how electroacupuncture (EA) affects the cognitive function in rats after tibial fracture surgery to determine whether the underlying mechanism involves the inhibition of hippocampal MC degranulation via α7nAChR. A rat model of tibial fracture surgery for inducing POCD was developed and subjected to treatment with EA or the α7nAChR antagonist α-bungarotoxin (α-BGT) and the α7nAChR agonist PHA-543613. The spatial memory tasks in the Morris Water Maze (MWM) test showed that both EA and PHA-543613-treated rats performed significantly better than untreated rats, with reduced escape latency and increased frequency of passage through the platform. However, EA and PHA-543613 intervention decreased the protein and mRNA levels of High-mobility group box-1(HMGB-1) and proinflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) in the serum and hippocampus, respectively, by upregulating α7nAChR in the hippocampus. Furthermore, EA and PHA-543613 pretreatment reduced the number of activated MCs and suppressed neuronal apoptosis after tibial fracture surgery in the hippocampal CA1 regions, which was reversed by α-BGT. The findings indicated that EA pretreatment ameliorated POCD after tibial fracture surgery in rats by inhibiting brain MC activation and neuroinflammation mediated by the α7nAChR-dependent cholinergic anti-inflammatory system.
Collapse
|
14
|
Huo K, Wei M, Zhang M, Wang Z, Pan P, Shaligram SS, Huang J, Prado LBD, Wong J, Su H. Reduction of neuroinflammation alleviated mouse post bone fracture and stroke memory dysfunction. J Cereb Blood Flow Metab 2021; 41:2162-2173. [PMID: 33641516 PMCID: PMC8393305 DOI: 10.1177/0271678x21996177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tibia fracture (BF) enhances stroke injury and post-stroke memory dysfunction in mouse. Reduction of neuroinflammation by activation of α-7 nicotinic acetylcholine receptor (α-7 nAchR) reduced acute neuronal injury and sensorimotor dysfunction in mice with BF 1-day after stroke. We hypothesize that reduction of neuroinflammation by activation of α-7 nAchR improves long-term memory function of mice with BF 6-h before stroke. The mice were randomly assigned to saline, PHA-568487 (α-7 nAchR agonist) and methyllycaconitine (antagonist) treatment groups. The sensorimotor function was tested by adhesive removal and corner tests at 3 days, the memory function was tested by Y-maze test weekly for 8 weeks and novel objective recognition test at 8 weeks post-injuries. We found PHA-568487 treatment reduced, methyllycaconitine increased the number of CD68+ cells in the peri-infarct and hippocampal regions, neuronal injury in the infarct region, sensorimotor and long-term memory dysfunctions. PHA-568487 treatment also reduced, while methyllycaconitine treatment increased atrophy of hippocampal granule cell layer and white matter damage in the striatum. In addition, PHA-568487 treatment increased neuron proliferation in granule cell layer. Our data indicated that reduction of neuroinflammation through activation of α-7 nAchR decreased neuronal damage, sensorimotor and long-term memory dysfunction of mice with BF shortly before stroke.
Collapse
Affiliation(s)
- Kang Huo
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Meng Wei
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Meng Zhang
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Zhanqiang Wang
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Peipei Pan
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Sonali S Shaligram
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Jinhao Huang
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Leandro B Do Prado
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Julia Wong
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| |
Collapse
|
15
|
Sun Q, Yan H, Chen F, Jiang F, Chen W, Li D, Guo Y. Restoration of Proresolution Pathway with Exogenous Resolvin D1 Prevents Sevoflurane-Induced Cognitive Decline by Attenuating Neuroinflammation in the Hippocampus in Rats with Type 2 Diabetes Mellitus. Front Pharmacol 2021; 12:720249. [PMID: 34366871 PMCID: PMC8343131 DOI: 10.3389/fphar.2021.720249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/13/2021] [Indexed: 12/31/2022] Open
Abstract
Sevoflurane (SEV), a commonly used volatile anesthetic, has been shown to cause cognitive decline in diabetic rats by aggregating neuroinflammation in the hippocampus, but the underlying mechanisms are unknown. Recent evidence suggests that neuroinflammation could be a consequence of failure to resolve inflammation by specialized pro-resolving lipid mediators including resolvin D1 (RvD1). Here we first examined whether type 2 diabetes mellitus (DM) alters RvD1 proresolution pathway. Diabetic Goto-Kakizaki (GK) rats and non-diabetic Wistar rats received control or 2.6% SEV exposure for 4 h. Seven days after exposure, GK control rats, compared with Wistar control rats, had significantly lower RvD1 levels in plasma and CSF and decreased RvD1 receptor FPR2 expression in the hippocampus. SEV increased RvD1 levels in plasma and CSF and FPR2 expression in the hippocampus in Wistar rats but not in GK rats. We next examined whether RvD1 treatment of GK rats can prevent SEV-induced neuroinflammation and cognitive decline. GK rats received control, SEV or SEV and once-daily treatment with exogenous RvD1 (0.2 ug/kg, ip) for 7 days. RvD1 administration markedly increased RvD1 levels in plasma and CSF and FPR2 expression in the hippocampus in GK rats received SEV. Compared with GK control rats, GK rats received SEV exhibited shorter freezing times in trace fear conditioning task, which was accompanied by increased microglia activity and pro-inflammatory cytokine expression in the hippocampus. RvD1 administration attenuated SEV-induced increases in microglia activity and pro-inflammatory cytokine expression in the hippocampus, preventing cognitive decline in GK rats. Notably, neither SEV nor RvD1 altered metabolic parameters in GK rats. The results suggest that RvD1 proresolution pathway is impaired in the brain of diabetic GK rats. which may enhance the susceptibility to SEV, contributing to neuroinflammation and cognitive decline. Restoration of RvD1 proresolution pathway in diabetic GK rats with exogenous RvD1 can prevent SEV-induced cognitive decline by attenuating neuroinflammation in the hippocampus.
Collapse
Affiliation(s)
- Qingmei Sun
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Hongdan Yan
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Falong Chen
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Fen Jiang
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Wenjuan Chen
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Dongliang Li
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Yongmin Guo
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
16
|
|
17
|
Gan L, Wan X, Ma D, Yang FC, Zhu J, Rogers RS, Wheatley JL, Koch LG, Britton SL, Thyfault JP, Geiger PC, Stanford JA. Intrinsic Aerobic Capacity Affects Hippocampal pAkt and HSP72 Response to an Acute High Fat Diet and Heat Treatment in Rats. J Alzheimers Dis Rep 2021; 5:469-475. [PMID: 34368631 PMCID: PMC8293662 DOI: 10.3233/adr-200289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Aerobic capacity is associated with metabolic, cardiovascular, and neurological health. Low-capacity runner (LCR) rats display low aerobic capacity, metabolic dysfuction, and spatial memory deficits. A heat treatment (HT) can improve metabolic dysfunction in LCR peripheral organs after high fat diet (HFD). Little is known about metabolic changes in the brains of these rats following HT. OBJECTIVE Our objective was to examine the extent to which high or low aerobic capacity impacts Akt (a protein marker of metabolism) and heat shock protein 72 (HSP72, a marker of heat shock response) after HFD and HT in hippocampus. METHODS We measured phosphorylated Akt (pAkt) in the striatum and hippocampus, and HSP72 in the hippocampus, of HFD-fed and chow-fed LCR and high-capacity runner (HCR) rats with and without HT. RESULTS pAkt was lower in the hippocampus of chow-fed LCR than HCR rats. HFD resulted in greater pAkt in LCR but not HCR rats, but HT resulted in lower pAkt in the LCR HFD group. HSP72 was greater in both HCR and LCR rat hippocampus after HT. The HFD blunted this effect in LCR compared to HCR hippocampus. CONCLUSION The abnormal phosphorylation of Akt and diminished HSP response in the hippocampus of young adult LCR rats might indicate early vulnerability to metabolic challenges in this key brain region associated with learning and memory.
Collapse
Affiliation(s)
- Li Gan
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Xiaonan Wan
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Delin Ma
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fu-Chen Yang
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jingpeng Zhu
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Robert S. Rogers
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Joshua L. Wheatley
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Lauren G. Koch
- Department of Physiology and Pharmacology, The University of Toledo, Toledo, OH, USA
| | - Steven L. Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - John P. Thyfault
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
- Research Service, Kansas City VA Medical Center, Kansas City, MO, USA
| | - Paige C. Geiger
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - John A. Stanford
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
18
|
Terrando N, Park JJ, Devinney M, Chan C, Cooter M, Avasarala P, Mathew JP, Quinones QJ, Maddipati KR, Berger M. Immunomodulatory lipid mediator profiling of cerebrospinal fluid following surgery in older adults. Sci Rep 2021; 11:3047. [PMID: 33542362 PMCID: PMC7862598 DOI: 10.1038/s41598-021-82606-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Arachidonic acid (AA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA) derived lipids play key roles in initiating and resolving inflammation. Neuro-inflammation is thought to play a causal role in perioperative neurocognitive disorders, yet the role of these lipids in the human central nervous system in such disorders is unclear. Here we used liquid chromatography–mass spectrometry to quantify AA, DHA, and EPA derived lipid levels in non-centrifuged cerebrospinal fluid (CSF), centrifuged CSF pellets, and centrifuged CSF supernatants of older adults obtained before, 24 h and 6 weeks after surgery. GAGE analysis was used to determine AA, DHA and EPA metabolite pathway changes over time. Lipid mediators derived from AA, DHA and EPA were detected in all sample types. Postoperative lipid mediator changes were not significant in non-centrifuged CSF (p > 0.05 for all three pathways). The AA metabolite pathway showed significant changes in centrifuged CSF pellets and supernatants from before to 24 h after surgery (p = 0.0000247, p = 0.0155 respectively), from before to 6 weeks after surgery (p = 0.0000497, p = 0.0155, respectively), and from 24 h to 6 weeks after surgery (p = 0.0000499, p = 0.00363, respectively). These findings indicate that AA, DHA, and EPA derived lipids are detectable in human CSF, and the AA metabolite pathway shows postoperative changes in centrifuged CSF pellets and supernatants.
