1
|
Chen H, Xiong R, Cheng J, Ye J, Qiu Y, Huang S, Li M, Liu Z, Pang J, Zhang X, Guo S, Li H, Zhu H. Effects and Mechanisms of Polyunsaturated Fatty Acids on Age-Related Musculoskeletal Diseases: Sarcopenia, Osteoporosis, and Osteoarthritis-A Narrative Review. Nutrients 2024; 16:3130. [PMID: 39339730 PMCID: PMC11434726 DOI: 10.3390/nu16183130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Background: The process of the globally aging population has been accelerating, leading to an increasing social burden. As people age, the musculoskeletal system will gradually go through a series of degenerative and loss of function and eventually develop age-related musculoskeletal diseases, like sarcopenia, osteoporosis, and osteoarthritis. On the other hand, several studies have shown that polyunsaturated fatty acids (PUFAs) possess various important physiological functions on the health of muscles, bones, and joints. Objective: This narrative review paper provides a summary of the literature about the effects and mechanisms of PUFAs on age-related musculoskeletal diseases for the prevention and management of these diseases. Methods: Web of Science, PubMed, Science Direct, and Scopus databases have been searched to select the relevant literature on epidemiological, cellular, and animal experiments and clinical evidence in recent decades with keywords "polyunsaturated fatty acids", "PUFAs", "omega-3", "omega-6", "musculoskeletal diseases", "sarcopenia", "osteoporosis", "osteoarthritis", and so on. Results: PUFAs could prevent and treat age-related musculoskeletal diseases (sarcopenia, osteoporosis, and osteoarthritis) by reducing oxidative stress and inflammation and controlling the growth, differentiation, apoptosis, and autophagy of cells. This review paper provides comprehensive evidence of PUFAs on age-related musculoskeletal diseases, which will be helpful for exploitation into functional foods and drugs for their prevention and treatment. Conclusions: PUFAs could play an important role in the prevention and treatment of sarcopenia, osteoporosis, and osteoarthritis.
Collapse
Affiliation(s)
- Haoqi Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ruogu Xiong
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jin Cheng
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jialu Ye
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yingzhen Qiu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Siyu Huang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mengchu Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhaoyan Liu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jinzhu Pang
- Mengniu Institute of Nutrition Science, Global R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011050, China
| | - Xuguang Zhang
- Mengniu Institute of Nutrition Science, Global R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011050, China
- Sun Yat-sen University-Mengniu Joint Research Center of Nutrition and Health for Middle-Aged and Elderly, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shanshan Guo
- Mengniu Institute of Nutrition Science, Global R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011050, China
| | - Huabin Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Huilian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Sun Yat-sen University-Mengniu Joint Research Center of Nutrition and Health for Middle-Aged and Elderly, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
2
|
Skalny AV, Korobeinikova TV, Aschner M, Paoliello MMB, Lu R, Skalny AA, Mazaletskaya AL, Tinkov AA. Hair and Serum Trace Element and Mineral Levels Profiles in Women with Premenopausal and Postmenopausal Osteoporosis. Biol Trace Elem Res 2024; 202:3886-3899. [PMID: 38038893 DOI: 10.1007/s12011-023-03970-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
The objective of the present study was to evaluate serum and hair trace element and mineral levels in women with osteoporosis, as well as to estimate the impact of menopausal status on the profile of trace element and mineral status in women with osteoporosis. 207 women with diagnosed osteoporosis 22-85 years-of-age, and 197 healthy women of the respective age participated in the present study. Analysis of the levels of mineral and trace element in hair and serum samples was performed by inductively-coupled plasma mass-spectrometry (ICP-MS). Women with osteoporosis were characterized by significantly lower hair Ca, Mg, Co, I, Li, and Mn levels, as well as serum Ca, Mg, Co, Fe, V, and Zn concentrations compared to women in the control group. After additional grouping according to menopausal status, the lowest hair Ca and Mg content was observed in postmenopausal osteoporotic women, whereas serum Ca and Mg concentrations were the lowest in premenopausal osteoporotic women. Hair Co, Mn, and Zn levels in postmenopausal osteoporotic women were lower than in healthy postmenopausal women. The lowest circulating Zn levels were observed in osteoporotic postmenopausal women. Taken together, decreased hair and serum levels in osteoporotic women are indicative of increased risk of Ca, Mg, Co, and Zn deficiency in women with osteoporosis. In turn, alterations in hair trace element and mineral levels in osteoporosis are more profound in postmenopausal women. Hypothetically, improvement in trace element and mineral metabolism especially in postmenopausal women may be considered as a potential strategy for mitigating osteoporosis.
Collapse
Affiliation(s)
- Anatoly V Skalny
- Yaroslavl State University, Yaroslavl, Russia.
- Center for Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia.
| | - Tatiana V Korobeinikova
- Center for Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Monica M B Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Andrey A Skalny
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Anna L Mazaletskaya
- Yaroslavl State University, Yaroslavl, Russia
- Center for Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia
- Center for Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
3
|
Aaseth JO, Finnes TE, Askim M, Alexander J. The Importance of Vitamin K and the Combination of Vitamins K and D for Calcium Metabolism and Bone Health: A Review. Nutrients 2024; 16:2420. [PMID: 39125301 PMCID: PMC11313760 DOI: 10.3390/nu16152420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
The aim of the present review is to discuss the roles of vitamin K (phylloquinone or menaquinones) and vitamin K-dependent proteins, and the combined action of the vitamins K and D, for the maintenance of bone health. The most relevant vitamin K-dependent proteins in this respect are osteocalcin and matrix Gla-protein (MGP). When carboxylated, these proteins appear to have the ability to chelate and import calcium from the blood to the bone, thereby reducing the risk of osteoporosis. Carboxylated osteocalcin appears to contribute directly to bone quality and strength. An adequate vitamin K status is required for the carboxylation of MGP and osteocalcin. In addition, vitamin K acts on bone metabolism by other mechanisms, such as menaquinone 4 acting as a ligand for the nuclear steroid and xenobiotic receptor (SXR). In this narrative review, we examine the evidence for increased bone mineralization through the dietary adequacy of vitamin K. Summarizing the evidence for a synergistic effect of vitamin K and vitamin D3, we find that an adequate supply of vitamin K, on top of an optimal vitamin D status, seems to add to the benefit of maintaining bone health. More research related to synergism and the possible mechanisms of vitamins D3 and K interaction in bone health is needed.
