1
|
Dibbern KN, Kern AM, Anderson DD. A generalized objective CT-based method for quantifying articular fracture severity. J Biomech 2025; 180:112432. [PMID: 39778442 DOI: 10.1016/j.jbiomech.2024.112432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 01/11/2025]
Abstract
A CT-based method for objectively assessing fracture severity was previously developed and validated to address poor reliability in existing subjective fracture classification systems. The method involved quantifying the energy involved in creating a fracture. However, clinical utility of the method was hindered by reliance upon an intact contralateral CT and lengthy analysis time (8-10 h). Significant methodological improvements detailed here enable the assessment of fracture severity in any joints and bones, while obviating the need for an intact contralateral CT scan. Analysis time was reduced to <2 h per case. Fracture energies computed using the new methods showed strong agreement (R2 = 0.95, p < 0.001) with prior results in analyzing twenty tibial pilon fractures. New metrics, articular fracture edge length and subchondral energy, were developed to better describe joint injuries by incorporating knowledge of preferential chondrocyte death along fracture edges. Based on two-year radiographic grading for these pilon fractures, fracture energy, articular fracture edge length, and subchondral energy were all significantly different (p < 0.01) between cases that did or did not develop post-traumatic osteoarthritis. These developments enable measurement of fracture severity in larger populations and in more clinically relevant timeframes with articular fractures involving a variety of joints and bones. This generalized assessment method offers opportunity to change the way severity is considered in fracture treatment algorithms. Studies involving larger cohorts are anticipated to yield insights into the impact of fracture severity on PTOA risk and serve as a foundation for evaluating new treatment strategies.
Collapse
Affiliation(s)
- Kevin N Dibbern
- Department of Orthopedics and Rehabilitation, The University of Iowa, United States; Department of Biomedical Engineering, The University of Iowa, United States; Department of Biomedical Engineering, Marquette University, United States.
| | - Andrew M Kern
- Department of Orthopedics and Rehabilitation, The University of Iowa, United States; Department of Biomedical Engineering, The University of Iowa, United States.
| | - Donald D Anderson
- Department of Orthopedics and Rehabilitation, The University of Iowa, United States; Department of Biomedical Engineering, The University of Iowa, United States; Department of Industrial and Systems Engineering, The University of Iowa, United States
| |
Collapse
|
2
|
Liu C, Sha D, Zhao L, Zhou C, Sun L, Liu C, Yuan Y. Design and Improvement of Bone Adhesive in response to Clinical Needs. Adv Healthc Mater 2024; 13:e2401687. [PMID: 39375984 DOI: 10.1002/adhm.202401687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/21/2024] [Indexed: 10/09/2024]
Abstract
Fracture represents one of the most common diagnoses in contemporary medical practice, with the majority of cases traditionally addressed through metallic device fixation. However, this approach is marred by several drawbacks, including prolonged operative durations, considerable expenses, suboptimal applicability to comminuted fractures, increased infection risks, and the inevitable requirement for secondary surgery. The inherent advantages of bone adhesives in these fields have garnered the attention of orthopedic surgeons, who have commenced utilizing biocompatible and biodegradable bone adhesives to bond and stabilize bone fragments. Regrettably, the current bone adhesives generally exhibit insufficient adhesive strength in vivo environments, and it is desirable for them to possess effective osteogenesis to facilitate fracture healing. Consequently, aligning bone adhesives with practical clinical demands remains a significant hurdle, which has catalyzed a surge in research endeavors. Within this review, the conceptual framework, characteristics, and design ideas of bone adhesives based on clinical needs are delineated. Recent advancements in this domain, specifically focusing on the enhancement of two pivotal characteristics-adhesive strength and osteogenic potential are also reviewed. Finally, a prospective analysis of the future advancements in bone adhesives, offering new insights into solutions for diverse clinical problems is presented.
Collapse
Affiliation(s)
- Chenyu Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Dongyong Sha
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Lingfei Zhao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Chuanwei Zhou
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Lili Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P.R. China
| |
Collapse
|
3
|
Bonanni S, Scuderi GR. Managing Post-Traumatic Arthritis of the Knee with Total Knee Arthroplasty. Orthop Clin North Am 2024; 55:415-423. [PMID: 39216946 DOI: 10.1016/j.ocl.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Post-traumatic arthritis (PTA) of the knee is a complex problem, requiring foresight and careful preoperative planning. Each case of PTA is unique, requiring understanding of the altered anatomy, management of any retained hardware, and also the ability to provide the appropriate stability for each affected knee. Successful treatment of PTA with total knee arthroplasty (TKA) requires the creation of stable and well-balanced joint. TKA for PTA provides comparable improvements in pain and function when compared with primary osteoarthritis, however, these patients are at increased risk of post-operative complications, including instability and infection.
Collapse
Affiliation(s)
- Sean Bonanni
- Department of Orthopaedic Surgery, Northwell Orthopaedic Institute, 210 East 64th Street, Floor 4, New York, NY 10065, USA.
| | - Giles R Scuderi
- Department of Orthopaedic Surgery, Northwell Orthopaedic Institute, 210 East 64th Street, Floor 4, New York, NY 10065, USA
| |
Collapse
|
4
|
Gonzales G, Hoque J, Kaeo C, Zauscher S, Varghese S. Grafting of cationic molecules to hyaluronic acid improves adsorption and cartilage lubrication. Biomater Sci 2024; 12:4747-4758. [PMID: 39118400 PMCID: PMC11310657 DOI: 10.1039/d4bm00532e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/21/2024] [Indexed: 08/10/2024]
Abstract
Synovial fluid lubricates articular joints by forming a hydrated layer between the cartilage surfaces. In degenerative joint diseases like osteoarthritis (OA), the synovial fluid is compromised, which leads to less effective innate lubrication and exacerbated cartilage degeneration. Studies over the years have led to the development of partially or fully synthetic biolubricants to reduce the coefficient of friction with cartilage in knee joints. Cartilage-adhering, hydrated lubricants are particularly important to provide cartilage lubrication and chondroprotection under high normal load and slow speed. Here, we report the development of a hyaluronic acid (HA)-based lubricant functionalized with cationic branched poly-L-lysine (BPL) molecules that bind to cartilage via electrostatic interactions. We surmised that the electrostatic interactions between the BPL-modified HA molecules (HA-BPL) and the cartilage facilitate localization of the HA molecules to the cartilage surface. The number of BPL molecules on the HA backbone was varied to determine the optimal grafting density for cartilage binding and HA localization. Collectively, our results show that our HA-BPL molecules adhered readily to cartilage and were effective as a lubricant in cartilage-on-cartilage shear measurements where the modified HA molecules significantly reduce the coefficient of friction compared to phosphate-buffered saline or HA alone. This proof-of-concept study shows how the incorporation of cartilage adhering moieties, such as cationic molecules, can be used to enhance cartilage binding and lubrication properties of HA.
Collapse
Affiliation(s)
- Gavin Gonzales
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA.
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jiaul Hoque
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Colin Kaeo
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA.
| | - Stefan Zauscher
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710, USA
| | - Shyni Varghese
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA.
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710, USA
| |
Collapse
|
5
|
Gardashli M, Baron M, Huang C, Kaplan LD, Meng Z, Kouroupis D, Best TM. Mechanical loading and orthobiologic therapies in the treatment of post-traumatic osteoarthritis (PTOA): a comprehensive review. Front Bioeng Biotechnol 2024; 12:1401207. [PMID: 38978717 PMCID: PMC11228341 DOI: 10.3389/fbioe.2024.1401207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
The importance of mechanical loading and its relationship to orthobiologic therapies in the treatment of post-traumatic osteoarthritis (PTOA) is beginning to receive attention. This review explores the current efficacy of orthobiologic interventions, notably platelet-rich plasma (PRP), bone marrow aspirate (BMA), and mesenchymal stem/stromal cells (MSCs), in combating PTOA drawing from a comprehensive review of both preclinical animal models and human clinical studies. This review suggests why mechanical joint loading, such as running, might improve outcomes in PTOA management in conjunction with orthiobiologic administration. Accumulating evidence underscores the influence of mechanical loading on chondrocyte behavior and its pivotal role in PTOA pathogenesis. Dynamic loading has been identified as a key factor for optimal articular cartilage (AC) health and function, offering the potential to slow down or even reverse PTOA progression. We hypothesize that integrating the activation of mechanotransduction pathways with orthobiologic treatment strategies may hold a key to mitigating or even preventing PTOA development. Specific loading patterns incorporating exercise and physical activity for optimal joint health remain to be defined, particularly in the clinical setting following joint trauma.