Collapse
Affiliation(s)
| | - John J Park
- Duke University School of Medicine, Durham, NC, USA
| | | | | | - Mary Cooter
- Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | - Miles Berger
- Duke University Medical Center, Durham, NC, USA.
| | | |
Collapse
|
19
|
Glycogen Synthase Kinase 3 β Promotes Postoperative Cognitive Dysfunction by Inducing the M1 Polarization and Migration of Microglia. Mediators Inflamm 2020; 2020:7860829. [PMID: 33354162 PMCID: PMC7735842 DOI: 10.1155/2020/7860829] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 01/01/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common postoperative central nervous system complication, especially in the elderly. It has been consistently reported that the pathological process of this clinical syndrome is related to neuroinflammation and microglial proliferation. Glycogen synthase kinase 3β (GSK-3β) is a widely expressed kinase with distinct functions in different types of cells. The role of GSK-3β in regulating innate immune activation has been well documented, but as far as we know, its role in POCD has not been fully elucidated. Lithium chloride (LiCl) is a widely used inhibitor of GSK-3β, and it is also the main drug for the treatment of bipolar disorder. Prophylactic administration of lithium chloride (2 mM/kg) can inhibit the expression of proinflammatory mediators in the hippocampus, reduce the hippocampal expression of NF-κB, and increase both the downregulation of M1 microglial-related genes (inducible nitric oxide synthase and CD86) and upregulation of M2 microglial-related genes (IL-10 and CD206), to alleviate the cognitive impairment caused by orthopedic surgery. In vitro, LiCl reversed LPS-induced production of proinflammatory mediators and M1 polarization of microglia. To sum up these results, GSK-3β is a key contributor to POCD and a potential target of neuroprotective strategies.
Collapse
|
20
|
Saxena S, Rodts C, Nuyens V, Lazaron J, Sosnowski V, Verdonk F, Seidel L, Albert A, Boogaerts J, Kruys V, Maze M, Vamecq J. Preoperative sedentary behavior is neither a risk factor for perioperative neurocognitive disorders nor associated with an increase in peripheral inflammation, a prospective observational cohort study. BMC Anesthesiol 2020; 20:284. [PMID: 33187477 PMCID: PMC7666527 DOI: 10.1186/s12871-020-01200-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/05/2020] [Indexed: 11/30/2022] Open
Abstract
Background Surgical interventions result in a postoperative rise in circulating inflammatory cytokines and high molecular group box protein 1 (HMGB1). Herein, the impact of a sedentary lifestyle and other age-related factors on the development of perioperative neurocognitive disorders (PND) following non-cardiac surgical procedures was assessed in an older (55–75 years-old) surgical population. Methods Prior to surgery, patients were asked questions regarding their sedentary behavior and daily habits. They also passed the Mini Mental State Examination (MMSE) and their blood circulating interleukin 6 (IL-6) and HMGB1 levels were assayed by ELISA. IL-6 and HMGB1 measurements were repeated respectively 6 and 24 h after surgery. MMSE was re-evaluated 6 weeks and whenever possible 3 months after surgery. Results Thirty-eight patients were enrolled in the study from January until July 2019. The study identified self-sufficiency, multilinguism, and overall health score on the geriatric depression scale, as protectors against PND. No other demographic (age, sex), environmental (solitary/non-solitary housing, professional and physical activities, smoking, alcohol drinking), comorbidity (antipsychotic drug uptake, diabetic state) and type of surgery (orthopedic, general, genitourinary) influenced the development of PND. Although some factors (surgery type and age) influenced the surgery-induced rise in the circulating IL-6 levels, they did not impact HMGB1. Conclusion Inflammaging, reflected by the greater increment of surgery-induced IL-6 in patients with advanced age, was present. As trauma-induced release of HMGB1 was not similarly affected by age, we surmise that HMGB1, rather than circulating cytokines, is the key driver of the trauma-induced inflammatory cascade leading to PND. Trial registration Clinicaltrials.gov identifier: NCT03805685.
Collapse
Affiliation(s)
- Sarah Saxena
- Department of Anesthesia, University Hospital Center (CHU de Charleroi), Charleroi, Belgium.,Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, UCSF, San Francisco, CA, USA
| | - Christopher Rodts
- Department of Anesthesia, University Hospital Center (CHU de Charleroi), Charleroi, Belgium
| | - Vincent Nuyens
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center (CHU de Charleroi), Charleroi, Belgium
| | - Juliette Lazaron
- Department of Anesthesia, University Hospital Center (CHU de Charleroi), Charleroi, Belgium
| | - Victoria Sosnowski
- Department of Anesthesia, University Hospital Center (CHU de Charleroi), Charleroi, Belgium
| | - Franck Verdonk
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Laurence Seidel
- Department of Biostatistics, University Hospital of Liège, Liège, Belgium
| | - Adelin Albert
- Department of Biostatistics, University Hospital of Liège, Liège, Belgium
| | - Jean Boogaerts
- Department of Anesthesia, University Hospital Center (CHU de Charleroi), Charleroi, Belgium
| | - Veronique Kruys
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| | - Mervyn Maze
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, UCSF, San Francisco, CA, USA
| | - Joseph Vamecq
- Inserm, CHU Lille, Univ Lille, Department of Biochemistry and Molecular Biology, Laboratory of Hormonology, Metabolism-Nutrition & Oncology (HMNO), Center of Biology and Pathology (CBP) Pierre-Marie Degand, CHRU Lille, EA 7364 RADEME, University of North France, Lille, France.
| |
Collapse
|
21
|
Wang DS, Terrando N, Orser BA. Targeting microglia to mitigate perioperative neurocognitive disorders. Br J Anaesth 2020; 125:229-232. [PMID: 32654743 DOI: 10.1016/j.bja.2020.06.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/17/2020] [Indexed: 01/09/2023] Open
Affiliation(s)
- Dian-Shi Wang
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Niccolò Terrando
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Beverley A Orser
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada; Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
| |
Collapse
|
22
|
Blocking Kv1.3 potassium channels prevents postoperative neuroinflammation and cognitive decline without impairing wound healing in mice. Br J Anaesth 2020; 125:298-307. [PMID: 32624183 DOI: 10.1016/j.bja.2020.05.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/15/2020] [Accepted: 05/06/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Postoperative cognitive decline (PCD) requires microglial activation. Voltage-gated Kv1.3 potassium channels are involved in microglial activation. We determined the role of Kv1.3 in PCD and the efficacy and safety of inhibiting Kv1.3 with phenoxyalkoxypsoralen-1 (PAP-1) in preventing PCD in a mouse model. METHODS After institutional approval, we assessed whether Kv1.3-deficient mice (Kv1.3-/-) exhibited PCD, evidenced by tibial-fracture surgery-induced decline in aversive freezing behaviour, and whether PAP-1 could prevent PCD and postoperative neuroinflammation in PCD-vulnerable diet-induced obese (DIO) mice. We also evaluated whether PAP-1 altered either postoperative peripheral inflammation or tibial-fracture healing. RESULTS Freezing behaviour was unaltered in postoperative Kv1.3-/- mice. In DIO mice, PAP-1 prevented postoperative (i) attenuation of freezing behaviour (54 [17.3]% vs 33.4 [12.7]%; P=0.03), (ii) hippocampal microglial activation by size (130 [31] pixels vs 249 [49]; P<0.001) and fluorescence intensity (12 000 [2260] vs 20 800 [5080] absorbance units; P<0.001), and (iii) hippocampal upregulation of interleukin-6 (IL-6) (14.9 [5.7] vs 25.6 [10.4] pg mg-1; P=0.011). Phenoxyalkoxypsoralen-1 neither affected surgery-induced upregulation of plasma IL-6 nor cartilage and bone components of the surgical fracture callus. CONCLUSIONS Microglial-mediated PCD requires Kv1.3 activity, determined by genetic and pharmacological targeting approaches. Phenoxyalkoxypsoralen-1 blockade of Kv1.3 prevented surgery-induced hippocampal microglial activation and neuroinflammation in mice known to be vulnerable to PCD. Regarding perioperative safety, these beneficial effects of PAP-1 treatment occurred without impacting fracture healing. Kv1.3 blockers, currently undergoing clinical trials for other conditions, may represent an effective and safe intervention to prevent PCD.
Collapse
|
23
|
Agrimi J, Baroni C, Anakor E, Lionetti V. Perioperative Heart-Brain Axis Protection in Obese Surgical Patients: The Nutrigenomic Approach. Curr Med Chem 2020; 27:258-281. [PMID: 30324875 DOI: 10.2174/0929867325666181015145225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/01/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023]
Abstract
The number of obese patients undergoing cardiac and noncardiac surgery is rapidly increasing because they are more prone to concomitant diseases, such as diabetes, thrombosis, sleep-disordered breathing, cardiovascular and cerebrovascular disorders. Even if guidelines are already available to manage anesthesia and surgery of obese patients, the assessment of the perioperative morbidity and mortality from heart and brain disorders in morbidly obese surgical patients will be challenging in the next years. The present review will recapitulate the new mechanisms underlying the Heart-brain Axis (HBA) vulnerability during the perioperative period in healthy and morbidly obese patients. Finally, we will describe the nutrigenomics approach, an emerging noninvasive dietary tool, to maintain a healthy body weight and to minimize the HBA propensity to injury in obese individuals undergoing all types of surgery by personalized intake of plant compounds that may regulate the switch from health to disease in an epigenetic manner. Our review provides current insights into the mechanisms underlying HBA response in obese surgical patients and how they are modulated by epigenetically active food constituents.