Collapse
Affiliation(s)
- Jan O. Aaseth
- Department of Research, Innlandet Hospital Trust, P.O. Box 104, N-2381 Brumunddal, Norway
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, N-2418 Elverum, Norway
| | - Trine Elisabeth Finnes
- Department of Medicine, Innlandet Hospital Hamar, P.O. Box 4453, N-2326 Hamar, Norway;
- Department of Endocrinology, Oslo University Hospital, P.O. Box 4950 Nydalen, N-0424 Oslo, Norway
| | - Merete Askim
- Independent Researcher, Bromstadvegen 43, N-7045 Trondheim, Norway;
| | - Jan Alexander
- Norwegian Institute of Public Health, P.O. Box 222 Skøyen, N-0213 Oslo, Norway;
| |
Collapse
|
4
|
Skalny AV, Aschner M, Silina EV, Stupin VA, Zaitsev ON, Sotnikova TI, Tazina SI, Zhang F, Guo X, Tinkov AA. The Role of Trace Elements and Minerals in Osteoporosis: A Review of Epidemiological and Laboratory Findings. Biomolecules 2023; 13:1006. [PMID: 37371586 DOI: 10.3390/biom13061006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The objective of the present study was to review recent epidemiological and clinical data on the association between selected minerals and trace elements and osteoporosis, as well as to discuss the molecular mechanisms underlying these associations. We have performed a search in the PubMed-Medline and Google Scholar databases using the MeSH terms "osteoporosis", "osteogenesis", "osteoblast", "osteoclast", and "osteocyte" in association with the names of particular trace elements and minerals through 21 March 2023. The data demonstrate that physiological and nutritional levels of trace elements and minerals promote osteogenic differentiation through the up-regulation of BMP-2 and Wnt/β-catenin signaling, as well as other pathways. miRNA and epigenetic effects were also involved in the regulation of the osteogenic effects of trace minerals. The antiresorptive effect of trace elements and minerals was associated with the inhibition of osteoclastogenesis. At the same time, the effect of trace elements and minerals on bone health appeared to be dose-dependent with low doses promoting an osteogenic effect, whereas high doses exerted opposite effects which promoted bone resorption and impaired bone formation. Concomitant with the results of the laboratory studies, several clinical trials and epidemiological studies demonstrated that supplementation with Zn, Mg, F, and Sr may improve bone quality, thus inducing antiosteoporotic effects.
Collapse
Affiliation(s)
- Anatoly V Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ekaterina V Silina
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Victor A Stupin
- Department of Hospital Surgery No. 1, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Oleg N Zaitsev
- Department of Physical Education, Yaroslavl State Technical University, 150023 Yaroslavl, Russia
| | - Tatiana I Sotnikova
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- City Clinical Hospital n. a. S.P. Botkin of the Moscow City Health Department, 125284 Moscow, Russia
| | - Serafima Ia Tazina
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Health Science Center, School of Public Health, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Health Science Center, School of Public Health, Xi'an Jiaotong University, Xi'an 710061, China
| | - Alexey A Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia
- Center of Bioelementology and Human Ecology, Institute of Biodesign and Modeling of Complex Systems, Department of Therapy of the Institute of Postgraduate Education, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| |
Collapse
|
5
|
Hassanabadi N, Berger C, Papaioannou A, Cheung AM, Rahme E, Leslie WD, Goltzman D, Morin SN. Variation in bone mineral density and fractures over 20 years among Canadians: a comparison of the Canadian Multicenter Osteoporosis Study and the Canadian Longitudinal Study on Aging. Osteoporos Int 2023; 34:357-367. [PMID: 36449036 PMCID: PMC9852141 DOI: 10.1007/s00198-022-06623-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
UNLABELLED International variations in osteoporosis and fracture rates have been reported, with temporal trends differing between populations. We observed higher BMD and lower fracture prevalence in a recently recruited cohort compared to that of a cohort recruited 20 years ago, even after adjusting for multiple covariates. PURPOSE We explored sex-specific differences in femoral neck bone mineral density (FN-BMD) and in prevalent major osteoporotic fractures (MOF) using two Canadian cohorts recruited 20 years apart. METHODS We included men and women aged 50-85 years from the Canadian Multicentre Osteoporosis Study (CaMos, N = 6,479; 1995-1997) and the Canadian Longitudinal Study on Aging (CLSA, N = 19,534; 2012-2015). We created regression models to compare FN-BMD and fracture risk between cohorts, adjusting for important covariates. Among participants with prevalent MOF, we compared anti-osteoporosis medication use. RESULTS Mean (SD) age in CaMos (65.4 years [8.6]) was higher than in CLSA (63.8 years [9.1]). CaMos participants had lower mean body mass index and higher prevalence of smoking (p < 0.001). Adjusted linear regression models (estimates [95%CI]) demonstrated lower FN-BMD in CaMos women (- 0.017 g/cm2 [- 0.021; - 0.014]) and men (- 0.006 g/cm2 [- 0.011; 0.000]), while adjusted odds ratios (95%CI) for prevalent MOF were higher in CaMos women (1.99 [1.71; 2.30]) and men (2.33 [1.82; 3.00]) compared to CLSA. In women with prevalent MOF, menopausal hormone therapy use was similar in both cohorts (43.3% vs 37.9%, p = 0.076), but supplements (32.0% vs 48.3%, p < 0.001) and bisphosphonate use (5.8% vs 17.3%, p < 0.001) were lower in CaMos. The proportion of men with MOF who received bisphosphonates was below 10% in both cohorts. CONCLUSION Higher BMD and lower fracture prevalence were noted in the more recently recruited CLSA cohort compared to CaMos, even after adjusting for multiple covariates. We noted an increase in bisphosphonate use in the recent cohort, but it remained very low in men.