Collapse
Affiliation(s)
- Mahammad Gardashli
- Department of Education, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Max Baron
- Department of Education, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Charles Huang
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Lee D Kaplan
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Zhipeng Meng
- Department of Molecular and Cellular Pharmacology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Diabetes Research Institute and Cell Transplant Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Thomas M Best
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| |
Collapse
|
6
|
Gan TJ, Ma XK, Li YX, Chen Y, Liu X, Li J, Zhang H. Osteoperiosteal Iliac Autograft Transplantation for Unreconstructable Tibial Plafond After Malunions of Pilon Fractures in Young Patients. Foot Ankle Int 2024; 45:33-43. [PMID: 37837388 DOI: 10.1177/10711007231201823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Abstract
BACKGROUND Malunion of tibial pilon fracture, especially with a large cartilage loss of the tibial plafond, is a tough clinical conundrum. This study describes a joint-preserving technique that mainly involves corrective intraarticular osteotomy and osteoperiosteal iliac autograft transplantation for treating these generally considered unreconstructable tibial plafond. METHODS Sixteen patients with an average age of 33.6 years who were treated with this joint-preserving method between 2013 and 2020 were retrospectively analyzed. Ankle distraction was applied in all patients. Additional osteochondral autograft transplantation for talus was performed in 4 patients and supramalleolar osteotomy in 2 patients. The visual analog scale (VAS) score, the American Orthopaedic Foot & Ankle Society (AOFAS) ankle-hindfoot score, the 36-Item Short Form Health Survey (SF-36) score, and the ankle range of motion (ROM) were used for outcome analysis. Radiographic assessment was conducted, and the complications were recorded. RESULTS At a mean follow-up of 41.1 months, the mean VAS, AOFAS, and SF-36 scores improved from 6.3, 47.6, and 38.0 to 1.7, 84.4, and 70.8, respectively (P < .001 for each). The ankle ROM improved from 27.5 to 32.2 degrees (P = .023). The mean area of ilium blocks was 3.5 cm2, and the mean external fixation time was 94.1 days. Radiographs showed that good osteointegration was found in all patients and no significant progression of osteoarthritis in 15 patients. The major complications included poor incision healing in 2 patients and severe ankle stiffness in 2 patients, with one of them developing considerable varus-type osteoarthritis but reporting no pain. No deep infection, nonunion, or malunion occurred, and no secondary arthrodesis was performed during the final follow-up. CONCLUSION Osteoperiosteal iliac autograft transplantation might be an alternative surgical option for reconstructing unreconstructable malunited pilon fractures with a large cartilage loss of the tibial plafond in young patients. LEVEL OF EVIDENCE Level IV, case series.
Collapse
Affiliation(s)
- Ting-Jiang Gan
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xi-Kun Ma
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ya-Xing Li
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yu Chen
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xi Liu
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jia Li
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hui Zhang
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
7
|
Schwartz E, Chang K, Sun C, Zhang F, Peng G, Owens B, Wei L. The Effects of an Osteoarthritic Joint Environment on ACL Damage and Degeneration: A Yucatan Miniature Pig Model. Biomolecules 2023; 13:1416. [PMID: 37759816 PMCID: PMC10526460 DOI: 10.3390/biom13091416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Posttraumatic osteoarthritis (PTOA) arises secondary to joint injuries and is characteristically driven by inflammatory mediators. PTOA is often studied in the setting of ACL tears. However, a wide range of other injuries also lead to PTOA pathogenesis. The purpose of this study was to characterize the morphological changes in the uninjured ACL in a PTOA inflammatory environment. We retrospectively reviewed 14 ACLs from 13 Yucatan minipigs, 7 of which had undergone our modified intra-articular drilling (mIAD) procedure, which induced PTOA through inflammatory mediators. Seven ACLs were harvested from mIAD minipigs (PTOA) and seven ACLs from control minipigs with no cartilage degeneration (non-PTOA). ACL degeneration was evaluated using histological scoring systems. IL-1β, NF-κB, and TNF-α mRNA expression in the synovium was measured using qRT-PCR. PTOA minipigs demonstrated significant ACL degeneration, marked by a disorganized extracellular matrix, increased vascularity, and changes in cellular shape, density, and alignment. Furthermore, IL-1β, NF-κB, and TNF-α expression was elevated in the synovium of PTOA minipigs. These findings demonstrate the potential for ACL degeneration in a PTOA environment and emphasize the need for anti-inflammatory disease-modifying therapies following joint injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lei Wei
- Department of Orthopaedics, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA; (E.S.); (K.C.); (C.S.); (F.Z.); (G.P.); (B.O.)
| |
Collapse
|
8
|
Valerio MS, Edwards JB, Dolan CP, Motherwell JM, Potter BK, Dearth CL, Goldman SM. Effect of Targeted Cytokine Inhibition on Progression of Post-Traumatic Osteoarthritis Following Intra-Articular Fracture. Int J Mol Sci 2023; 24:13606. [PMID: 37686412 PMCID: PMC10487447 DOI: 10.3390/ijms241713606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Intra-articular fractures (IAF) result in significant and prolonged inflammation, increasing the chances of developing post-traumatic osteoarthritis (PTOA). Interleukin-one beta (IL-1β) and Tumor Necrosis Factor-alpha (TNF-α) are key inflammatory factors shown to be involved in osteochondral degradation following IAF. As such, use of targeted biologics such as Infliximab (INX), a TNF-α inhibitor, and Anakinra (ANR), an interleukin-one (IL-1) receptor antagonist (IL1RA), may protect against PTOA by damping the inflammatory response to IAF and reducing osteochondral degradation. To test this hypothesis, IAFs were induced in the hindlimb knee joints of rats treated with INX at 10 mg/kg/day, ANR at 100 g/kg/day, or saline (vehicle control) by subcutaneous infusion for a period of two weeks and healing was evaluated at 8-weeks post injury. Serum and synovial fluid (SF) were analyzed for soluble factors. In-vivo microcomputed tomography (µCT) scans assessed bone mineral density and bone morphometry measurements. Cationic CA4+ agent assessed articular cartilage composition via ex vivo µCT. Scoring according to the Osteoarthritis Research Society International (OARSI) guidelines was performed on stained histologic tibia sections at the 56-day endpoint on a 0-6 scale. Systemically, ANR reduced many pro-inflammatory cytokines and reduced osteochondral degradation markers Cross Linked C-Telopeptide Of Type II (CTXII, p < 0.05) and tartrate-resistant acid phosphatase (TRAP, p < 0.05). ANR treatment resulted in increased chemokines; macrophage-chemotractant protein-1 (MCP-1), MPC-3, macrophage inhibitory protein 2 (MIP2) with a concomitant decrease in proinflammatory interleukin-17A (IL17A) at 14 days post-injury within the SF. Microcomputed tomography (µCT) at 56 days post-injury revealed ANR Treatment decreased epiphyseal degree of anisotropy (DA) (p < 0.05) relative to saline. No differences were found with OARSI scoring but contrast-enhanced µCT revealed a reduction in glycosaminoglycan content with ANR treatment. These findings suggest targeted cytokine inhibition, specifically IL-1 signaling, as a monotherapy has minimal utility for improving IAF healing outcomes but may have utility for promoting a more permissive inflammatory environment that would allow more potent disease modifying osteoarthritis drugs to mitigate the progression of PTOA after IAF.
Collapse
Affiliation(s)
- Michael S. Valerio
- Research & Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD 20814, USA
- Department of Surgery, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Jorge B. Edwards
- Department of Surgery, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Connor P. Dolan
- Research & Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD 20814, USA
- Department of Surgery, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Jessica M. Motherwell
- Research & Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD 20814, USA
- Department of Surgery, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Benjamin K. Potter
- Department of Surgery, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Department of Orthopaedic Surgery, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Christopher L. Dearth
- Research & Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD 20814, USA
- Department of Surgery, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Stephen M. Goldman
- Research & Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD 20814, USA
- Department of Surgery, Walter Reed National Military Medical Center, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
9
|
Sun C, Chang K, Fleming BC, Owens BD, Beveridge JE, Gage A, Talley-Bruns RC, McAllister S, Costa MQ, Pinette MP, Hague M, Molino J, Xiao Y, Lu S, Wei L. A novel large animal model of posttraumatic osteoarthritis induced by inflammation with mechanical stability. Am J Transl Res 2023; 15:4573-4586. [PMID: 37560216 PMCID: PMC10408525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/07/2023] [Indexed: 08/11/2023]
Abstract
OBJECTIVES Animal models are needed to reliably separate the effects of mechanical joint instability and inflammation on posttraumatic osteoarthritis (PTOA) pathogenesis. We hypothesized that our modified intra-articular drilling (mIAD) procedure induces cartilage damage and synovial changes through increased inflammation without causing changes in gait. METHODS Twenty-four Yucatan minipigs were randomized into the mIAD (n=12) or sham control group (n=12). mIAD animals had two osseous tunnels drilled into each of the tibia and femur adjacent to the anterior cruciate ligament (ACL) attachment sites on the left hind knee. Surgical and contralateral limbs were harvested 15 weeks post-surgery. Cartilage degeneration was evaluated macroscopically and histologically. Synovial changes were evaluated histologically. Interleukin-1 beta (IL-1β), nuclear factor kappa B (NF-κB), and tumor necrosis factor alpha (TNF-α) mRNA expression levels in the synovial membrane were measured using quantitative real-time polymerase chain reaction. IL-1β and NF-κB levels in chondrocytes were assessed using immunohistochemistry. Load asymmetry during gait was recorded by a pressure-sensing walkway system before and after surgery. RESULTS The mIAD surgical knees demonstrated greater gross and histological cartilage damage than contralateral (P<.01) and sham knees (P<.05). Synovitis was present only in the mIAD surgical knee. Synovial inflammatory marker (IL-1β, NF-κB, and TNF-α) expression was three times higher in the mIAD surgical knee than the contralateral (P<.05). Chondrocyte IL-1β and NF-κB levels were highest in the mIAD surgical knee. In general, there were no significant changes in gait. CONCLUSIONS The mIAD model induced PTOA through inflammation without affecting gait mechanics. This large animal model has significant applications for evaluating the role of inflammation in PTOA and for developing therapies aimed at reducing inflammation following joint injury.
