1
|
Malange KF, de Souza DM, Lemes JBP, Fagundes CC, Oliveira ALL, Pagliusi MO, Carvalho NS, Nishijima CM, da Silva CRR, Consonni SR, Sartori CR, Tambeli CH, Parada CA. The Implications of Brain-Derived Neurotrophic Factor in the Biological Activities of Platelet-Rich Plasma. Inflammation 2025; 48:426-446. [PMID: 38904872 DOI: 10.1007/s10753-024-02072-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/22/2024]
Abstract
Platelet-rich plasma (PRP) is a biological blood-derived therapeutic obtained from whole blood that contains higher levels of platelets. PRP has been primarily used to mitigate joint degeneration and chronic pain in osteoarthritis (OA). This clinical applicability is based mechanistically on the release of several proteins by platelets that can restore joint homeostasis. Platelets are the primary source of brain-derived neurotrophic factor (BDNF) outside the central nervous system. Interestingly, BDNF and PRP share key biological activities with clinical applicability for OA management, such as anti-inflammatory, anti-apoptotic, and antioxidant. However, the role of BDNF in PRP therapeutic activities is still unknown. Thus, this work aimed to investigate the implications of BDNF in therapeutic outcomes provided by PRP therapy in vitro and in-vivo, using the MIA-OA animal model in male Wistar rats. Initially, the PRP was characterized, obtaining a leukocyte-poor-platelet-rich plasma (LP-PRP). Our assays indicated that platelets activated by Calcium release BDNF, and suppression of M1 macrophage polarization induced by LP-PRP depends on BDNF full-length receptor, Tropomyosin Kinase-B (TrkB). OA animals were given LP-PRP intra-articular and showed functional recovery in gait, joint pain, inflammation, and tissue damage caused by MIA. Immunohistochemistry for activating transcriptional factor-3 (ATF-3) on L4/L5 dorsal root ganglia showed the LP-PRP decreased the nerve injury induced by MIA. All these LP-PRP therapeutic activities were reversed in the presence of TrkB receptor antagonist. Our results suggest that the therapeutic effects of LP-PRP in alleviating OA symptoms in rats depend on BDNF/TrkB activity.
Collapse
Affiliation(s)
- Kaue Franco Malange
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil
| | - Douglas Menezes de Souza
- Department of Pharmacology, School of Medical Sciences, University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-887, Brazil
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, CEP 13083-862, Brazil
| | - Julia Borges Paes Lemes
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil
| | - Cecilia Costa Fagundes
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil
| | - Anna Lethicia Lima Oliveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil
| | - Marco Oreste Pagliusi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil
| | - Nathalia Santos Carvalho
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil
| | - Catarine Massucato Nishijima
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil
| | - Cintia Rizoli Ruiz da Silva
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, CEP 13083-862, Brazil
| | - Silvio Roberto Consonni
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, CEP 13083-862, Brazil
| | - Cesar Renato Sartori
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil
| | - Claudia Herrera Tambeli
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil
| | - Carlos Amilcar Parada
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil.
| |
Collapse
|
2
|
Pemmari A, Moilanen E. Macrophage and chondrocyte phenotypes in inflammation. Basic Clin Pharmacol Toxicol 2024; 135:537-549. [PMID: 39319534 DOI: 10.1111/bcpt.14085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024]
Abstract
Inflammation is a complex biological process protecting the body from diverse external threats. Effectively performing this task requires an intricate, well-regulated interplay of different cells and tissues. Furthermore, several cells participating in inflammation can assume diverse phenotypes. A classic and relatively well-studied example of phenotypic diversity in inflammation is macrophage polarization. Based on the TH1/TH2 phenotypes of T helper cells, this scheme has proinflammatory "classical/M1" activation contrasted with the anti-inflammatory and healing-promoting "alternative/M2" phenotype. Some authors have extended the concept into an M17 phenotype induced by the classic TH17 cytokine IL-17. Phenotypic changes in chondrocytes have also been studied especially in the context of osteoarthritis (OA), and there are indications that these cells can also assume polarized phenotypes at least partly analogous to those of TH cells and macrophages. The therapeutic success of biological agents targeting TH1/TH2/TH17 inductor and/or effector cytokines displays the utility of the concept of polarization. The aim of this focused review is to survey the internal and external factors affecting macrophage and chondrocyte phenotypes (such as inflammatory cytokines, widely used medications and natural products) and to explore the possibility of ameliorating pathological states by modulating these phenotypes.
Collapse
Affiliation(s)
- Antti Pemmari
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
3
|
Zhang Y, Huang W, Xiao H, Ruan S, Deng J. NGF-BMSC-SF/CS composites for repairing knee joint osteochondral defects in rabbits: evaluation of the repair effect and potential underlying mechanisms. J Orthop Surg Res 2024; 19:443. [PMID: 39075502 PMCID: PMC11285204 DOI: 10.1186/s13018-024-04801-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/20/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND With the rapid growth of the ageing population, chronic diseases such as osteoarthritis have become one of the major diseases affecting the quality of life of elderly people. The main pathological manifestation of osteoarthritis is articular cartilage damage. Alleviating and repairing damaged cartilage has always been a challenge. The application of cartilage tissue engineering methods has shown promise for articular cartilage repair. Many studies have used cartilage tissue engineering methods to repair damaged cartilage and obtained good results, but these methods still cannot be used clinically. Therefore, this study aimed to investigate the effect of incorporating nerve growth factor (NGF) into a silk fibroin (SF)/chitosan (CS) scaffold containing bone marrow-derived mesenchymal stem cells (BMSCs) on the repair of articular cartilage defects in the knees of rabbits and to explore the possible underlying mechanism involved. MATERIALS AND METHODS Nerve growth factor-loaded sustained-release microspheres were prepared by a double emulsion solvent evaporation method. SF/CS scaffolds were prepared by vacuum drying and chemical crosslinking. BMSCs were isolated and cultured by density gradient centrifugation and adherent culture. NGF-SF/CS-BMSC composites were prepared and implanted into articular cartilage defects in the knees of rabbits. The repair of articular cartilage was assessed by gross observation, imaging and histological staining at different time points after surgery. The repair effect was evaluated by the International Cartilage Repair Society (ICRS) score and a modified Wakitani score. In vitro experiments were also performed to observe the effect of different concentrations of NGF on the proliferation and directional differentiation of BMSCs on the SF/CS scaffold. RESULTS In the repair of cartilage defects in rabbit knees, NGF-SF/CS-BMSCs resulted in higher ICRS scores and lower modified Wakitani scores. The in vitro results showed that there was no significant correlation between the proliferation of BMSCs and the addition of different concentrations of NGF. Additionally, there was no significant difference in the protein and mRNA expression of COL2a1 and ACAN between the groups after the addition of different concentrations of NGF. CONCLUSION NGF-SF/CS-BMSCs improved the repair of articular cartilage defects in the knees of rabbits. This repair effect may be related to the early promotion of subchondral bone repair.
Collapse
Affiliation(s)
- Yong Zhang
- The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi City, Guizhou Province, 563000, China
- The People's Hospital of Bozhou District, Zunyi City, Guizhou Province, 563000, China
| | - Wenliang Huang
- The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi City, Guizhou Province, 563000, China
| | - Hongli Xiao
- The First People's Hospital of Guiyang City, Guiyang, Guizhou Province, 550002, China
| | - Shiqiang Ruan
- The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi City, Guizhou Province, 563000, China
| | - Jiang Deng
- The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi City, Guizhou Province, 563000, China.
| |
Collapse
|
4
|
McKune CM. Clinical Management and Pharmacologic Treatment of Pain. VETERINARY ANESTHESIA AND ANALGESIA 2024:1010-1022. [DOI: 10.1002/9781119830306.ch48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Zhang M, Wang Z, Ding C. Pharmacotherapy for osteoarthritis-related pain: current and emerging therapies. Expert Opin Pharmacother 2024; 25:1209-1227. [PMID: 38938057 DOI: 10.1080/14656566.2024.2374464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024]
Abstract
INTRODUCTION Osteoarthritis (OA) related pain has affected millions of people worldwide. However, the current pharmacological options for managing OA-related pain have not achieved a satisfactory effect. AREAS COVERED This narrative review provides an overview of the current and emerging drugs for OA-related pain. It covers the drugs' mechanism of action, safety, efficacy, and limitations. The National Library of Medicine (PubMed) database was primarily searched from 2000 to 2024. EXPERT OPINION Current treatment options are limited and suboptimal for OA pain management. Topical nonsteroidal anti-inflammatory drugs (NSAIDs) are the recognized and first-line treatment in the management of OA-related pain, and other drugs are inconsistent recommendations by guidelines. Emerging treatment options are promising for OA-related pain, including nerve growth factor (NGF) inhibitors, ion channel inhibitors, and calcitonin gene-related peptide (CGRP) antagonists. Besides, drugs repurposing from antidepressants and antiepileptic analgesics are shedding light on the management of OA-related pain. The management of OA-related pain is challenging as pain is heterogeneous and subjective. A more comprehensive strategy combined with non-pharmacological therapy needs to be considered, and tailored management options to individualized patients.
Collapse
Affiliation(s)
- Mengdi Zhang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiqiang Wang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Ragni E, De Luca P, Landoni S, Valli F, Mortati L, Palombella S, Talò G, Moretti M, de Girolamo L. High efficiency protocol for platelet derived fibrin gel loaded with mesenchymal stromal cells extracellular vesicles. Regen Ther 2024; 26:442-457. [PMID: 39070124 PMCID: PMC11276930 DOI: 10.1016/j.reth.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/11/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Extracellular vesicles from mesenchymal stromal cells (MSC-EVs) are potent stimulators of naïve cartilage and their injection is studied in clinical trials for cartilage lesions, since often cartilage repaired with conventional approaches is incomplete or less performant leading to joint degeneration. The main pitfall of these innovative approaches is the high EVs dispersion into the joint cavity and consequent low concentration at lesion site. Thus, biological scaffolds for concentration of EVs where needed might be a promising option. This work aimed at producing an enhanced platelet-derived fibrin gel loaded with adipose-derived MSCs (ASCs)-EVs. Methods EVs' embedment efficiency in platelet gel, their release and incorporation in OA chondrocytes and cartilage explants were monitored by flow cytometry, microfluidic approaches, scansion electron microscopy and real-time quantitative multimodal nonlinear optics imaging. The effect of released EVs was tested in OA chondrocytes by gene expression studies. Results A protocol ensuring high incorporation EVs efficiency in platelet gels was defined, relying on a one-step modification of the standard procedure used in current clinical practice. Trapped EVs were released continuously for up to 4 weeks and uptaken in pathologic chondrocytes and cartilage explants. The release of the EVs-loaded platelet gel had stronger and synergic anti-inflammatory/matrix remodelling effects with respect to both EVs per se and unloaded gel released products. Conclusions These results suggest the feasibility of producing a platelet gel loaded with MSC-EVs at high efficiency that can be used as an enhanced tool to foster chondrocyte homeostasis, a key requisite for proper cartilage healing.