Collapse
Affiliation(s)
- Nazila Hassanabadi
- Department of Medicine, McGill University, Montreal, Canada
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, 5252 de Maisonneuve O; Room 3E.11, Montreal, Quebec, H4A 3S5, Canada
| | - Claudie Berger
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, 5252 de Maisonneuve O; Room 3E.11, Montreal, Quebec, H4A 3S5, Canada
| | | | - Angela M Cheung
- Department of Medicine, University of Toronto, Toronto, Canada
| | - Elham Rahme
- Department of Medicine, McGill University, Montreal, Canada
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, 5252 de Maisonneuve O; Room 3E.11, Montreal, Quebec, H4A 3S5, Canada
| | - William D Leslie
- Department of Medicine, University of Manitoba, Winnipeg, Canada
| | - David Goltzman
- Department of Medicine, McGill University, Montreal, Canada
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, 5252 de Maisonneuve O; Room 3E.11, Montreal, Quebec, H4A 3S5, Canada
| | - Suzanne N Morin
- Department of Medicine, McGill University, Montreal, Canada.
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, 5252 de Maisonneuve O; Room 3E.11, Montreal, Quebec, H4A 3S5, Canada.
| |
Collapse
|
6
|
de Oliveira MC, Heredia JE, da Silva FRF, Macari S. Extracellular Vesicles in Bone Remodeling and Osteoporosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1418:155-168. [PMID: 37603279 DOI: 10.1007/978-981-99-1443-2_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Osteoporosis is a systemic disorder characterized by bone mass loss, leading to fractures due to weak and brittle bones. The bone tissue deterioration process is related to an impairment of bone remodeling orchestrated mainly by resident bone cells, including osteoblasts, osteoclasts, osteocytes, and their progenitors. Extracellular vesicles (EVs) are nanoparticles emerging as regulatory molecules and potential biomarkers for bone loss. Although the progress in studies relating to EVs and bone loss has increased in the last years, research on bone cells, animal models, and mainly patients is still limited. Here, we aim to review the recent advances in this field, summarizing the effect of EV components such as proteins and miRNAs in regulating bone remodeling and, consequently, osteoporosis progress and treatment. Also, we discuss the potential application of EVs in clinical practice as a biomarker and bone loss therapy, demonstrating that this rising field still needs to be further explored.
Collapse
Affiliation(s)
- Marina Chaves de Oliveira
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Joyce Elisa Heredia
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Soraia Macari
- Department of Restorative Dentistry, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
7
|
Zhang W, Tao KT, Lin J, Liu P, Guan Z, Deng J, Wang D, Zeng H. The Role of m6A in Osteoporosis and the Differentiation of Mesenchymal Stem Cells into Osteoblasts and Adipocytes. Curr Stem Cell Res Ther 2023; 18:339-346. [PMID: 35733319 DOI: 10.2174/1574888x17666220621155341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/07/2022] [Accepted: 04/15/2022] [Indexed: 11/22/2022]
Abstract
Osteoporosis is a systemic disease in which bone mass decreases, leading to an increased risk of bone fragility and fracture. The occurrence of osteoporosis is believed to be related to the disruption of the differentiation of mesenchymal stem cells into osteoblasts and adipocytes. N6-adenylate methylation (m6A) modification is the most common type of chemical RNA modification and refers to a methylation modification formed by the nitrogen atom at position 6 of adenine (A), which is catalyzed by a methyltransferase. The main roles of m6A are the post-transcriptional level regulation of the stability, localization, transportation, splicing, and translation of RNA; these are key elements of various biological activities, including osteoporosis and the differentiation of mesenchymal stem cells into osteoblasts and adipocytes. The main focus of this review is the role of m6A in these two biological processes.
Collapse
Affiliation(s)
- Weifei Zhang
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
| | - Ke Tao Tao
- Arthritis Clinical and Research Center, Peking University People's Hospital, Beijing 100044, China
| | - Jianjing Lin
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
- Arthritis Clinical and Research Center, Peking University People's Hospital, Beijing 100044, China
| | - Peng Liu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
| | - Zhiping Guan
- Department of Spinal Surgery, Peking University Shenzhen Hospital, Lianhua Road, Shenzhen, 518000 Guangdong, China
| | - Jiapeng Deng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
| | - Deli Wang
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
| | - Hui Zeng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
| |
Collapse
|
8
|
De Luca V, Femminella GD, Patalano R, Formosa V, Lorusso G, Rivetta C, Di Lullo F, Mercurio L, Rea T, Salvatore E, Korkmaz Yaylagul N, Apostolo J, Silva RC, Dantas C, van Staalduinen WH, Liotta G, Iaccarino G, Triassi M, Illario M. Assessment Tools of Biopsychosocial Frailty Dimensions in Community-Dwelling Older Adults: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16050. [PMID: 36498125 PMCID: PMC9739796 DOI: 10.3390/ijerph192316050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Frailty is a complex interplay between several factors, including physiological changes in ageing, multimorbidities, malnutrition, living environment, genetics, and lifestyle. Early screening for frailty risk factors in community-dwelling older people allows for preventive interventions on the clinical and social determinants of frailty, which allows adverse events to be avoided. By conducting a narrative review of the literature employing the International Narrative Systematic Assessment tool, the authors aimed to develop an updated framework for the main measurement tools to assess frailty risks in older adults, paying attention to use in the community and primary care settings. This search focused on the biopsychosocial domains of frailty that are covered in the SUNFRAIL tool. The study selected 178 reviews (polypharmacy: 20; nutrition: 13; physical activity: 74; medical visits: 0; falls: 39; cognitive decline: 12; loneliness: 15; social support: 5; economic constraints: 0) published between January 2010 and December 2021. Within the selected reviews, 123 assessment tools were identified (polypharmacy: 15; nutrition: 15; physical activity: 25; medical visits: 0; falls: 26; cognitive decline: 18; loneliness: 9; social support: 15; economic constraints: 0). The narrative review allowed us to evaluate assessment tools of frailty domains to be adopted for multidimensional health promotion and prevention interventions in community and primary care.
