1
|
James CJ, Laborde ML, Algans C, Tartayre M, Marx M. Channel crosstalk detected using ECAP measurements is associated with poorer speech perception in cochlear implant users. Hear Res 2025; 458:109206. [PMID: 39933408 DOI: 10.1016/j.heares.2025.109206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/16/2025] [Accepted: 02/01/2025] [Indexed: 02/13/2025]
Abstract
The number and independence of channels in cochlear implants (CI) has long been considered to influence speech recognition, particularly in competing background noise. Measures of channel independence have been obtained via psychophysical and objective means, relying on interactions between probe and masker signals delivered on different channels. In the current study, electrically evoked compound action potentials (ECAP) obtained from 32 Nucleus CI recipients tested at one basal and one apical position were performed using a standard spread-of-excitation procedure. An alternative analysis method, comparing masked responses only, revealed distant maskers as effective or more effective than same-electrode maskers in 13/32 cases. This appears to indicate substantial crosstalk between channels, covering up to nine intracochlear electrodes in one subject. Subjects with atypical responses and no other limiting factors had significantly poorer sentence recognition in noise compared with those with no detected peripheral or cognitive limiting factors. We propose that channel crosstalk detected via ECAPs may be a biomarker for poor or patchy neural survival that leads to poorer speech perception in CI recipients.
Collapse
Affiliation(s)
| | | | - Carole Algans
- Service Oto Rhino Laryngologie Hôpital Riquet, Toulouse, France
| | | | - Mathieu Marx
- Service Oto Rhino Laryngologie Hôpital Riquet, Toulouse, France
| |
Collapse
|
2
|
Adenis V, Partouche E, Stahl P, Gnansia D, Huetz C, Edeline JM. Asymmetric pulses delivered by a cochlear implant allow a reduction in evoked firing rate and in spatial activation in the guinea pig auditory cortex. Hear Res 2024; 447:109027. [PMID: 38723386 DOI: 10.1016/j.heares.2024.109027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
Despite that fact that the cochlear implant (CI) is one of the most successful neuro-prosthetic devices which allows hearing restoration, several aspects still need to be improved. Interactions between stimulating electrodes through current spread occurring within the cochlea drastically limit the number of discriminable frequency channels and thus can ultimately result in poor speech perception. One potential solution relies on the use of new pulse shapes, such as asymmetric pulses, which can potentially reduce the current spread within the cochlea. The present study characterized the impact of changing electrical pulse shapes from the standard biphasic symmetric to the asymmetrical shape by quantifying the evoked firing rate and the spatial activation in the guinea pig primary auditory cortex (A1). At a fixed charge, the firing rate and the spatial activation in A1 decreased by 15 to 25 % when asymmetric pulses were used to activate the auditory nerve fibers, suggesting a potential reduction of the spread of excitation inside the cochlea. A strong "polarity-order" effect was found as the reduction was more pronounced when the first phase of the pulse was cathodic with high amplitude. These results suggest that the use of asymmetrical pulse shapes in clinical settings can potentially reduce the channel interactions in CI users.
Collapse
Affiliation(s)
- V Adenis
- Paris-Saclay Institute of Neurosciences (Neuro-PSI), France; CNRS UMR 9197, 91405 Orsay cedex, France; Université Paris-Saclay, 91405 Orsay cedex, France
| | - E Partouche
- Paris-Saclay Institute of Neurosciences (Neuro-PSI), France; CNRS UMR 9197, 91405 Orsay cedex, France; Université Paris-Saclay, 91405 Orsay cedex, France
| | - P Stahl
- Oticon Medical, Vallauris, France
| | | | - C Huetz
- Paris-Saclay Institute of Neurosciences (Neuro-PSI), France; CNRS UMR 9197, 91405 Orsay cedex, France; Université Paris-Saclay, 91405 Orsay cedex, France
| | - J-M Edeline
- Paris-Saclay Institute of Neurosciences (Neuro-PSI), France; CNRS UMR 9197, 91405 Orsay cedex, France; Université Paris-Saclay, 91405 Orsay cedex, France.
| |
Collapse
|
3
|
Aldag N, Nogueira W. Psychoacoustic and electroencephalographic responses to changes in amplitude modulation depth and frequency in relation to speech recognition in cochlear implantees. Sci Rep 2024; 14:8181. [PMID: 38589483 PMCID: PMC11002021 DOI: 10.1038/s41598-024-58225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
Temporal envelope modulations (TEMs) are one of the most important features that cochlear implant (CI) users rely on to understand speech. Electroencephalographic assessment of TEM encoding could help clinicians to predict speech recognition more objectively, even in patients unable to provide active feedback. The acoustic change complex (ACC) and the auditory steady-state response (ASSR) evoked by low-frequency amplitude-modulated pulse trains can be used to assess TEM encoding with electrical stimulation of individual CI electrodes. In this study, we focused on amplitude modulation detection (AMD) and amplitude modulation frequency discrimination (AMFD) with stimulation of a basal versus an apical electrode. In twelve adult CI users, we (a) assessed behavioral AMFD thresholds and (b) recorded cortical auditory evoked potentials (CAEPs), AMD-ACC, AMFD-ACC, and ASSR in a combined 3-stimulus paradigm. We found that the electrophysiological responses were significantly higher for apical than for basal stimulation. Peak amplitudes of AMFD-ACC were small and (therefore) did not correlate with speech-in-noise recognition. We found significant correlations between speech-in-noise recognition and (a) behavioral AMFD thresholds and (b) AMD-ACC peak amplitudes. AMD and AMFD hold potential to develop a clinically applicable tool for assessing TEM encoding to predict speech recognition in CI users.
Collapse
Affiliation(s)
- Nina Aldag
- Department of Otolaryngology, Hannover Medical School and Cluster of Excellence 'Hearing4all', Hanover, Germany
| | - Waldo Nogueira
- Department of Otolaryngology, Hannover Medical School and Cluster of Excellence 'Hearing4all', Hanover, Germany.
| |
Collapse
|
4
|
Schvartz-Leyzac KC, Colesa DJ, Swiderski DL, Raphael Y, Pfingst BE. Cochlear Health and Cochlear-implant Function. J Assoc Res Otolaryngol 2023; 24:5-29. [PMID: 36600147 PMCID: PMC9971430 DOI: 10.1007/s10162-022-00882-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/24/2022] [Indexed: 01/06/2023] Open
Abstract
The cochlear implant (CI) is widely considered to be one of the most innovative and successful neuroprosthetic treatments developed to date. Although outcomes vary, CIs are able to effectively improve hearing in nearly all recipients and can substantially improve speech understanding and quality of life for patients with significant hearing loss. A wealth of research has focused on underlying factors that contribute to success with a CI, and recent evidence suggests that the overall health of the cochlea could potentially play a larger role than previously recognized. This article defines and reviews attributes of cochlear health and describes procedures to evaluate cochlear health in humans and animal models in order to examine the effects of cochlear health on performance with a CI. Lastly, we describe how future biologic approaches can be used to preserve and/or enhance cochlear health in order to maximize performance for individual CI recipients.