Collapse
Affiliation(s)
- Enrico Ragni
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via Cristina Belgioioso 173, 20157 Milano, Italy
| | - Paola De Luca
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via Cristina Belgioioso 173, 20157 Milano, Italy
| | - Simona Landoni
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via Cristina Belgioioso 173, 20157 Milano, Italy
| | - Federico Valli
- IRCCS Istituto Ortopedico Galeazzi, Chirurgia Articolare Sostitutiva e Chirurgia Ortopedica (C.A.S.C.O.), Via Cristina Belgioioso 173, 20157 Milano, Italy
| | - Leonardo Mortati
- Istituto Nazionale di Ricerca Metrologica (INRIM), Str. delle Cacce 91, 10135 Torino, Italy
| | - Silvia Palombella
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Via C. Belgioioso 173, 20157, Milano, Italy
| | - Giuseppe Talò
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Via C. Belgioioso 173, 20157, Milano, Italy
| | - Matteo Moretti
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Via C. Belgioioso 173, 20157, Milano, Italy
- Regenerative Medicine Technologies Lab, Laboratories for Translational Research, Ente Ospedaliero Cantonale, via Chiesa 5, 6500 Bellinzona, Switzerland
- Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, via Tesserete 46, 6900 Lugano, Switzerland
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), via Buffi 13, 6900 Lugano, Switzerland
| | - Laura de Girolamo
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via Cristina Belgioioso 173, 20157 Milano, Italy
| |
Collapse
|
7
|
Farinelli L, Riccio M, Gigante A, De Francesco F. Pain Management Strategies in Osteoarthritis. Biomedicines 2024; 12:805. [PMID: 38672160 PMCID: PMC11048725 DOI: 10.3390/biomedicines12040805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Pain is the major symptom of osteoarthritis (OA) and is an important factor in strategies to manage this disease. However, the current standard of care does not provide satisfactory pain relief for many patients. The pathophysiology of OA is complex, and its presentation as a clinical syndrome is associated with the pathologies of multiple joint tissues. Treatment options are generally classified as pharmacologic, nonpharmacologic, surgical, and complementary and/or alternative, typically used in combination to achieve optimal results. The goals of treatment are the alleviation of symptoms and improvement in functional status. Several studies are exploring various directions for OA pain management, including tissue regeneration techniques, personalized medicine, and targeted drug therapies. The aim of the present narrative review is to extensively describe all the treatments available in the current practice, further describing the most important innovative therapies. Advancements in understanding the molecular and genetic aspects of osteoarthritis may lead to more effective and tailored treatment approaches in the future.
Collapse
Affiliation(s)
- Luca Farinelli
- Clinical Orthopaedics, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy; (L.F.); (A.G.)
| | - Michele Riccio
- Department of Reconstructive Surgery and Hand Surgery, Azienda Ospedaliera Universitaria delle Marche, 60126 Ancona, Italy;
| | - Antonio Gigante
- Clinical Orthopaedics, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy; (L.F.); (A.G.)
| | - Francesco De Francesco
- Department of Reconstructive Surgery and Hand Surgery, Azienda Ospedaliera Universitaria delle Marche, 60126 Ancona, Italy;
| |
Collapse
|
8
|
van den Bosch MHJ, Blom AB, van der Kraan PM. Inflammation in osteoarthritis: Our view on its presence and involvement in disease development over the years. Osteoarthritis Cartilage 2024; 32:355-364. [PMID: 38142733 DOI: 10.1016/j.joca.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/01/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Inflammation, both locally in the joint and systemic, is nowadays considered among the mechanisms involved in osteoarthritis (OA). However, this concept has not always been generally accepted. In fact, for long OA has been described as a relatively simple degeneration of articular cartilage as the result of wear and tear only. In this narrative review, we present what our understanding of OA was at the time of the inaugural release of Osteoarthritis and Cartilage about 30 years ago and discuss a set of pivotal papers that changed our view on the role of inflammation in OA development. Furthermore, we briefly discuss the current view on the involvement of inflammation in OA. Next, we use the example of transforming growth factor-β signaling to show how inflammation might influence processes in the joint in a manner that is beyond the simple interaction of ligand and receptor leading to the release of inflammatory and catabolic mediators. Finally, we discuss our view on what should be done in the future to bring the field forward.
Collapse
Affiliation(s)
| | - Arjen B Blom
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Saxer F, Hollinger A, Bjurström M, Conaghan P, Neogi T, Schieker M, Berenbaum F. Pain-phenotyping in osteoarthritis: Current concepts, evidence, and considerations towards a comprehensive framework for assessment and treatment. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100433. [PMID: 38225987 PMCID: PMC10788802 DOI: 10.1016/j.ocarto.2023.100433] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/30/2023] [Indexed: 01/17/2024] Open
Abstract
Objectives Pain as central symptom of osteoarthritis (OA) needs to be addressed as part of successful treatment. The assessment of pain as feature of disease or outcome in clinical practice and drug development remains a challenge due to its multidimensionality and the plethora of confounders. This article aims at providing insights into our understanding of OA pain-phenotypes and suggests a framework for systematic and comprehensive assessments. Methods This narrative review is based on a search of current literature for various combinations of the search terms "pain-phenotype" and "knee OA" and summarizes current knowledge on OA pain-phenotypes, putting OA pain and its assessment into perspective of current research efforts. Results Pain is a complex phenomenon, not necessarily associated with tissue damage. Various pain-phenotypes have been described in knee OA. Among those, a phenotype with high pain levels not necessarily matching structural changes and a phenotype with low pain levels and impact are relatively consistent. Further subgroups can be differentiated based on patient reported outcome measures, assessments of comorbidities, anxiety and depression, sleep, activity and objective measures such as quantitative sensory testing. Conclusions The complexity of both OA as disease and pain in OA prompt the definition of a set of variables that facilitate assessments comparable across studies to maximize our understanding of pain, as central concern for the patient.
Collapse
Affiliation(s)
- F. Saxer
- Novartis Biomedical Research, Novartis Campus, 4002, Basel, Switzerland
- Medical Faculty, University of Basel, 4002, Basel, Switzerland
| | - A. Hollinger
- Novartis Biomedical Research, Novartis Campus, 4002, Basel, Switzerland
- Intensive Care Unit, Department of Acute Medicine, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - M.F. Bjurström
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - P.G. Conaghan
- Leeds Institute of Rheumatic & Musculoskeletal Medicine, University of Leeds and NIHR Leeds Biomedical Research Centre, UK
| | - T. Neogi
- Clinical Epidemiology Research and Training Unit and Rheumatology, Boston University School of Medicine Epidemiology, Boston University School of Public Health, United States
| | - M. Schieker
- Novartis Biomedical Research, Novartis Campus, 4002, Basel, Switzerland
- Medical Faculty, Ludwig-Maximilians-University, Munich, 80336, Germany
| | - F. Berenbaum
- Department of Rheumatology, Sorbonne Université, INSERM CRSA, AP-HP Hopital Saint Antoine, Paris, France
| |
Collapse
|
10
|
Pandey A, Singla M, Geller A, Goodman SB, Bhutani N. Targeting an inflammation-amplifying cell population can attenuate osteoarthritis-associated pain. Arthritis Res Ther 2024; 26:53. [PMID: 38368390 PMCID: PMC10874031 DOI: 10.1186/s13075-024-03284-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/31/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND Understanding of pain in osteoarthritis, its genesis, and perception is still in its early stages. Identification of precise ligand-receptor pairs that transduce pain and the cells and tissues in which they reside will elucidate new therapeutic approaches for pain management. Our recent studies had identified an inflammation-amplifying (Inf-A) cell population that is expanded in human OA cartilage and is distinctive in the expression of both IL1R1 and TNF-R2 receptors and active Jnk signaling cascade. METHODS In this study, we have tested the function of the cartilage-resident IL1R1+TNF-R2+ Inf-A cells in OA. We have identified that the IL1R1+TNF-R2+ Inf-A cells expand in aged mice as well as after anterior cruciate ligament tear upon tibia loading and OA initiation in mice. We targeted and modulated the Jnk signaling cascade in InfA through competitive inhibition of Jnk signaling in mice and human OA explants and tested the effects on joint structure and gait in mice. RESULTS Modulation of Jnk signaling led to attenuation of inflammatory cytokines CCL2 and CCL7 without showing any structural improvements in the joint architecture. Interestingly, Jnk inhibition and lowered CCL2 and 7 are sufficient to significantly improve the gait parameters in treated PTOA mice demonstrating reduced OA-associated pain. Consistent with the mice data, treatment with JNK inhibitor did not improve human OA cartilage explants. CONCLUSION These studies demonstrate that Inf-A, an articular-cartilage resident cell population, contributes to pain in OA via secretion of CCL2 and 7 and can be targeted via inhibition of Jnk signaling.
Collapse
Affiliation(s)
- Akshay Pandey
- Department of Orthopaedic Surgery, Stanford School of Medicine, 240, Pasteur Drive, Biomedical Innovations Bldg, Stanford, CA, 94034, USA
| | - Mamta Singla
- Department of Orthopaedic Surgery, Stanford School of Medicine, 240, Pasteur Drive, Biomedical Innovations Bldg, Stanford, CA, 94034, USA
| | - Ana Geller
- Department of Orthopaedic Surgery, Stanford School of Medicine, 240, Pasteur Drive, Biomedical Innovations Bldg, Stanford, CA, 94034, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford School of Medicine, 240, Pasteur Drive, Biomedical Innovations Bldg, Stanford, CA, 94034, USA
| | - Nidhi Bhutani
- Department of Orthopaedic Surgery, Stanford School of Medicine, 240, Pasteur Drive, Biomedical Innovations Bldg, Stanford, CA, 94034, USA.
| |
Collapse
|
11
|
Tao J, Wang X, Xu J. Expression of CGRP in the Trigeminal Ganglion and Its Effect on the Polarization of Macrophages in Rats with Temporomandibular Arthritis. Cell Mol Neurobiol 2024; 44:22. [PMID: 38363424 PMCID: PMC10873438 DOI: 10.1007/s10571-024-01456-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024]
Abstract
Calcitonin gene-related peptide (CGRP) is synthesized and secreted by trigeminal ganglion neurons, and is a key neuropeptide involved in pain and immune regulation. This study investigates the expression of CGRP in the trigeminal ganglion (TG) and its regulatory role in the polarization of macrophages in rats with temporomandibular arthritis. A rat model of temporomandibular arthritis was established using CFA. Pain behavior was then observed. Temporomandibular joint (TMJ) and the TG were collected, and immunohistochemistry, immunofluorescence (IF) staining, and RT-qPCR were used to examine the expression of CGRP and macrophage-related factors. To investigate the impact of CGRP on macrophage polarization, both CGRP and its antagonist, CGRP 8-37, were separately administered directly within the TG. Statistical analysis revealed that within 24 h of inducing temporomandibular arthritis using CFA, there was a significant surge in CD86 positive macrophages within the ganglion. These macrophages peaked on the 7th day before beginning their decline. In this context, it's noteworthy that administering CGRP to the trigeminal ganglion can prompt these macrophages to adopt the M2 phenotype. Intriguingly, this study demonstrates that injecting the CGRP receptor antagonist (CGRP 8-37) to the ganglion counteracts this shift towards the M2 phenotype. Supporting these in vivo observations, we found that in vitro, CGRP indeed fosters the M2-type polarization of macrophages. CGRP can facilitate the conversion of macrophages into the M2 phenotype. The phenotypic alterations of macrophages within the TG could be instrumental in initiating and further driving the progression of TMJ disorders.
Collapse
Affiliation(s)
- Junli Tao
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiaohui Wang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jie Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
12
|
Li Z, Chen H, Chen C. Pain sensitivity genes as therapeutic targets in knee osteoarthritis: A comprehensive analysis. Mol Pain 2024; 20:17448069241289961. [PMID: 39313491 PMCID: PMC11456193 DOI: 10.1177/17448069241289961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024] Open
Abstract
Pain sensitivity is a significant factor in knee osteoarthritis (KOA), influencing patient outcomes and complicating treatment. Genetic differences, particularly in pain-sensing genes (PSRGs), are known to contribute to the variability in pain experiences among KOA patients. This study aims to systematically analyze PSRGs in KOA to better understand their role and potential as therapeutic targets. We utilized bulk RNA-seq data from the GSE114007 and GSE169077 datasets to identify differentially expressed genes, with 20 genes found to be significantly altered. Key PSRGs, including PENK, NGF, HOXD1, and TRPA1, were identified using LASSO, SVM, and random forest algorithms. Further, KEGG and GO enrichment analyses revealed pathways such as "Neuroactive ligand-receptor interaction" and "ECM-receptor interaction," which were validated through external datasets. Single-cell RNA-seq analysis from GSE152805, GSE133449, and GSE104782 datasets demonstrated the heterogeneity and dynamic expression of PSRGs across different cell subpopulations in synovium, meniscus, and cartilage samples. UMAP and pseudotime analyses were used to visualize spatial distribution and developmental trajectories of these genes. The findings emphasize the critical roles of PSRGs in KOA, highlighting their potential as therapeutic targets and suggesting that integrating genetic information into clinical practice could significantly improve pain management and treatment strategies for KOA.