Collapse
Affiliation(s)
- Jacopo Agrimi
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Carlotta Baroni
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Ekene Anakor
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Vincenzo Lionetti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,UOS Anesthesiology, Fondazione Toscana G. Monasterio, Pisa, Italy
| |
Collapse
|
24
|
Meng B, Li X, Lu B, Liu R, Yuan H, Zhai X, Qin J, Chen Z, Zheng J, Chen J. The Investigation of Hippocampus-Dependent Cognitive Decline Induced by Anesthesia/Surgery in Mice Through Integrated Behavioral Z-Scoring. Front Behav Neurosci 2020; 13:282. [PMID: 32038186 PMCID: PMC6987045 DOI: 10.3389/fnbeh.2019.00282] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/11/2019] [Indexed: 01/11/2023] Open
Abstract
Objective Patients undergoing major surgeries may experience certain cognitive decline, which is known as postoperative delirium (POD) or postoperative cognitive dysfunction (POCD). We employed integrated behavioral Z-scoring introduced by Guilloux et al. (2011) to investigate the effects of fracture fixation under anesthesia on hippocampus-dependent memory in mice. Methods ICR mice (12-14 months) underwent stabilized tibial fracture operation under sevoflurane anesthesia. They were subjected to a battery of successive hippocampus-dependent tests following surgery, including open field test (OF), novel object recognition (NOR), fear conditioning test (FC), and Morris water maze (MWM). The integrated behavioral Z-scoring was applied to assess the hippocampus-dependent memory after anesthesia/surgery, and the association between the integrated behavioral Z-scores and hippocampal pro-inflammatory cytokines was explored. Results Mice after anesthesia/surgery were found to have impaired hippocampus-dependent memory in NOR, FC, and MWM but with different degrees in these aspects as represented by P-value and effect size. The integrated memory Z-scores based on principal parameters of the above three tests can reduced the variability and increase the comprehensiveness of behavioral results. However, we found no statistic associations between hippocampal pro-inflammatory cytokines and the integrated Z-scores, as the elevated cytokines quickly return to normal on postoperative day 3 and/or day 7. Conclusion The integrated Z-score methodology could facilitate the interpretation of the anesthesia/surgery induced cognitive decline in mice and robustly quantify the behavioral phenotyping of hippocampus-dependent memory.
Collapse
Affiliation(s)
- Bo Meng
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Xiaoyu Li
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Bo Lu
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Rongjun Liu
- Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Hui Yuan
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Xiaojie Zhai
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Jinling Qin
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Zhang Chen
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Jinwei Zheng
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Junping Chen
- Department of Anesthesiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
25
|
Li Z, Wei M, Lyu H, Huo K, Wang L, Zhang M, Su H. Fracture shortly before stroke in mice leads to hippocampus inflammation and long-lasting memory dysfunction. J Cereb Blood Flow Metab 2020; 40:446-455. [PMID: 30667320 PMCID: PMC7370615 DOI: 10.1177/0271678x19825785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cognitive impairment occurs in stroke and hip fracture patients. In mice, bone fracture (BF) exacerbates stroke-related neuronal damage and sensorimotor dysfunction. We hypothesize that BF exacerbates post-stroke cognitive impairment. Adult mice were randomly assigned into BF, stroke, BF+stroke (BF 6 h before stroke), and control (sham operated) groups. Memory function was evaluated weekly for eight weeks by Y maze test and at eight weeks post-surgeries by novel object recognition (NOR) test. The neuronal damage and inflammation in hippocampus were analyzed three days and eight weeks after the surgeries. In Y maze test, BF+stroke mice started making fewer alternations than controls two weeks after the surgeries. Significant difference between BF+stroke and stroke groups started at five weeks post-injury and continued to the end of the experiment. In NOR test, BF+stroke group spent less time on novel objective than that of other groups. Cx3cr1+ cells and CD68+ cells accumulated in the stratum lacunosum moleculare (SLM) on the ipsilateral side of stroke injury in stroke and BF+stroke mice. BF+stroke mice had a higher ratio of ipsilateral/contralateral Cx3cr1+ cell-density than that of stroke mice. Therefore, BF shortly before stroke exacerbates hippocampal inflammation and causes long-lasting memory dysfunction.
Collapse
Affiliation(s)
- Zhengxi Li
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Meng Wei
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Haiyan Lyu
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Kang Huo
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Liang Wang
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Meng Zhang
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| |
Collapse
|
26
|
Velagapudi R, Subramaniyan S, Xiong C, Porkka F, Rodriguiz RM, Wetsel WC, Terrando N. Orthopedic Surgery Triggers Attention Deficits in a Delirium-Like Mouse Model. Front Immunol 2019; 10:2675. [PMID: 31911786 PMCID: PMC6918861 DOI: 10.3389/fimmu.2019.02675] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/30/2019] [Indexed: 01/15/2023] Open
Abstract
Postoperative delirium is a frequent and debilitating complication, especially amongst high risk procedures such as orthopedic surgery, and its pathogenesis remains unclear. Inattention is often reported in the clinical diagnosis of delirium, however limited attempts have been made to study this cognitive domain in preclinical models. Here we implemented the 5-choice serial reaction time task (5-CSRTT) to evaluate attention in a clinically relevant mouse model following orthopedic surgery. The 5-CSRTT showed a time-dependent impairment in the number of responses made by the mice acutely after orthopedic surgery, with maximum impairment at 24 h and returning to pre-surgical performance by day 5. Similarly, the latency to the response was also delayed during this time period but returned to pre-surgical levels within several days. While correct responses decreased following surgery, the accuracy of the response (e.g., selection of the correct nose-poke) remained relatively unchanged. In a separate cohort we evaluated neuroinflammation and blood-brain barrier (BBB) dysfunction using clarified brain tissue with light-sheet microscopy. CLARITY revealed significant changes in microglial morphology and impaired astrocytic-tight junction interactions using high-resolution 3D reconstructions of the neurovascular unit. Deposition of IgG, fibrinogen, and autophagy markers (TFEB and LAMP1) were also altered in the hippocampus 24 h after surgery. Together, these results provide translational evidence for the role of peripheral surgery contributing to delirium-like behavior and disrupted neuroimmunity in adult mice.
Collapse
Affiliation(s)
- Ravikanth Velagapudi
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States
| | - Saraswathi Subramaniyan
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States
| | - Chao Xiong
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States
| | - Fiona Porkka
- Department of Psychiatry and Behavioral Sciences, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC, United States
| | - Ramona M. Rodriguiz
- Department of Psychiatry and Behavioral Sciences, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC, United States
| | - William C. Wetsel
- Department of Psychiatry and Behavioral Sciences, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC, United States
- Departments of Neurobiology and Cell Biology, Duke University Medical Center, Durham, NC, United States
| | - Niccolò Terrando
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
27
|
Zhao L, Zhang C, Cao G, Dong X, Li D, Jiang L. Higher Circulating Trimethylamine N-oxide Sensitizes Sevoflurane-Induced Cognitive Dysfunction in Aged Rats Probably by Downregulating Hippocampal Methionine Sulfoxide Reductase A. Neurochem Res 2019; 44:2506-2516. [PMID: 31486012 DOI: 10.1007/s11064-019-02868-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/28/2019] [Accepted: 08/30/2019] [Indexed: 12/11/2022]
Abstract
Gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) has recently been shown to promote oxidative stress and inflammation in the peripheral tissues, contributing to the pathogenesis of many diseases. Here we examined whether pre-existing higher circulating TMAO would influence cognitive function in aged rats after anesthetic sevoflurane exposure. Aged rats received vehicle or TMAO treatment for 3 weeks. After 2 weeks of treatment, these animals were exposed to either control or 2.6% sevoflurane for 4 h. One week after exposure, freezing as measured by fear conditioning test, microglia activity, proinflammatory cytokine expression and NADPH oxidase-dependent reactive oxygen species (ROS) production in the hippocampus (a key brain structure involved in learning and memory) were comparable between vehicle-treated rats exposed to control and vehicle-treated rats exposed to sevoflurane. TMAO treatment, which increased plasma TMAO before and 1 week after control or sevoflurane exposure, significantly reduced freezing to contextual fear conditioning, which was associated with increases in microglia activity, proinflammatory cytokine expression and NADPH oxidase-dependent ROS production in the hippocampus in rats exposed to sevoflurane but not in rats exposed to control. Moreover, hippocampal expression of antioxidant enzyme methionine sulfoxide reductase A (MsrA) was reduced by TMAO treatment in both groups, and TMAO-induced reduction in MsrA expression was negatively correlated with increased proinflammatory cytokine expression in rats exposed to SEV. These findings suggest that pre-existing higher circulating TMAO downregulates antioxidant enzyme MsrA in the hippocampus, which may sensitize the hippocampus to oxidative stress, resulting in microglia-mediated neuroinflammation and cognitive impairment in aged rats after sevoflurane exposure.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Anesthesiology, The 960th Hospital of the PLA in Zibo, Zibo, Shandong, China
| | - Chuanyang Zhang
- Department of Anesthesiology, The 960th Hospital of the PLA in Zibo, Zibo, Shandong, China
| | - Guilin Cao
- Department of Anesthesiology, The 960th Hospital of the PLA in Zibo, Zibo, Shandong, China
| | - Xueyi Dong
- Department of Anesthesiology, The 960th Hospital of the PLA in Zibo, Zibo, Shandong, China
| | - Dongliang Li
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Lei Jiang
- Department of Anesthesiology and Pain Medicine, PKU Care Zibo Hospital, Zibo, Shandong, China.