Collapse
Affiliation(s)
- Vincenzo De Luca
- Dipartimento di Sanità Pubblica, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy
| | - Grazia Daniela Femminella
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy
| | - Roberta Patalano
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy
| | - Valeria Formosa
- Specializzazione in Igiene e Medicina Preventiva, Università degli Studi di Roma Tor Vergata, 00133 Roma, Italy
| | - Grazia Lorusso
- Specializzazione in Igiene e Medicina Preventiva, Università degli Studi di Roma Tor Vergata, 00133 Roma, Italy
| | - Cristiano Rivetta
- Specializzazione in Igiene e Medicina Preventiva, Università degli Studi di Roma Tor Vergata, 00133 Roma, Italy
| | - Federica Di Lullo
- Specializzazione in Igiene e Medicina Preventiva, Università degli Studi di Roma Tor Vergata, 00133 Roma, Italy
| | - Lorenzo Mercurio
- Dipartimento di Sanità Pubblica, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy
| | - Teresa Rea
- Dipartimento di Sanità Pubblica, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy
| | - Elena Salvatore
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy
| | | | - Joao Apostolo
- Health Sciences Research Unit: Nursing (UICISA:E), Nursing School of Coimbra (ESEnfC), Avenida Bissaya Barreto, 3004-011 Coimbra, Portugal
| | - Rosa Carla Silva
- Health Sciences Research Unit: Nursing (UICISA:E), Nursing School of Coimbra (ESEnfC), Avenida Bissaya Barreto, 3004-011 Coimbra, Portugal
| | | | | | - Giuseppe Liotta
- Dipartimento di Biomedicina e Prevenzione, Università degli Studi di Roma Tor Vergata, 00133 Roma, Italy
| | - Guido Iaccarino
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy
| | - Maria Triassi
- Dipartimento di Sanità Pubblica, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy
| | - Maddalena Illario
- Dipartimento di Sanità Pubblica, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy
| |
Collapse
|
9
|
Osawa Y, Tanaka T, Semba RD, Fantoni G, Moaddel R, Candia J, Simonsick EM, Bandinelli S, Ferrucci L. Plasma Growth and Differentiation Factor 15 Predict Longitudinal Changes in Bone Parameters in Women, but Not in Men. J Gerontol A Biol Sci Med Sci 2022; 77:1951-1958. [PMID: 35363860 PMCID: PMC9536444 DOI: 10.1093/gerona/glac079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Bone fragility can progress with aging, but biomarkers to detect emerging osteopenia have not been fully elucidated. Growth/differentiation factor 15 (GDF-15) has pleiotropic roles in a broad range of age-related conditions, but its association with osteopenia is unknown. We examined the relationship between plasma GDF-15 levels and rate of change in bone parameters over 9 years of follow-up in 596 adults in the InCHIANTI study (baseline age, 65-94 years; women, 52.4%; mean follow-up, 7.0 ± 3.0 years). Plasma GDF-15 concentrations were measured using the 1.3k HTS SOMAscan assay. Eight bone parameters were measured in the right tibia by peripheral quantitative computed tomography; total bone density, trabecular bone density, medullary plus trabecular bone density, cortical bone density, total bone area, cortical bone area, medullary bone area, and minimum moment of inertia (mMOI). We ran sex-specific linear mixed-effect models with random intercepts and slopes adjusted for age, age-squared, education, body mass index, the rate of change in weight, smoking, sedentary behavior, cross-sectional areas of calf muscles and fat, 25-hydroxyvitamin D, parathyroid hormone, calcium, diabetes mellitus, and follow-up time. We found a significant association of "baseline GDF-15 × time" in models predicting cortical bone density and the mMOI in women, suggesting that the rates of decline in these bone parameters increased with higher GDF-15 (false discovery rate <0.05). Higher plasma levels GDF-15 predicted an accelerated decline in bone parameters in women, but was less associated in men. Furthermore studies are needed to understand the mechanisms underlying these sex differences.
Collapse
Affiliation(s)
- Yusuke Osawa
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland,USA
- Graduate School of Health Management, Keio University, Kanagawa, Japan
| | - Toshiko Tanaka
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland,USA
| | - Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland,USA
| | - Giovanna Fantoni
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland,USA
| | - Ruin Moaddel
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland,USA
| | - Julián Candia
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland,USA
| | - Eleanor M Simonsick
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland,USA
| | | | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland,USA
| |
Collapse
|
10
|
Sun C, Qi B, Huang X, Chen M, Jin Z, Zhang Y, Zhu L, Wei X. Baduanjin exercise: A potential promising therapy toward osteoporosis. Front Med (Lausanne) 2022; 9:935961. [PMID: 35991646 PMCID: PMC9381703 DOI: 10.3389/fmed.2022.935961] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Baduanjin (BDJ) exercise is a traditional exercise that combines breathing, body movement, meditation and awareness to help delay the onset and progression of senile degenerative musculoskeletal diseases, such as osteoporosis (OP). The aim of this meta-analysis is to evaluate the efficacy of BDJ exercise, and preliminarily infer its effective mechanism in the treatment of OP. Methods We identified relevant randomized controlled trials (RCTs) through eight databases, and compared BDJ exercise with the control groups (including blank control and conventional treatment intervention). The main outcome measure was bone mineral density (BMD), the additional outcome measures were visual analogue scale (VAS), Berg balance scale (BBS), serum Calcium (Ca), serum Phosphorus (P), serum Alkaline phosphatase (ALP), and serum bone gla protein (BGP). Meta-analysis and trial sequence analysis (TSA) were performed using RevMan 5.4, Stata 16.0, and TSA 0.9. Results In total, 13 RCTs involving 919 patients were included in the analysis. For postmenopausal osteoporosis, BDJ exercise alone and BDJ exercise combined with conventional treatment can improve the BMD of lumbar spine. BDJ exercise alone can influence serum Ca and ALP. BDJ exercise combined with conventional treatment can improve balance (BBS) and influence serum BGP. For senile osteoporosis, BDJ exercise alone and BDJ exercise combined with conventional treatment can improve balance (BBS). BDJ exercise combined with conventional treatment can improve the BMD of hip and pain relieve (VAS). For primary osteoporosis, BDJ exercise combined with conventional treatment can improve the BMD of lumbar spine and femoral neck. Conclusion Baduanjin exercise may be beneficial to improve BMD, relieve pain, improve balance ability, influence serum BGP and serum ALP in patients with OP, but differences occur due to various types of OP. Due to the low quality of research on the efficacy and mechanism of BDJ exercise in the treatment of OP, high-quality evidence-based research is still needed to provide reliable supporting evidence. Systematic Review Registration [http://www.crd.york.ac.uk/PROSPERO], identifier [CRD42022329022].