Collapse
Affiliation(s)
- Changqi Sun
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island HospitalProvidence, RI, USA
| | - Kenny Chang
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island HospitalProvidence, RI, USA
| | - Braden C Fleming
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island HospitalProvidence, RI, USA
| | - Brett D Owens
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island HospitalProvidence, RI, USA
| | | | - Andrew Gage
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island HospitalProvidence, RI, USA
| | - Rachel C Talley-Bruns
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island HospitalProvidence, RI, USA
| | - Scott McAllister
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island HospitalProvidence, RI, USA
| | - Meggin Q Costa
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island HospitalProvidence, RI, USA
| | - Megan P Pinette
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island HospitalProvidence, RI, USA
| | - Madalyn Hague
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island HospitalProvidence, RI, USA
| | - Janine Molino
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island HospitalProvidence, RI, USA
| | - Ying Xiao
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island HospitalProvidence, RI, USA
| | - Shaolei Lu
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island HospitalProvidence, RI, USA
| | - Lei Wei
- Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island HospitalProvidence, RI, USA
| |
Collapse
|
10
|
Lawson KA, Ayala AE, Morin ML, Latt LD, Wild JR. Republication of "Ankle Fracture-Dislocations: A Review". FOOT & ANKLE ORTHOPAEDICS 2023; 8:24730114231195058. [PMID: 37582190 PMCID: PMC10423454 DOI: 10.1177/24730114231195058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Ankle fractures are common musculoskeletal injuries that may result in tibiotalar joint dislocations. Ankle fracture-dislocations occur via similar mechanisms as ankle fractures, although the persistence or magnitude of the deforming force is sufficient to disrupt any remaining bony or soft-tissue stability. Ankle fracture-dislocations likely represent distinct clinical entities, as the pathology, management, and patient outcomes following these injuries differ from those seen in more common ankle fractures without dislocation. Ankle fracture-dislocations have higher rates of concomitant injury including open fractures, chondral lesions, and intra-articular loose bodies. Long-term outcomes in ankle fracture-dislocations are worse than ankle fractures without dislocation. Higher rates of posttraumatic osteoarthritis and chronic pain have also been reported. In this review, we discuss the current literature regarding the history, management, and outcomes of ankle-fracture dislocations and highlight the need for future study.
Collapse
Affiliation(s)
- Kevin A Lawson
- Department of Orthopaedic Surgery, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Alfonso E Ayala
- The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Matthew L Morin
- Department of Orthopaedic Surgery, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - L Daniel Latt
- Department of Orthopaedic Surgery, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Jason R Wild
- Department of Orthopaedic Surgery, The University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
11
|
Haller JM, van der Meulen MCH, Olson S, Anderson D, Marsh JL, Working Z. Posttraumatic osteoarthritis: from basic science to clinical implications. OTA Int 2023; 6:e232. [PMID: 37168031 PMCID: PMC10166366 DOI: 10.1097/oi9.0000000000000232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/23/2022] [Indexed: 05/13/2023]
Abstract
Posttraumatic osteoarthritis (PTOA) is a subset of osteoarthritis that occurs after joint injury and is associated with degradation of articular cartilage and subchondral bone. As compared with primary osteoarthritis, PTOA occurs in a time window initiated by a traumatic event resulting in damage to layers of joint structure and alterations in joint shape. As techniques in open reduction and internal fixation continue to mature, our success in preventing posttraumatic osteoarthritis has not kept pace. Advances in research in the subchondral bone, inflammatory response, and joint mechanics continue to open our understanding of this posttraumatic process. In addition, there are possibilities emerging as biological agents to therapeutically alter the progression of PTOA.
Collapse
Affiliation(s)
- Justin M. Haller
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT
| | | | - Steven Olson
- Department of Orthopedic Surgery, Duke University, Durham, NC
| | - Donald Anderson
- Department Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA; and
| | - J. Lawrence Marsh
- Department Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA; and
| | - Zachary Working
- Department Orthopedics and Rehabilitation, Oregon Health and Science University, Portland, OR
| |
Collapse
|
12
|
Karnik S, Noori-Dokht H, Williams T, Joukar A, Trippel SB, Sankar U, Wagner DR. Decreased SIRT1 Activity Is Involved in the Acute Injury Response of Chondrocytes to Ex Vivo Injurious Mechanical Overload. Int J Mol Sci 2023; 24:ijms24076521. [PMID: 37047494 PMCID: PMC10095502 DOI: 10.3390/ijms24076521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
A better understanding of molecular events following cartilage injury is required to develop treatments that prevent or delay the onset of trauma-induced osteoarthritis. In this study, alterations to SIRT1 activity in bovine articular cartilage explants were evaluated in the 24 h following a mechanical overload, and the effect of pharmacological SIRT1 activator SRT1720 on acute chondrocyte injury was assessed. SIRT1 enzymatic activity decreased as early as 5 min following the mechanical overload, and remained suppressed for at least 24 h. The chondrocyte injury response, including apoptosis, oxidative stress, secretion of inflammatory mediators, and alterations in cartilage matrix expression, was prevented with pharmacological activation of SIRT1 in a dose-dependent manner. Overall, the results implicate SIRT1 deactivation as a key molecular event in chondrocyte injury following a mechanical impact overload. As decreased SIRT1 signaling is associated with advanced age, these findings suggest that downregulated SIRT1 activity may be common to both age-related and injury-induced osteoarthritis.
Collapse
Affiliation(s)
- Sonali Karnik
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hessam Noori-Dokht
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Taylor Williams
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Amin Joukar
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Stephen B. Trippel
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Uma Sankar
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Diane R. Wagner
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
13
|
O'Malley O, Choudhury A, Biggs A, Humdani AJ, Brown O, Smith TO, Ejindu V, Hing CB. Association between Patellofemoral Anatomy and Chondral Lesions of the Knee in Patellofemoral Instability. J Knee Surg 2023; 36:153-158. [PMID: 34187065 DOI: 10.1055/s-0041-1731351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chondral injury is a serious consequence of patellar dislocation and patellofemoral instability (PFI). There is limited data on the relationship between radiological features such as sulcus angle and patellar height to the presence, location, and severity of chondral lesions. The purpose of this study was to determine the association of anatomical variants in patellofemoral instability with injuries sustained due to patellar dislocation. A cohort of 101 patients who had four or more episodes of dislocation or instability undergoing isolated arthroscopy or arthroscopies at the time of corrective realignment surgery were identified. The prevalence of chondral, ligamentous, and meniscal injuries was determined and correlated to the sulcus angle, tibial tubercle trochlear groove distance, and patellar height on magnetic resonance imaging (MRI) scans. A total of 101 patients was identified. At arthroscopy, the patella demonstrated the highest incidence of chondral injury (68%) followed by the trochlear groove (40%). Lateral meniscal injuries were noted in 6% of patients, medial meniscal injuries in 2%, and anterior cruciate ligament (ACL) injury in 3%. Chondral injuries were graded using the Outerbridge criteria and there was a correlation between more severe chondral injuries and a greater tilt angle (p = 0.05). The occurrence of injury to the lateral meniscus was associated with a higher Insall-Salvati ratio (p = 0.05). More severe chondral injuries are seen in patients with a greater tilt angle.