Collapse
Affiliation(s)
- Kara C Schvartz-Leyzac
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Ave, Charleston, SC, 29425, USA
| | - Deborah J Colesa
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Donald L Swiderski
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Yehoash Raphael
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Bryan E Pfingst
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA.
| |
Collapse
|
5
|
Effects of number of maxima and electrical dynamic range on speech-in-noise perception with an “n-of-m” cochlear-implant strategy. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Chang CJ, Sun CH, Hsu CJ, Chiu T, Yu SH, Wu HP. Cochlear implant mapping strategy to solve difficulty in speech recognition. J Chin Med Assoc 2022; 85:874-879. [PMID: 35666612 DOI: 10.1097/jcma.0000000000000748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Cochlear implants (CIs) are viable treatment options in patients with severe to profound hearing loss. Speech recognition difficulties were reported in some CI recipients even with a good-aided hearing threshold. The aim of this study was to report a mapping strategy based on different target-aided hearing thresholds to achieve optimal speech recognition and maximize functional outcomes. The safety and efficacy of the mapping strategy were also inspected in the article. METHODS This prospective repeated measures study enrolled 20 adult CI recipients with postlingual deafness using the MED-EL CI system. Word and sentence discrimination assessment and administration of a questionnaire pertaining to comfort level were conducted at the end of each session. The electrophysiological features of the CI mapping were recorded. RESULTS The correlation between audiometry results and word and sentence recognition was not high. CIs performed best at an audiometry threshold between 25 and 35 dB. CONCLUSION CI performance with the best perception relies on a balance between minimizing the hearing threshold and maximizing the dynamic range while maintaining an appropriate comfort level, which was achieved when the target hearing threshold was set at 25-35 dB in this study.
Collapse
Affiliation(s)
- Chan-Jung Chang
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
| | - Chuan-Hung Sun
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
| | - Chuan-Jen Hsu
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
| | - Ting Chiu
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
| | - Szu-Hui Yu
- Department of Music, Tainan University of Technology, Tainan, Taiwan, ROC
| | - Hung-Pin Wu
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
| |
Collapse
|
7
|
Gransier R, Wouters J. Neural auditory processing of parameterized speech envelopes. Hear Res 2021; 412:108374. [PMID: 34800800 DOI: 10.1016/j.heares.2021.108374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 10/19/2022]
Abstract
Speech perception depends highly on the neural processing of the speech envelope. Several auditory processing deficits are hypothesized to result in a reduction in fidelity of the neural representation of the speech envelope across the auditory pathway. Furthermore, this reduction in fidelity is associated with supra-threshold speech processing deficits. Investigating the mechanisms that affect the neural encoding of the speech envelope can be of great value to gain insight in the different mechanisms that account for this reduced neural representation, and to develop stimulation strategies for hearing prosthesis that aim to restore it. In this perspective, we discuss the importance of neural assessment of phase-locking to the speech envelope from an audiological view and introduce the Temporal Envelope Speech Tracking (TEMPEST) stimulus framework which enables the electrophysiological assessment of envelope processing across the auditory pathway in a systematic and standardized way. We postulate that this framework can be used to gain insight in the salience of speech-like temporal envelopes in the neural code and to evaluate the effectiveness of stimulation strategies that aim to restore temporal processing across the auditory pathway with auditory prostheses.
Collapse
Affiliation(s)
- Robin Gransier
- ExpORL, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium.
| | - Jan Wouters
- ExpORL, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
8
|
Relationship Between Speech Recognition in Quiet and Noise and Fitting Parameters, Impedances and ECAP Thresholds in Adult Cochlear Implant Users. Ear Hear 2021; 41:935-947. [PMID: 31702597 DOI: 10.1097/aud.0000000000000814] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The objective of this study was to identify parameters which are related to speech recognition in quiet and in noise of cochlear implant (CI) users. These parameters may be important to improve current fitting practices. DESIGN Adult CI users who visited the Amsterdam UMC, location VUmc, for their annual follow-up between January 2015 and December 2017 were retrospectively identified. After applying inclusion criteria, the final study population consisted of 138 postlingually deaf adult Cochlear CI users. Prediction models were built with speech recognition in quiet and in noise as the outcome measures, and aided sound field thresholds, and parameters related to fitting (i.e., T and C levels, dynamic range [DR]), evoked compound action potential thresholds and impedances as the independent variables. A total of 33 parameters were considered. Separate analyses were performed for postlingually deafened CI users with late onset (LO) and CI users with early onset (EO) of severe hearing impairment. RESULTS Speech recognition in quiet was not significantly different between the LO and EO groups. Speech recognition in noise was better for the LO group compared with the EO group. For CI users in the LO group, mean aided thresholds, mean electrical DR, and measures to express the impedance profile across the electrode array were identified as predictors of speech recognition in quiet and in noise. For CI users in the EO group, the mean T level appeared to be a significant predictor in the models for speech recognition in quiet and in noise, such that CI users with elevated T levels had worse speech recognition in quiet and in noise. CONCLUSIONS Significant parameters related to speech recognition in quiet and in noise were identified: aided thresholds, electrical DR, T levels, and impedance profiles. The results of this study are consistent with previous study findings and may guide audiologists in their fitting practices to improve the performance of CI users. The best performance was found for CI users with aided thresholds around the target level of 25 dB HL, and an electrical DR between 40 and 60 CL. However, adjustments of T and/or C levels to obtain aided thresholds around the target level and the preferred DR may not always be acceptable for individual CI users. Finally, clinicians should pay attention to profiles of impedances other than a flat profile with mild variations.