| |
Collapse
|
28
|
Dexmedetomidine Prevents Cognitive Decline by Enhancing Resolution of High Mobility Group Box 1 Protein-induced Inflammation through a Vagomimetic Action in Mice. Anesthesiology 2019; 128:921-931. [PMID: 29252509 DOI: 10.1097/aln.0000000000002038] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Inflammation initiated by damage-associated molecular patterns has been implicated for the cognitive decline associated with surgical trauma and serious illness. We determined whether resolution of inflammation mediates dexmedetomidine-induced reduction of damage-associated molecular pattern-induced cognitive decline. METHODS Cognitive decline (assessed by trace fear conditioning) was induced with high molecular group box 1 protein, a damage-associated molecular pattern, in mice that also received blockers of neural (vagal) and humoral inflammation-resolving pathways. Systemic and neuroinflammation was assessed by proinflammatory cytokines. RESULTS Damage-associated molecular pattern-induced cognitive decline and inflammation (mean ± SD) was reversed by dexmedetomidine (trace fear conditioning: 58.77 ± 8.69% vs. 41.45 ± 7.64%, P < 0.0001; plasma interleukin [IL]-1β: 7.0 ± 2.2 pg/ml vs. 49.8 ± 6.0 pg/ml, P < 0.0001; plasma IL-6: 3.2 ± 1.6 pg/ml vs. 19.5 ± 1.7 pg/ml, P < 0.0001; hippocampal IL-1β: 4.1 ± 3.0 pg/mg vs. 41.6 ± 8.0 pg/mg, P < 0.0001; hippocampal IL-6: 3.4 ± 1.3 pg/mg vs. 16.2 ± 2.7 pg/mg, P < 0.0001). Reversal by dexmedetomidine was prevented by blockade of vagomimetic imidazoline and α7 nicotinic acetylcholine receptors but not by α2 adrenoceptor blockade. Netrin-1, the orchestrator of inflammation-resolution, was upregulated (fold-change) by dexmedetomidine (lung: 1.5 ± 0.1 vs. 0.7 ± 0.1, P < 0.0001; spleen: 1.5 ± 0.2 vs. 0.6 ± 0.2, P < 0.0001), resulting in upregulation of proresolving (lipoxin-A4: 1.7 ± 0.2 vs. 0.9 ± 0.2, P < 0.0001) and downregulation of proinflammatory (leukotriene-B4: 1.0 ± 0.2 vs. 3.0 ± 0.3, P < 0.0001) humoral mediators that was prevented by α7 nicotinic acetylcholine receptor blockade. CONCLUSIONS Dexmedetomidine resolves inflammation through vagomimetic (neural) and humoral pathways, thereby preventing damage-associated molecular pattern-mediated cognitive decline.
Collapse
|
29
|
He X, Long G, Quan C, Zhang B, Chen J, Ouyang W. Insulin Resistance Predicts Postoperative Cognitive Dysfunction in Elderly Gastrointestinal Patients. Front Aging Neurosci 2019; 11:197. [PMID: 31440156 PMCID: PMC6694405 DOI: 10.3389/fnagi.2019.00197] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/15/2019] [Indexed: 01/01/2023] Open
Abstract
Background Members of the aging population who undergo surgery are at risk of postoperative cognitive dysfunction (POCD). Exploring an effective and reliable early predictor of POCD is essential to the identification of high-risk patients and to making prospective decisions. The purpose of this study was to examine whether preoperative insulin resistance is an independent predictor of POCD. Methods A total of 124 patients aged 60 years and older and who were scheduled for gastrointestinal surgery were enrolled in a prospective observational clinical study. All participants completed a battery of neuropsychological tests before surgery and 7 days later. POCD was defined as a decline of at least 1.5 SD on two or more of neuropsychological tests. Plasma concentration of the tumor necrosis factor α (TNF-α), C-reactive protein (CRP), and S-100β protein were measured. The status of insulin resistance was assessed by Homeostasis Model Assessment–Insulin Resistance (HOMA-IR). The relationship between HOMA-IR and POCD was assessed by Multivariable logistic regression models and the receiver operating characteristic (ROC) curve. Results Fifty one patients (41.1%) were diagnosed with POCD at 7 days after surgery. Preoperative HOMA-IR values of the POCD group were significantly higher than the non-POCD group. Furthermore, CRP and TNF-α levels of the POCD group were significantly higher at each postoperative time point (P < 0.05). The preoperative HOMA-IR value was an independent predictor of POCD (adjusted OR 1.88, 95% CI, 1.18–2.99) even after adjust for confounding variables, and when dichotomized, individuals above the HOMA-IR threshold (HOMA-IR > 2.6) had a three-times higher risk of POCD (OR 3.26; 95% CI, 1.07–9.91) compared to individuals below the threshold. The areas under the ROC curve of HOMA-IR was 0.804 (95% CI, 0.725–0.883; P < 0.001). The optimal cut-off value was found to be 0.583, with a sensitivity of 84.3% and specificity of 74%. The HOMA-IR value was positively associated with the TNF-α concentration at baseline (R2 = 0.43, P < 0.01) and 1 day after surgery (R2 = 0.3861, P < 0.01). Conclusion Preoperative insulin resistance is an effective predictor for the occurrence of POCD. Targeted prevention and treatment strategies of insulin resistance may be effective interventions of patients at risk for POCD.
Collapse
Affiliation(s)
- Xi He
- Department of Anesthesia, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Ge Long
- Department of Anesthesia, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Chengxuan Quan
- Department of Anesthesia, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Bin Zhang
- Department of Anesthesia, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jia Chen
- Department of Anesthesia, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Wen Ouyang
- Department of Anesthesia, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
30
|
Saxena S, Lai IK, Li R, Maze M. Neuroinflammation is a putative target for the prevention and treatment of perioperative neurocognitive disorders. Br Med Bull 2019; 130:125-135. [PMID: 31049563 DOI: 10.1093/bmb/ldz010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/15/2019] [Accepted: 04/25/2019] [Indexed: 01/06/2023]
Abstract
INTRODUCTION The demographics of aging of the surgical population has increased the risk for perioperative neurocognitive disorders in which trauma-induced neuroinflammation plays a pivotal role. SOURCES OF DATA After determining the scope of the review, the authors used PubMed with select phrases encompassing the words in the scope. Both preclinical and clinical reports were considered. AREAS OF AGREEMENT Neuroinflammation is a sine qua non for development of perioperative neurocognitive disorders. AREAS OF CONTROVERSY What is the best method for ameliorating trauma-induced neuroinflammation while preserving inflammation-based wound healing. GROWING POINTS This review considers how to prepare for and manage the vulnerable elderly surgical patient through the entire spectrum, from preoperative assessment to postoperative period. AREAS TIMELY FOR DEVELOPING RESEARCH What are the most effective and safest interventions for preventing and/or reversing Perioperative Neurocognitive Disorders.
Collapse
Affiliation(s)
- S Saxena
- Department of Anesthesia, CHU-Charleroi, Université Libre de Bruxelles, Charleroi, Belgium.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, 1001 Potrero Avenue Box 1363, San Francisco, CA 94143, USA
| | - I K Lai
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, 1001 Potrero Avenue Box 1363, San Francisco, CA 94143, USA
| | - R Li
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, 1001 Potrero Avenue Box 1363, San Francisco, CA 94143, USA.,Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - M Maze
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, 1001 Potrero Avenue Box 1363, San Francisco, CA 94143, USA
| |
Collapse
|
31
|
Dong H, Wang Y, Zhang X, Zhang X, Qian Y, Ding H, Zhang S. Stabilization of Brain Mast Cells Alleviates LPS-Induced Neuroinflammation by Inhibiting Microglia Activation. Front Cell Neurosci 2019; 13:191. [PMID: 31130850 PMCID: PMC6509474 DOI: 10.3389/fncel.2019.00191] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/16/2019] [Indexed: 01/03/2023] Open
Abstract
Background The functional aspects of mast cell-microglia interactions are important in neuroinflammation. Our previous studies have demonstrated that mast cell degranulation can directly induce microglia activation. However, the role of mast cells in Lipopolysaccharide (LPS)-induced microglia activation, neuroinflammation and cognitive impairment has not been clarified. Methods This study investigated the interaction between brain microglia and mast cells in vivo through site-directed injection of cromolyn into rat right hypothalamus using stereotaxic techniques. Cognitive function was subsequently assessed using trace fear conditioning and Y maze tests. Mast cells in rat brain were stained with toluidine blue and counted using Cell D software. Microglia activation was assessed by Iba1 immunohistochemistry both in rat brain and in mast cell-deficient KitW-sh/W-sh mice. Receptor expression in rat microglia was determined using flow cytometry analysis. Cytokine levels in rat brain tissue and cell supernatant were measured using high-throughput ELISA. Western blotting was used to analyze Cell signaling proteins. Results In this study, intraperitoneal injection of 1 mg/kg LPS induced mast cell activation in hypothalamus and cognitive dysfunction in rats, and that this process can be repressed by the mast cell stabilizer cromolyn (200 μg). Meanwhile, in mice, LPS IP injection induced significant microglia activation 24 h later in the hypothalamus of wild-type (WT) mice, but had little effect in KitW-sh/W-sh mice. The stabilization of mast cells in rats inhibited LPS-induced microglia activation, inflammatory factors release, and the activation of MAPK, AKT, and NF-κB signaling pathways. We also found that LPS selectively provokes upregulation of H1R, H4R, PAR2, and TLR4, but downregulation of H2R and H3R, in ipsilateral hypothalamus microglia; these effects were partially inhibited by cromolyn. In addition, LPS was also found to induce activation of P815 cells in vitro, consistent with findings from in vivo experiments. These activated P815 cells also induced cytokine release from microglia, which was mediated by the MAPK signaling pathway. Conclusion Taken together, our results demonstrate that stabilization of mast cells can inhibit LPS-induced neuroinflammation and memory impairment, suggesting a novel treatment strategy for neuroinflammation-related diseases.