Collapse
Affiliation(s)
- Zirui Li
- School of Physical Education and Health, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haicheng Chen
- The Department of Orthopedics, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chujie Chen
- School of Physical Education and Health, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
13
|
Tahir S, Sadik O, Ezenwa V, Iguh C, Ravichandran V, Ashraf NN, O'Connor EM, Sayabugari R. Various Doses of Tanezumab in the Management of Chronic Low Back Pain (CLBP): A Pooled Analysis of 4,514 Patients. Cureus 2023; 15:e46790. [PMID: 37954824 PMCID: PMC10634383 DOI: 10.7759/cureus.46790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
Chronic low back pain (CLBP) is a persistent and debilitating condition characterized by pain and discomfort in the lower back region that lasts more than 12 weeks. This review aims to determine the efficacy and safety of various doses of tanezumab for managing CLBP. The present meta-analysis was reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines and the Cochrane Handbook for Systematic Reviews of Intervention standards. We searched multiple databases, including PubMed, Cochrane Library, Excerpta Medica Database (EMBASE), Scopus, and Web of Science, to identify randomized controlled trials comparing tanezumab to placebo or different dosage regimens for CLBP in adult patients. The primary outcome was the mean change in low back pain intensity (LBPI) score baseline to the end of treatment. Secondary outcomes included adverse events and the degree of disability or impairment. A total of six studies were included in the meta-analysis. Analysis of the data showed that tanezumab 5 mg significantly reduced LBPI compared to placebo at all time points (mean deviation (MD) ranging from -0.31 to -0.5). Similarly, tanezumab 10 mg showed a significant reduction in LBPI compared to placebo at all time points (MD ranging from -0.48 to -0.84). However, tanezumab 5 mg showed significantly less reduction of LBPI compared to 10 mg at two, four, eight, and 12 weeks (MD ranging from 0.19 to 0.32). These findings suggest that tanezumab is an effective treatment for CLBP, with 5 mg and 10 mg doses providing clinically meaningful reductions in LBPI.
Collapse
Affiliation(s)
- Sophia Tahir
- Internal Medicine/Family Medicine, Windsor University School of Medicine, Basseterre, KNA
| | - Oman Sadik
- Family Medicine, Jackson Park Hospital, Chicago, USA
| | - Virginia Ezenwa
- Internal Medicine, Windsor University School of Medicine, Basseterre, KNA
| | - Chinenye Iguh
- Medicine, Windsor University School of Medicine, Basseterre, KNA
| | - Vidhya Ravichandran
- Pediatrics, Sri Muthukumaran Medical College Hospital and Research Institute, Chennai, IND
| | - Naufin N Ashraf
- Internal Medicine, Windsor University School of Medicine, Basseterre, KNA
| | - Erica M O'Connor
- Internal Medicine, Windsor University School of Medicine, Basseterre, KNA
| | | |
Collapse
|
14
|
Menges S, Michaelis M, Kleinschmidt-Dörr K. Anti-NGF treatment worsens subchondral bone and cartilage measures while improving symptoms in floor-housed rabbits with osteoarthritis. Front Physiol 2023; 14:1201328. [PMID: 37435308 PMCID: PMC10331818 DOI: 10.3389/fphys.2023.1201328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/14/2023] [Indexed: 07/13/2023] Open
Abstract
Objective: Osteoarthritis (OA) is a common joint disorder often affecting the knee. It is characterized by alterations of various joint tissues including subchondral bone and by chronic pain. Anti-nerve growth factor (NGF) antibodies have demonstrated improvement in pain associated with OA in phase 3 clinical trials but have not been approved due to an increased risk of developing rapidly progressive OA. The aim of this study was to investigate effects of systemic anti-NGF-treatment on structure and symptoms in rabbits with surgically induced joint instability. Methods: This was elicited by anterior cruciate ligament transection and partial resection of the medial meniscus in right knee of 63 female rabbits, housed altogether in a 56 m2 floor husbandry. Rabbits received either 0.1, 1 or 3 mg/kg anti-NGF antibody intra-venously at weeks 1, 5 and 14 after surgery or vehicle. During in-life phase, static incapacitance tests were performed and joint diameter was measured. Following necropsy, gross morphological scoring and micro-computed tomography analysis of subchondral bone and cartilage were performed. Results: After surgery, rabbits unloaded operated joints, which was improved with 0.3 and 3 mg/kg anti-NGF compared to vehicle injection during the first half of the study. The diameter of operated knee joints increased over contralateral measures. This increase was bigger in anti-NGF treated rabbits beginning 2 weeks after the first IV injection and became dose-dependent and more pronounced with time. In the 3 mg/kg anti-NGF group, the bone volume fraction and trabecular thickness increased in the medio-femoral region of operated joints compared to contralateral and to vehicle-treated animals, while cartilage volume and to a lesser extent thickness decreased. Enlarged bony areas were found in right medio-femoral cartilage surfaces of animals receiving 1 and 3 mg/kg anti-NGF. Alterations of all structural parameters were particularly distinct in a subgroup of three rabbits, which also exhibited more prominent symptomatic improvement. Conclusion: This study showed that anti-NGF administration exerted negative impact on structure in destabilized joints of rabbits, while pain-induced unloading of joints was improved. Our findings open up the possibility to better understand the effects of systemic anti-NGF, particularly on subchondral bone, and thus the occurrence of rapidly progressive OA in patients.
Collapse
|
15
|
Chung MK, Wang S, Alshanqiti I, Hu J, Ro JY. The degeneration-pain relationship in the temporomandibular joint: Current understandings and rodent models. FRONTIERS IN PAIN RESEARCH 2023; 4:1038808. [PMID: 36846071 PMCID: PMC9947567 DOI: 10.3389/fpain.2023.1038808] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Temporomandibular disorders (TMD) represent a group of musculoskeletal conditions involving the temporomandibular joints (TMJ), the masticatory muscles and associated structures. Painful TMD are highly prevalent and conditions afflict 4% of US adults annually. TMD include heterogenous musculoskeletal pain conditions, such as myalgia, arthralgia, and myofascial pain. A subpopulations of TMD patients show structural changes in TMJ, including disc displacement or degenerative joint diseases (DJD). DJD is a slowly progressing, degenerative disease of the TMJ characterized by cartilage degradation and subchondral bone remodeling. Patients with DJD often develop pain (TMJ osteoarthritis; TMJ OA), but do not always have pain (TMJ osteoarthrosis). Therefore, pain symptoms are not always associated with altered TMJ structures, which suggests that a causal relationship between TMJ degeneration and pain is unclear. Multiple animal models have been developed for determining altered joint structure and pain phenotypes in response to various TMJ injuries. Rodent models of TMJOA and pain include injections to induce inflammation or cartilage destruction, sustained opening of the oral cavity, surgical resection of the articular disc, transgenic approaches to knockout or overexpress key genes, and an integrative approach with superimposed emotional stress or comorbidities. In rodents, TMJ pain and degeneration occur during partially overlapping time periods in these models, which suggests that common biological factors may mediate TMJ pain and degeneration over different time courses. While substances such as intra-articular pro-inflammatory cytokines commonly cause pain and joint degeneration, it remains unclear whether pain or nociceptive activities are causally associated with structural degeneration of TMJ and whether structural degeneration of TMJ is necessary for producing persistent pain. A thorough understanding of the determining factors of pain-structure relationships of TMJ during the onset, progression, and chronification by adopting novel approaches and models should improve the ability to simultaneously treat TMJ pain and TMJ degeneration.
Collapse
Affiliation(s)
- Man-Kyo Chung
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, United States
| | | | | | | | | |
Collapse
|
16
|
Loucks A, Maerz T, Hankenson K, Moeser A, Colbath A. The multifaceted role of mast cells in joint inflammation and arthritis. Osteoarthritis Cartilage 2023; 31:567-575. [PMID: 36682447 DOI: 10.1016/j.joca.2023.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To review current knowledge surrounding the role of mast cells in joint inflammation and arthritis. METHOD Narrative review. RESULTS Mast cells (MCs) are commonly observed in the synovium of the joint, particularly surrounding blood vessels and nerve endings. Some studies have reported increased MC number and degranulation in patients with osteoarthritis (OA). In two studies, MCs were the only immune cell type found in higher concentrations in synovium of OA patients compared to rheumatoid arthritis patients. Activation of MCs in OA includes signaling pathways such as immunoglobulin E/Fc epsilon Receptor 1 (IgE/FcεR1), immunoglobulin G/Fc gamma receptor (IgG/FcγR), complement, and toll-like cell surface receptor-mediated signaling, resulting in context-dependent release of either pro-inflammatory and/or anti-inflammatory mediators within the joint. Activation of MCs results in the release of pro-inflammatory mediators that ultimately contribute to inflammation of the synovium, bone remodeling, and cartilage damage. However, some studies have proposed that MCs can also exhibit anti-inflammatory effects by secreting mediators that inactivate pro-inflammatory cytokines such as interleukin 6 (IL-6). CONCLUSIONS MCs may play a role in mediating synovial inflammation and OA progression. However, the mechanisms governing MC activation, the downstream pro- and/or anti-inflammatory effects, and their impact on osteoarthritis pathogenesis remains to be elucidated and requires extensive further study. Furthermore, it is important to establish the pathways of MC activation in OA to determine whether MCs exhibit varying phenotypes as a function of disease stage. Ultimately, such research is needed before understanding whether MCs could be targeted in OA treatments.
Collapse
Affiliation(s)
- A Loucks
- Department of Clinical Sciences, Cornell University, Ithaca, NY, USA.
| | - T Maerz
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.
| | - K Hankenson
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.
| | - A Moeser
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA.
| | - A Colbath
- Department of Clinical Sciences, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
17
|
Loucks A, Maerz T, Hankenson K, Moeser A, Colbath A. WITHDRAWN: The Multifaceted Role of Mast Cells in Joint Inflammation and Arthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2022. [DOI: 10.1016/j.ocarto.2022.100309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
18
|
Liao Y, Ren Y, Luo X, Mirando AJ, Long JT, Leinroth A, Ji RR, Hilton MJ. Interleukin-6 signaling mediates cartilage degradation and pain in posttraumatic osteoarthritis in a sex-specific manner. Sci Signal 2022; 15:eabn7082. [PMID: 35881692 PMCID: PMC9382892 DOI: 10.1126/scisignal.abn7082] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Osteoarthritis (OA) and posttraumatic OA (PTOA) are caused by an imbalance in catabolic and anabolic processes in articular cartilage and proinflammatory changes throughout the joint, leading to joint degeneration and pain. We examined whether interleukin-6 (IL-6) signaling contributed to cartilage degradation and pain in PTOA. Genetic ablation of Il6 in male mice decreased PTOA-associated cartilage catabolism, innervation of the knee joint, and nociceptive signaling without improving PTOA-associated subchondral bone sclerosis or chondrocyte apoptosis. These effects were not observed in female Il6-/- mice. Compared with wild-type mice, the activation of the IL-6 downstream mediators STAT3 and ERK was reduced in the knees and dorsal root ganglia (DRG) of male Il6-/- mice after knee injury. Janus kinases (JAKs) were critical for STAT and ERK signaling in cartilage catabolism and DRG pain signaling in tissue explants. Whereas STAT3 signaling was important for cartilage catabolism, ERK signaling mediated neurite outgrowth and the activation of nociceptive neurons. These data demonstrate that IL-6 mediates both cartilage degradation and pain associated with PTOA in a sex-specific manner and identify tissue-specific contributions of downstream effectors of IL-6 signaling, which are potential therapeutic targets for disease-modifying OA drugs.