Collapse
|
9
|
Imsiecke M, Büchner A, Lenarz T, Nogueira W. Amplitude Growth Functions of Auditory Nerve Responses to Electric Pulse Stimulation With Varied Interphase Gaps in Cochlear Implant Users With Ipsilateral Residual Hearing. Trends Hear 2021; 25:23312165211014137. [PMID: 34181493 PMCID: PMC8243142 DOI: 10.1177/23312165211014137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Amplitude growth functions (AGFs) of electrically evoked compound action
potentials (eCAPs) with varying interphase gaps (IPGs) were measured in cochlear
implant users with ipsilateral residual hearing (electric-acoustic stimulation
[EAS]). It was hypothesized that IPG effects on AGFs provide an objective
measure to estimate neural health. This hypothesis was tested in EAS users, as
residual low-frequency hearing might imply survival of hair cells and hence
better neural health in apical compared to basal cochlear regions. A total of 16
MED-EL EAS subjects participated, as well as a control group of 16 deaf cochlear
implant users. The IPG effect on the AGF characteristics of slope, threshold,
dynamic range, and stimulus level at 50% maximum eCAP amplitude
(level50%) was investigated. AGF threshold and
level50% were significantly affected by the IPG in both EAS and
control group. The magnitude of AGF characteristics correlated with electrode
impedance and electrode-modiolus distance (EMD) in both groups. In contrast, the
change of the AGF characteristics with increasing IPG was independent of these
electrode-specific measures. The IPG effect on the AGF level50% in
both groups, as well as on the threshold in EAS users, correlated with the
duration of hearing loss, which is a predictor of neural health. In EAS users, a
significantly different IPG effect on level50% was found between
apical and medial electrodes. This outcome is consistent with our hypothesis
that the influence of IPG effects on AGF characteristics provides a sensitive
measurement and may indicate better neural health in the apex compared to the
medial cochlear region in EAS users.
Collapse
Affiliation(s)
- Marina Imsiecke
- Clinic for Otorhinolaryngology, Hannover Medical School, Hannover, Germany
| | - Andreas Büchner
- Clinic for Otorhinolaryngology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence "Hearing4All," Hannover, Germany
| | - Thomas Lenarz
- Clinic for Otorhinolaryngology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence "Hearing4All," Hannover, Germany
| | - Waldo Nogueira
- Clinic for Otorhinolaryngology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence "Hearing4All," Hannover, Germany
| |
Collapse
|
10
|
Neural Modulation Transmission Is a Marker for Speech Perception in Noise in Cochlear Implant Users. Ear Hear 2021; 41:591-602. [PMID: 31567565 DOI: 10.1097/aud.0000000000000783] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Cochlear implants (CIs) restore functional hearing in persons with a severe hearing impairment. Despite being one of the most successful bionic prosthesis, performance with CI (in particular speech understanding in noise) varies considerably across its users. The ability of the auditory pathway to encode temporal envelope modulations (TEMs) and the effect of degenerative processes associated with hearing loss on TEM encoding is assumed to be one of the reasons underlying the large intersubject differences in CI performance. The objective of the present study was to investigate how TEM encoding of the stimulated neural ensembles of human CI recipients is related to speech perception in noise (SPIN). DESIGN We used electroencephalography as a noninvasive electrophysiological measure to assess TEM encoding in the auditory pathway of CI users by means of the 40-Hz electrically evoked auditory steady state response (EASSR). Nine CI users with a wide range of SPIN outcome were included in the present study. TEM encoding was assessed for each stimulation electrode of each subject and new metrics; the CI neural modulation transmission difference (CIMTD) and the CI neural modulation transmission index (CIMTI) were developed to quantify the amount of variability in TEM encoding across the stimulated neural ensembles of the CI electrode array. RESULTS EASSR patterns varied across the CI electrode array and subjects. We found a strong correlation (r = 0.89, p = 0.001) between the SPIN outcomes and the variability in EASSR amplitudes across the array as assessed with CIMTD/CIMTI. CONCLUSIONS The results of the present study show that the 40-Hz EASSR can be used to objectively assess the neural encoding of TEMs in human CI recipients. Overall reduced or largely variable TEM encoding of the neural ensembles across the electrode array, as quantified with the CIMTD/CIMTI, is highly correlated with speech perception in noise outcome with a CI.
Collapse
|
11
|
Schvartz-Leyzac KC, Zwolan TA, Pfingst BE. Using the electrically-evoked compound action potential (ECAP) interphase gap effect to select electrode stimulation sites in cochlear implant users. Hear Res 2021; 406:108257. [PMID: 34020316 DOI: 10.1016/j.heares.2021.108257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/25/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Studies in cochlear implanted animals show that the IPG Effect for ECAP growth functions (i.e., the magnitude of the change in ECAP amplitude growth function (AGF) slope or peak amplitude when the interphase gap (IPG) is increased) can be used to estimate the densities of spiral ganglion neurons (SGNs) near the electrode stimulation and recording sites. In humans, the same ECAP IPG Effect measures correlate with speech recognition performance. The present study examined the efficacy of selecting electrode sites for stimulation based on the IPG Effect, in order to improve performance of CI users on speech recognition tasks. We measured the ECAP IPG Effect for peak amplitude in adult (>18 years old) CI users (N= 18 ears), and created experimental programs to stimulate electrodes with either the highest or lowest ECAP IPG Effect for peak amplitude. Subjects also listened to a program without any electrodes deactivated. In a subset of subject ears (11/18), we compared performance differences between the experimental programs to post-operative computerized tomography (CT) scans to examine underlying factors that might contribute to the efficacy of an electrode site-selection approach. For sentences-in-noise, average performance was better when subjects listened to the experimental program that stimulated electrodes with the highest rather than the lowest IPG Effect for ECAP peak amplitude. A similar pattern was noted for transmission and perception of consonant place cues in a consonant recognition task. However, on average, performance when listening to a program with higher IPG Effect values was equal to that when listening with all electrodes activated. Results also suggest that scalar location (scala tympani or vestibuli) should be considered when using an ECAP-based electrode site-selection procedure to optimize CI performance.