Collapse
Affiliation(s)
- Hongquan Dong
- Clinical Research Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yiming Wang
- Infection and Immunity Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,School of Medicine, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Xiaojun Zhang
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Zhang
- Department of Anesthesiology, Shanghai First People's Hospital, Shanghai, China
| | - Yanning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haixia Ding
- Department of Geriatric, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shu Zhang
- Clinical Research Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
32
|
Meng F, Li N, Li D, Song B, Li L. The presence of elevated circulating trimethylamine N-oxide exaggerates postoperative cognitive dysfunction in aged rats. Behav Brain Res 2019; 368:111902. [PMID: 30980850 DOI: 10.1016/j.bbr.2019.111902] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/30/2019] [Accepted: 04/09/2019] [Indexed: 01/17/2023]
Abstract
Surgical trauma can cause brain oxidative stress and neuroinflammation, leading to postoperative cognitive dysfunction (POCD), especially in the elderly. Additionally, the pre-existing risk factors may enhance POCD. Gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) has recently been shown to contribute to the pathogenesis of many diseases by increasing oxidative stress and inflammation in the peripheral tissues. Here we examined whether the presence of elevated circulating TMAO would influence surgery-induced cognitive decline. Aged rats were treated with vehicle or TMAO for 3 weeks. After two weeks of treatment, these rats underwent sham-operation or laparotomy. One week after surgery, rats underwent laparotomy exhibited hippocampal-dependent cognitive dysfunction as evidenced by reduced contextual freezing time, which was associated with elevated plasma proinflammatory cytokine levels, increased microglia-mediated neuroinflammation and reactive oxygen species (ROS) production in the hippocampus. Treatment with TMAO, which elevated plasma TMAO before and 1 week after surgery, further increased microglia-mediated neuroinflammation and ROS production in the hippocampus, resulting in exaggerated cognitive dysfunction in laparotomy group but not in sham-operation group. Moreover, TMAO treatment decreased expression of antioxidant enzyme methionine sulfoxide reductase (Msr) A in both groups. The results suggest that the presence of elevated circulating TMAO downregulates antioxidant enzyme MsrA in the hippocampus, which may increase the susceptibility to surgery-induced oxidative stress, contributing to exaggerations of neuroinflammation and cognitive decline in aged rats following surgery. Interventions to reduce circulating TMAO in the perioperative period may be a novel strategy to prevent the exaggeration of cognitive decline in elderly patients with high circulating TMAO.
Collapse
Affiliation(s)
- Fanqing Meng
- Department of Anesthesiology, Jinan Maternity and Childcare Hospital, Jinan City, Shandong Province, China
| | - Ning Li
- School of Public Health, Jining Medical University, Jining City, Shandong Province, China
| | - Dongliang Li
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan City, Shandong Province, China
| | - Bingfeng Song
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan City, Shandong Province, China
| | - Liang Li
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan City, Shandong Province, China.
| |
Collapse
|
33
|
Zhang X, Li N, Lu L, Lin Q, Li L, Dong P, Yang B, Li D, Fei J. Pioglitazone prevents sevoflurane‑induced neuroinflammation and cognitive decline in a rat model of chronic intermittent hypoxia by upregulating hippocampal PPAR‑γ. Mol Med Rep 2019; 19:3815-3822. [PMID: 30896803 DOI: 10.3892/mmr.2019.10052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 03/08/2019] [Indexed: 11/06/2022] Open
Abstract
Post‑operative cognitive dysfunction is a common complication after anesthesia and surgery. Sevoflurane (SEV), a widely used inhalational anesthetic, can exaggerate neuroinflammation and cause cognitive dysfunction under chronic intermittent hypoxia (CIH) conditions by downregulating hippocampal peroxisome proliferator‑activated receptor‑γ (PPAR‑γ). In the present study, it was examined whether treatment with PPAR‑γ agonist pioglitazone (PIO) is beneficial in counteracting SEV‑induced neuroinflammation and cognitive decline in a rat model of CIH. Rats were exposed to CIH for 4 weeks. After 2 weeks of CIH, these animals underwent either 2.6% SEV or control (CON) exposure for 4 h. PIO (60 mg/kg) or vehicle (VEH) was administered orally twice daily for 2 weeks, starting one day prior to SEV or CON exposure. Compared with CIH‑CON+VEH rats, CIH‑SEV+VEH rats exhibited significant cognitive decline as indicated by increased latency to locate the hidden platform and shorter dwell‑time in the goal quadrant in the Morris Water Maze task. Molecular studies revealed that CIH‑SEV+VEH rats had increased proinflammatory cytokine expression and microglial activation in the hippocampus, which were associated with decreased PPAR‑γ activity. Notably, SEV‑induced cognitive decline and increases in proinflammatory cytokine expression and microglial activation were prevented by PIO, which increased hippocampal PPAR‑γ activity. PIO also increased hippocampal PPAR‑γ activity in CIH‑CON rats but did not alter proinflammatory cytokine expression and microglial activation as well as cognitive function. Additionally, expression of hippocampal PPAR‑α and PPAR‑β, two other PPAR isotypes, were comparable among the groups. These data suggest that PIO prevents SEV‑induced exaggeration of neuroinflammation and cognitive decline under CIH conditions by upregulating hippocampal PPAR‑γ. PIO may have the potential to prevent anesthetic SEV‑induced cognitive decline in surgical patients with obstructive sleep apnea.
Collapse
Affiliation(s)
- Xiyan Zhang
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Ning Li
- School of Public Health, Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Lingling Lu
- Shandong Province Jining Health School, Jining, Shandong 272067, P.R. China
| | - Quan Lin
- Shengli Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China
| | - Liang Li
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Ping Dong
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Bo Yang
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Dongliang Li
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jianchun Fei
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
34
|
Li R, Lai IK, Maze M. Specialised pro-resolving mediators: the magic bullet for perioperative neurocognitive disorders? Br J Anaesth 2019; 122:292-294. [PMID: 30770043 DOI: 10.1016/j.bja.2018.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 11/19/2018] [Indexed: 11/19/2022] Open
Affiliation(s)
- Rong Li
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA; Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi, China
| | - Ieng Kit Lai
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Mervyn Maze
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA.
| |
Collapse
|
35
|
Luo A, Yan J, Tang X, Zhao Y, Zhou B, Li S. Postoperative cognitive dysfunction in the aged: the collision of neuroinflammaging with perioperative neuroinflammation. Inflammopharmacology 2019; 27:27-37. [PMID: 30607668 DOI: 10.1007/s10787-018-00559-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/26/2018] [Indexed: 12/25/2022]
Abstract
The aging population is burgeoning globally and this trend presents great challenges to the current healthcare system as the growing number of aged individuals receives procedures of surgery and anesthesia. Postoperative cognitive dysfunction (POCD) is a severe postoperative neurological sequela. Advanced age is considered as an independent risk factor of POCD. Mounting evidence have shown that neuroinflammation plays an essential role in POCD. However, it remains debatable why this complication occurs highly in the aged individuals. As known, aging itself is the major common high-risk factor for age-associated disorders including diabetes, cardiovascular disease, cancer, and neurodegenerative diseases. Chronic low-grade neuroinflammation (dubbed neuroinflammaging in the present paper) is a hallmark alternation and contributes to age-related cognitive decline in the normal aging. Interestingly, several lines of findings show that the neuroinflammatory pathogenesis of POCD is age-dependent. It suggests that age-related changes, especially the neuroinflammaging, are possibly associated with the postoperative cognitive impairment. Understanding the role of neuroinflammaging in POCD is crucial to elucidate the mechanism of POCD and develop strategies to prevent or treat POCD. Here the focus of this review is on the potential role of neuroinflammaging in the mechanism of POCD. Lastly, we briefly review promising interventions for this neurological sequela.
Collapse
Affiliation(s)
- AiLin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Jing Yan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - XiaoLe Tang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - YiLin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - BiYun Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - ShiYong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
36
|
Ni P, Dong H, Wang Y, Zhou Q, Xu M, Qian Y, Sun J. IL-17A contributes to perioperative neurocognitive disorders through blood-brain barrier disruption in aged mice. J Neuroinflammation 2018; 15:332. [PMID: 30501622 PMCID: PMC6267879 DOI: 10.1186/s12974-018-1374-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/19/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Perioperative neurocognitive disorders (PND) occur frequently after surgery, especially in aged patients. Surgery-induced neuroinflammation and blood-brain barrier (BBB) dysfunction play a crucial role in the pathogenesis of PND. Interleukin-17A (IL-17A) increases after surgical stress and will be involved in BBB dysfunction. However, the effect of IL-17A on BBB function during PND remains poorly understood. METHODS Male wild-type C57BL/6J mice (15 months old) received tibial fracture surgery and fixation to establish the PND model. All the mice were injected intraperitoneally with an IL-17A-neutralizing antibody (Abs) or isotype-control Abs 30 min before tibial fracture surgery. Animal behaviour tests conducted 24 h after surgery included the contextual fear conditioning and Y maze tests. Serum and hippocampus IL-17A levels and hippocampus IL-6 and IL-1β levels were detected by ELISA. BBB function was detected by Evans blue (EB) test. Hippocampus matrix metalloproteinase-2 (MMP-2)- and MMP-9-positive cells were detected by immunohistochemistry. Hippocampus albumin, occludin, claudin-5 and IL-17A receptors were detected by Western blot. For the in vitro experiment, bEnd.3 cells were incubated with IL-17A. Cell IL-17A receptors were detected by immunofluorescence. Cellular MMP-2, MMP-9, occludin, and claudin-5 were detected by Western blot. RESULTS Tibial fracture surgery promoted memory impairment, increased levels of IL-17A and IL-17A receptors, inflammatory factor production and BBB dysfunction. IL-17A Abs inhibited this effect, including improving memory function, decreasing inflammatory factor production and alleviating BBB disruption, indicated by decreased tight junctions (TJs) and increased MMPs after surgery. The in vitro study suggested that recombinant IL-17A could upregulate the expression of IL-17A receptors, decrease TJs and increase the level of MMPs in bEnd.3 cells. CONCLUSIONS Our results suggested that IL-17A-promoted BBB disruption might play an important role in the pathogenesis of PND.
Collapse
Affiliation(s)
- Pengfei Ni
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, People's Republic of China
| | - Hongquan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, People's Republic of China
| | - Yiwei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, People's Republic of China
| | - Qin Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, People's Republic of China
| | - Mengmeng Xu
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, People's Republic of China
| | - Yanning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, People's Republic of China
| | - Jie Sun
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu, 210029, People's Republic of China.
| |
Collapse
|
37
|
Wei M, Lyu H, Huo K, Su H. Impact of Bone Fracture on Ischemic Stroke Recovery. Int J Mol Sci 2018; 19:ijms19051533. [PMID: 29786644 PMCID: PMC5983742 DOI: 10.3390/ijms19051533] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 01/21/2023] Open
Abstract
Stroke is one of the most devastating complications of bone fracture, occurring in up to 4% of patients after surgical repair for hip fracture. Bone fracture and ischemic stroke have many common risk factors. The impact of bone fracture on stroke recovery has not drawn much attention in the research field. Bone fracture could occur in stroke patients at different times during the recovery phase, which steepens the trajectory of cognitive decline, greatly affects the quality of life, and causes a heavy burden on healthcare resources. In this paper, we reviewed the growing information on the pathophysiological mechanisms by which bone fracture may affect ischemic stroke recovery process.