Collapse
Affiliation(s)
- Chuanrui Sun
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyu Qi
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyi Huang
- School of Tradition Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ming Chen
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zikai Jin
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yili Zhang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Yili Zhang,
| | - Liguo Zhu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Liguo Zhu,
| | - Xu Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Xu Wei,
| |
Collapse
|
11
|
He F, Luo S, Liu S, Wan S, Li J, Chen J, Zuo H, Pei X. Zanthoxylum bungeanum seed oil inhibits RANKL-induced osteoclastogenesis by suppressing ERK/c-JUN/NFATc1 pathway and regulating cell cycle arrest in RAW264.7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115094. [PMID: 35149133 DOI: 10.1016/j.jep.2022.115094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/26/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zanthoxylum bungeanum Maxim (ZBM), a traditional Chinese medicine, is traditionally used for osteoporosis treatment recorded in ancient Chinese medicine work Benjingshuzheng and reported to have the anti-bone loss activity in recent studies. However, the anti-osteoporotic activities of the seed of ZBM have not been elucidated yet. Our previous study found that Zanthoxylum bungeanum Maxim seed oil (ZBSO) was rich in polyunsaturated fatty acids (PUFAs), which were reported to prevent bone loss. Thus, we propose a hypothesis that ZBSO could be a potential natural resource for anti-bone loss. AIM OF THE STUDY To investigate whether ZBSO could prevent bone loss by targeting osteoclastogenesis and investigate the potential mechanisms in receptor-activator of nuclear factor κB ligand (RANKL)-induced RAW264.7 cells. MATERIALS AND METHODS RAW264.7 cells were treated with RANKL in the presence or absence of ZBSO. The effect of ZBSO on osteoclast differentiation and bone resorption activity of RAW264.7 cells were evaluated by tartrate-resistant acid phosphatase (TRAP) staining, F-actin ring staining, and bone resorption assay. Differentially expression genes (DEGs) and relevant pathways of different cell groups were obtained from RNA sequencing and protein-protein interaction (PPI) network analysis followed by KEGG pathway enrichment analysis. The effect of ZBSO on the RANKL-induced cell cycle change was analyzed by flow cytometry assay, and the expression of genes and proteins related to the selected pathways was further verified by RT-qPCR and western blot analysis. RESULTS The inhibitory effects of ZBSO on osteoclast differentiation and bone resorption activity in a dose-dependent manner were demonstrated by TRAP staining, F-actin ring staining, and bone resorption assay in RANKL-induced RAW264.7 cells. Osteoclast differentiation and cell cycle pathways were the most enriched pathways based on DEGs enrichment analysis among different cell groups. The reversion effect of ZBSO on the RANKL-induced RAW264.7 cell cycle arrest at the G1 phase was observed by flow cytometry assay. Western blot results showed that ZBSO markedly decreased RANKL-induced activation of ERK, as well as the phosphorylation of c-JUN and NFATc1 expression, and subsequently suppressed osteoclast-specific genes, such as Ctsk, Trap, and Dc-stamp. CONCLUSIONS ZBSO exhibited an inhibitory effect on osteoclastogenesis via suppressing the ERK/c-JUN/NFATc1 pathway and regulating cell cycle arrest induced by RANKL, suggesting that ZBSO may serve as a promising agent for anti-bone loss.
Collapse
Affiliation(s)
- Fangting He
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, 610041, PR China.
| | - Shuhan Luo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, 610041, PR China.
| | - Sijing Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Siqi Wan
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, 610041, PR China.
| | - Jingjing Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, 610041, PR China.
| | - Jiayi Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, 610041, PR China.
| | - Haojiang Zuo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, 610041, PR China.
| | - Xiaofang Pei
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, PR China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Department of Public Health Laboratory Sciences, West China School of Public Health, Sichuan University, Chengdu, 610041, PR China; Non-communicable Diseases Research Center, West China-PUMC C.C Chen Institute of Health, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
12
|
Fu S, Zhang Y, Ai F, Wang J, Wu Z, Ma X, Wu Z, Wang Z, Lei W, Xia H. A novel bone cement injector augments Chinese osteoporotic lumbar pedicle screw channel: a biomechanical investigation. BMC Musculoskelet Disord 2022; 23:353. [PMID: 35413830 PMCID: PMC9004128 DOI: 10.1186/s12891-022-05181-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background The study aimed to (1) create a series of pedicle injectors with different number of holes on the sheath especially for the Chinese elderly patients and (2) further investigate the effects of the injectors on the augmentation of pedicle screw among osteoporotic lumbar pedicle channel. Methods This study used the biomechanical test module of polyurethane (Pacific Research Laboratory Corp, USA) to simulate the mechanical properties of human osteoporotic cancellous bone. The bone cement injectors were invented based on anatomical parameters of lumbar pedicle in Chinese elderly patients. Mechanical test experiments were performed on the bone cement injectors according to the three groups, namely, a local augmentation group, a full-length augmentation group, and a control group. The local augmentation group included three subgroups including 4-hole group, 6-hole group, and 8-hole group. All holes were laterally placed. The full-length augmentation group was a straight-hole injector. The control group was defined that pedicle screws were inserted without any cement augmentation. Six screws were inserted in each group and the maximum insertion torque was recorded. After 24 h of injecting acrylic bone cement, routine X-ray and CT examinations were performed to evaluate the distribution of bone cement. The axial pull-out force of screws was tested with the help of the material testing system 858 (MTS-858) mechanical tester. Results The bone cement injectors were consisted of the sheaths and the steel rods and the sheaths had different number of lateral holes. The control group had the lowest maximum insertion torque as compared with the 4-hole, 6-hole, 8-hole, and straight pore groups (P < 0.01), but the differences between the 4-hole, 6-hole, 8-hole, and straight pore groups were no statistical significance. The control group had the lowest maximum axial pull-out force as compared with the other four groups (P < 0.01). Subgroup analysis showed the 8-hole group (161.35 ± 27.17 N) had the lower maximum axial pull-out force as compared with the 4-hole group (217.29 ± 49.68 N), 6-hole group (228.39 ± 57.83 N), and straight pore group (237.55 ± 35.96 N) (P < 0.01). Bone cement was mainly distributed in 1/3 of the distal end of the screw among the 4-hole group, in the middle 1/3 and distal end of the screw among the 6-hole group, in the proximal 1/3 of the screw among the 8-hole group, and along the long axis of the whole screw body in the straight pore group. It might indicate that the 8-hole and straight-hole groups were more vulnerable to spinal canal cement leakage. After pullout, bone cement was also closely connected with the screw without any looseness or fragmentation. Conclusions The bone cement injectors with different number of holes can be used to augment the pedicle screw channel. The pedicle screw augmented by the 4-hole or 6-hole sheath may have similar effects to the straight pore injector. However, the 8-hole injector may result in relatively lower pull-out strength and the straight pore injector has the risks of cement leakage as well as cement solidarization near the screw head.