Collapse
Affiliation(s)
- Kara C Schvartz-Leyzac
- Kresge Hearing Research Institute, Department of Otolaryngology, Michigan Medicine, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5616, United States; Hearing Rehabilitation Center, Department of Otolaryngology, Michigan Medicine, 475 W. Market Place, Building 1, Suite A, Ann Arbor, MI 48108, United States.
| | - Teresa A Zwolan
- Hearing Rehabilitation Center, Department of Otolaryngology, Michigan Medicine, 475 W. Market Place, Building 1, Suite A, Ann Arbor, MI 48108, United States
| | - Bryan E Pfingst
- Kresge Hearing Research Institute, Department of Otolaryngology, Michigan Medicine, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5616, United States
| |
Collapse
|
12
|
Zhou N, Dixon S, Zhu Z, Dong L, Weiner M. Spectrotemporal Modulation Sensitivity in Cochlear-Implant and Normal-Hearing Listeners: Is the Performance Driven by Temporal or Spectral Modulation Sensitivity? Trends Hear 2020; 24:2331216520948385. [PMID: 32895024 PMCID: PMC7482033 DOI: 10.1177/2331216520948385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This study examined the contribution of temporal and spectral modulation sensitivity to discrimination of stimuli modulated in both the time and frequency domains. The spectrotemporally modulated stimuli contained spectral ripples that shifted systematically across frequency over time at a repetition rate of 5 Hz. As the ripple density increased in the stimulus, modulation depth of the 5 Hz amplitude modulation (AM) reduced. Spectrotemporal modulation discrimination was compared with subjects’ ability to discriminate static spectral ripples and the ability to detect slow AM. The general pattern from both the cochlear implant (CI) and normal hearing groups showed that spectrotemporal modulation thresholds were correlated more strongly with AM detection than with static ripple discrimination. CI subjects’ spectrotemporal modulation thresholds were also highly correlated with speech recognition in noise, when partialing out static ripple discrimination, but the correlation was not significant when partialing out AM detection. The results indicated that temporal information was more heavily weighted in spectrotemporal modulation discrimination, and for CI subjects, it was AM sensitivity that drove the correlation between spectrotemporal modulation thresholds and speech recognition. The results suggest that for the rates tested here, temporal information processing may limit performance more than spectral information processing in both CI users and normal hearing listeners.
Collapse
Affiliation(s)
- Ning Zhou
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, North Carolina, United States
| | - Susannah Dixon
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, North Carolina, United States
| | - Zhen Zhu
- Department of Engineering, East Carolina University, Greenville, North Carolina, United States
| | - Lixue Dong
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, North Carolina, United States
| | - Marti Weiner
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, North Carolina, United States
| |
Collapse
|
13
|
Gransier R, Carlyon RP, Wouters J. Electrophysiological assessment of temporal envelope processing in cochlear implant users. Sci Rep 2020; 10:15406. [PMID: 32958791 PMCID: PMC7506023 DOI: 10.1038/s41598-020-72235-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/18/2020] [Indexed: 11/12/2022] Open
Abstract
Cochlear-implant (CI) users rely on temporal envelope modulations (TEMs) to understand speech, and clinical outcomes depend on the accuracy with which these TEMs are encoded by the electrically-stimulated neural ensembles. Non-invasive EEG measures of this encoding could help clinicians identify and disable electrodes that evoke poor neural responses so as to improve CI outcomes. However, recording EEG during CI stimulation reveals huge stimulation artifacts that are up to orders of magnitude larger than the neural response. Here we used a custom-built EEG system having an exceptionally high sample rate to accurately measure the artefact, which we then removed using linear interpolation so as to reveal the neural response during continuous electrical stimulation. In ten adult CI users, we measured the 40-Hz electrically evoked auditory steady-state response (eASSR) and electrically evoked auditory change complex (eACC) to amplitude-modulated 900-pulses-per-second pulse trains, stimulated in monopolar mode (i.e. the clinical default), and at different modulation depths. We successfully measured artifact-free 40-Hz eASSRs and eACCs. Moreover, we found that the 40-Hz eASSR, in contrast to the eACC, showed substantial responses even at shallow modulation depths. We argue that the 40-Hz eASSR is a clinically feasible objective measure to assess TEM encoding in CI users.
Collapse
Affiliation(s)
- Robin Gransier
- Department of Neurosciences, KU Leuven, ExpORL, Herestraat 49, Box 721, 3000, Leuven, Belgium.
| | - Robert P Carlyon
- Cambridge Hearing Group, MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
| | - Jan Wouters
- Department of Neurosciences, KU Leuven, ExpORL, Herestraat 49, Box 721, 3000, Leuven, Belgium
| |
Collapse
|
14
|
Falcón González JC, Borkoski Barreiro S, Ramos De Miguel A, Ramos Macías A. Improvement of speech perception in noise and quiet using a customised Frequency-Allocation Programming (FAP) method. ACTA ACUST UNITED AC 2019; 39:178-185. [PMID: 31131837 PMCID: PMC6536028 DOI: 10.14639/0392-100x-2013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 09/14/2018] [Indexed: 11/23/2022]
Affiliation(s)
| | | | - A Ramos De Miguel
- Psychoacoustic and Balance Research Laboratory, Las Palmas University Hospital, Spain
| | - A Ramos Macías
- Otorhinolaryngology Department, Las Palmas University Hospital, Spain
| |
Collapse
|
15
|
Nunn TB, Jiang D, Green T, Boyle PJ, Vickers DA. A systematic review of the impact of adjusting input dynamic range (IDR), electrical threshold (T) level and rate of stimulation on speech perception ability in cochlear implant users. Int J Audiol 2019; 58:317-325. [DOI: 10.1080/14992027.2018.1564844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Terry B. Nunn
- University College London Ear Institute, London, UK
- Guy’s and St Thomas’ NHS Trust, Hearing Implant Centre, London, UK
| | - Dan Jiang
- Guy’s and St Thomas’ NHS Trust, Hearing Implant Centre, London, UK
| | - Tim Green
- Department of Speech Hearing and Phonetic Sciences, University College London, London, UK
| | - Patrick J. Boyle
- Advanced Bionics GmbH, European Research Centre, Hannover, Germany
| | - Deborah A. Vickers
- Department of Speech Hearing and Phonetic Sciences, University College London, London, UK
| |
Collapse
|
16
|
Assessing the Relationship Between the Electrically Evoked Compound Action Potential and Speech Recognition Abilities in Bilateral Cochlear Implant Recipients. Ear Hear 2019; 39:344-358. [PMID: 28885234 DOI: 10.1097/aud.0000000000000490] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The primary objective of the present study was to examine the relationship between suprathreshold electrically evoked compound action potential (ECAP) measures and speech recognition abilities in bilateral cochlear implant listeners. We tested the hypothesis that the magnitude of ear differences in ECAP measures within a subject (right-left) could predict the difference in speech recognition performance abilities between that subject's ears (right-left). DESIGN To better control for across-subject variables that contribute to speech understanding, the present study used a within-subject design. Subjects were 10 bilaterally implanted adult cochlear implant recipients. We measured ECAP amplitudes and slopes of the amplitude growth function in both ears for each subject. We examined how each of these measures changed when increasing the interphase gap of the biphasic pulses. Previous animal studies have shown correlations between these ECAP measures and auditory nerve survival. Speech recognition measures included speech reception thresholds for sentences in background noise, as well as phoneme discrimination in quiet and in noise. RESULTS Results showed that the between-ear difference (right-left) of one specific ECAP measure (increase in amplitude growth function slope as the interphase gap increased from 7 to 30 µs) was significantly related to the between-ear difference (right-left) in speech recognition. Frequency-specific response patterns for ECAP data and consonant transmission cues support the hypothesis that this particular ECAP measure may represent localized functional acuity. CONCLUSIONS The results add to a growing body of literature suggesting that when using a well-controlled research design, there is evidence that underlying neural function is related to postoperative performance with a cochlear implant.