Collapse
Affiliation(s)
- Meng Wei
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94110, USA.
| | - Haiyian Lyu
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94110, USA.
| | - Kang Huo
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94110, USA.
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94110, USA.
| |
Collapse
|
38
|
Zhang X, Jiang X, Huang L, Tian W, Chen X, Gu X, Yu W, Tian J, Su D. Central cholinergic system mediates working memory deficit induced by anesthesia/surgery in adult mice. Brain Behav 2018; 8:e00957. [PMID: 29761010 PMCID: PMC5943735 DOI: 10.1002/brb3.957] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/18/2018] [Accepted: 02/23/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is consistently associated with increased morbidity and mortality, which has become a major concern of patients and caregivers. Although POCD occurs mainly in aged patients, it happens at any age. Previous studies demonstrated that anesthesia/surgery had no effects on reference memory of adult mice. However, whether it impairs working memory remains unclear. Working memory deficit would result in many deficits of executive function. We hypothesized that anesthesia/surgery impaired the working memory of adult mice and the central cholinergic system was involved. METHOD Tibial fracture internal fixation under the anesthesia of isoflurane was performed in two-month-old C57BL/6 mice. Two days later, the spatial reference memory and working memory were measured by a Morris Water Maze (MWM). Donepezil, an inhibitor of acetylcholinesterase (AChE), was administered in another cohort mice for 4 weeks. Then, the working memory was measured by MWM 2 days after anesthesia/surgery. Western blot was used to detect the protein levels of acetylcholine transferase (ChAT), AChE, vesicular acetylcholine transporter (VAChT), and choline transporter (ChT) in the prefrontal cortex (PFC). RESULTS We found that anesthesia/surgery had no effects on the reference memory, but it impaired the working memory in adult mice. Meanwhile, we also found that the protein level of ChAT in PFC decreased significantly compared with that in control group. Donepezil pretreatment prevented working memory impairment and the decrease of the protein levels of ChAT induced by anesthesia/surgery. CONCLUSION These results suggest that anesthesia/surgery leads to working memory deficits in adult mice and central cholinergic system impairment is involved.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Anesthesiology Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Xuliang Jiang
- Department of Anesthesiology Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Lili Huang
- Department of Anesthesiology Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Weitian Tian
- Department of Anesthesiology Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Xuemei Chen
- Department of Anesthesiology Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Xiyao Gu
- Department of Anesthesiology Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Weifeng Yu
- Department of Anesthesiology Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Jie Tian
- Department of Anesthesiology Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Diansan Su
- Department of Anesthesiology Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| |
Collapse
|
39
|
Feinkohl I, Winterer G, Pischon T. Associations of dyslipidaemia and lipid-lowering treatment with risk of postoperative cognitive dysfunction: a systematic review and meta-analysis. J Epidemiol Community Health 2018; 72:499-506. [PMID: 29437865 DOI: 10.1136/jech-2017-210338] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 11/03/2022]
Abstract
BACKGROUND Lipid imbalance is linked to age-related cognitive impairment, but its role in postoperative cognitive dysfunction (POCD) is unknown. Here, we present a systematic review and meta-analysis on dyslipidaemia, lipid-lowering treatment and POCD risk. METHODS PubMed, Ovid SP and Cochrane databases were searched for longitudinal studies that reported on associations of any measure of dyslipidaemia and/or lipid-lowering treatment with POCD as relative risks (RRs) or ORs. Fixed-effects inverse variance models were used to combine effects. RESULTS Of 205 articles identified in the search, 17 studies on 2725 patients (grand mean age 67 years; mean age range 61-71 years) with follow-up periods of 1 day to 4 years (median 7 days; IQR 1-68 days) were included. Studies focused almost exclusively on hypercholesterolaemia as a measure of dyslipidaemia and on statins as lipid-lowering treatment. Across 12 studies on hypercholesterolaemia, we found no association with POCD risk (RR 0.93; 95% CI 0.80 to 1.08; P=0.34). Statin use before surgery was associated with a reduced POCD risk across eight studies (RR 0.81; 95% CI 0.67 to 0.98; P=0.03), but data on treatment duration were lacking. CONCLUSION Statin users appear to be at reduced risk of POCD although hypercholesterolaemia per se may not be associated with POCD risk. Trial studies are needed to evaluate the usefulness of statins in POCD prevention.
Collapse
Affiliation(s)
- Insa Feinkohl
- Molecular Epidemiology Research Group, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Georg Winterer
- Department of Anesthesiology and Operative Intensive Care Medicine, Experimental and Clinical Research Center (ECRC), Charité Universitaetsmedizin, Berlin, Germany
| | - Tobias Pischon
- Molecular Epidemiology Research Group, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Charité Universitaetsmedizin Berlin, Berlin, Germany.,MDC/BIH Biobank, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC) and Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
40
|
Feng X, Uchida Y, Koch L, Britton S, Hu J, Lutrin D, Maze M. Exercise Prevents Enhanced Postoperative Neuroinflammation and Cognitive Decline and Rectifies the Gut Microbiome in a Rat Model of Metabolic Syndrome. Front Immunol 2017; 8:1768. [PMID: 29321779 PMCID: PMC5732173 DOI: 10.3389/fimmu.2017.01768] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/27/2017] [Indexed: 12/21/2022] Open
Abstract
Introduction Postoperative cognitive decline (PCD) can affect in excess of 10% of surgical patients and can be considerably higher with risk factors including advanced age, perioperative infection, and metabolic conditions such as obesity and insulin resistance. To define underlying pathophysiologic processes, we used animal models including a rat model of metabolic syndrome generated by breeding for a trait of low aerobic exercise tolerance. After 35 generations, the low capacity runner (LCR) rats differ 10-fold in their aerobic exercise capacity from high capacity runner (HCR) rats. The LCR rats respond to surgical procedure with an abnormal phenotype consisting of exaggerated and persistent PCD and failure to resolve neuroinflammation. We determined whether preoperative exercise can rectify the abnormal surgical phenotype. Materials and methods Following institutional approval of the protocol each of male LCR and male HCR rats were randomly assigned to four groups and subjected to isoflurane anesthesia and tibia fracture with internal fixation (surgery) or anesthesia alone (sham surgery) and to a preoperative exercise regimen that involved walking for 10 km on a treadmill over 6 weeks (exercise) or being placed on a stationary treadmill (no exercise). Feces were collected before and after exercise for assessment of gut microbiome. Three days following surgery or sham surgery the rats were tested for ability to recall a contextual aversive stimulus in a trace fear conditioning paradigm. Thereafter some rats were euthanized and the hippocampus harvested for analysis of inflammatory mediators. At 3 months, the remainder of the rats were tested for memory recall by the probe test in a Morris Water Maze. Results Postoperatively, LCR rats exhibited exaggerated cognitive decline both at 3 days and at 3 months that was prevented by preoperative exercise. Similarly, LCR rats had excessive postoperative neuroinflammation that was normalized by preoperative exercise. Diversity of the gut microbiome in the LCR rats improved after exercise. Discussion Preoperative exercise eliminated the metabolic syndrome risk for the abnormal surgical phenotype and was associated with a more diverse gut microbiome. Prehabilitation with exercise should be considered as a possible intervention to prevent exaggerated and persistent PCD in high-risk settings.
Collapse
Affiliation(s)
- Xiaomei Feng
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, United States
| | - Yosuke Uchida
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, United States
| | - Lauren Koch
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Steve Britton
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jun Hu
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, United States.,Department of Anesthesia, Tongling People's Hospital, Tongling, China
| | - David Lutrin
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, United States
| | - Mervyn Maze
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
41
|
Lang LH, Parekh K, Tsui BYK, Maze M. Perioperative management of the obese surgical patient. Br Med Bull 2017; 124:135-155. [PMID: 29140418 PMCID: PMC5862330 DOI: 10.1093/bmb/ldx041] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/29/2017] [Accepted: 10/10/2017] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The escalation in the prevalence of obesity throughout the world has led to an upsurge in the number of obese surgical patients to whom perioperative care needs to be delivered. SOURCES OF DATA After determining the scope of the review, the authors used PubMed with select phrases encompassing the words in the scope. Both preclinical and clinical reports were considered. AREAS OF AGREEMENT There were no controversies regarding preoperative management and the intraoperative care of the obese surgical patient. AREAS OF CONTROVERSY Is there a healthy obese state that gives rise to the obesity paradox regarding postoperative complications? GROWING POINTS This review considers how to prepare for and manage the obese surgical patient through the entire spectrum, from preoperative assessment to possible postoperative intensive care. AREAS TIMELY FOR DEVELOPING RESEARCH What results in an obese patient developing 'unhealthy' obesity?