Collapse
Affiliation(s)
- Suochao Fu
- Department of Orthopedics, General Hospital of Southern Theater Command of PLA, Guangzhou, 510000, People's Republic of China.
| | - Yu Zhang
- Department of Orthopedics, General Hospital of Southern Theater Command of PLA, Guangzhou, 510000, People's Republic of China
| | - Fuzhi Ai
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510020, People's Republic of China
| | - Jianhua Wang
- Department of Orthopedics, General Hospital of Southern Theater Command of PLA, Guangzhou, 510000, People's Republic of China
| | - Zenghui Wu
- Department of Spine Surgery, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, People's Republic of China
| | - Xiangyang Ma
- Department of Orthopedics, General Hospital of Southern Theater Command of PLA, Guangzhou, 510000, People's Republic of China
| | - Zixiang Wu
- Department of Orthopedics, General Hospital of Southern Theater Command of PLA, Guangzhou, 510000, People's Republic of China
| | - Zheng Wang
- Department of Orthopedics, the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Wei Lei
- Fourth Department of Orthopedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 733399, People's Republic of China
| | - Hong Xia
- Department of Orthopedics, General Hospital of Southern Theater Command of PLA, Guangzhou, 510000, People's Republic of China
| |
Collapse
|
13
|
Guo L, Zhen Q, Zhen X, Cui Z, Jiang C, Zhang Q, Gao K, Luan D, Zhou X. A network pharmacology approach to explore and validate the potential targets of ginsenoside on osteoporosis. Int J Immunopathol Pharmacol 2022; 36:3946320221107239. [PMID: 35791093 PMCID: PMC9272184 DOI: 10.1177/03946320221107239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: Osteoporosis (OP) is determined as a chronic systemic bone disorder to increase the susceptibility to fracture. Ginsenosides have been found the anti-osteoporotic activity of in vivo and in vitro. However, its mechanism remains unknown.Methods: The potential mechanism of ginsenosides in anti-osteoporotic activity was identified by using network phamacology analysis. The active compounds of ginsenosides and their targets associated to OP were retrieved from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, Drug Bank, Pharmmapper, and Cytoscape. The Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis target genes were performed in String, Phenopedia, DisGeNET database, and Metascape software. The protein to protein interaction were created by String database and Cytoscape software. The molecular docking was used to investigate the interactions between active coumpounds and potential targets by utilizing SwissDock tool, UCSF Chimera, and Pymol software. Results: A total of eight important active ingredients and 17 potential targets related to OP treatment were subjected to analyze. GO analysis showed the anti-osteoporosis targets of ginsenoside mainly play a role in the response to steroid hormone. KEGG enrichment analysis indicated that ginsenoside treats OP by osteoblast differentiation signal pathway. Lastly, the molecular docking outcomes indicated that ginsenoside rh2 had a good binding ability with four target proteins IL1B, TNF, IFNG, and NFKBIA. Conclusion: IL1B, TNF, IFNG, and NFKBIA are the most important targets and osteoblast differentiation is the most valuable signaling pathways in ginsenoside for the treatment of OP, which might be beneficial to elucidate the mechanism concerned to the action of ginsenoside and might supply a better understanding of its anti-OP effects.
Collapse
Affiliation(s)
- Ling Guo
- Department of Otorhinolaryngology Head and Neck Surgery, 34708Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Qingliu Zhen
- Department of Anesthesiology, 34708Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoyue Zhen
- Minimally Invasive Urology Center, 34708Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhaoyang Cui
- Department of Otorhinolaryngology Head and Neck Surgery, 34708Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Chao Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, 34708Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Qiang Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, 34708Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Kun Gao
- Department of Otorhinolaryngology Head and Neck Surgery, 34708Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Deheng Luan
- Department of Otorhinolaryngology Head and Neck Surgery, 34708Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Xuanchen Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, 34708Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
14
|
Nikfarjam M, Heshmat R, Gharibzadeh S, Ostovar A, Maleki V, Moludi J, Nabipour I, Shafiee G, Larijani B. The association between muscle indicators and bone mass density and related risk factors in the diabetic elderly population: Bushehr Elderly Health (BEH) Program. J Diabetes Metab Disord 2021; 20:1429-1438. [PMID: 34900794 PMCID: PMC8630123 DOI: 10.1007/s40200-021-00881-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/15/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Loss of muscle mass and strength and bone mass density are complications of the aging process. Studies show that the prevalence of sarcopenia and osteoporosis may be higher in patients with diabetes. Therefore, this study was aimed to investigate the relationship between muscle mass and strength indices and bone mass density in diabetic elderly. MATERIALS AND METHODS This cross-sectional study was conducted based on the data collected during the Bushehr Elderly Health (BEH) Program, stage II. Diabetes was defined as FPG ≥ 126 mg/dl or HbA1C ≥ 6.5 or taking anti-diabetic medication. Dual x-ray absorptiometry (DXA, Discovery WI, Hologic Inc, USA) was used to measure bone mineral density, fat mass, trabecular bone score (TBS) and muscle mass. Muscle strength was measured by grip strength.Osteoporosis was defined as the bone mineral density of ≥ 2.5 standard deviations (SD) below the average value of young normal adults (T-score of ≤ -2.5 SD) in the femoral neck, or lumbar spine (L1-L4) or total hip. To determine the relationship between skeletal muscle index (SMI) and muscle strength on bone status in a continuous scale was used from linear regression. To estimate the effect of SMI and muscle strength on osteoporosis was used from modified Poisson regression for analysis. RESULTS This study included 759 diabetic elderly with a mean age of 68.6 years and 56.9% of them were women. Skeletal muscle index (SMI) was related to all sites of BMDs and TBS L1-L4 after adjusted in full models (P-value < 0.001). The largest coefficients were observed for BMD L1-L4 in all models (β: 0.043 g/cm2; 95% CI: 0.030-0.057 in full model). Muscle strength was also associated with BMDs and TBS. Only, in model 2 (adjustments for age and sex effect), there was no significant relationship between muscle strength and BMD L1-L4 and TBS L1-L4. The strongest associations were observed for the total hip BMD and muscle strength (β: 0.034 g/cm2; 95% CI: 0.022- 0.046 in full model). Also, increased SMI and muscle strength was associated with decreased osteoporosis in crude and adjusted models (P < 0.001). CONCLUSIONS In this study, it was revealed that the reduction of SMI in elderly patients with diabetes was significantly associated with decreased BMD and TBS. The muscle strength was also associated with BMD and TBS. So, muscle strength and muscle mass should be measured separately ever since both are independently associated with BMD and TBS. Muscle strength and muscle mass were negatively associated with osteoporosis in older people with diabetes. Thus, we should pay more attention to muscle strength training in older people with diabetes, particularly in osteoporotic patients.