Collapse
|
17
|
Zhou N, Cadmus M, Dong L, Mathews J. Temporal Modulation Detection Depends on Sharpness of Spatial Tuning. J Assoc Res Otolaryngol 2018; 19:317-330. [PMID: 29696448 DOI: 10.1007/s10162-018-0663-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 03/22/2018] [Indexed: 01/04/2023] Open
Abstract
Prior research has shown that in electrical hearing, cochlear implant (CI) users' speech recognition performance is related in part to their ability to detect temporal modulation (i.e., modulation sensitivity). Previous studies have also shown better speech recognition when selectively stimulating sites with good modulation sensitivity rather than all stimulation sites. Site selection based on channel interaction measures, such as those using imaging or psychophysical estimates of spread of neural excitation, has also been shown to improve speech recognition. This led to the question of whether temporal modulation sensitivity and spatial selectivity of neural excitation are two related variables. In the present study, CI users' modulation sensitivity was compared for sites with relatively broad or narrow neural excitation patterns. This was achieved by measuring temporal modulation detection thresholds (MDTs) at stimulation sites that were significantly different in their sharpness of the psychophysical spatial tuning curves (PTCs) and measuring MDTs at the same sites in monopolar (MP) and bipolar (BP) stimulation modes. Nine postlingually deafened subjects implanted with Cochlear Nucleus® device took part in the study. Results showed a significant correlation between the sharpness of PTCs and MDTs, indicating that modulation detection benefits from a more spatially restricted neural activation pattern. There was a significant interaction between stimulation site and mode. That is, using BP stimulation only improved MDTs at stimulation sites with broad PTCs but had no effect or sometimes a detrimental effect on MDTs at stimulation sites with sharp PTCs. This interaction could suggest that a criterion number of nerve fibers is needed to achieve optimal temporal resolution, and, to achieve optimized speech recognition outcomes, individualized selection of site-specific current focusing strategies may be necessary. These results also suggest that the removal of stimulation sites measured with poor MDTs might improve both temporal and spectral resolution.
Collapse
Affiliation(s)
- Ning Zhou
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC, 27858, USA.
| | - Matthew Cadmus
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC, 27858, USA
| | - Lixue Dong
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC, 27858, USA
| | - Juliana Mathews
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC, 27858, USA
| |
Collapse
|
18
|
Brochier T, McKay C, McDermott H. Rate modulation detection thresholds for cochlear implant users. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:1214. [PMID: 29495682 DOI: 10.1121/1.5025048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The perception of temporal amplitude modulations is critical for speech understanding by cochlear implant (CI) users. The present study compared the ability of CI users to detect sinusoidal modulations of the electrical stimulation rate and current level, at different presentation levels (80% and 40% of the dynamic range) and modulation frequencies (10 and 100 Hz). Rate modulation detection thresholds (RMDTs) and amplitude modulation detection thresholds (AMDTs) were measured and compared to assess whether there was a perceptual advantage to either modulation method. Both RMDTs and AMDTs improved with increasing presentation level and decreasing modulation frequency. RMDTs and AMDTs were correlated, indicating that a common processing mechanism may underlie the perception of rate modulation and amplitude modulation, or that some subject-dependent factors affect both types of modulation detection.
Collapse
Affiliation(s)
- Tim Brochier
- Department of Medical Bionics, University of Melbourne, 384-388 Albert Street, East Melbourne, Victoria 3002, Australia
| | - Colette McKay
- The Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria 3002, Australia
| | - Hugh McDermott
- The Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria 3002, Australia
| |
Collapse
|
19
|
Abstract
OBJECTIVE The objective of this study was to investigate the impact of using smaller and larger electric dynamic ranges on speech perception, aided thresholds, and subjective preference in cochlear implant (CI) subjects with the Nucleus device. DESIGN Data were collected from 19 adults using the Nucleus CI system. Current levels (CLs) used to set threshold stimulation levels (T-levels) were set above or below the measured hearing thresholds to create smaller or larger electric output dynamic ranges, respectively, whereas the upper stimulation level (C-level) was fixed. The base (unadjusted) condition was compared against two conditions with higher T-levels (compression), by 30% and 60% of the measured hearing dynamic range, and three conditions with lower T-levels (expansion), by 30%, 60%, and 90% of the measured hearing dynamic range. For each subject, the clinical CL units were adjusted on each electrode to achieve these conditions. The slow-acting dynamic acoustic gains of ADRO and Autosensitivity™ were enabled. Consonant-nucleus-consonant (CNC) word scores were measured in quiet at 50 dB and 60 dB SPL presentation levels. The signal-to-noise ratios (SNRs) for 50% understanding of sentences in noise were measured for sentences presented at 55 dB and 65 dB SPL in 4-talker babble noise. Free-field aided thresholds were measured at octave frequencies using frequency-modulated (warble) tones. Thirteen of the 19 subjects had take-home experience with the base and experimental conditions and provided subjective feedback via a questionnaire. RESULTS There were no significant effects of 30% expansion and 30% compression of the electric dynamic range on scores for words in quiet and SNRs for sentences in noise, at the two presentation levels. There was a significant decrement in scores for words in quiet for 60% and 90% expansion compared with the base condition at the 50 dB and 60 dB SPL presentation levels. The score decrement was much less at 60 dB SPL. For the 50 dB SPL presentation level, the decrements in word scores at 60% and 90% expansion were linearly related to the reduction in CL units required to achieve these experimental conditions, with a greater decrement in scores for a larger CL change. There was a significant increase in SNR for sentences in noise for 60% compression compared with the base condition at the 55 dB and 65 dB SPL presentation levels. There was also a significant increase in SNR for sentences at the 55 dB SPL presentation level for 90% expansion. Aided thresholds were significantly elevated for the three expansion conditions compared with the base condition, although the mean elevation at 30% expansion was only 4 dB. The questionnaire results showed no clear preference for any condition; however, subjects reported a reduced preference for the extreme compression (60%) and expansion (90%) conditions. CONCLUSIONS The results showed that CI subjects using the Nucleus sound processor had no significant change in performance or preference for adjustments in T-levels by ±30% of the hearing dynamic range. In quiet, speech perception scores were reduced for the more marked expansion (60% and 90%) conditions, whereas in noise, performance was poorer for the highest compression (60%) condition. Across subjects, the decrement in scores for words at 50 dB SPL for the 60% and 90% expansion conditions was related to the changes in CL units required for these conditions, with greater decrements for larger changes in levels.