Collapse
Affiliation(s)
- Yihan Liao
- Departments of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA,Departments of Orthopaedic Surgery, Duke Orthopaedic Cellular, Developmental, and Genome Laboratories, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Yinshi Ren
- Departments of Orthopaedic Surgery, Duke Orthopaedic Cellular, Developmental, and Genome Laboratories, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Xin Luo
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Anthony J. Mirando
- Departments of Orthopaedic Surgery, Duke Orthopaedic Cellular, Developmental, and Genome Laboratories, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jason T. Long
- Departments of Orthopaedic Surgery, Duke Orthopaedic Cellular, Developmental, and Genome Laboratories, Duke University School of Medicine, Durham, NC, 27710, USA,Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Abigail Leinroth
- Departments of Orthopaedic Surgery, Duke Orthopaedic Cellular, Developmental, and Genome Laboratories, Duke University School of Medicine, Durham, NC, 27710, USA,Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Matthew J. Hilton
- Departments of Orthopaedic Surgery, Duke Orthopaedic Cellular, Developmental, and Genome Laboratories, Duke University School of Medicine, Durham, NC, 27710, USA,Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA,Corresponding author.
| |
Collapse
|
19
|
Defaye M, Iftinca MC, Gadotti VM, Basso L, Abdullah NS, Cumenal M, Agosti F, Hassan A, Flynn R, Martin J, Soubeyre V, Poulen G, Lonjon N, Vachiery-Lahaye F, Bauchet L, Mery PF, Bourinet E, Zamponi GW, Altier C. The neuronal tyrosine kinase receptor ligand ALKAL2 mediates persistent pain. J Clin Invest 2022; 132:154317. [PMID: 35608912 PMCID: PMC9197515 DOI: 10.1172/jci154317] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase known for its oncogenic potential that is involved in the development of the peripheral and central nervous system. ALK receptor ligands ALKAL1 and ALKAL2 were recently found to promote neuronal differentiation and survival. Here, we show that inflammation or injury enhanced ALKAL2 expression in a subset of TRPV1+ sensory neurons. Notably, ALKAL2 was particularly enriched in both mouse and human peptidergic nociceptors, yet weakly expressed in nonpeptidergic, large-diameter myelinated neurons or in the brain. Using a coculture expression system, we found that nociceptors exposed to ALKAL2 exhibited heightened excitability and neurite outgrowth. Intraplantar CFA or intrathecal infusion of recombinant ALKAL2 led to ALK phosphorylation in the lumbar dorsal horn of the spinal cord. Finally, depletion of ALKAL2 in dorsal root ganglia or blocking ALK with clinically available compounds crizotinib or lorlatinib reversed thermal hyperalgesia and mechanical allodynia induced by inflammation or nerve injury, respectively. Overall, our work uncovers the ALKAL2/ALK signaling axis as a central regulator of nociceptor-induced sensitization. We propose that clinically approved ALK inhibitors used for non–small cell lung cancer and neuroblastomas could be repurposed to treat persistent pain conditions.
Collapse
Affiliation(s)
- Manon Defaye
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| | - Mircea C Iftinca
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| | - Vinicius M Gadotti
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| | - Lilian Basso
- INSERM, University of Toulouse, Toulouse, France
| | - Nasser S Abdullah
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| | - Melissa Cumenal
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| | - Francina Agosti
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| | - Ahmed Hassan
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| | - Robyn Flynn
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| | | | | | - Gaëtan Poulen
- Department of Neurosurgery, University of Montpellier, Montpellier, France
| | - Nicolas Lonjon
- Department of Neurosurgery, University of Montpellier, Montpellier, France
| | | | - Luc Bauchet
- Department of Neurosurgery, University of Montpellier, Montpellier, France
| | | | | | | | - Christophe Altier
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| |
Collapse
|
20
|
Spencer TL, Watts L, Soni A, Pinedo-Villanueva R, Heegaard AM, Boyce AM, Javaid MK. Neuropathic-like Pain in Fibrous Dysplasia/McCune-Albright Syndrome. J Clin Endocrinol Metab 2022; 107:e2258-e2266. [PMID: 35262711 PMCID: PMC9113795 DOI: 10.1210/clinem/dgac120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Pain is a major symptom in adults with fibrous dysplasia/McCune-Albright syndrome (FD/MAS) and response to current treatments, including bisphosphonates and standard analgesics (nonsteroidal anti-inflammatory drugs and opiates) is unpredictable. No studies have explored whether the type of pain is variable in this patient group. OBJECTIVE To determine the frequency of neuropathic-like pain in patients with FD/MAS. DESIGN Retrospective, dual registry study. SETTING Community. PATIENTS FD/MAS online registries: the US-based Familial Dysautonomia Foundation (FDF) and the UK-based Rare and Undiagnosed Diseases (RUDY) study. INTERVENTION Subjects completed questionnaires to evaluate the presence of features of neuropathic-like pain (painDETECT) and the impact on sleep quality (Pittsburgh Sleep Quality Index) and mental health (Hospital Anxiety and Depression Scale). Descriptive statistics were used to characterize the prevalence and associated burden of neuropathic-like pain. MAIN OUTCOME MEASURES Incidence of neuropathic, nociceptive, and unclear pain. RESULTS Of 249 participants, one third experienced neuropathic-like pain. This group had statistically significantly (P < 0.001) worse mental well-being and sleep in comparison to those with predominately nociceptive pain. CONCLUSIONS Neuropathic-like pain is common in patients with FD/MAS and associated with worse quality of life. Evaluation of pain in patients with FD/MAS should include assessment of neuropathic-like pain to guide personalized approaches to treatment and inform future research.
Collapse
Affiliation(s)
- Tiahna L Spencer
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Laura Watts
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Campus, Du Cane Road, London, UK
| | - Anushka Soni
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Rafael Pinedo-Villanueva
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Anne-Marie Heegaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Alison M Boyce
- Metabolic Bone Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - M Kassim Javaid
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Correspondence: Muhammad K. Javaid, PhD, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX4 2UH, UK.
| |
Collapse
|
21
|
Liedtke W. Long March Toward Safe and Effective Analgesia by Enhancing Gene Expression of Kcc2: First Steps Taken. Front Mol Neurosci 2022; 15:865600. [PMID: 35645734 PMCID: PMC9137411 DOI: 10.3389/fnmol.2022.865600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/08/2022] [Indexed: 11/15/2022] Open
Abstract
Low intraneuronal chloride in spinal cord dorsal horn pain relay neurons is critical for physiologic transmission of primary pain afferents because low intraneuronal chloride dictates whether GABA-ergic and glycin-ergic neurotransmission is inhibitory. If the neuronal chloride elevates to pathologic levels, then spinal cord primary pain relay becomes leaky and exhibits the behavioral hallmarks of pathologic pain, namely hypersensitivity and allodynia. Low chloride in spinal cord dorsal horn neurons is maintained by proper gene expression of Kcc2 and sustained physiologic function of the KCC2 chloride extruding electroneutral transporter. Peripheral nerve injury and other forms of neural injury evoke greatly diminished Kcc2 gene expression and subsequent corruption of inhibitory neurotransmission in the spinal cord dorsal horn, thus causing derailment of the gate function for pain. Here I review key discoveries that have helped us understand these fundamentals, and focus on recent insights relating to the discovery of Kcc2 gene expression enhancing compounds via compound screens in neurons. One such study characterized the kinase inhibitor, kenpaullone, more in-depth, revealing its function as a robust and long-lasting analgesic in preclinical models of nerve injury and cancer bone pain, also elucidating its mechanism of action via GSK3β inhibition, diminishing delta-catenin phosphorylation, and facilitating its nuclear transfer and subsequent enhancement of Kcc2 gene expression by de-repressing Kaiso epigenetic transcriptional regulator. Future directions re Kcc2 gene expression enhancement are discussed, namely combination with other analgesics and analgesic methods, such as spinal cord stimulation and electroacupuncture, gene therapy, and leveraging Kcc2 gene expression-enhancing nanomaterials.
Collapse
|
22
|
Wang K, Esbensen Q, Karlsen T, Eftang C, Owesen C, Aroen A, Jakobsen R. Low-Input RNA-Sequencing in Patients with Cartilage Lesions, Osteoarthritis, and Healthy Cartilage. Cartilage 2021; 13:550S-562S. [PMID: 34775802 PMCID: PMC8808811 DOI: 10.1177/19476035211057245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE To analyze and compare cartilage samples from 3 groups of patients utilizing low-input RNA-sequencing. DESIGN Cartilage biopsies were collected from patients in 3 groups (n = 48): Cartilage lesion (CL) patients had at least ICRS grade 2, osteoarthritis (OA) samples were taken from patients undergoing knee replacement, and healthy cartilage (HC) was taken from ACL-reconstruction patients without CLs. RNA was isolated using an optimized protocol. RNA samples were assessed for quality and sequenced with a low-input SmartSeq2 protocol. RESULTS RNA isolation yielded 48 samples with sufficient quality for sequencing. After quality control, 13 samples in the OA group, 9 in the HC group, and 9 in the CL group were included in the analysis. There was a high degree of co-clustering between the HC and CL groups with only 6 genes significantly up- or downregulated. OA and the combined HC/CL group clustered significantly separate from each other, yielding 659 significantly upregulated and 1,369 downregulated genes. GO-term analysis revealed that genes matched to cartilage and connective tissue development terms. CONCLUSION The gene expression profiles from the 3 groups suggest that there are no major differences in gene expression between cartilage from knees with a cartilage injury and knees without an apparent cartilage injury. OA cartilage, as expected, showed markedly different gene expression from the other 2 groups. The gene expression profiles resulting from this low-input RNA-sequencing study offer opportunities to discover new pathways not previously recognized that may be explored in future studies.
Collapse
Affiliation(s)
- Katherine Wang
- Faculty of Medicine, University of
Oslo, Oslo, Norway,Oslo Sports Trauma Research Center,
Norwegian School of Sports Sciences, Oslo, Norway,Department of Orthopaedic Surgery,
Akershus University Hospital, Lørenskog, Norway,Katherine Wang, Faculty of Medicine,
University of Oslo, P.O. Box 1072 Blindern, 0316 Oslo, Norway.
| | - Q.Y. Esbensen
- Department of Clinical Molecular
Biology (EpiGen), Akershus University Hospital, Lørenskog, Norway,Department of Clinical Molecular
Biology, University of Oslo, Oslo, Norway
| | - T.A. Karlsen
- Norwegian Center for Stem Cell
Research, Department of Immunology and Transfusion Medicine, Oslo University
Hospital, Rikshospitalet, Oslo, Norway
| | - C.N. Eftang
- Department of Pathology, Akershus
University Hospital, Lørenskog, Norway
| | - C. Owesen
- Department of Orthopaedic Surgery,
Akershus University Hospital, Lørenskog, Norway
| | - A. Aroen
- Oslo Sports Trauma Research Center,
Norwegian School of Sports Sciences, Oslo, Norway,Department of Orthopaedic Surgery,
Akershus University Hospital, Lørenskog, Norway,Institute of Clinical Medicine, Faculty
of Medicine, University of Oslo, Oslo, Norway
| | - R.B. Jakobsen
- Department of Orthopaedic Surgery,
Akershus University Hospital, Lørenskog, Norway,Department of Health Management and
Health Economics, Institute of Health and Society, Faculty of Medicine, University
of Oslo, Oslo, Norway
| |
Collapse
|
23
|
Lv Z, Yang YX, Li J, Fei Y, Guo H, Sun Z, Lu J, Xu X, Jiang Q, Ikegawa S, Shi D. Molecular Classification of Knee Osteoarthritis. Front Cell Dev Biol 2021; 9:725568. [PMID: 34513847 PMCID: PMC8429960 DOI: 10.3389/fcell.2021.725568] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/09/2021] [Indexed: 01/15/2023] Open
Abstract
Knee osteoarthritis (KOA) is the most common form of joint degeneration with increasing prevalence and incidence in recent decades. KOA is a molecular disorder characterized by the interplay of numerous molecules, a considerable number of which can be detected in body fluids, including synovial fluid, urine, and blood. However, the current diagnosis and treatment of KOA mainly rely on clinical and imaging manifestations, neglecting its molecular pathophysiology. The mismatch between participants' molecular characteristics and drug therapeutic mechanisms might explain the failure of some disease-modifying drugs in clinical trials. Hence, according to the temporal alteration of representative molecules, we propose a novel molecular classification of KOA divided into pre-KOA, early KOA, progressive KOA, and end-stage KOA. Then, progressive KOA is furtherly divided into four subtypes as cartilage degradation-driven, bone remodeling-driven, inflammation-driven, and pain-driven subtype, based on the major pathophysiology in patient clusters. Multiple clinical findings of representatively investigated molecules in recent years will be reviewed and categorized. This molecular classification allows for the prediction of high-risk KOA individuals, the diagnosis of early KOA patients, the assessment of therapeutic efficacy, and in particular, the selection of homogenous patients who may benefit most from the appropriate therapeutic agents.