Collapse
Affiliation(s)
- Olivia O'Malley
- Department of Trauma and Orthopaedics, St George's Hospital, St George's University Hospitals National Health Service Foundation Trust, London, United Kingdom
| | - Aliya Choudhury
- Department of Trauma and Orthopaedics, St George's Hospital, St George's University Hospitals National Health Service Foundation Trust, London, United Kingdom
| | - Alexandra Biggs
- Department of Trauma and Orthopaedics, St George's Hospital, St George's University Hospitals National Health Service Foundation Trust, London, United Kingdom
| | - Alina J Humdani
- St George's Medical School, St George's University London, St George's University Hospitals National Health Service Foundation Trust, London, United Kingdom
| | - Oliver Brown
- Department of Trauma and Orthopaedics, St George's Hospital, St George's University Hospitals National Health Service Foundation Trust, London, United Kingdom
| | - Toby O Smith
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Vivian Ejindu
- St George's Medical School, St George's University London, St George's University Hospitals National Health Service Foundation Trust, London, United Kingdom
| | - Caroline B Hing
- Department of Trauma and Orthopaedics, St George's Hospital, St George's University Hospitals National Health Service Foundation Trust, London, United Kingdom
| |
Collapse
|
14
|
Selim A, Ponugoti N, Chandrashekar S. Systematic Review of Operative vs Nonoperative Treatment of Displaced Intraarticular Calcaneal Fractures. FOOT & ANKLE ORTHOPAEDICS 2022; 7:24730114221101609. [PMID: 35655706 PMCID: PMC9152199 DOI: 10.1177/24730114221101609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Management of displaced intraarticular calcaneus fractures can be operative or nonoperative. Several randomized and case-controlled trials have been recently conducted in order to reach a consensus. The purpose of this analysis is to provide recommendations for the management of these injuries based on the best available clinical evidence. Methods An up-to-date search was conducted using predefined eligibility criteria. The Preferred Reporting Items for Systematic reviews and Meta-analysis (PRISMA) was followed. Randomized and prospective clinical trials were only included after agreement among all authors. Relevant literature was appraised for methodologic quality using the Cochrane collaboration tool for the randomized controlled trials (RCTs) and Newcastle Ottawa Score for the prospective trials. Outcome measures included American Orthopaedic Foot & Ankle Society ankle-hindfoot score, visual analog scale score, return to activity, complications, residual pain, and development of arthritis. RevMan, version 5.3.5 software, was used for data analysis. A P value of <.05 was considered statistically significant, and CIs were set at 95%. Results A total of 13 studies and 1251 patients were included in our analysis. This involved 10 RCTs and 3 prospective clinical trials. Shoe fitting problems and failure to return to activity favored the operative group. No other studied variables showed clear superiority of a specific treatment approach. Conclusion The best evidence available at this time favors an advantage to operative treatment. Patients should be informed that the clear differences are centered on comfort of shoe wear and return to desired activity level.Level of Evidence: Level II, meta-analysis of RCT and Prospective Cohort studies.
Collapse
Affiliation(s)
- Amr Selim
- Department of Trauma & Orthopaedics, Cairo University Hospital, Cairo, Egypt
- Trauma & Orthopaedics, Homerton University Hospital, London, United Kingdom
| | - Nikhil Ponugoti
- Trauma & Orthopaedics, Hampshire Hospitals NHS Trust, Basingstoke, United Kingdom
| | | |
Collapse
|
15
|
Zhang M, Liu J, Zhu T, Le H, Wang X, Guo J, Liu G, Ding J. Functional Macromolecular Adhesives for Bone Fracture Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1-19. [PMID: 34939784 DOI: 10.1021/acsami.1c17434] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Compared with traditional internal fixation devices, bone adhesives are expected to exhibit remarkable advantages, such as improved fixation of comminuted fractures and maintained spatial location of fractured scattered bone pieces in treating bone injuries. In this review, different bone adhesives are summarized from the aspects of bone tissue engineering, and the applications of bone adhesives are emphasized. The concepts of "liquid scaffold" and "liquid plate" are proposed to summarize two different research directions of bone adhesives. Furthermore, significant advances of bone adhesives in recent years in mechanical strength, osseointegration, osteoconductivity, and osteoinductivity are discussed. We conclude this topic by providing perspectives on the state-of-the-art research progress and future development trends of bone adhesives. We hope this review will provide a comprehensive summary of bone adhesives and inspire more extensive and in-depth research on this subject.
Collapse
Affiliation(s)
- Mingran Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, People's Republic of China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Jiaxue Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, 5 Jilin Street, Jilin 132000, People's Republic of China
| | - Tongtong Zhu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, People's Republic of China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Hanxiang Le
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
- Orthopaedic Medical Center, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, People's Republic of China
| | - Xukai Wang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, People's Republic of China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Jinshan Guo
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, 1023 Southern Shatai Road, Guangzhou 510515, People's Republic of China
| | - Guangyao Liu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, People's Republic of China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| |
Collapse
|
16
|
Maluta T, Samaila EM, Amarossi A, Dorigotti A, Ricci M, Vecchini E, Magnan B. Can treatment of posterior malleolus fractures with tibio-fibular instability be usefully addressed by Bartonicek classification? Foot Ankle Surg 2022; 28:126-133. [PMID: 33685829 DOI: 10.1016/j.fas.2021.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Ankle fractures account for 4% of all fractures and treatment of those involving the Posterior Malleolus remains controversial. Clinical and radiological outcomes in a cohort of patients with Posterior Malleolus fractures conservatively treated were retrospectively evaluated; furthermore, a treatment algorithm was suggested. METHODS Patients were divided according to Bartoníček classification. The clinical evaluation was made with OMAS/AOFAS scores; the radiological evaluation with Van Dijk classification for post-traumatic arthritis. RESULTS Clinical outcome worsened with the severity of Bartoníček classification, but early degenerative changes were not correlated neither to the clinical outcome nor to the injury pattern. Clinical and radiological outcomes depended on the damage of the syndesmosis as articular step-offs and tibio-fibular notch involvement. DISCUSSION We recommend conservative treatment for Bartoníček type I, type II and type III fractures, the latter when undisplaced and without tibial plafond depression. We suggest surgical treatment for type IV and displaced type III fractures.
Collapse
Affiliation(s)
- T Maluta
- Department of Orthopedics and Trauma Surgery, University of Verona, Italy
| | - E M Samaila
- Department of Orthopedics and Trauma Surgery, University of Verona, Italy
| | - A Amarossi
- Department of Orthopedics and Trauma Surgery, University of Verona, Italy
| | - A Dorigotti
- Department of Orthopedics and Trauma Surgery, University of Verona, Italy
| | - M Ricci
- Department of Orthopedics and Trauma Surgery, University of Verona, Italy
| | - E Vecchini
- Department of Orthopedics and Trauma Surgery, University of Verona, Italy
| | - B Magnan
- Department of Orthopedics and Trauma Surgery, University of Verona, Italy.
| |
Collapse
|
17
|
Hsia AW, Jbeily EH, Mendez ME, Cunningham HC, Biris KK, Bang H, Lee CA, Loots GG, Christiansen BA. Post-traumatic osteoarthritis progression is diminished by early mechanical unloading and anti-inflammatory treatment in mice. Osteoarthritis Cartilage 2021; 29:1709-1719. [PMID: 34653605 PMCID: PMC8678362 DOI: 10.1016/j.joca.2021.09.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 09/08/2021] [Accepted: 09/22/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Post-traumatic osteoarthritis (PTOA) is a degenerative joint disease initiated by injury. Early phase (0-7 days) treatments often include rest (unloading) and anti-inflammatory medications, but how those early interventions impact PTOA progression is unknown. We hypothesized that early unloading and anti-inflammatory treatment would diminish joint inflammation and slow PTOA progression. DESIGN Mice were injured with non-invasive ACL rupture followed by hindlimb unloading (HLU) or normal cage activity (ground control: GC) for 7 days, after which all mice were allowed normal cage activity. HLU and GC mice were treated with daily celecoxib (CXB; 10 mg/kg IP) or vehicle. Protease activity was evaluated using in vivo fluorescence imaging, osteophyte formation and epiphyseal trabecular bone were quantified using micro-computed tomography, and synovitis and articular cartilage were evaluated using whole-joint histology at 7, 14, 21, and 28 days post-injury. RESULTS HLU significantly reduced protease activity (-22-30% compared to GC) and synovitis (-24-50% relative to GC) at day 7 post-injury (during unloading), but these differences were not maintained at later timepoints. Similarly, trabecular bone volume was partially preserved in HLU mice at during unloading (-14-15% BV/TV for HLU mice, -21-22% for GC mice relative to uninjured), but these differences were not maintained during reloading. Osteophyte volume was reduced by both HLU and CXB, but there was not an additive effect of these treatments (HLU: -46%, CXB: -30%, HLU + CXB: -35% relative to vehicle GC at day 28). CONCLUSIONS These data suggest that early unloading following joint injury can reduce inflammation and potentially slow PTOA progression.