Collapse
|
20
|
Mathew R, Undurraga J, Li G, Meerton L, Boyle P, Shaida A, Selvadurai D, Jiang D, Vickers D. Objective assessment of electrode discrimination with the auditory change complex in adult cochlear implant users. Hear Res 2017; 354:86-101. [DOI: 10.1016/j.heares.2017.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/16/2017] [Accepted: 07/21/2017] [Indexed: 11/16/2022]
|
21
|
Marsella P, Scorpecci A, Cartocci G, Giannantonio S, Maglione AG, Venuti I, Brizi A, Babiloni F. EEG activity as an objective measure of cognitive load during effortful listening: A study on pediatric subjects with bilateral, asymmetric sensorineural hearing loss. Int J Pediatr Otorhinolaryngol 2017; 99:1-7. [PMID: 28688548 DOI: 10.1016/j.ijporl.2017.05.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 05/12/2017] [Accepted: 05/13/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Deaf subjects with hearing aids or cochlear implants generally find it challenging to understand speech in noisy environments where a great deal of listening effort and cognitive load are invested. In prelingually deaf children, such difficulties may have detrimental consequences on the learning process and, later in life, on academic performance. Despite the importance of such a topic, currently, there is no validated test for the assessment of cognitive load during audiological tasks. Recently, alpha and theta EEG rhythm variations in the parietal and frontal areas, respectively, have been used as indicators of cognitive load in adult subjects. The aim of the present study was to investigate, by means of EEG, the cognitive load of pediatric subjects affected by asymmetric sensorineural hearing loss as they were engaged in a speech-in-noise identification task. METHODS Seven children (4F and 3M, age range = 8-16 years) affected by asymmetric sensorineural hearing loss (i.e. profound degree on one side, mild-to-severe degree on the other side) and using a hearing aid only in their better ear, were included in the study. All of them underwent EEG recording during a speech-in-noise identification task: the experimental conditions were quiet, binaural noise, noise to the better hearing ear and noise to the poorer hearing ear. The subjects' Speech Recognition Thresholds (SRT) were also measured in each test condition. The primary outcome measures were: frontal EEG Power Spectral Density (PSD) in the theta band and parietal EEG PSD in the alpha band, as assessed before stimulus (word) onset. RESULTS No statistically significant differences were noted among frontal theta power levels in the four test conditions. However, parietal alpha power levels were significantly higher in the "binaural noise" and in the "noise to worse hearing ear" conditions than in the "quiet" and "noise to better hearing ear" conditions (p < 0.001). SRT scores were consistent with task difficulty, but did not correlate with alpha and theta power level variations. CONCLUSION This is the first time that EEG has been applied to children with sensorineural hearing loss with the purpose of studying the cognitive load during effortful listening. Significantly higher parietal alpha power levels in two of three noisy conditions, compared to the quiet condition, are consistent with increased cognitive load. Specifically, considering the time window of the analysis (pre-stimulus), parietal alpha power levels may be a measure of cognitive functions such as sustained attention and selective inhibition. In this respect, the significantly lower parietal alpha power levels in the most challenging listening condition (i.e. noise to the better ear) may be attributed to loss of attention and to the subsequent fatigue and "withdrawal" from the task at hand.
Collapse
Affiliation(s)
- Pasquale Marsella
- Audiology and Otosurgery Unit, Bambino Gesù Pediatric Hospital, Italy
| | | | - Giulia Cartocci
- Department of Molecular Medicine, "Sapienza" University of Rome, Italy
| | - Sara Giannantonio
- Audiology and Otosurgery Unit, Bambino Gesù Pediatric Hospital, Italy
| | | | | | - Ambra Brizi
- Department of Developmental and Social Psychology, "Sapienza" University of Rome, Italy
| | - Fabio Babiloni
- Department of Molecular Medicine, "Sapienza" University of Rome, Italy
| |
Collapse
|
22
|
Brochier T, McDermott HJ, McKay CM. The effect of presentation level and stimulation rate on speech perception and modulation detection for cochlear implant users. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:4097. [PMID: 28618807 PMCID: PMC5457292 DOI: 10.1121/1.4983658] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/26/2017] [Accepted: 05/03/2017] [Indexed: 06/07/2023]
Abstract
In order to improve speech understanding for cochlear implant users, it is important to maximize the transmission of temporal information. The combined effects of stimulation rate and presentation level on temporal information transfer and speech understanding remain unclear. The present study systematically varied presentation level (60, 50, and 40 dBA) and stimulation rate [500 and 2400 pulses per second per electrode (pps)] in order to observe how the effect of rate on speech understanding changes for different presentation levels. Speech recognition in quiet and noise, and acoustic amplitude modulation detection thresholds (AMDTs) were measured with acoustic stimuli presented to speech processors via direct audio input (DAI). With the 500 pps processor, results showed significantly better performance for consonant-vowel nucleus-consonant words in quiet, and a reduced effect of noise on sentence recognition. However, no rate or level effect was found for AMDTs, perhaps partly because of amplitude compression in the sound processor. AMDTs were found to be strongly correlated with the effect of noise on sentence perception at low levels. These results indicate that AMDTs, at least when measured with the CP910 Freedom speech processor via DAI, explain between-subject variance of speech understanding, but do not explain within-subject variance for different rates and levels.