Collapse
Affiliation(s)
- Zhongyang Lv
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yannick Xiaofan Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jiawei Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yuxiang Fei
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hu Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ziying Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jun Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xingquan Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Science (IMS, RIKEN), Tokyo, Japan
| | - Dongquan Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
24
|
Kraus VB, Karsdal MA. Osteoarthritis: Current Molecular Biomarkers and the Way Forward. Calcif Tissue Int 2021; 109:329-338. [PMID: 32367210 DOI: 10.1007/s00223-020-00701-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/25/2020] [Indexed: 12/12/2022]
Abstract
The ultimate hope of researchers and patients is a pathway to development of treatments for osteoarthritis to modify the disease process in addition to the symptoms. However, development of disease modifying drugs requires objective endpoints such as measures of joint structure, joint tissue homeostasis and/or joint survival-measures such as provided by imaging biomarkers, molecular biomarkers and joint replacement frequency, respectively. Although biomarkers supporting investigational drug use and drug approval include surrogate endpoints that may not necessarily reflect or directly correlate with the clinical outcome of interest, a formal biomarker qualification process currently exists that is a rigorous three stage process that yields biomarker approvals (or denials) for specific contexts of use. From a cost perspective, biochemical biomarkers are the 'ones to beat'; however, even well-validated biomarkers may not cross the translation gaps for eventual use in healthcare unless they offer an advantage in terms of cost per quality adjusted life year. This review summarizes the case FOR and AGAINST biomarkers in drug development and highlights the current data for a subset of biomarkers in the osteoarthritis research field informing on cartilage homeostasis, joint inflammation and altered subchondral bone remodeling.
Collapse
Affiliation(s)
- Virginia Byers Kraus
- Division of Rheumatology, Duke Molecular Physiology Institute, Duke University School of Medicine, 300 North Duke St, Box 104775, Durham, NC, 27701, USA.
| | - Morten A Karsdal
- Rheumatology, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark
| |
Collapse
|
25
|
Yi Y, Zhou X, Xiong X, Wang J. Neuroimmune interactions in painful TMD: Mechanisms and treatment implications. J Leukoc Biol 2021; 110:553-563. [PMID: 34322892 DOI: 10.1002/jlb.3mr0621-731rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/28/2021] [Accepted: 07/08/2021] [Indexed: 02/05/2023] Open
Abstract
The underlying mechanisms and treatment of painful temporomandibular disorders (TMDs) are important but understudied topics in craniofacial research. As a group of musculoskeletal diseases, the onset of painful TMD is proved to be a result of disturbance of multiple systems. Recently, emerging evidence has revealed the involvement of neuroimmune interactions in painful TMD. Inflammatory factors play an important role in peripheral sensitization of temporomandibular joint (TMJ), and neurogenic inflammation in turn enhances TMJs dysfunction in TMD. Furthermore, centralized neuroimmune communications contribute to neuron excitability amplification, leading to pain sensitization, and is also responsible for chronic TMD pain and other CNS symptoms. Therapeutics targeting neuroimmune interactions may shed light on new approaches for treating TMD. In this review, we will discuss the role of neuroimmune interactions in the onset of painful TMD from the peripheral and centralized perspectives, and how understanding this mechanism could provide new treatment options. Insights into the neuroimmune interactions within TMJs and painful TMD would broaden the knowledge of mechanisms and treatments of this multifactorial disease.
Collapse
Affiliation(s)
- Yating Yi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14 Section 3, Renmin South Road, Chengdu, 610041, China
| | - Xueman Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14 Section 3, Renmin South Road, Chengdu, 610041, China
| | - Xin Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14 Section 3, Renmin South Road, Chengdu, 610041, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No. 14 Section 3, Renmin South Road, Chengdu, 610041, China
| |
Collapse
|
26
|
Bimonte S, Cascella M, Forte CA, Esposito G, Cuomo A. The Role of Anti-Nerve Growth Factor Monoclonal Antibodies in the Control of Chronic Cancer and Non-Cancer Pain. J Pain Res 2021; 14:1959-1967. [PMID: 34234542 PMCID: PMC8253925 DOI: 10.2147/jpr.s302004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
Nerve growth factor (NGF) belongs to the neurotrophin family and plays a fundamental role in the endurance of sensory and sympathetic neurons during embryogenesis. NGF, by interacting with tropomyosin receptor kinase A receptor (TrkA), modulates the pain pathway through the enhancement of the neurotrophic and nociceptor functions. Moreover, it has been demonstrated that NGF is upregulated in patients with chronic pain syndromes, which are difficult to treat. Thus, new non-pharmacological approaches, based on the use of different species-specific monoclonal antibodies (mAbs) targeting the NGF pathway, have been tested for the treatment of chronic pain in preclinical and clinical studies. With regard to preclinical investigations, anti-NGF mAbs have been used for the management of osteoarthritis (OA) and chronic low back pain animal models, with encouraging results. Moreover, anti-NGF mAb therapy is effective in animal models of neuropathic cancer pain. As regards patients with OA, although phase II and phase III clinical trials with tanezumab led to pain reduction, the safety was not observed in all these patients. Here, we review the preclinical and clinical studies on anti-NGF mAb therapy in chronic syndromes, dissect the role of NGF in pain transduction, and highlight the use of anti-NGF mAbs in humans.
Collapse
Affiliation(s)
- Sabrina Bimonte
- Division of Anesthesia and Pain Medicine, Istituto Nazionale dei Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| | - Marco Cascella
- Division of Anesthesia and Pain Medicine, Istituto Nazionale dei Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| | - Cira Antonietta Forte
- Division of Anesthesia and Pain Medicine, Istituto Nazionale dei Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| | - Gennaro Esposito
- Division of Anesthesia and Pain Medicine, Istituto Nazionale dei Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| | - Arturo Cuomo
- Division of Anesthesia and Pain Medicine, Istituto Nazionale dei Tumori, IRCCS Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
27
|
Huang J, Zhu H, Lv S, Tong P, Xun L, Zhang S. Inflammation, angiogenesis and sensory nerve sprouting in the synovium of bony ankylosed and not bony ankylosed knees with end-stage haemophilic arthropathy. Haemophilia 2021; 27:657-665. [PMID: 34021673 DOI: 10.1111/hae.14343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/19/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Clinical practice showed that patients with haemophilia (PwH) with bony ankylosed end-stage haemophilic arthropathy knees reported milder pain than those with not bony ankylosed knees. AIM To compare the differences in pain sensation and the histopathological differences in synovial samples of affected knee joints between PwH with bony ankylosed end-stage haemophilic arthropathy knees and those with not bony ankylosed knees. METHODS From January 2011 to December 2019, the synovial samples of knee joints were collected during total knee arthroplasty (TKA) surgery for end-stage haemophilic arthropathy. The visual analogue scale (VAS, 0-10) pain score was reviewed from the chart data of the patients. The thickness of the inner layer of the synovium in haematoxylin and eosin (H&E) staining sections was measured. The expression levels of Ki67, IL-1β, TNF-α, CD31, VEGF, NGF and PGP9.5 in the synovium were detected by immunohistochemistry (IHC) method. RESULTS Fifty-two end-stage haemophilic arthropathy knee synovial samples from 36 male PwH (34 type A and 2 type B) were collected. Fifteen knees had bony ankylosed (BA-group), and 37 were not bony ankylosed (Not-BA-group). The mean age of patients at TKA surgery of BA-group and Not-BA-group was 32 years (15) and 32 years (10), respectively (p = 0.824). Before TKA surgery, the mean VAS pain scores of patients in the Not-BA-group were significantly higher than those in the BA-group (p < 0.001). The mean thickness of the inner layer of the synovium, the mean rate of Ki67+ cells, the mean density of CD31+ vascular endothelial cells and the expression levels of IL-1β, TNF-α, VEGF and NGF in samples in the Not-BA-group was significantly higher than those in samples in the BA-group (p < 0.001, p = 0.02, p = 0.001, p = 0.117, p < 0.001, p = 0.003 and p = 0.008), respectively. The mean density of PGP9.5+ sensory neural fibres in the Not-BA-group was slightly higher than in the BA-group (p = 0.131). Linear regression analysis showed a significant positive correlation between the VAS pain score and indicators including the synovial thickness, the rate of Ki67+ cells, the expression level of IL-1β, TNF-α, VEGF, NGF and the densities of CD31+ vascular endothelial cells and PGP9.5+ nerve fibres (p < 0.05). CONCLUSIONS Worsened hypertrophic synovitis, angiogenesis and sensory nerve sprouting in the synovium may play a critical role in causing worse pain sensation in PwH with not bony ankylosed haemophilic arthropathy knees than in those with bony ankylosed knees.
Collapse
Affiliation(s)
- Jiaxin Huang
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haijia Zhu
- The First College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuaijie Lv
- Department of Orthopedic Surgery, The First Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Peijian Tong
- Department of Orthopedic Surgery, The First Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Liu Xun
- Department of Orthopedic Surgery, The First Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Shanxing Zhang
- Department of Orthopedic Surgery, The First Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
28
|
c-Jun/p38MAPK/ASIC3 pathways specifically activated by nerve growth factor through TrkA are crucial for mechanical allodynia development. Pain 2021; 161:1109-1123. [PMID: 31977937 DOI: 10.1097/j.pain.0000000000001808] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mechanical allodynia is a cardinal sign of several inflammatory pain disorders where nerve growth factor, a prototypic neurotrophin, plays a crucial role by binding to TrkA receptors. Here, we took the advantage of our generated knock-in mouse model expressing a chimeric TrkA/TrkC receptor that seems to not specifically develop mechanical allodynia after inflammation, to identify the TrkA downstream pathways involved in this phenomenon. We confirmed and extended that disrupting TrkA-specific pathways leads to a specific deficit in mechanical hypersensitivity development after somatic (systemic nerve growth factor administration and paw incision) and, to a lesser extent, visceral injuries. Despite a deficit in thin, mainly peptidergic, fibre innervation in TrkAC mice, thermal hyperalgesia development was not different from WT mice. Inflammatory reaction (oedema, IL-6 content), pain behaviours after intraplantar capsaicin, as well as TRPV1 calcium imaging response of dorsal root ganglion neurons were similar between TrkAC and WT mice. This deficiency in mechanical allodynia development in TrkAC mice is likely due to the alteration of the expression of different TrkA transduction pathways (ie, Akt, p38 MAPK, and c-Jun) especially p38 MAPK, in the dorsal root ganglion cell bodies, ultimately leading to an alteration of at least, ASIC3 channel overexpression, known to participate in nociceptor mechanosensory function.