Collapse
Affiliation(s)
- L H Lang
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, 1001 Potrero Avenue Box 1363, San Francisco, CA 94143, USA
| | - K Parekh
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, 1001 Potrero Avenue Box 1363, San Francisco, CA 94143, USA
| | - B Y K Tsui
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, 1001 Potrero Avenue Box 1363, San Francisco, CA 94143, USA
| | - M Maze
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, 1001 Potrero Avenue Box 1363, San Francisco, CA 94143, USA
| |
Collapse
|
42
|
Li D, Liu L, Li L, Li X, Huang B, Zhou C, Zhang Z, Wang C, Dong P, Zhang X, Yang B, Zhang L. Sevoflurane Induces Exaggerated and Persistent Cognitive Decline in a Type II Diabetic Rat Model by Aggregating Hippocampal Inflammation. Front Pharmacol 2017; 8:886. [PMID: 29238302 PMCID: PMC5712596 DOI: 10.3389/fphar.2017.00886] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 11/17/2017] [Indexed: 11/13/2022] Open
Abstract
Recent studies show that a moderate duration of sevoflurane, one of the most commonly used volatile anesthetics in clinical practice, does not induce cognitive impairment in animals under physiological conditions. However, the influence of sevoflurane on cognitive function under diabetic conditions remains unclear. The aim of this study was to determine whether sevoflurane causes cognitive decline in a rat model of type 2 diabetes mellitus (DM) and if so, to explore a possible underlying mechanism. Diabetic Goto–Kakizaki (GK) rats and non-diabetic Wistar rats underwent 2.6% sevoflurane for 4 h or sham (control) exposure. Cognitive function and hippocampal inflammation were assessed 1 week and 5 months after sevoflurane or sham exposure. Compared with Wistar control rats, GK control rats exhibited shorter freezing times in Trace fear conditioning task 1 week after exposure, took longer to locate the submerged platform and had shorter dwell-time in the target quadrant in Morris Water Maze task 5 months after exposure. GK rats that received sevoflurane not only exhibited less freezing times 1 week after exposure, but also spent more time to locate the submerged platform and had less dwell-time in the target quadrant, compared with GK control rats. Molecular studies revealed that the levels of pro-inflammatory cytokines and activated microglia in the hippocampus were higher in GK control rats than those in Wistar control rats at both time points and were further increased in GK rats receiving sevoflurane. Wistar rats that received sevoflurane and Wistar control rats did not differ in any cognitive performance and molecular assessment. The results suggest that diabetic GK rats exhibit cognitive dysfunction probably due to increased hippocampal inflammation, and that sevoflurane induces exaggerated and persistent cognitive decline in GK rat by aggregating hippocampal inflammation.
Collapse
Affiliation(s)
- Dongliang Li
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Lingling Liu
- Jining Health School of Shandong Province, Jining, China
| | - Liang Li
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital and Brain Science Research Institute, Shandong University, Jinan, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital and Brain Science Research Institute, Shandong University, Jinan, China
| | - Changqing Zhou
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Zhaohang Zhang
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Chunling Wang
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Ping Dong
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Xiyan Zhang
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Bo Yang
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Li Zhang
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
43
|
Xu J, Dong H, Qian Q, Zhang X, Wang Y, Jin W, Qian Y. Astrocyte-derived CCL2 participates in surgery-induced cognitive dysfunction and neuroinflammation via evoking microglia activation. Behav Brain Res 2017; 332:145-153. [PMID: 28587818 DOI: 10.1016/j.bbr.2017.05.066] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/15/2017] [Accepted: 05/30/2017] [Indexed: 12/14/2022]
Abstract
Neuroinflammation induced by peripheral trauma plays a key role in the development of postoperative cognitive dysfunction (POCD). Substantial evidence points to reactive glia as a pivotal factor during the inflammation process. However, little is known about the functional interactions between astrocytes and microglia. Recent evidence suggests the involvement of the CCL2-CCR2 pathway in CNS inflammation-related diseases. Our previous studies have suggested that astrocyte-derived CCL2 can induce microglial activation in vitro. Within this context, we sought to determine if the CCL2/CCR2 axis is involved in the crosstalk between astrocytes and microglia, contributing to increased neuroinflammation. Here, we show that tibial fracture surgery promoted CCL2 upregulation in activated astrocytes, increased CCR2 expression in activated microglia, and induced deficits in learning and memory. Site-directed pre-injection of RS504393, a CCR2 antagonist, inhibited this effect by reducing microglial activation, M1 polarization, inflammatory cytokines, and neuronal injury and death and improving cognitive function. Taken together, these data implicate CCL2-CCR2 signaling in astrocyte-mediated microglial activation in central nervous system (CNS) inflammation and suggest that interference with CCL2 signaling could constitute another potential therapeutic target for POCD.
Collapse
Affiliation(s)
- Jiawen Xu
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210002, PR China
| | - Hongquan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210002, PR China
| | - Qingqing Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210002, PR China
| | - Xiang Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210002, PR China
| | - Yiwei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210002, PR China
| | - Wenjie Jin
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210002, PR China.
| | - Yanning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210002, PR China.
| |
Collapse
|
44
|
Forsberg A, Cervenka S, Jonsson Fagerlund M, Rasmussen LS, Zetterberg H, Erlandsson Harris H, Stridh P, Christensson E, Granström A, Schening A, Dymmel K, Knave N, Terrando N, Maze M, Borg J, Varrone A, Halldin C, Blennow K, Farde L, Eriksson LI. The immune response of the human brain to abdominal surgery. Ann Neurol 2017; 81:572-582. [DOI: 10.1002/ana.24909] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/15/2017] [Accepted: 02/26/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Anton Forsberg
- Department of Clinical Neuroscience; Center for Psychiatric Research, Karolinska Institutet; Stockholm Sweden
| | - Simon Cervenka
- Department of Clinical Neuroscience; Center for Psychiatric Research, Karolinska Institutet; Stockholm Sweden
| | - Malin Jonsson Fagerlund
- Department of Physiology and Pharmacology; Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet; Stockholm Sweden
- Perioperative Medicine and Intensive Care; Karolinska University Hospital; Stockholm Sweden
| | - Lars S. Rasmussen
- Department of Anesthesia; Center of Head and Orthopedics, Rigshospitalet, University of Copenhagen; Copenhagen Denmark
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology; Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at University of Gothenburg; Mölndal Sweden
- Clinical Neurochemistry Laboratory; Sahlgrenska University Hospital of Gothenburg; Mölndal Sweden
- Department of Molecular Neuroscience; University College London Institute of Neurology; London United Kingdom
| | - Helena Erlandsson Harris
- Center for Molecular Medicine; Department of Medicine, Karolinska Institutet; Stockholm Sweden
- Rheumatology Unit; Karolinska University Hospital; Stockholm Sweden
| | - Pernilla Stridh
- Center for Molecular Medicine; Department of Clinical Neuroscience, Karolinska Institutet; Stockholm Sweden
| | - Eva Christensson
- Department of Physiology and Pharmacology; Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet; Stockholm Sweden
- Perioperative Medicine and Intensive Care; Karolinska University Hospital; Stockholm Sweden
| | - Anna Granström
- Department of Physiology and Pharmacology; Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet; Stockholm Sweden
- Perioperative Medicine and Intensive Care; Karolinska University Hospital; Stockholm Sweden
| | - Anna Schening
- Department of Physiology and Pharmacology; Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet; Stockholm Sweden
- Perioperative Medicine and Intensive Care; Karolinska University Hospital; Stockholm Sweden
| | - Karin Dymmel
- Department of Physiology and Pharmacology; Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet; Stockholm Sweden
- Perioperative Medicine and Intensive Care; Karolinska University Hospital; Stockholm Sweden
| | - Nina Knave
- Department of Clinical Neuroscience; Center for Psychiatric Research, Karolinska Institutet; Stockholm Sweden
| | - Niccolò Terrando
- Department of Anesthesiology; Basic Science Division, Duke University Medical Center; Durham NC
| | - Mervyn Maze
- Department of Anesthesia and Perioperative Care and Center for Cerebrovascular Research; University of California; San Francisco, San Francisco CA
| | - Jacqueline Borg
- Department of Clinical Neuroscience; Center for Psychiatric Research, Karolinska Institutet; Stockholm Sweden
| | - Andrea Varrone
- Department of Clinical Neuroscience; Center for Psychiatric Research, Karolinska Institutet; Stockholm Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience; Center for Psychiatric Research, Karolinska Institutet; Stockholm Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology; Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at University of Gothenburg; Mölndal Sweden
- Clinical Neurochemistry Laboratory; Sahlgrenska University Hospital of Gothenburg; Mölndal Sweden
| | - Lars Farde
- Department of Clinical Neuroscience; Center for Psychiatric Research, Karolinska Institutet; Stockholm Sweden
- Personalized Healthcare and Biomarkers; AstraZeneca, PET Science Center, Karolinska Institutet, Karolinska University Hospital; Stockholm Sweden
| | - Lars I. Eriksson
- Department of Physiology and Pharmacology; Section for Anesthesiology and Intensive Care Medicine, Karolinska Institutet; Stockholm Sweden
- Perioperative Medicine and Intensive Care; Karolinska University Hospital; Stockholm Sweden
| |
Collapse
|
45
|
Feng X, Valdearcos M, Uchida Y, Lutrin D, Maze M, Koliwad SK. Microglia mediate postoperative hippocampal inflammation and cognitive decline in mice. JCI Insight 2017; 2:e91229. [PMID: 28405620 PMCID: PMC5374063 DOI: 10.1172/jci.insight.91229] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Surgery can induce cognitive decline, a risk that increases with advancing age. In rodents, postoperative cognitive decline (POCD) is associated with the inflammatory activation of hippocampal microglia. To examine the role of microglia in POCD, we inhibited the colony-stimulating factor 1 receptor (CSF1R) in adult mice, effectively depleting CNS microglia. Surgical trauma (tibial fracture) reduced the ability of mice to remember a conditioned response learned preoperatively, a deficit more pronounced and persistent in mice with diet-induced obesity (DIO). Whereas microglial depletion by itself did not affect learning or memory, perioperative microglial depletion remarkably protected mice, including those with DIO, from POCD. This protection was associated with reduced hippocampal levels of inflammatory mediators, abrogation of hippocampal recruitment of CCR2+ leukocytes, and higher levels of circulating inflammation-resolving factors. Targeting microglia may thus be a viable strategy to mitigate the development of POCD, particularly in those with increased vulnerability.