Collapse
Affiliation(s)
- Marzieh Nikfarjam
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, NO 10, Jalale-Al-Ahmad Ave, Chamran Highway, Tehran, Iran
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, NO 10, Jalale-Al-Ahmad Ave, Chamran Highway, Tehran, Iran
| | - Safoora Gharibzadeh
- Department of Epidemiology and Biostatistics, Pasteur Institute of Iran, Tehran, Iran
| | - Afshin Ostovar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Maleki
- Clinical Cancer Research Center, Milad General Hospital, Tehran, Iran
- Knee and Sport Medicine Research Center, Milad Hospital, Tehran, Iran
| | - Jalal Moludi
- School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Iraj Nabipour
- The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Gita Shafiee
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, NO 10, Jalale-Al-Ahmad Ave, Chamran Highway, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, NO 10, Jalale-Al-Ahmad Ave, Chamran Highway, Tehran, Iran
| |
Collapse
|
15
|
Zhang YT, Hu C, Zhang SX, Zhou HH, Xu J, Ma JD, Dai L, Gu Q. Euphoesulatin A prevents osteoclast differentiation and bone loss via inhibiting RANKL-induced ROS production and NF-κB and MAPK signal pathways. Bioorg Chem 2021; 119:105511. [PMID: 34847428 DOI: 10.1016/j.bioorg.2021.105511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 11/19/2022]
Abstract
Euphoesulatin A (Eup A), a new jatrophane diterpenoid isolated from the Euphorbia esula L. (Euphorbiaceae), was reported to inhibit RANKL-induced osteoclastogenesis. However, the underlying mechanism and the effect in osteoporosis mouse model are still unclear. This study is the first to demonstrate that Eup A inhibits osteoclastogenesis in vitro and in vivo. Mechanistic analysis suggested that Eup A (3, 6, 12 μM) dose-dependently inhibited osteoclastogenesis by down-regulating the activation of NFATc1 and NF-κB and MAPKs signal pathways. Moreover, Eup A (10 mg/kg) significantly prevented bone loss in ovariectomized mice. This work provides in vitro and in vivo evidence that Eup A could be a potential candidate for the development of anti-osteoporosis agents.
Collapse
Affiliation(s)
- Yu-Ting Zhang
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chen Hu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Song-Xuan Zhang
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hui-Hao Zhou
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jian-da Ma
- Department of Rheumatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Lie Dai
- Department of Rheumatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
16
|
Liu JJ, Fu SB, Jiang J, Tang XL. Association between outdoor particulate air pollution and the risk of osteoporosis: a systematic review and meta-analysis. Osteoporos Int 2021; 32:1911-1919. [PMID: 33954814 DOI: 10.1007/s00198-021-05961-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/13/2021] [Indexed: 11/25/2022]
Abstract
Air pollution is a major threat to global health, which is associated with several adverse health outcomes and increased mortality. Few studies have investigated the association between air pollution and osteoporosis, and their findings were inconclusive. Our objective is to determine whether exposure to outdoor air pollution is causally associated with risk of osteoporosis. A systematic literature search of PubMed, Web of Science, Embase, and Cochrane Library for publications up to December 2020 was conducted for studies reporting the association between air pollution and osteoporosis. Meta-analysis was performed to estimate the pooled effect size of air pollution on osteoporosis using the relative risk (RR) and 95% confidence intervals (95% CI). Quality assessment was conducted, and all statistical analyses were performed by RevMan 5.3 software. Our search identified 9 eligible studies involving 9,371,212 patients. Meta-analysis revealed that there was an increased risk of osteoporosis (total body BMD and hip fracture) as a result of exposure to air pollution including PM2.5 and NO2. However, no significant excess risk of osteoporosis was found regardless of PM10, NO, and O3. In spite of a few number of epidemiological studies selected in the present literature review, this study indicated that the increased exposure to air pollutants was positively associated with high risk of osteoporosis. Further cohort studies with large sample sizes are needed to investigate different constituents and the duration of exposure of air pollutants.