Collapse
|
29
|
Cai X, Yuan S, Zeng Y, Wang C, Yu N, Ding C. New Trends in Pharmacological Treatments for Osteoarthritis. Front Pharmacol 2021; 12:645842. [PMID: 33935742 PMCID: PMC8085504 DOI: 10.3389/fphar.2021.645842] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is the leading cause of function loss and disability among the elderly, with significant burden on the individual and society. It is a severe disease for its high disability rates, morbidity, costs, and increased mortality. Multifactorial etiologies contribute to the occurrence and development of OA. The heterogeneous condition poses a challenge for the development of effective treatment for OA; however, emerging treatments are promising to bring benefits for OA management in the future. This narrative review will discuss recent developments of agents for the treatment of OA, including potential disease-modifying osteoarthritis drugs (DMOADs) and novel therapeutics for pain relief. This review will focus more on drugs that have been in clinical trials, as well as attractive drugs with potential applications in preclinical research. In the past few years, it has been realized that a complex interaction of multifactorial mechanisms is involved in the pathophysiology of OA. The authors believe there is no miracle therapeutic strategy fitting for all patients. OA phenotyping would be helpful for therapy selection. A variety of potential therapeutics targeting inflammation mechanisms, cellular senescence, cartilage metabolism, subchondral bone remodeling, and the peripheral nociceptive pathways are expected to reshape the landscape of OA treatment over the next few years. Precise randomized controlled trials (RCTs) are expected to identify the safety and efficacy of novel therapies targeting specific mechanisms in OA patients with specific phenotypes.
Collapse
Affiliation(s)
- Xiaoyan Cai
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shiwen Yuan
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yanting Zeng
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Cuicui Wang
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Na Yu
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Changhai Ding
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
30
|
Lim H, Kim DK, Kim TH, Kang KR, Seo JY, Cho SS, Yun Y, Choi YY, Leem J, Kim HW, Jo GU, Oh CJ, Oh DS, Chun HS, Kim JS. Acteoside Counteracts Interleukin-1 β-Induced Catabolic Processes through the Modulation of Mitogen-Activated Protein Kinases and the NF κB Cellular Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8684725. [PMID: 33833854 PMCID: PMC8016581 DOI: 10.1155/2021/8684725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 02/15/2021] [Accepted: 03/06/2021] [Indexed: 01/12/2023]
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease with chronic joint pain caused by progressive degeneration of articular cartilage at synovial joints. Acteoside, a caffeoylphenylethanoid glycoside, has various biological activities such as antimicrobial, anti-inflammatory, anticancer, antioxidative, cytoprotective, and neuroprotective effect. Further, oral administration of acteoside at high dosage does not cause genotoxicity. Therefore, the aim of present study is to verify the anticatabolic effects of acteoside against osteoarthritis and its anticatabolic signaling pathway. Acteoside did not decrease the viabilities of mouse fibroblast L929 cells used as normal cells and primary rat chondrocytes. Acteoside counteracted the IL-1β-induced proteoglycan loss in the chondrocytes and articular cartilage through suppressing the expression and activation of cartilage-degrading enzyme such as matrix metalloproteinase- (MMP-) 13, MMP-1, and MMP-3. Furthermore, acteoside suppressed the expression of inflammatory mediators such as inducible nitric oxide synthase, cyclooxygenase-2, nitric oxide, and prostaglandin E2 in the primary rat chondrocytes treated with IL-1β. Subsequently, the expression of proinflammatory cytokines was decreased by acteoside in the primary rat chondrocytes treated with IL-1β. Moreover, acteoside suppressed not only the phosphorylation of mitogen-activated protein kinases in primary rat chondrocytes treated with IL-1β but also the translocation of NFκB from the cytosol to the nucleus through suppression of its phosphorylation. Oral administration of 5 and 10 mg/kg acteoside attenuated the progressive degeneration of articular cartilage in the osteoarthritic mouse model generated by destabilization of the medial meniscus. Our findings indicate that acteoside is a promising potential anticatabolic agent or supplement to attenuate or prevent progressive degeneration of articular cartilage.
Collapse
Affiliation(s)
- HyangI Lim
- Institute of Dental Science, Chosun University, Gwangju 61452, Republic of Korea
| | - Do Kyung Kim
- Institute of Dental Science, Chosun University, Gwangju 61452, Republic of Korea
| | - Tae-Hyeon Kim
- Institute of Dental Science, Chosun University, Gwangju 61452, Republic of Korea
| | - Kyeong-Rok Kang
- Institute of Dental Science, Chosun University, Gwangju 61452, Republic of Korea
| | - Jeong-Yeon Seo
- Institute of Dental Science, Chosun University, Gwangju 61452, Republic of Korea
- Departments of Biomedical Science, Chosun University, Gwangju 61452, Republic of Korea
| | - Seung Sik Cho
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Younghee Yun
- Chung-Yeon Medical Institute, Gwangju 61949, Republic of Korea
- Research and Development Institute, CY Pharma Co., Seoul 06224, Republic of Korea
| | - Ye-yong Choi
- Chung-Yeon Medical Institute, Gwangju 61949, Republic of Korea
- Research and Development Institute, CY Pharma Co., Seoul 06224, Republic of Korea
| | - Jungtae Leem
- Chung-Yeon Medical Institute, Gwangju 61949, Republic of Korea
- Research and Development Institute, CY Pharma Co., Seoul 06224, Republic of Korea
| | - Hyoun-Woo Kim
- Jeollanamdo Forest Resources Institute, Naju, Jeollanamdo, 58213, Republic of Korea
| | - Geon-Ung Jo
- Jeollanamdo Forest Resources Institute, Naju, Jeollanamdo, 58213, Republic of Korea
| | - Chan-Jin Oh
- Jeollanamdo Forest Resources Institute, Naju, Jeollanamdo, 58213, Republic of Korea
| | - Deuk-Sil Oh
- Jeollanamdo Forest Resources Institute, Naju, Jeollanamdo, 58213, Republic of Korea
| | - Hong-Sung Chun
- Departments of Biomedical Science, Chosun University, Gwangju 61452, Republic of Korea
| | - Jae-Sung Kim
- Institute of Dental Science, Chosun University, Gwangju 61452, Republic of Korea
| |
Collapse
|
31
|
Liu J, Ting JP, Al-Azzam S, Ding Y, Afshar S. Therapeutic Advances in Diabetes, Autoimmune, and Neurological Diseases. Int J Mol Sci 2021; 22:ijms22062805. [PMID: 33802091 PMCID: PMC8001105 DOI: 10.3390/ijms22062805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 02/08/2023] Open
Abstract
Since 2015, 170 small molecules, 60 antibody-based entities, 12 peptides, and 15 gene- or cell-therapies have been approved by FDA for diverse disease indications. Recent advancement in medicine is facilitated by identification of new targets and mechanisms of actions, advancement in discovery and development platforms, and the emergence of novel technologies. Early disease detection, precision intervention, and personalized treatments have revolutionized patient care in the last decade. In this review, we provide a comprehensive overview of current and emerging therapeutic modalities developed in the recent years. We focus on nine diseases in three major therapeutics areas, diabetes, autoimmune, and neurological disorders. The pathogenesis of each disease at physiological and molecular levels is discussed and recently approved drugs as well as drugs in the clinic are presented.
Collapse
Affiliation(s)
- Jinsha Liu
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Joey Paolo Ting
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Shams Al-Azzam
- Professional Scientific Services, Eurofins Lancaster Laboratories, Lancaster, PA 17605, USA;
| | - Yun Ding
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
| | - Sepideh Afshar
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA 92121, USA; (J.L.); (J.P.T.); (Y.D.)
- Correspondence:
| |
Collapse
|
32
|
The evolution of nerve growth factor inhibition in clinical medicine. Nat Rev Rheumatol 2020; 17:34-46. [PMID: 33219344 DOI: 10.1038/s41584-020-00528-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2020] [Indexed: 02/08/2023]
Abstract
Nerve growth factor (NGF) is a neurotrophin that activates nociceptive neurons to transmit pain signals from the peripheral to the central nervous system and that exerts its effects on neurons by signalling through tyrosine kinase receptors. Antibodies that inhibit the function of NGF and small molecule inhibitors of NGF receptors have been developed and tested in clinical studies to evaluate the efficacy of NGF inhibition as a form of analgesia in chronic pain states including osteoarthritis and chronic low back pain. Clinical studies in individuals with painful knee and hip osteoarthritis have revealed that NGF inhibitors substantially reduce joint pain and improve function compared with NSAIDs for a duration of up to 8 weeks. However, the higher tested doses of NGF inhibitors also increased the risk of rapidly progressive osteoarthritis in a small percentage of those treated. This Review recaps the biology of NGF and the studies that have been performed to evaluate the efficacy of NGF inhibition for chronic musculoskeletal pain states. The adverse events associated with NGF inhibition and the current state of knowledge about the mechanisms involved in rapidly progressive osteoarthritis are also discussed and future studies proposed to improve understanding of this rare but serious adverse event.
Collapse
|
33
|
Barroso J, Wakaizumi K, Reis AM, Baliki M, Schnitzer TJ, Galhardo V, Apkarian AV. Reorganization of functional brain network architecture in chronic osteoarthritis pain. Hum Brain Mapp 2020; 42:1206-1222. [PMID: 33210801 PMCID: PMC7856636 DOI: 10.1002/hbm.25287] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/12/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) manifests with chronic pain, motor impairment, and proprioceptive changes. However, the role of the brain in the disease is largely unknown. Here, we studied brain networks using the mathematical properties of graphs in a large sample of knee and hip OA (KOA, n = 91; HOA, n = 23) patients. We used a robust validation strategy by subdividing the KOA data into discovery and testing groups and tested the generalizability of our findings in HOA. Despite brain global topological properties being conserved in OA, we show there is a network wide pattern of reorganization that can be captured at the subject‐level by a single measure, the hub disruption index. We localized reorganization patterns and uncovered a shift in the hierarchy of network hubs in OA: primary sensory and motor regions and parahippocampal gyrus behave as hubs and insular cortex loses its central placement. At an intermediate level of network structure, frontoparietal and cingulo‐opercular modules showed preferential reorganization. We examined the association between network properties and clinical correlates: global disruption indices and isolated degree properties did not reflect clinical parameters; however, by modeling whole brain nodal degree properties, we identified a distributed set of regions that reliably predicted pain intensity in KOA and generalized to hip OA. Together, our findings reveal that while conserving global topological properties, brain network architecture reorganizes in OA, at both global and local scale. Network connectivity related to OA pain intensity is dissociated from the major hub disruptions, challenging the extent of dependence of OA pain on nociceptive signaling.
Collapse
Affiliation(s)
- Joana Barroso
- Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, Porto, Portugal.,Department of Physical Medicine and Rehabilitation, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kenta Wakaizumi
- Shirley Ryan Ability Lab, Chicago, Illinois, USA.,Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | | | - Marwan Baliki
- Department of Physical Medicine and Rehabilitation, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.,Shirley Ryan Ability Lab, Chicago, Illinois, USA
| | - Thomas J Schnitzer
- Department of Physical Medicine and Rehabilitation, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Internal Medicine/Rheumatology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Anesthesia, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Vasco Galhardo
- Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, Porto, Portugal
| | - Apkar Vania Apkarian
- Department of Physical Medicine and Rehabilitation, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Anesthesia, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
34
|
Abstract
The prevalence of osteoarthritis (OA) and the burden associated with the disease are steadily increasing worldwide, representing a major public health challenge for the coming decades. The lack of specific treatments for OA has led to it being recognized as a serious disease that has an unmet medical need. Advances in the understanding of OA pathophysiology have enabled the identification of a variety of potential therapeutic targets involved in the structural progression of OA, some of which are promising and under clinical investigation in randomized controlled trials. Emerging therapies include those targeting matrix-degrading proteases or senescent chondrocytes, promoting cartilage repair or limiting bone remodelling, local low-grade inflammation or Wnt signalling. In addition to these potentially disease-modifying OA drugs (DMOADs), several targets are being explored for the treatment of OA-related pain, such as nerve growth factor inhibitors. The results of these studies are expected to considerably reshape the landscape of OA management over the next few years. This Review describes the pathophysiological processes targeted by emerging therapies for OA, along with relevant clinical data and discussion of the main challenges for the further development of these therapies, to provide context for the latest advances in the field of pharmaceutical therapies for OA.