Collapse
Affiliation(s)
- A W Hsia
- University of California Davis Health, Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, 4635 2nd Ave, Suite 2000, Sacramento, CA 95817, USA.
| | - E H Jbeily
- University of California Davis Health, Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, 4635 2nd Ave, Suite 2000, Sacramento, CA 95817, USA.
| | - M E Mendez
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, 7000 East Avenue, L-452, Livermore, CA 94550, USA.
| | - H C Cunningham
- University of California Davis Health, Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, 4635 2nd Ave, Suite 2000, Sacramento, CA 95817, USA.
| | - K K Biris
- University of California Davis Health, Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, 4635 2nd Ave, Suite 2000, Sacramento, CA 95817, USA.
| | - H Bang
- University of California Davis Health, Department of Public Health Sciences, Sciences 1C, Suite 145, Davis, CA 95616, USA.
| | - C A Lee
- University of California Davis Health, Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, 4635 2nd Ave, Suite 2000, Sacramento, CA 95817, USA.
| | - G G Loots
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, 7000 East Avenue, L-452, Livermore, CA 94550, USA.
| | - B A Christiansen
- University of California Davis Health, Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, 4635 2nd Ave, Suite 2000, Sacramento, CA 95817, USA.
| |
Collapse
|
18
|
Githens MF, DeBaun MR, Jacobsen KA, Ross H, Firoozabadi R, Haller J. Plafond Malreduction and Talar Dome Impaction Accelerates Arthrosis After Supination-Adduction Ankle Fracture. Foot Ankle Int 2021; 42:1245-1253. [PMID: 34018419 DOI: 10.1177/10711007211006032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Supination-adduction (SAD) type II ankle fractures can have medial tibial plafond and talar body impaction. Factors associated with the development of posttraumatic arthritis can be intrinsic to the injury pattern or mitigated by the surgeon. We hypothesize that plafond malreducton and talar body impaction is associated with early posttraumatic arthrosis. METHODS A retrospective cohort of skeletally mature patients with SAD ankle fractures at 2 level 1 academic trauma centers who underwent operative fixation were identified. Patients with a minimum of 1-year follow-up were included. The presence of articular impaction identified on CT scan was recorded and the quality of reduction on final intraoperative radiographs was assessed. The primary outcome was radiographic ankle arthrosis (Kellgren-Lawrence 3 or 4), and postoperative complications were documented. RESULTS A total of 175 SAD ankle fractures were identified during a 10-year period; 79 patients with 1-year follow-up met inclusion criteria. The majority of injuries resulted from a high-energy mechanism. Articular impaction was present in 73% of injuries, and 23% of all patients had radiographic arthrosis (Kellgren-Lawrence 3 or 4) at final follow-up. Articular malreduction, defined by either a gap or step >2 mm, was significantly associated with development of arthrosis. Early treatment failure, infection, and nonunion was rare in this series. CONCLUSION Malreduction of articular impaction in SAD ankle fractures is associated with early posttraumatic arthrosis. Recognition and anatomic restoration with stable fixation of articular impaction appears to mitigate risk of posttraumatic arthrosis. Investigations correlating postoperative and long-term radiographic findings to patient-reported outcomes after operative treatment of SAD ankle fractures are warranted. LEVEL OF EVIDENCE Level IV, retrospective case series.
Collapse
Affiliation(s)
- Michael F Githens
- Department of Orthopaedic Surgery, Harborview Medical Center, University of Washington, Seattle, WA, USA
| | - Malcolm R DeBaun
- Department of Orthopaedic Surgery, Harborview Medical Center, University of Washington, Seattle, WA, USA
| | - Kimberly A Jacobsen
- Department of Orthopaedic Surgery, Harborview Medical Center, University of Washington, Seattle, WA, USA
| | - Hunter Ross
- University of Utah Orthopedic Center, Salt Lake City, UT, USA
| | - Reza Firoozabadi
- Department of Orthopaedic Surgery, Harborview Medical Center, University of Washington, Seattle, WA, USA
| | - Justin Haller
- Department of Orthopedic Surgery, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
19
|
Sale JEM, Gignac M, Frankel L, Thielke S, Bogoch E, Elliot-Gibson V, Hawker G, Funnell L. Perspectives of patients with depression and chronic pain about bone health after a fragility fracture: A qualitative study. Health Expect 2021; 25:177-190. [PMID: 34580957 PMCID: PMC8849261 DOI: 10.1111/hex.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 08/11/2021] [Accepted: 08/31/2021] [Indexed: 11/05/2022] Open
Abstract
Background Compromised bone health is often associated with depression and chronic pain. Objective To examine: (1) the experience of existing depression and chronic nonfracture pain in patients with a fragility fracture; and (2) the effects of the fracture on depression and pain. Design A phenomenological study guided by Giorgi's analytical procedures. Setting and Participants Fracture patients who reported taking prescription medication for one or more comorbidities, excluding compromised bone health. Main Variables Studied Patients were interviewed within 6 weeks of their fracture, and 1 year later. Interview questions addressed the recent fracture and patients' experience with bone health and their other health conditions, such as depression and chronic pain, including the medications taken for these conditions. Results Twenty‐six patients (5 men, 21 women) aged 45–84 years old with hip (n = 5) and nonhip (n = 21) fractures were recruited. Twenty‐one participants reported depression and/or chronic nonfracture pain, of which seven reported having both depression and chronic pain. Two themes were consistent, based on our analysis: (1) depression and chronic pain overshadowed attention to bone health; and (2) the fracture exacerbated reported experiences of existing depression and chronic pain. Conclusion Experiences with depression and pain take priority over bone health and may worsen as a result of the fracture. Health care providers treating fragility fractures might ask patients about depression and pain and take appropriate steps to address patients' more general emotional and physical state. Patient Contribution A patient representative was involved in the study conception, data interpretation and manuscript writing.
Collapse
Affiliation(s)
- Joanna E M Sale
- Musculoskeletal Health and Outcomes Research, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada.,Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Lucy Frankel
- Musculoskeletal Health and Outcomes Research, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Stephen Thielke
- Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Earl Bogoch
- Department of Surgery, St. Michael's Hospital, Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada.,Brookfield Chair, Toronto, Ontario, Canada
| | - Victoria Elliot-Gibson
- Musculoskeletal Health and Outcomes Research, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Gillian Hawker
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada.,Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
20
|
Motherwell JM, Hendershot BD, Goldman SM, Dearth CL. Gait biomechanics: A clinically relevant outcome measure for preclinical research of musculoskeletal trauma. J Orthop Res 2021; 39:1139-1151. [PMID: 33458856 DOI: 10.1002/jor.24990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/01/2020] [Accepted: 01/11/2021] [Indexed: 02/04/2023]
Abstract
Traumatic injuries to the musculoskeletal system are the most prevalent of those suffered by United States Military Service members and accounts for two-thirds of initial hospital costs to the Department of Defense. These combat-related wounds often leave survivors with life-long disability and represent a significant impediment to the readiness of the fighting force. There are immense opportunities for the field of tissue engineering and regenerative medicine (TE/RM) to address these musculoskeletal injuries through regeneration of damaged tissues as a means to restore limb functionality and improve quality of life for affected individuals. Indeed, investigators have made promising advancements in the treatment for these injuries by utilizing small and large preclinical animal models to validate therapeutic efficacy of next-generation TE/RM-based technologies. Importantly, utilization of a comprehensive suite of functional outcome measures, particularly those designed to mimic data collected within the clinical setting, is critical for successful translation and implementation of these therapeutics. To that end, the objective of this review is to emphasize the clinical relevance and application of gait biomechanics as a functional outcome measure for preclinical research studies evaluating the efficacy of TE/RM therapies to treat traumatic musculoskeletal injuries. Specifically, common musculoskeletal injuries sustained by service members-including volumetric muscle loss, post-traumatic osteoarthritis, and composite tissue injuries-are examined as case examples to highlight the use of gait biomechanics as an outcome measure using small and large preclinical animal models.
Collapse
Affiliation(s)
- Jessica M Motherwell
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, Maryland, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Brad D Hendershot
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, Maryland, USA.,Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,Department of Rehabilitation Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Stephen M Goldman
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, Maryland, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Christopher L Dearth
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, Maryland, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| |
Collapse
|
21
|
Nauta SP, Poeze M, Heeren RMA, Porta Siegel T. Clinical use of mass spectrometry (imaging) for hard tissue analysis in abnormal fracture healing. Clin Chem Lab Med 2021; 58:897-913. [PMID: 32049645 DOI: 10.1515/cclm-2019-0857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/16/2019] [Indexed: 12/23/2022]
Abstract
Common traumas to the skeletal system are bone fractures and injury-related articular cartilage damage. The healing process can be impaired resulting in non-unions in 5-10% of the bone fractures and in post-traumatic osteoarthritis (PTOA) in up to 75% of the cases of cartilage damage. Despite the amount of research performed in the areas of fracture healing and cartilage repair as well as non-unions and PTOA, still, the outcome of a bone fracture or articular cartilage damage cannot be predicted. Here, we discuss known risk factors and key molecules involved in the repair process, together with the main challenges associated with the prediction of outcome of these injuries. Furthermore, we review and discuss the opportunities for mass spectrometry (MS) - an analytical tool capable of detecting a wide variety of molecules in tissues - to contribute to extending molecular understanding of impaired healing and the discovery of predictive biomarkers. Therefore, the current knowledge and challenges concerning MS imaging of bone and cartilage tissue as well as in vivo MS are discussed. Finally, we explore the possibilities of in situ, real-time MS for the prediction of outcome during surgery of bone fractures and injury-related articular cartilage damage.