Collapse
Affiliation(s)
- J J Liu
- Department of Endocrinology, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, Gansu, 730000, China
| | - S B Fu
- Department of Endocrinology, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, Gansu, 730000, China
| | - J Jiang
- The First Clinical Medical College of Lanzhou University, No. 1 West Donggang Road, Lanzhou, Gansu, 730000, China
| | - X L Tang
- Department of Endocrinology, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
17
|
Zhou Y, Hu Z, Ge M, Jin W, Tang R, Li Q, Xu W, Shi J, Xie Z. Intraosseous Injection of Calcium Phosphate Polymer-Induced Liquid Precursor Increases Bone Density and Improves Early Implant Osseointegration in Ovariectomized Rats. Int J Nanomedicine 2021; 16:6217-6229. [PMID: 34531654 PMCID: PMC8439716 DOI: 10.2147/ijn.s321882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Osteoporosis, due to bone loss and structural deterioration, is a risk factor for dental implant failure, as it impedes initial stability and osseointegration. We aim to assess the effects of calcium phosphate polymer-induced liquid precursor (CaP-PILP) treatment, which significantly increases bone density and improves early implant osseointegration in ovariectomized rats. METHODS In this study, CaP-PILP was synthesized and characterized through TEM, FTIR and XRD. A rat model of osteoporosis was generated by ovariectomy. CaP-PILP or hydroxyapatite (HAP, negative control) was injected into the tibia, and the resulting changes in bone quality were determined. Further, implants were installed in the treated tibias, and implantation characteristics were assessed after 4 weeks. RESULTS The CaP-PILP group had superior bone repair. Importantly, CaP-PILP had excellent properties, similar to those of normal bone, in terms of implant osseointegration. In vivo experiment displayed that CaP-PILP group had better bone contact rate (65.97±3.176) than HAP and OVX groups. Meanwhile, a mound of mature and continuous new bone formed. Moreover, the values of BIC and BA showed no significant difference between the CaP-PILP group and the sham group. CONCLUSION In summary, CaP-PILP is a promising material for application in poor-quality bones to improve implant success rates in patients with osteoporosis. This research provides new perspectives on the application of nano-apatite materials in bone repair.
Collapse
Affiliation(s)
- Yanyan Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Zihe Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Mingjie Ge
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Wenjing Jin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou, 310027, People’s Republic of China
| | - Qi Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Weijian Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Jue Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People’s Republic of China
| |
Collapse
|
18
|
Pang Y, Liu L, Mu H, Priya Veeraraghavan V. Nobiletin promotes osteogenic differentiation of human osteoblastic cell line (MG-63) through activating the BMP-2/RUNX-2 signaling pathway. Saudi J Biol Sci 2021; 28:4916-4920. [PMID: 34466066 PMCID: PMC8381068 DOI: 10.1016/j.sjbs.2021.06.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/06/2021] [Accepted: 06/24/2021] [Indexed: 11/01/2022] Open
Abstract
Nobiletin (NOB) is polymethoxy flavonoids, which plentifully there in Citrus depressa and they demonstrate numerous pharmacological effects. NOB has an anti-proliferative effect, attenuates ovalbumin-treated eosinophilic airway inflammation and Type II collagen treated arthritis. NOB noticeably inhibits bone resorption and renovates bone loss in mice model, but role of NOB in bone metabolism is unclear. Human bone is a important organ that sustains its homeostasis among bone resorpting osteoclasts and bone developing osteoblasts. The balances of among these two kind of cell outcomes are implicated in bone remodeling. The current study designed to explore possessions of NOB on differentiation and proliferation of MG-63 cells and contribution of morphogenetic protein signaling. Cell proliferation was analyzed by MTT, mineralization analysis by alizarin red staining and morphogenetic signaling protein by RT-PCR. No stimulus outcome of NOB on cell proliferation was found at days of 1, 3 and 7. Accumulation of calcium was augmented after that treatment of NOB. The mRNA expression of BMP-2, COL-I, ALP, OCN, RUNX2 and COL1A1 augmented markedly with NOB supplement. Hence, NOB can stimulate osteogenic differentiation of MG-63, almost certainly by promoting RUNX2 and BMP-2 signaling and this result might provide to its action on stimulation of osteoblast development, differentiation and augments of bone mass.
Collapse
Affiliation(s)
- Ying Pang
- Dental Clinic, Cangzhou Central Hospital, Cangzhou City, Hebei Province 061000, China
| | - Lili Liu
- Dental Clinic, Cangzhou Central Hospital, Cangzhou City, Hebei Province 061000, China
| | - Hong Mu
- Dental Clinic, Cangzhou Central Hospital, Cangzhou City, Hebei Province 061000, China
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
| |
Collapse
|
19
|
Liu Q, Zhou J, Yang Z, Xie C, Huang Y, Ling L, Cao Y, Hu H, Hua Y. The Ginsenoside Exhibits Antiosteoporosis Effects in Ketogenic-Diet-Induced Osteoporosis via Rebalancing Bone Turnover. Front Pharmacol 2021; 11:593820. [PMID: 33519454 PMCID: PMC7840492 DOI: 10.3389/fphar.2020.593820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/11/2020] [Indexed: 11/28/2022] Open
Abstract
Ginsenoside is widely used in China for therapeutic and healthcare practice. Ginsenoside-Rb2 shows the antiosteoporosis effects in ovariectomized rodents. However, the protective effects on osteoporosis induced by ketogenic diet (KD) remain unknown. Therefore, this study aimed at evaluating the effects of ginsenoside-Rb2 on KD-induced osteoporosis. Thirty mice were randomly divided into three groups: sham, KD, and KD + Rb2. Bone microstructures, biomechanical properties, concentrations of serum bone alkaline phosphatase (BALP) and tartrate-resistant acid phosphatase (TRACP), and protein expression of osteocalcin (OCN), peroxisome proliferation-activated receptor γ (PPAR-γ), cathepsin K, and TRAP were evaluated after a 12-week intervention. The results show that KD induced significant bone loss and biomechanical impairment. Ginsenoside-Rb2 attenuated significant bone loss and maintained biomechanics in cancellous bone. The bone volume fraction increased from 2.3 to 6.0% in the KD + Rb2 group than that in the KD group. Meanwhile, ginsenoside-Rb2 effectively maintained biomechanical strengths in cancellous bone, increased serum BALP and decreased TRACP, and upregulated OCN and downregulated TRAP, PPAR-γ, and cathepsin K in the KD mice. This study demonstrated that ginsenoside-Rb2 retards bone loss and maintains biomechanics with KD. The underlying mechanism might be that ginsenoside-Rb2 inhibits bone resorption process and induces osteogenic differentiation, providing evidence for ginsenoside as being an alternative option for osteoporosis induced by KD.
Collapse
Affiliation(s)
- Qi Liu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jian Zhou
- Department of Spine and Joint Surgery, Nanchang Hongdu Hospital of TCM, Jiangxi, China
| | - Zhou Yang
- Department of Orthopaedic Surgery, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Chuhai Xie
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yan Huang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Long Ling
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanming Cao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hailan Hu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yue Hua
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|