Collapse
|
35
|
Chondroprotective Actions of Selective COX-2 Inhibitors In Vivo: A Systematic Review. Int J Mol Sci 2020; 21:ijms21186962. [PMID: 32971951 PMCID: PMC7555215 DOI: 10.3390/ijms21186962] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022] Open
Abstract
Knee osteoarthritis (OA) is a condition mainly characterized by cartilage degradation. Currently, no effective treatment exists to slow down the progression of OA-related cartilage damage. Selective COX-2 inhibitors may, next to their pain killing properties, act chondroprotective in vivo. To determine whether the route of administration is important for the efficacy of the chondroprotective properties of selective COX-2 inhibitors, a systematic review was performed according to the PRISMA guidelines. Studies investigating OA-related cartilage damage of selective COX-2 inhibitors in vivo were included. Nine of the fourteen preclinical studies demonstrated chondroprotective effects of selective COX-2 inhibitors using systemic administration. Five clinical studies were included and, although in general non-randomized, failed to demonstrate chondroprotective actions of oral selective COX-2 inhibitors. All of the four preclinical studies using bolus intra-articular injections demonstrated chondroprotective actions, while one of the three preclinical studies using a slow release system demonstrated chondroprotective actions. Despite the limited evidence in clinical studies that have used the oral administration route, there seems to be a preclinical basis for considering selective COX-2 inhibitors as disease modifying osteoarthritis drugs when used intra-articularly. Intra-articularly injected selective COX-2 inhibitors may hold the potential to provide chondroprotective effects in vivo in clinical studies.
Collapse
|
36
|
Aso K, Shahtaheri SM, Hill R, Wilson D, McWilliams DF, Nwosu LN, Chapman V, Walsh DA. Contribution of nerves within osteochondral channels to osteoarthritis knee pain in humans and rats. Osteoarthritis Cartilage 2020; 28:1245-1254. [PMID: 32470596 DOI: 10.1016/j.joca.2020.05.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Subchondral bone may contribute to knee osteoarthritis (OA) pain. Nerve growth factor (NGF) can stimulate nerve growth through TrkA. We aimed to identify how sensory nerve growth at the osteochondral junction in human and rat knees associates with OA pain. METHODS Eleven symptomatic chondropathy cases were selected from people undergoing total knee replacement for OA. Twelve asymptomatic chondropathy cases who had not presented with knee pain were selected post-mortem. OA was induced in rat knees by meniscal transection (MNX) and sham-operated rats were used as controls. Twice-daily oral doses (30 mg/kg) of TrkA inhibitor (AR786) or vehicle were administered from before and up to 28 days after OA induction. Joints were analysed for macroscopic appearances of articular surfaces, OA histopathology and calcitonin gene-related peptide-immunoreactive (CGRP-IR) sensory nerves in medial tibial plateaux, and rats were assessed for pain behaviors. RESULTS The percentage of osteochondral channels containing CGRP-IR nerves in symptomatic chondropathy was higher than in asymptomatic chondropathy (difference: 2.5% [95% CI: 1.1-3.7]), and in MNX-than in sham-operated rat knees (difference: 7.8% [95%CI: 1.7-15.0]). Osteochondral CGRP-IR innervation was significantly associated with pain behavior in rats. Treatment with AR786 prevented the increase in CGRP-IR nerves in osteochondral channels and reduced pain behavior in MNX-operated rats. Structural OA was not significantly affected by AR786 treatment. CONCLUSIONS CGRP-IR sensory nerves within osteochondral channels are associated with pain in human and rat knee OA. Reduced pathological innervation of the osteochondral junction might contribute to analgesic effects of reduced NGF activity achieved by blocking TrkA.
Collapse
Affiliation(s)
- K Aso
- Arthritis Research UK Pain Centre & NIHR Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, NG5 1PB, UK; Department of Orthopedic Surgery, Kochi Medical School, Kochi University, 185-1 Oko-cho Kohasu, Nankoku, 783-8505, Japan.
| | - S M Shahtaheri
- Arthritis Research UK Pain Centre & NIHR Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, NG5 1PB, UK
| | - R Hill
- Arthritis Research UK Pain Centre & NIHR Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, NG5 1PB, UK; Sherwood Forest Hospitals NHS Foundation Trust, Mansfield Road, Sutton in Ashfield, NG17 4JL, UK
| | - D Wilson
- Arthritis Research UK Pain Centre & NIHR Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, NG5 1PB, UK; Sherwood Forest Hospitals NHS Foundation Trust, Mansfield Road, Sutton in Ashfield, NG17 4JL, UK
| | - D F McWilliams
- Arthritis Research UK Pain Centre & NIHR Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, NG5 1PB, UK
| | - L N Nwosu
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, NE2 4HH, UK
| | - V Chapman
- Arthritis Research UK Pain Centre, School of Life Sciences, University of Nottingham, NG7 2UH, UK
| | - D A Walsh
- Arthritis Research UK Pain Centre & NIHR Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, NG5 1PB, UK; Sherwood Forest Hospitals NHS Foundation Trust, Mansfield Road, Sutton in Ashfield, NG17 4JL, UK
| |
Collapse
|
37
|
Nerve growth factor antibody for the treatment of osteoarthritis pain and chronic low-back pain: mechanism of action in the context of efficacy and safety. Pain 2020; 160:2210-2220. [PMID: 31145219 PMCID: PMC6756297 DOI: 10.1097/j.pain.0000000000001625] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chronic pain continues to be a significant global burden despite the availability of a variety of nonpharmacologic and pharmacologic treatment options. Thus, there is a need for new analgesics with novel mechanisms of action. In this regard, antibodies directed against nerve growth factor (NGF-Abs) are a new class of agents in development for the treatment of chronic pain conditions such as osteoarthritis and chronic low-back pain. This comprehensive narrative review summarizes evidence supporting pronociceptive functions for NGF that include contributing to peripheral and central sensitization through tropomyosin receptor kinase A activation and stimulation of local neuronal sprouting. The potential role of NGF in osteoarthritis and chronic low-back pain signaling is also examined to provide a mechanistic basis for the observed efficacy of NGF-Abs in clinical trials of these particular pain states. Finally, the safety profile of NGF-Abs in terms of common adverse events, joint safety, and nerve structure/function is discussed.
Collapse
|
38
|
Abstract
Supplemental Digital Content is Available in the Text. A ligand-guided, light-activated photosensitizer tool targets TrkA-expressing nociceptors, reversing acute and chronic pain in mice. Nerve growth factor (NGF) and its receptors TrkA and p75 play a key role in the development and function of peripheral nociceptive neurons. Here, we describe novel technology to selectively photoablate TrkA-positive nociceptors through delivery of a phototoxic agent coupled to an engineered NGF ligand and subsequent near-infrared illumination. We demonstrate that this approach allows for on demand and localized reversal of pain behaviors in mouse models of acute, inflammatory, neuropathic, and joint pain. To target peripheral nociceptors, we generated a SNAP-tagged NGF derivative NGFR121W that binds to TrkA/p75 receptors but does not provoke signaling in TrkA-positive cells or elicit pain behaviors in mice. NGFR121W-SNAP was coupled to the photosensitizer IRDye700DX phthalocyanine (IR700) and injected subcutaneously. After near-infrared illumination of the injected area, behavioral responses to nociceptive mechanical and sustained thermal stimuli, but not innocuous stimuli, were substantially reduced. Similarly, in models of inflammatory, osteoarthritic, and neuropathic pain, mechanical hypersensitivity was abolished for 3 weeks after a single treatment regime. We demonstrate that this loss of pain behavior coincides with the retraction of neurons from the skin which then reinnervate the epidermis after 3 weeks corresponding with the return of mechanical hypersensitivity. Thus NGFR121W-SNAP-mediated photoablation is a minimally invasive approach to reversibly silence nociceptor input from the periphery, and control pain and hypersensitivity to mechanical stimuli.
Collapse
|
39
|
Chung YH, Cai H, Steinmetz NF. Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications. Adv Drug Deliv Rev 2020; 156:214-235. [PMID: 32603813 PMCID: PMC7320870 DOI: 10.1016/j.addr.2020.06.024] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 02/06/2023]
Abstract
Viral nanoparticles (VNPs) encompass a diverse array of naturally occurring nanomaterials derived from plant viruses, bacteriophages, and mammalian viruses. The application and development of VNPs and their genome-free versions, the virus-like particles (VLPs), for nanomedicine is a rapidly growing. VLPs can encapsulate a wide range of active ingredients as well as be genetically or chemically conjugated to targeting ligands to achieve tissue specificity. VLPs are manufactured through scalable fermentation or molecular farming, and the materials are biocompatible and biodegradable. These properties have led to a wide range of applications, including cancer therapies, immunotherapies, vaccines, antimicrobial therapies, cardiovascular therapies, gene therapies, as well as imaging and theranostics. The use of VLPs as drug delivery agents is evolving, and sufficient research must continuously be undertaken to translate these therapies to the clinic. This review highlights some of the novel research efforts currently underway in the VNP drug delivery field in achieving this greater goal.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of Bioengineering, University of California-San Diego, La Jolla, CA 92093, United States
| | - Hui Cai
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92093, United States
| | - Nicole F Steinmetz
- Department of Bioengineering, University of California-San Diego, La Jolla, CA 92093, United States; Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92093, United States; Department of Radiology, University of California-San Diego, La Jolla, CA 92093, United States; Moores Cancer Center, University of California-San Diego, La Jolla, CA 92093, United States; Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
40
|
Conaghan PG, Cook AD, Hamilton JA, Tak PP. Therapeutic options for targeting inflammatory osteoarthritis pain. Nat Rev Rheumatol 2020; 15:355-363. [PMID: 31068673 DOI: 10.1038/s41584-019-0221-y] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pain is the major symptom of osteoarthritis (OA) and is an important factor in strategies to manage this disease. However, the current standard of care does not provide satisfactory pain relief for many patients. The pathophysiology of OA is complex, and its presentation as a clinical syndrome is associated with pathologies of multiple joint tissues. Inflammation is associated with both OA pain and disease outcome and is therefore a major treatment target for OA and OA pain. Unlike TNF inhibitors and IL-1 inhibitors, established drugs such as glucocorticoids and methotrexate can reduce OA pain. Although central nociceptive pathways contribute to OA pain, crosstalk between the immune system and nociceptive neurons is central to inflammatory pain; therefore, new therapies might target this crosstalk. Newly identified drug targets, including neurotrophins and the granulocyte-macrophage colony-stimulating factor (GM-CSF)-CC-chemokine ligand 17 (CCL17) chemokine axis, offer the hope of better results but require clinical validation.