Collapse
Affiliation(s)
- Sylvia P Nauta
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, The Netherlands.,Department of Orthopedic Surgery and Traumasurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Martijn Poeze
- Department of Surgery, Division of Traumasurgery, Maastricht University Medical Center, Maastricht, The Netherlands.,NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Ron M A Heeren
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229ER Maastricht, The Netherlands
| | - Tiffany Porta Siegel
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
22
|
Feltham T, Paudel S, Lobao M, Schon L, Zhang Z. Low-Intensity Pulsed Ultrasound Suppresses Synovial Macrophage Infiltration and Inflammation in Injured Knees in Rats. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1045-1053. [PMID: 33423862 DOI: 10.1016/j.ultrasmedbio.2020.12.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
This study was designed to investigate how low-intensity pulsed ultrasound (LIPUS) suppresses traumatic joint inflammation and thereafter affects the progression of posttraumatic osteoarthritis. Intra-articular fracture (IAF) was created in the right knee of rats. LIPUS was applied to the knees with IAFs for 20 min/d for 2 wk-LIPUS(+) group. The study controls included rats that underwent sham surgery but no LIPUS treatment (control group) or underwent IAF surgery without LIPUS treatment-LIPUS(-) group. By histology, at 4 wk, leukocyte infiltration in the synovium was reduced in the LIPUS(+) group. Furthermore, LIPUS treatment reduced CD68+ macrophages in the synovium and limited their distribution mostly in the subintimal synovium. Measured with enzyme-linked immunosorbent assay, interleukin-1β (IL-1β) in the joint fluid of the LIPUS(+) group was reduced to about one-third that in the LIPUS(-) group. By reducing synovial macrophages and lowering IL-1β in the joint fluid, LIPUS is potentially therapeutic for posttraumatic osteoarthritis.
Collapse
Affiliation(s)
- Tyler Feltham
- Philadelphia College of Osteopathic Medicine-Georgia, Suwanee, Georgia, USA
| | - Sharada Paudel
- Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Mario Lobao
- Columbia Medical Center, Columbia University, New York, New York, USA
| | - Lew Schon
- Institute for Foot & Ankle Reconstruction, Mercy Medical Center, Baltimore, Maryland, USA
| | - Zijun Zhang
- Center for Orthopaedic Innovation, Mercy Medical Center, Baltimore, Maryland, USA.
| |
Collapse
|
23
|
The ankle cartilage cascade: incremental cartilage damage in the ankle joint. Knee Surg Sports Traumatol Arthrosc 2021; 29:3503-3507. [PMID: 34609539 PMCID: PMC8514360 DOI: 10.1007/s00167-021-06755-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 09/20/2021] [Indexed: 10/27/2022]
Abstract
Level of evidence Editorial, Level V.
Collapse
|
24
|
Saito M, Nishitani K, Ikeda HO, Yoshida S, Iwai S, Ji X, Nakahata A, Ito A, Nakamura S, Kuriyama S, Yoshitomi H, Murata K, Aoyama T, Ito H, Kuroki H, Kakizuka A, Matsuda S. A VCP modulator, KUS121, as a promising therapeutic agent for post-traumatic osteoarthritis. Sci Rep 2020; 10:20787. [PMID: 33247195 PMCID: PMC7695735 DOI: 10.1038/s41598-020-77735-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
Post-traumatic osteoarthritis (PTOA) is a major cause which hinders patients from the recovery after intra-articular injuries or surgeries. Currently, no effective treatment is available. In this study, we showed that inhibition of the acute stage chondrocyte death is a promising strategy to mitigate the development of PTOA. Namely, we examined efficacies of Kyoto University Substance (KUS) 121, a valosin-containing protein modulator, for PTOA as well as its therapeutic mechanisms. In vivo, in a rat PTOA model by cyclic compressive loading, intra-articular treatments of KUS121 significantly improved the modified Mankin scores and reduced damaged-cartilage volumes, as compared to vehicle treatment. Moreover, KUS121 markedly reduced the numbers of TUNEL-, CHOP-, MMP-13-, and ADAMTS-5-positive chondrocytes in the damaged knees. In vitro, KUS121 rescued human articular chondrocytes from tunicamycin-induced cell death, in both monolayer culture and cartilage explants. It also significantly downregulated the protein or gene expression of ER stress markers, proinflammatory cytokines, and extracellular-matrix-degrading enzymes induced by tunicamycin or IL-1β. Collectively, these results demonstrated that KUS121 protected chondrocytes from cell death through the inhibition of excessive ER stress. Therefore, KUS121 would be a new, promising therapeutic agent with a protective effect on the progression of PTOA.
Collapse
Affiliation(s)
- Motoo Saito
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kohei Nishitani
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Hanako O Ikeda
- Department of Ophthalmology and Visual Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigeo Yoshida
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sachiko Iwai
- Department of Ophthalmology and Visual Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Xiang Ji
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akihiro Nakahata
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Ito
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinichiro Nakamura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinichi Kuriyama
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyuki Yoshitomi
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koichi Murata
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Advanced Medicine of Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoki Aoyama
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiromu Ito
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Advanced Medicine of Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Kuroki
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Kakizuka
- Laboratory of Functional Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
25
|
Liu XN, Chang F, Zhang HY, Zhong Z, Xue P, Huang BZ. Ankle distraction arthroplasty for the treatment of severe ankle arthritis: Case report, technical note, and literature review. Medicine (Baltimore) 2020; 99:e22330. [PMID: 32991444 PMCID: PMC7523852 DOI: 10.1097/md.0000000000022330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Widely applied in the treatment of severe ankle arthritis (AA), ankle distraction arthroplasty (ADA) can avoid not only the ankle range of motion loss but also ankle fusion. However, the clinical outcomes of ADA for severe AA are poorly understood. This study aims to present our clinical outcomes of severe AA treated by ADA. PATIENT CONCERNS A 53-year-old man suffered right ankle sprain 10 years ago, endured right ankle pain and limited movement for 6 years. DIAGNOSIS The patient was diagnosed as severe AA. INTERVENTIONS He received ankle distraction arthroplasty. No adjuvant procedures were performed. The visual analog scale (VAS), the American Orthopaedic Foot and Ankle Society (AOFAS) score, the short-form (SF)-36 physical component summary (PCS) score and ankle activity score (AAS) were recorded to access the clinical outcomes pre- and postoperatively. Moreover, ankle joint space distance was evaluated on weight-bearing radiographs. OUTCOMES The patient derived effective pain relief and restored a satisfactory range of movement. There was a 13-month follow-up period after frame removal. The AOFAS score improved from 56 preoperatively to 71 postoperatively. The VAS score decreased from 6 prior to surgery to 1 after surgery. The SF-36 PCS was 47.2 and 71.8 pre- and postoperative, respectively. The AAS scores were improved from 3.4 preoperatively to 7.3 postoperatively. LESSONS ADA is reliable to achieve pain relief, functional recovery, and serve AA resolution. Besides, it is an alternative to ankle arthrodesis or total ankle arthroplasty in selected patients with severe AA.
Collapse
|
26
|
Yang Z, Li H, Yuan Z, Fu L, Jiang S, Gao C, Wang F, Zha K, Tian G, Sun Z, Huang B, Wei F, Cao F, Sui X, Peng J, Lu S, Guo W, Liu S, Guo Q. Endogenous cell recruitment strategy for articular cartilage regeneration. Acta Biomater 2020; 114:31-52. [PMID: 32652223 DOI: 10.1016/j.actbio.2020.07.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
In the absence of timely and proper treatments, injuries to articular cartilage (AC) can lead to cartilage degeneration and ultimately result in osteoarthritis. Regenerative medicine and tissue engineering techniques are emerging as promising approaches for AC regeneration and repair. Although the use of cell-seeded scaffolds prior to implantation can regenerate and repair cartilage lesions to some extent, these approaches are still restricted by limited cell sources, excessive costs, risks of disease transmission and complex manufacturing practices. Recently developed acellular scaffold approaches that rely on the recruitment of endogenous cells to the injured sites avoid these drawbacks and offer great promise for in situ AC regeneration. Multiple endogenous stem/progenitor cells (ESPCs) are found in joint-resident niches and have the capability to migrate to sites of injury to participate in AC regeneration. However, the natural recruitment of ESPCs is insufficient, and the local microenvironment is hostile after injury. Hence, an endogenous cell recruitment strategy based on the combination of chemoattractants and acellular scaffolds to effectively and specifically recruit ESPCs and improve local microenvironment may provide new insights into in situ AC regeneration. This review provides a brief overview of: (1) the status of endogenous cell recruitment strategy; (2) the subpopulations, potential migration routes (PMRs) of joint-resident ESPCs and their immunomodulatory and reparative effects; (3) chemoattractants and their potential adverse effects; (4) scaffold-based drug delivery systems (SDDSs) that are utilized for in situ AC regeneration; and (5) the challenges and future perspectives of endogenous cell recruitment strategy for AC regeneration. STATEMENT OF SIGNIFICANCE: Although the endogenous cell recruitment strategy for articular cartilage (AC) regeneration has been investigated for several decades, much work remains to be performed in this field. Future studies should have the following aims: (1) reporting the up-to-date progress in the endogenous cell recruitment strategies; (2) determining the subpopulations of ESPCs, the cellular and molecular mechanisms underlying the migration of these cells and their anti-inflammatory, immunomodulatory and reparative effects; (3) elucidating the chemoattractants that enhance ESPC recruitment and their potential adverse effects; and (4) developing advanced SDDSs for chemoattractant dispatch. Herein, we present a systematic overview of the aforementioned issues to provide a better understanding of endogenous cell recruitment strategies for AC regeneration and repair.