Collapse
Affiliation(s)
| | | | | | | | - Mervyn Maze
- Department of Anesthesia and Perioperative Care
| | - Suneil K Koliwad
- The Diabetes Center.,Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
46
|
|
47
|
Zhang Z, Yuan H, Zhao H, Qi B, Li F, An L. PPARγ activation ameliorates postoperative cognitive decline probably through suppressing hippocampal neuroinflammation in aged mice. Int Immunopharmacol 2016; 43:53-61. [PMID: 27940378 DOI: 10.1016/j.intimp.2016.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 12/20/2022]
Abstract
Neuroinflammation plays a key role in many neurodegenerative disorders, including postoperative cognitive decline (POCD). Growing evidence has demonstrated that activation of the peroxisome proliferator-activated receptor-γ (PPARγ) attenuates the inflammatory response and improves cognitive dysfunction associated with many neuropsychiatric disorders. We hypothesize that down-regulation of PPARγ is linked to neuroinflammation and the subsequent cognitive deficits observed in an animal model of POCD. In the present study, the POCD animal model was established by performing an exploratory laparotomy under isoflurane anesthesia in 20-month-old male C57BL/6 mice. Behavioral tests, inflammatory biomarkers, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β, ionized calcium-binding adaptor molecule-1 (IBA1)-positive cells, as well as glial fibrillary acidic protein (GFAP)-positive cells and brain-derived neurotrophic factor (BDNF), were measured. Herein, we showed that surgery induced profound impairment in cognition that was associated with significant decreases in PPARγ and BDNF expression, and significant increases in IL-1β, IBA1-positive cells, and GFAP-positive cells in the hippocampus. As expected, the PPARγ agonist pioglitazone attenuated the surgery-induced inflammatory changes and rescued the associated cognitive impairment. However, these beneficial effects were abolished by the PPARγ specific antagonist GW9662, suggesting a pivotal role of the PPARγ pathway in the pathogenesis of POCD. Taken together, our results provide evidence that down-regulation of PPARγ may be involved in neuroinflammation and subsequent POCD, and suggest that activation of PPARγ by pioglitazone may represent a new way to prevent or treat POCD.
Collapse
Affiliation(s)
- Zhijie Zhang
- Department of Anesthesiology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300, China
| | - Hongmei Yuan
- Department of Anesthesiology, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China
| | - Huatang Zhao
- Department of Anesthesiology, Liaocheng Second People's Hospital, Liaocheng, Shandong 252601, China
| | - Bin Qi
- Department of Anesthesiology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300, China
| | - Fayin Li
- Department of Anesthesiology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300, China
| | - Lijun An
- Department of Anesthesiology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu 223300, China.
| |
Collapse
|
48
|
Browndyke JN, Berger M, Harshbarger TB, Smith PJ, White W, Bisanar TL, Alexander JH, Gaca JG, Welsh-Bohmer K, Newman MF, Mathew JP. Resting-State Functional Connectivity and Cognition After Major Cardiac Surgery in Older Adults without Preoperative Cognitive Impairment: Preliminary Findings. J Am Geriatr Soc 2016; 65:e6-e12. [PMID: 27858963 DOI: 10.1111/jgs.14534] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVES To look for changes in intrinsic functional brain connectivity associated with postoperative changes in cognition, a common complication in seniors undergoing major surgery, using resting-state functional magnetic resonance imaging. DESIGN Objective cognitive testing and functional brain imaging were prospectively performed at preoperative baseline and 6 weeks after surgery and at the same time intervals in nonsurgical controls. SETTING Academic medical center. PARTICIPANTS Older adults undergoing cardiac surgery (n = 12) and nonsurgical older adult controls with a history of coronary artery disease (n = 12); no participants had cognitive impairment at preoperative baseline (Mini-Mental State Examination score >27). MEASUREMENTS Differences in resting-state functional connectivity (RSFC) and global cognitive change relationships were assessed using a voxel-wise intrinsic connectivity method, controlling for demographic factors and pre- and perioperative cerebral white matter disease volume. Analyses were corrected for multiple comparisons (false discovery rate P < .01). RESULTS Global cognitive change after cardiac surgery was significantly associated with intrinsic RSFC changes in regions of the posterior cingulate cortex and right superior frontal gyrus-anatomical and functional locations of the brain's default mode network (DMN). No statistically significant relationships were found between global cognitive change and RSFC change in nonsurgical controls. CONCLUSION Clinicians have long known that some older adults develop postoperative cognitive dysfunction (POCD) after anesthesia and surgery, yet the neurobiological correlates of POCD are not well defined. The current results suggest that altered RSFC in specific DMN regions is positively correlated with global cognitive change 6 weeks after cardiac surgery, suggesting that DMN activity and connectivity could be important diagnostic markers of POCD or intervention targets for potential POCD treatment efforts.
Collapse
Affiliation(s)
- Jeffrey N Browndyke
- Geriatric Behavioral Health Division, Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina.,Institute for Brain Sciences, Duke University, Durham, North Carolina.,Brain Imaging and Analysis Center, Duke University, Durham, North Carolina
| | - Miles Berger
- Division of Neuroanesthesiology, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - Todd B Harshbarger
- Brain Imaging and Analysis Center, Duke University, Durham, North Carolina.,Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Patrick J Smith
- Behavioral Medicine Division, Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - William White
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - Tiffany L Bisanar
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - John H Alexander
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Jeffrey G Gaca
- Division of Cardiothoracic Surgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Kathleen Welsh-Bohmer
- Geriatric Behavioral Health Division, Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Mark F Newman
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - Joseph P Mathew
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
49
|
Paredes S, Cortínez L, Contreras V, Silbert B. Post-operative cognitive dysfunction at 3 months in adults after non-cardiac surgery: a qualitative systematic review. Acta Anaesthesiol Scand 2016; 60:1043-58. [PMID: 27027720 DOI: 10.1111/aas.12724] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Post-operative cognitive dysfunction is defined as a decline in cognitive functions that occurs after surgery, but different diagnostic criteria and incidences have been reported in medical literature. Our aim was to determine incidence of post-operative cognitive dysfunction 3 months after non-cardiac surgery in adults. METHODS A systematic review of available evidence was performed by PRISMA guidelines. A search was done in May-July 2015 on PubMed, EMBASE, CINAHL, LILACS, Scielo, Clinical Trials, and Grey Literature Reports. Inclusion criteria were prospective design studies with patients over 18 years old, surgery under general or regional anesthesia, follow-up for 3 months, and use of a neurocognitive battery for diagnosis. We excluded studies made on cardiac or brain surgery patients. Risk of bias was assessed using tools from National Heart Lung and Blood Institute. RESULTS We selected 24 studies. Average age was 68 years. Only five studies reported incidence of cognitive decline for a non-surgical control group. Median number of tests used was 5 (range 3-13). Pooled incidence of post-operative cognitive dysfunction at 3 months was 11.7% [95% CI 10.9-12.5] but with several methodological differences between studies. Increasing age was the most consistent risk factor identified (seven studies). CONCLUSIONS Post-operative cognitive dysfunction in patients is frequent, especially in patients over 60 years old. Limitations include methodological differences in studies. Efforts must be made to reach a consensus in definition and diagnosis for future research.
Collapse
Affiliation(s)
- S. Paredes
- Anesthesiology Division; Pontificia Universidad Catolica de Chile; Santiago Chile
| | - L. Cortínez
- Anesthesiology Division; Pontificia Universidad Catolica de Chile; Santiago Chile
| | - V. Contreras
- Anesthesiology Division; Pontificia Universidad Catolica de Chile; Santiago Chile
| | - B. Silbert
- Centre for Anaesthesia and Cognitive Function; Department of Anaesthesia; St Vincent's Hospital; Melbourne Fitzroy Vic. Australia
- Anaesthesia; Perioperative and Pain Medicine Unit; Melbourne Medical School; University of Melbourne; Melbourne Vic. Australia
| |
Collapse
|
50
|
Feinkohl I, Winterer G, Pischon T. Obesity and post-operative cognitive dysfunction: a systematic review and meta-analysis. Diabetes Metab Res Rev 2016; 32:643-51. [PMID: 26890984 DOI: 10.1002/dmrr.2786] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/22/2016] [Accepted: 02/09/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Post-operative cognitive dysfunction, a condition distinct from post-operative delirium (POD), occurs frequently after surgery, and is related to dementia and premature death. Obesity increases the risk of late-life cognitive impairment, but little is known about its role in post-operative cognitive dysfunction. We conducted a systematic review and meta-analysis of studies on the association between obesity and risk of post-operative cognitive dysfunction. METHODS PubMed and the Cochrane Library were systematically searched. Studies were included if they had prospective designs, reported on human adults undergoing surgery, if cognitive function was measured pre- and post-surgery, if obesity, body mass index (BMI) and/or body weight were ascertained, and if associations with post-operative cognitive dysfunction were reported as relative risks or odds ratios. Underweight, weight loss, and post-operative delirium were not considered. RESULTS Inclusion criteria were met by six articles. Samples totaled 1432 older patients (mean age ≥62 years) who were followed up for 24 h to 12 months after surgery. Analysis of studies with obesity defined as a categorical measure found a non-significantly higher risk of post-operative cognitive dysfunction among persons with BMI > 30 kg/m(2) versus ≤30 kg/m(2) (relative risk 1.27; 95% confidence interval 0.95, 1.70; p = 0.10). No such associations were found for studies that analysed BMI or body weight continuously as predictors of post-operative cognitive dysfunction (relative risk 0.98 per kg/m(2) ; 95% confidence interval 0.93, 1.03, p = 0.45; relative risk 0.99 per kg; 95% confidence interval 0.89, 1.09; p = 0.83, respectively). CONCLUSIONS Few studies have addressed the topic, and the results of these studies provide only limited support for an increased risk of post-operative cognitive dysfunction in patients who are obese. Further large-scale, prospective investigations are necessary for clarification. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Insa Feinkohl
- Molecular Epidemiology Group, Max-Delbrueck-Center for Molecular Medicine (MDC), Berlin-Buch, Germany
| | - Georg Winterer
- The Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Tobias Pischon
- Molecular Epidemiology Group, Max-Delbrueck-Center for Molecular Medicine (MDC), Berlin-Buch, Germany
- The Charité - Universitaetsmedizin Berlin, Berlin, Germany
| |
Collapse
|