Collapse
Affiliation(s)
- Philip G Conaghan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, and National Institute of Health Research Leeds Biomedical Research Centre, Leeds, UK
| | - Andrew D Cook
- The University of Melbourne, Department of Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - John A Hamilton
- The University of Melbourne, Department of Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St Albans, Victoria, Australia
| | - Paul P Tak
- Department of Clinical Immunology & Rheumatology, Academic Medical Centre, Amsterdam University Medical Centre, Amsterdam, Netherlands. .,Department of Rheumatology, Ghent University, Ghent, Belgium. .,Department of Medicine, Cambridge University, Cambridge, UK. .,Flagship Pioneering, Cambridge, MA, USA.
| |
Collapse
|
41
|
Rai MF, Pan H, Yan H, Sandell LJ, Pham CTN, Wickline SA. Applications of RNA interference in the treatment of arthritis. Transl Res 2019; 214:1-16. [PMID: 31351032 PMCID: PMC6848781 DOI: 10.1016/j.trsl.2019.07.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022]
Abstract
RNA interference (RNAi) is a cellular mechanism for post-transcriptional gene regulation mediated by small interfering RNA (siRNA) and microRNA. siRNA-based therapy holds significant promise for the treatment of a wide-range of arthritic diseases. siRNA selectively suppresses the expression of a gene product and can thus achieve the specificity that is lacking in small molecule inhibitors. The potential use of siRNA-based therapy in arthritis, however, has not progressed to clinical trials despite ample evidence for efficacy in preclinical studies. One of the main challenges to clinical translation is the lack of a suitable delivery vehicle to efficiently and safely access diverse pathologies. Moreover, the ideal targets in treatment of arthritides remain elusive given the complexity and heterogeneity of these disease pathogeneses. Herein, we review recent preclinical studies that use RNAi-based drug delivery systems to mitigate inflammation in models of rheumatoid arthritis and osteoarthritis. We discuss a self-assembling peptide-based nanostructure that demonstrates the potential of overcoming many of the critical barriers preventing the translation of this technology to the clinic.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Hua Pan
- Department of Cardiovascular Sciences, University of South Florida Health Heart Institute, Morsani School of Medicine, Tampa, Florida
| | - Huimin Yan
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Linda J Sandell
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Christine T N Pham
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri.
| | - Samuel A Wickline
- Department of Cardiovascular Sciences, University of South Florida Health Heart Institute, Morsani School of Medicine, Tampa, Florida
| |
Collapse
|
42
|
Apostu D, Lucaciu O, Mester A, Oltean-Dan D, Baciut M, Baciut G, Bran S, Onisor F, Piciu A, Pasca RD, Maxim A, Benea H. Systemic drugs with impact on osteoarthritis. Drug Metab Rev 2019; 51:498-523. [DOI: 10.1080/03602532.2019.1687511] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Dragos Apostu
- Department of Orthopaedics and Traumatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ondine Lucaciu
- Department of Oral Rehabilitation, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandru Mester
- Department of Oral Rehabilitation, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Daniel Oltean-Dan
- Department of Orthopaedics and Traumatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihaela Baciut
- Department of Maxillofacial Surgery and Oral Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Grigore Baciut
- Department of Oral and Maxillofacial Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Simion Bran
- Department of Maxillofacial Surgery and Oral Implantology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Florin Onisor
- Department of Oral and Maxillofacial Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andra Piciu
- Department of Medical Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Roxana D. Pasca
- Department of Biomolecular Physics, Faculty of Physics, Cluj-Napoca, Romania
- Department of Molecular and Biomolecular Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - Andrei Maxim
- Department of Orthopaedics and Traumatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Horea Benea
- Department of Orthopaedics and Traumatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
43
|
Walsh DA, Neogi T. A tale of two TrkA inhibitor trials: same target, divergent results. Osteoarthritis Cartilage 2019; 27:1575-1577. [PMID: 31356877 PMCID: PMC6941477 DOI: 10.1016/j.joca.2019.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/16/2019] [Accepted: 07/21/2019] [Indexed: 02/02/2023]
Affiliation(s)
- D A Walsh
- Pain Centre Versus Arthritis, and NIHR Nottingham Biomedical Research Centre, Academic Rheumatology, University of Nottingham, UK.
| | - T Neogi
- Section of Rheumatology, Boston University School of Medicine, USA.
| |
Collapse
|
44
|
Valdovinos-Flores C, Limón-Pacheco JH, León-Rodríguez R, Petrosyan P, Garza-Lombó C, Gonsebatt ME. Systemic L-Buthionine -S-R-Sulfoximine Treatment Increases Plasma NGF and Upregulates L-cys/L-cys2 Transporter and γ-Glutamylcysteine Ligase mRNAs Through the NGF/TrkA/Akt/Nrf2 Pathway in the Striatum. Front Cell Neurosci 2019; 13:325. [PMID: 31396052 PMCID: PMC6664075 DOI: 10.3389/fncel.2019.00325] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/03/2019] [Indexed: 01/31/2023] Open
Abstract
Glutathione (GSH) is the most abundant intracellular antioxidant. GSH depletion leads to oxidative stress and neuronal damage in the central nervous system (CNS). In mice, the acute systemic inhibition of GSH synthesis by L-buthionine-S-R-sulfoximine (BSO) triggers a protective response and a subsequent increase in the CNS GSH content. This response might be modulated by a peripheral increment of circulating nerve growth factor (NGF). NGF is an important activator of antioxidant pathways mediated by tropomyosin-related kinase receptor A (TrkA). Here, we report that peripheral administration of BSO increased plasma NGF levels. Additionally, BSO increased NGF levels and activated the NGF/TrkA/Akt pathway in striatal neurons. Moreover, the response in the striatum included an increased transcription of nrf2, gclm, lat1, eaac1, and xct, all of which are involved in antioxidant responses, and L-cys/L-cys2 and glutamate transporters. Using antibody against NGF confirmed that peripheral NGF activated the NGF/TrkA/Akt/Nrf2 pathway in the striatum and subsequently increased the transcription of gclm, nrf2, lat1, eaac1, and xct. These results provide evidence that the reduction of peripheral GSH pools increases peripheral NGF circulation that orchestrates a neuroprotective response in the CNS, at least in the striatum, through the NGF/TrkA/Akt/Nrf2 pathway.
Collapse
Affiliation(s)
- Cesar Valdovinos-Flores
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jorge H Limón-Pacheco
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Renato León-Rodríguez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Pavel Petrosyan
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Carla Garza-Lombó
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Maria E Gonsebatt
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
45
|
Mama KR, Hector RC. Therapeutic developments in equine pain management. Vet J 2019; 247:50-56. [DOI: 10.1016/j.tvjl.2019.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/23/2019] [Accepted: 02/26/2019] [Indexed: 01/25/2023]
|
46
|
A Holistic Approach to Pain Management in the Rheumatic Diseases. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2019. [DOI: 10.1007/s40674-019-00116-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Pérez de Vega MJ, Ferrer-Montiel A, González-Muñiz R. Recent progress in non-opioid analgesic peptides. Arch Biochem Biophys 2018; 660:36-52. [DOI: 10.1016/j.abb.2018.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 02/08/2023]
|
48
|
Miller RE, Block JA, Malfait AM. What is new in pain modification in osteoarthritis? Rheumatology (Oxford) 2018; 57:iv99-iv107. [PMID: 29361112 PMCID: PMC5905627 DOI: 10.1093/rheumatology/kex522] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/06/2017] [Indexed: 12/31/2022] Open
Abstract
There is a big need for the development of novel therapies for the safe management of chronic pain associated with OA. Here we reviewed PubMed (2015 onward) and ClinicalTrials.gov for ongoing and recently completed trials where pain in OA is the primary outcome measure. Three broad categories were identified: biological therapies, small molecules and cryoneurolysis. The most promising new strategy is blockade of nerve growth factor with antibodies. Two anti-nerve growth factor antibodies, tanuzemab and fasinumab, are in active development after the 2010 hold on trials was lifted in 2015. In addition, several active clinical trials are testing distinct mechanism-based interventions, including cytokine inhibition, selective μ, δ or κ opioid receptor agonists, zoledronate and intra-articular capsaicin. In addition to pharmacological approaches, cryoneurolytic strategies that directly target peripheral nerves may play a role in OA pain management, but efficacy profiles and long-term effects of such treatments need more study. Clearly, the therapeutic landscape for OA pain is rapidly expanding. Since symptomatic OA is a heterogeneous disease, the challenge will be to identify patients that will benefit the most from specific approaches.
Collapse
Affiliation(s)
- Rachel E Miller
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
| | - Joel A Block
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
| | - Anne-Marie Malfait
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Osteoarthritis (OA) is the most common form of arthritis and a major source of pain and disability worldwide. OA-associated pain is usually refractory to classically used analgesics, and disease-modifying therapies are still lacking. Therefore, a better understanding of mechanisms and mediators contributing to the generation and maintenance of OA pain is critical for the development of efficient and safe pain-relieving therapies. RECENT FINDINGS Both peripheral and central mechanisms contribute to OA pain. Clinical evidence suggests that a strong peripheral nociceptive drive from the affected joint maintains pain and central sensitization associated with OA. Mediators present in the OA joint, including nerve growth factor, chemokines, cytokines, and inflammatory cells can contribute to sensitization. Furthermore, structural alterations in joint innervation and nerve damage occur in the course of OA. Several interrelated pathological processes, including joint damage, structural reorganization of joint afferents, low-grade inflammation, neuroplasticity, and nerve damage all contribute to the pain observed in OA. It can be anticipated that elucidating exactly how these mechanisms are operational in the course of progressive OA may lead to the identification of novel targets for intervention.
Collapse
Affiliation(s)
- Delfien Syx
- Center for Medical Genetics, Ghent University, De Pintelaan 185, Ghent, Belgium
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, 1611 W. Harrison St, Suite 510, Chicago, IL, 60612, USA
| | - Phuong B Tran
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, 1611 W. Harrison St, Suite 510, Chicago, IL, 60612, USA
| | - Rachel E Miller
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, 1611 W. Harrison St, Suite 510, Chicago, IL, 60612, USA
| | - Anne-Marie Malfait
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, 1611 W. Harrison St, Suite 510, Chicago, IL, 60612, USA.
| |
Collapse
|
50
|
Latremoliere A, Costigan M. Combining Human and Rodent Genetics to Identify New Analgesics. Neurosci Bull 2018; 34:143-155. [PMID: 28667479 PMCID: PMC5799129 DOI: 10.1007/s12264-017-0152-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 06/01/2017] [Indexed: 12/26/2022] Open
Abstract
Most attempts at rational development of new analgesics have failed, in part because chronic pain involves multiple processes that remain poorly understood. To improve translational success, one strategy is to select novel targets for which there is proof of clinical relevance, either genetically through heritable traits, or pharmacologically. Such an approach by definition yields targets with high clinical validity. The biology of these targets can be elucidated in animal models before returning to the patients with a refined therapeutic. For optimal treatment, having biomarkers of drug action available is also a plus. Here we describe a case study in rational drug design: the use of controlled inhibition of peripheral tetrahydrobiopterin (BH4) synthesis to reduce abnormal chronic pain states without altering nociceptive-protective pain. Initially identified in a population of patients with low back pain, the association between BH4 production and chronic pain has been confirmed in more than 12 independent cohorts, through a common haplotype (present in 25% of Caucasians) of the rate-limiting enzyme for BH4 synthesis, GTP cyclohydrolase 1 (GCH1). Genetic tools in mice have demonstrated that both injured sensory neurons and activated macrophages engage increased BH4 synthesis to cause chronic pain. GCH1 is an obligate enzyme for de novo BH4 production. Therefore, inhibiting GCH1 activity eliminates all BH4 production, affecting the synthesis of multiple neurotransmitters and signaling molecules and interfering with physiological function. In contrast, targeting the last enzyme of the BH4 synthesis pathway, sepiapterin reductase (SPR), allows reduction of pathological BH4 production without completely blocking physiological BH4 synthesis. Systemic SPR inhibition in mice has not revealed any safety concerns to date, and available genetic and pharmacologic data suggest similar responses in humans. Finally, because it is present in vivo only when SPR is inhibited, sepiapterin serves as a reliable biomarker of target engagement, allowing potential quantification of drug efficacy. The emerging development of therapeutics that target BH4 synthesis to treat chronic pain illustrates the power of combining human and mouse genetics: human genetic studies for clinical selection of relevant targets, coupled with causality studies in mice, allowing the rational engineering of new analgesics.
Collapse
Affiliation(s)
- Alban Latremoliere
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Michael Costigan
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|