Collapse
|
27
|
Willey MC, Compton JT, Marsh JL, Kleweno CP, Agel J, Scott EJ, Bui G, Davison J, Anderson DD. Weight-Bearing CT Scan After Tibial Pilon Fracture Demonstrates Significant Early Joint-Space Narrowing. J Bone Joint Surg Am 2020; 102:796-803. [PMID: 32379120 DOI: 10.2106/jbjs.19.00816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Posttraumatic osteoarthritis (PTOA) is a common and early sequela of tibial pilon fractures resulting in substantial long-term disability. New approaches are needed to objectively and reliably quantify early disease progression in order to critically assess the impact of interventions aimed at preventing or mitigating PTOA. Weight-bearing computed tomography (WBCT) scans provide a means for measuring joint space while the ankle is in a loaded, functional position. We assessed the interrater and intrarater reliability of a standardized, regional method to quantify joint-space loss following tibial pilon fracture compared with the uninjured contralateral ankle. METHODS We prospectively enrolled 20 patients with intra-articular tibial pilon fractures that were surgically treated at 1 of 2 level-I trauma centers. Six months after injury, bilateral ankle WBCT scans were obtained. Joint space was measured by 4 reviewers at 9 discrete regions of the tibiotalar articulation on sagittal images. Measurements were repeated by reviewers 2 weeks later. To characterize the measurement method, interrater correlation coefficient estimates and test-retest reproducibility were calculated. RESULTS The mean tibiotalar joint space was 21% less in the injured ankles compared with the contralateral uninjured ankles (p < 0.0001). The middle-lateral and middle-central regions of the joint demonstrated the greatest decrease in joint space between injured and uninured ankles. The interrater correlation coefficient of the measurement technique was 0.88, and the test-retest reproducibility was 0.80, indicating good reliability and reproducibility of the method. CONCLUSIONS We developed a simple, standardized, and reliable technique to quantify tibiotalar joint space following tibial pilon fracture on WBCT. Significant loss of joint space is seen 6 months after the injury. This tool can be used to longitudinally quantify loss of joint space following pilon fracture and assess the impact of interventions to reduce PTOA.
Collapse
Affiliation(s)
- Michael C Willey
- Department of Orthopedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Jocelyn T Compton
- Department of Orthopedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - J Lawrence Marsh
- Department of Orthopedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Conor P Kleweno
- Department of Orthopaedics and Sports Medicine, Harborview Medical Center, University of Washington Medicine, Seattle, Washington
| | - Julie Agel
- Department of Orthopaedics and Sports Medicine, Harborview Medical Center, University of Washington Medicine, Seattle, Washington
| | - Elizabeth J Scott
- Department of Orthopedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Gabrielle Bui
- Department of Orthopedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - John Davison
- Department of Orthopedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Donald D Anderson
- Department of Orthopedics and Rehabilitation, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| |
Collapse
|
28
|
Davis JT, Rudloff MI. Posttraumatic Arthritis After Intra-Articular Distal Femur and Proximal Tibia Fractures. Orthop Clin North Am 2019; 50:445-459. [PMID: 31466661 DOI: 10.1016/j.ocl.2019.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Posttraumatic arthritis (PTA) is a form of joint degeneration that occurs after physical trauma to a synovial joint. Development of PTA is multifactorial and results from mechanical damage at the time of trauma, a cell-mediated inflammatory response, and abnormal articulation due to persistent malalignment or joint instability. Although some risk factors may be unavoidable, preventing the development of PTA of the knee after intra-articular fracture (IAF) requires restoring anatomic articulation and alignment. Reconstruction with total knee arthroplasty is the treatment of choice for PTA and may be a useful primary treatment for IAF in some.
Collapse
Affiliation(s)
- Jacob T Davis
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee-Campbell Clinic, 1211 Union Avenue, Suite 520, Memphis, TN 38104, USA; Regional One Health Medical Center, 877 Jefferson Avenue, Memphis, TN 38103, USA; The Campbell Foundation, 1211 Union Avenue, Suite 500, Memphis, TN 38104, USA.
| | - Matthew I Rudloff
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee-Campbell Clinic, 1211 Union Avenue, Suite 520, Memphis, TN 38104, USA; Regional One Health Medical Center, 877 Jefferson Avenue, Memphis, TN 38103, USA; The Campbell Foundation, 1211 Union Avenue, Suite 500, Memphis, TN 38104, USA
| |
Collapse
|
29
|
Nwankwo EC, Labaran LA, Athas V, Olson S, Adams SB. Pathogenesis of Posttraumatic Osteoarthritis of the Ankle. Orthop Clin North Am 2019; 50:529-537. [PMID: 31466668 DOI: 10.1016/j.ocl.2019.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Ankle osteoarthritis affects a significant portion of the global adult population. Unlike other joints, arthritis of the ankle often develops as a response to traumatic injury (intra-articular fracture) of the ankle joints. The full mechanism leading to posttraumatic osteoarthritis of the ankle (PTOAA) is poorly understood. These deficits in knowledge pose challenges in the management of the disease. Adequate surgical reduction of fractured ankle joints remains the gold standard in prevention. The purpose of this review is to thoroughly delineate the known pathogenesis of PTOAA, and provide critical updates on this pathology and new avenues to provide therapeutic management of the disease.
Collapse
Affiliation(s)
- Eugene C Nwankwo
- Department of Orthopedic Surgery, Duke University Medical Center, 4709 Creekstone Drive, Durham, NC 27703, USA; Texas Tech University School of Medicine, Texas Tech University Health Science Center, 3601 4th Street, Lubbock, TX 79430, USA
| | - Lawal A Labaran
- University of Illinois College of Medicine, 1200 Harrison Street, Chicago, IL 60607, USA
| | - Vincent Athas
- Texas Tech University School of Medicine, Texas Tech University Health Science Center, 3601 4th Street, Lubbock, TX 79430, USA
| | - Steve Olson
- Department of Orthopedic Surgery, Duke University Medical Center, 4709 Creekstone Drive, Durham, NC 27703, USA
| | - Samuel B Adams
- Department of Orthopedic Surgery, Duke University Medical Center, 4709 Creekstone Drive, Durham, NC 27703, USA.