Collapse
Affiliation(s)
- Tim Brochier
- Department of Medical Bionics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Hugh J McDermott
- The Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria 3002, Australia
| | - Colette M McKay
- The Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria 3002, Australia
| |
Collapse
|
23
|
Scheperle RA. Suprathreshold compound action potential amplitude as a measure of auditory function in cochlear implant users. J Otol 2017; 12:18-28. [PMID: 29937833 PMCID: PMC6011805 DOI: 10.1016/j.joto.2017.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/02/2017] [Accepted: 01/04/2017] [Indexed: 10/28/2022] Open
Abstract
Electrically evoked compound action potential (eCAP) amplitudes elicited at suprathreshold levels were assessed as a measure of the effectiveness of cochlear implant (CI) stimulation. Twenty-one individuals participated; one was excluded due to facial stimulation during eCAP testing. For each participant, eCAPs were elicited with stimulation from seven electrodes near the upper limit of the individual's electrical dynamic range. A reduced-channel CI program was created using those same seven electrodes, and participants performed a vowel discrimination task. Consistent with previous reports, eCAP amplitudes varied across tested electrodes; the profiles were unique to each individual. In 6 subjects (30%), eCAP amplitude variability was partially explained by the impedance of the recording electrode. The remaining amplitude variability within subjects, and the variability observed across subjects could not be explained by recording electrode impedance. This implies that other underlying factors, such as variations in neural status across the array, are responsible. Across-site mean eCAP amplitude was significantly correlated with vowel discrimination scores (r2 = 0.56). A single eCAP amplitude measured from the middle of the array was also significantly correlated with vowel discrimination, but the correlation was weaker (r2 = 0.37), though not statistically different from the across-site mean. Normalizing each eCAP amplitude by its associated recording electrode impedance did not improve the correlation with vowel discrimination (r2 = 0.52). Further work is needed to assess whether combining eCAP amplitude with other measures of the electrode-neural interface and/or with more central measures of auditory function provides a more complete picture of auditory function in CI recipients.
Collapse
|
24
|
The Change in Electrical Stimulation Levels During 24 Months Postimplantation for a Large Cohort of Adults Using the Nucleus® Cochlear Implant. Ear Hear 2017; 38:357-367. [DOI: 10.1097/aud.0000000000000405] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Bosen AK, Chatterjee M. Band importance functions of listeners with cochlear implants using clinical maps. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:3718. [PMID: 27908046 PMCID: PMC5392084 DOI: 10.1121/1.4967298] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Band importance functions estimate the relative contribution of individual acoustic frequency bands to speech intelligibility. Previous studies of band importance in listeners with cochlear implants have used experimental maps and direct stimulation. Here, band importance was estimated for clinical maps with acoustic stimulation. Listeners with cochlear implants had band importance functions that relied more heavily on lower frequencies and showed less cross-listener consistency than in listeners with normal hearing. The intersubject variability observed here indicates that averaging band importance functions across listeners with cochlear implants, as has been done in previous studies, may not be meaningful. Additionally, band importance functions of listeners with normal hearing for vocoded speech that either did or did not simulate spread of excitation were not different from one another, suggesting that additional factors beyond spread of excitation are necessary to account for changes in band importance in listeners with cochlear implants.
Collapse
Affiliation(s)
- Adam K Bosen
- Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA
| | - Monita Chatterjee
- Boys Town National Research Hospital, 555 North 30th Street, Omaha, Nebraska 68131, USA
| |
Collapse
|
26
|
Schvartz-Leyzac KC, Pfingst BE. Across-site patterns of electrically evoked compound action potential amplitude-growth functions in multichannel cochlear implant recipients and the effects of the interphase gap. Hear Res 2016; 341:50-65. [PMID: 27521841 PMCID: PMC5131540 DOI: 10.1016/j.heares.2016.08.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/01/2016] [Accepted: 08/09/2016] [Indexed: 01/17/2023]
Abstract
Electrically evoked compound action potential (ECAP) measures of peak amplitude, and amplitude-growth function (AGF) slope have been shown to reflect characteristics of cochlear health (primarily spiral ganglion density) in anesthetized cochlear-implanted guinea pigs. Likewise, the effect of increasing the interphase gap (IPG) in each of these measures also reflects SGN density in the implanted guinea pig. Based on these findings, we hypothesize that suprathreshold ECAP measures, and also how they change as the IPG is increased, have the potential to be clinically applicable in human subjects. However, further work is first needed in order to determine the characteristics of these measures in humans who use cochlear implants. The current study examined across-site patterns of suprathreshold ECAP measures in 10 bilaterally-implanted, adult cochlear implant users. Results showed that both peak amplitude and slope of the AGF varied significantly from electrode to electrode in ear-specific patterns across the subjects' electrode arrays. As expected, increasing the IPG on average increased the peak amplitude and slope. Across ears, there was a significant, negative correlation between the slope of the ECAP AGF and the duration of hearing loss. Across-site patterns of ECAP peak amplitude and AGF slopes were also compared with common ground impedance values and significant correlations were observed in some cases, depending on the subject and condition. The results of this study, coupled with previous studies in animals, suggest that it is feasible to measure the change in suprathreshold ECAP measures as the IPG increases on most electrodes. Further work is needed to investigate the relationship between these measures and cochlear implant outcomes, and determine how these measures might be used when programming a cochlear-implant processor.
Collapse
Affiliation(s)
- Kara C Schvartz-Leyzac
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan Health Systems, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5616, USA; Hearing Rehabilitation Center, Department of Otolaryngology, University of Michigan Health Systems, 475 W. Market Place, Building 1, Suite A, Ann Arbor, MI 48108, USA.
| | - Bryan E Pfingst
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan Health Systems, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5616, USA.
| |
Collapse
|
27
|
Theelen–van den Hoek FL, Boymans M, van Dijk B, Dreschler WA. Adjustments of the amplitude mapping function: Sensitivity of cochlear implant users and effects on subjective preference and speech recognition. Int J Audiol 2016; 55:674-87. [DOI: 10.1080/14992027.2016.1202454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | - Monique Boymans
- Clinical and Experimental Audiology, Academic Medical Center, Amsterdam, The Netherlands and
| | | | - Wouter A. Dreschler
- Clinical and Experimental Audiology, Academic Medical Center, Amsterdam, The Netherlands and
| |
Collapse
|
28
|
Scheperle RA, Abbas PJ. Relationships Among Peripheral and Central Electrophysiological Measures of Spatial and Spectral Selectivity and Speech Perception in Cochlear Implant Users. Ear Hear 2015; 36:441-53. [PMID: 25658746 PMCID: PMC4478147 DOI: 10.1097/aud.0000000000000144] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The ability to perceive speech is related to the listener's ability to differentiate among frequencies (i.e., spectral resolution). Cochlear implant (CI) users exhibit variable speech-perception and spectral-resolution abilities, which can be attributed in part to the extent of electrode interactions at the periphery (i.e., spatial selectivity). However, electrophysiological measures of peripheral spatial selectivity have not been found to correlate with speech perception. The purpose of this study was to evaluate auditory processing at the periphery and cortex using both simple and spectrally complex stimuli to better understand the stages of neural processing underlying speech perception. The hypotheses were that (1) by more completely characterizing peripheral excitation patterns than in previous studies, significant correlations with measures of spectral selectivity and speech perception would be observed, (2) adding information about processing at a level central to the auditory nerve would account for additional variability in speech perception, and (3) responses elicited with spectrally complex stimuli would be more strongly correlated with speech perception than responses elicited with spectrally simple stimuli. DESIGN Eleven adult CI users participated. Three experimental processor programs (MAPs) were created to vary the likelihood of electrode interactions within each participant. For each MAP, a subset of 7 of 22 intracochlear electrodes was activated: adjacent (MAP 1), every other (MAP 2), or every third (MAP 3). Peripheral spatial selectivity was assessed using the electrically evoked compound action potential (ECAP) to obtain channel-interaction functions for all activated electrodes (13 functions total). Central processing was assessed by eliciting the auditory change complex with both spatial (electrode pairs) and spectral (rippled noise) stimulus changes. Speech-perception measures included vowel discrimination and the Bamford-Kowal-Bench Speech-in-Noise test. Spatial and spectral selectivity and speech perception were expected to be poorest with MAP 1 (closest electrode spacing) and best with MAP 3 (widest electrode spacing). Relationships among the electrophysiological and speech-perception measures were evaluated using mixed-model and simple linear regression analyses. RESULTS All electrophysiological measures were significantly correlated with each other and with speech scores for the mixed-model analysis, which takes into account multiple measures per person (i.e., experimental MAPs). The ECAP measures were the best predictor. In the simple linear regression analysis on MAP 3 data, only the cortical measures were significantly correlated with speech scores; spectral auditory change complex amplitude was the strongest predictor. CONCLUSIONS The results suggest that both peripheral and central electrophysiological measures of spatial and spectral selectivity provide valuable information about speech perception. Clinically, it is often desirable to optimize performance for individual CI users. These results suggest that ECAP measures may be most useful for within-subject applications when multiple measures are performed to make decisions about processor options. They also suggest that if the goal is to compare performance across individuals based on a single measure, then processing central to the auditory nerve (specifically, cortical measures of discriminability) should be considered.
Collapse
Affiliation(s)
- Rachel A. Scheperle
- Department of Communication Sciences and Disorders, University of Iowa, Iowa
City, IA, USA
| | - Paul J. Abbas
- Department of Communication Sciences and Disorders, University of Iowa, Iowa
City, IA, USA
- Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA,
USA
| |
Collapse
|
29
|
Assessing temporal modulation sensitivity using electrically evoked auditory steady state responses. Hear Res 2015; 324:37-45. [DOI: 10.1016/j.heares.2015.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 02/19/2015] [Accepted: 02/21/2015] [Indexed: 11/24/2022]
|
30
|
Zhou N, Kraft CT, Colesa DJ, Pfingst BE. Integration of Pulse Trains in Humans and Guinea Pigs with Cochlear Implants. J Assoc Res Otolaryngol 2015; 16:523-34. [PMID: 25990549 DOI: 10.1007/s10162-015-0521-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 04/29/2015] [Indexed: 01/07/2023] Open
Abstract
Temporal integration (TI; threshold versus stimulus duration) functions and multipulse integration (MPI; threshold versus pulse rate) functions were measured behaviorally in guinea pigs and humans with cochlear implants. Thresholds decreased with stimulus duration at a fixed pulse rate and with pulse rate at a fixed stimulus duration. The rates of threshold decrease (slopes) of the TI and MPI functions were not statistically different between the guinea pig and human subject groups. A characteristic of the integration functions that the two groups shared was that the slopes of the TI functions were similar in magnitude to slopes of the MPI function only at low pulse rates (< approximately 300 pulses per second). This is consistent with the notion that the TI functions and the MPI functions at the low rates are mediated by a mechanism of long-term integration described in the statistical "multiple looks" model. Histological analysis of the guinea pig cochleae suggested that the slopes of both the MPI and the TI functions were dependent on sensory and neural health near the stimulated regions. The strongest predictor for spiral ganglion cell densities measured near the stimulation sites was the slope of the MPI functions below 1,000 pps. Several mechanisms may be considered to account for the association of shallow integration functions with poor sensory and neural status. These mechanisms are related to abnormal across-fiber synchronization, increased refractoriness and adaptation with impaired neural function, and steep growth of neural excitation with current level associated with neural pathology. The slope of the integration functions can potentially be used as a non-invasive measure for identifying stimulation sites with poor neural health and selecting those sites for removal or rehabilitation, but these applications remain to be tested.
Collapse
Affiliation(s)
- Ning Zhou
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, MI, 48109-5616, USA,
| | | | | | | |
Collapse
|
31
|
Pfingst BE, Zhou N, Colesa DJ, Watts MM, Strahl SB, Garadat SN, Schvartz-Leyzac KC, Budenz CL, Raphael Y, Zwolan TA. Importance of cochlear health for implant function. Hear Res 2015; 322:77-88. [PMID: 25261772 PMCID: PMC4377117 DOI: 10.1016/j.heares.2014.09.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/14/2014] [Accepted: 09/16/2014] [Indexed: 01/17/2023]
Abstract
Amazing progress has been made in providing useful hearing to hearing-impaired individuals using cochlear implants, but challenges remain. One such challenge is understanding the effects of partial degeneration of the auditory nerve, the target of cochlear implant stimulation. Here we review studies from our human and animal laboratories aimed at characterizing the health of the implanted cochlea and the auditory nerve. We use the data on cochlear and neural health to guide rehabilitation strategies. The data also motivate the development of tissue-engineering procedures to preserve or build a healthy cochlea and improve performance obtained by cochlear implant recipients or eventually replace the need for a cochlear implant. This article is part of a Special Issue entitled .
Collapse
Affiliation(s)
- Bryan E Pfingst
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA.
| | - Ning Zhou
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA; East Carolina University, Greenville, NC, USA
| | - Deborah J Colesa
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA
| | - Melissa M Watts
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA
| | | | - Soha N Garadat
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA; The University of Jordan, Amman, Jordan
| | | | - Cameron L Budenz
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA
| | - Yehoash Raphael
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA
| | - Teresa A Zwolan
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|