| |
Collapse
|
30
|
Coleman MC, Goetz JE, Brouillette MJ, Seol D, Willey MC, Petersen EB, Anderson HD, Hendrickson NR, Compton J, Khorsand B, Morris AS, Salem AK, Fredericks DC, McKinley TO, Martin JA. Targeting mitochondrial responses to intra-articular fracture to prevent posttraumatic osteoarthritis. Sci Transl Med 2019; 10:10/427/eaan5372. [PMID: 29437147 DOI: 10.1126/scitranslmed.aan5372] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/19/2017] [Accepted: 01/05/2018] [Indexed: 12/16/2022]
Abstract
We tested whether inhibiting mechanically responsive articular chondrocyte mitochondria after severe traumatic injury and preventing oxidative damage represent a viable paradigm for posttraumatic osteoarthritis (PTOA) prevention. We used a porcine hock intra-articular fracture (IAF) model well suited to human-like surgical techniques and with excellent anatomic similarities to human ankles. After IAF, amobarbital or N-acetylcysteine (NAC) was injected to inhibit chondrocyte electron transport or downstream oxidative stress, respectively. Effects were confirmed via spectrophotometric enzyme assays or glutathione/glutathione disulfide assays and immunohistochemical measures of oxidative stress. Amobarbital or NAC delivered after IAF provided substantial protection against PTOA at 6 months, including maintenance of proteoglycan content, decreased histological disease scores, and normalized chondrocyte metabolic function. These data support the therapeutic potential of targeting chondrocyte metabolism after injury and suggest a strong role for mitochondria in mediating PTOA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Todd O McKinley
- Indiana University Health Methodist Hospital Orthopaedic Trauma Service, Indianapolis, IN 46202, USA
| | | |
Collapse
|
31
|
Abstract
The goals of all orthopaedic surgeons treating articular cartilage injuries have been anatomic reduction and stable fixation of the articular cartilage surface with restoration of limb alignment and/or reestablishment of the joint stability, all while minimizing the risk of surgical complications. Recent developments in the study of articular cartilage injury have shown that there is a robust cellular response to joint injury. This response has been shown to involve the synoviocytes, chondrocytes, and osteocytes in and around the injured joint and if these responses are left unchecked, they can lead to the development of posttraumatic osteoarthritis (PTOA). Therefore, to predictably and successfully treat articular cartilage injuries, it is not sufficient to just restore articular congruity, limb alignment, and joint stability, but we must also recognize and attempt to mitigate this associated cellular response. Understanding not only the mechanical aspects of these joint injuries but also the biological aspects is paramount to giving our patients the best opportunity to heal their injuries, recover full function, and avoid the potential devastating development of PTOA. Gone is the simplistic view that if one can achieve articular congruity after intraarticular fracture, as well as joint stability after ligamentous injury, that our patients will do just fine. This review sheds new light on the molecular response to cartilage injury, how residual joint incongruity and instability affect the joint's ability to recover from injury, and how chondrocyte apoptosis in response to injury can influence joint. This article then briefly reviews how cellular and growth factors may be beneficial to the treatment of articular cartilage injury and how ultimately cartilage regeneration may be used in the future to salvage the joints ravaged by PTOA in response to injury.
Collapse
|
32
|
Salonius E, Muhonen V, Lehto K, Järvinen E, Pyhältö T, Hannula M, Aula AS, Uppstu P, Haaparanta A, Rosling A, Kellomäki M, Kiviranta I. Gas‐foamed poly(lactide‐co‐glycolide) and poly(lactide‐co‐glycolide) with bioactive glass fibres demonstrate insufficient bone repair in lapine osteochondral defects. J Tissue Eng Regen Med 2019; 13:406-415. [DOI: 10.1002/term.2801] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/10/2018] [Accepted: 12/17/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Eve Salonius
- Department of Orthopaedics and Traumatology, Clinicum, Faculty of MedicineUniversity of Helsinki Helsinki Finland
| | - Virpi Muhonen
- Department of Orthopaedics and Traumatology, Clinicum, Faculty of MedicineUniversity of Helsinki Helsinki Finland
| | - Kalle Lehto
- Department of Electronics and Communications EngineeringTampere University of Technology, BioMediTech, Institute of Biosciences and Medical Technology Tampere Finland
| | - Elina Järvinen
- Department of Orthopaedics and Traumatology, Clinicum, Faculty of MedicineUniversity of Helsinki Helsinki Finland
| | - Tuomo Pyhältö
- Department of Orthopaedics and TraumatologyHelsinki University Hospital Helsinki Finland
| | - Markus Hannula
- Department of Electronics and Communications EngineeringTampere University of Technology, BioMediTech, Institute of Biosciences and Medical Technology Tampere Finland
| | - Antti S. Aula
- Department of Electronics and Communications EngineeringTampere University of Technology, BioMediTech, Institute of Biosciences and Medical Technology Tampere Finland
- Department of Medical Physics, Imaging CentreTampere University Hospital Tampere Finland
| | - Peter Uppstu
- Laboratory of Polymer Technology, Centre of Excellence in Functional Materials at Biological InterfacesÅbo Akademi University Turku Finland
| | - Anne‐Marie Haaparanta
- Department of Electronics and Communications EngineeringTampere University of Technology, BioMediTech, Institute of Biosciences and Medical Technology Tampere Finland
| | - Ari Rosling
- Laboratory of Polymer Technology, Centre of Excellence in Functional Materials at Biological InterfacesÅbo Akademi University Turku Finland
| | - Minna Kellomäki
- Department of Electronics and Communications EngineeringTampere University of Technology, BioMediTech, Institute of Biosciences and Medical Technology Tampere Finland
| | - Ilkka Kiviranta
- Department of Orthopaedics and Traumatology, Clinicum, Faculty of MedicineUniversity of Helsinki Helsinki Finland
- Department of Orthopaedics and TraumatologyHelsinki University Hospital Helsinki Finland
| |
Collapse
|
33
|
Beaulé PE, Grammatopoulos G, Speirs A, Geoffrey Ng KC, Carsen S, Frei H, Melkus G, Rakhra K, Lamontagne M. Unravelling the hip pistol grip/cam deformity: Origins to joint degeneration. J Orthop Res 2018; 36:3125-3135. [PMID: 30175856 DOI: 10.1002/jor.24137] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/25/2018] [Indexed: 02/04/2023]
Abstract
This article reviews a body of work performed by the investigators over 9 years that has addressed the significance of cam morphology in the development of hip osteoarthritis (OA). Early hip joint degeneration is a common clinical presentation and preexisting abnormal joint morphology is a risk factor for its development. Interrogating Hill's criteria, we tested whether cam-type femoroacetabular impingement leads to hip OA. Strength of association was identified between cam morphology, reduced range-of-movement, hip pain, and cartilage degeneration. By studying a pediatric population, we were able to characterize the temporality between cam morphology (occurring 1st) and joint degeneration. Using in silico (finite element) and in vivo (imaging biomarkers) studies, we demonstrated the biological plausibility of how a cam deformity can lead to joint degeneration. Furthermore, we were able to show a biological gradient between degree of cam deformity and extent of articular damage. However, not all patients develop joint degeneration and we were able to characterize which factors contribute to this (specificity). Lastly, we were able to show that by removing the cam morphology, one could positively influence the degenerative process (experiment). The findings of this body of work show consistency and coherence with the literature. Furthermore, they illustrate how cam morphology can lead to early joint degeneration analogous to SCFE, dysplasia, and joint mal-reduction post-injury. The findings of this study open new avenues on the association between cam morphology and OA including recommendations for the study, screening, follow-up, and assessment (patient-specific) of individuals with cam morphology in order to prevent early joint degeneration. Statement of significance: By satisfying Hill's criteria, one can deduct that in some individuals, cam morphology is a cause of OA. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:3125-3135, 2018.
Collapse
Affiliation(s)
- Paul E Beaulé
- The Ottawa Hospital, 501 Smyth Road, Ottawa, Ontario, K1H 8L6
| | | | - Andrew Speirs
- Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6
| | - K C Geoffrey Ng
- Human Movement Biomechanics Laboratory, University of Ottawa, 200 Lees Avenue, Ottawa, Ontario, K1N 6N5.,Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Sasha Carsen
- The Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, Ontario, K1H 8L1
| | - Hanspeter Frei
- Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6
| | - Gerd Melkus
- The Ottawa Hospital, 501 Smyth Road, Ottawa, Ontario, K1H 8L6
| | - Kawan Rakhra
- The Ottawa Hospital, 501 Smyth Road, Ottawa, Ontario, K1H 8L6
| | - Mario Lamontagne
- Human Movement Biomechanics Laboratory, University of Ottawa, 200 Lees Avenue, Ottawa, Ontario, K1N 6N5
| |
Collapse
|
34
|
Chilvers H. Identifying and managing non-complex fractures. BRITISH JOURNAL OF NURSING (MARK ALLEN PUBLISHING) 2018; 27:1048-1049. [PMID: 30281348 DOI: 10.12968/bjon.2018.27.18.1048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Helen Chilvers, Senior Lecturer in Nursing, University of Lincoln, HChilvers@lincoln.ac.uk , emphasises the importance of understanding the bone-healing process and describes the care of patients with bony injuries.
Collapse
|
35
|
Lawson KA, Ayala AE, Morin ML, Latt LD, Wild JR. Ankle Fracture-Dislocations. FOOT & ANKLE ORTHOPAEDICS 2018. [DOI: 10.1177/2473011418765122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ankle fractures are common musculoskeletal injuries that may result in tibiotalar joint dislocations. Ankle fracture-dislocations occur via similar mechanisms as ankle fractures, although the persistence or magnitude of the deforming force is sufficient to disrupt any remaining bony or soft-tissue stability. Ankle fracture-dislocations likely represent distinct clinical entities, as the pathology, management, and patient outcomes following these injuries differ from those seen in more common ankle fractures without dislocation. Ankle fracture-dislocations have higher rates of concomitant injury including open fractures, chondral lesions, and intra-articular loose bodies. Long-term outcomes in ankle fracture-dislocations are worse than ankle fractures without dislocation. Higher rates of posttraumatic osteoarthritis and chronic pain have also been reported. In this review, we discuss the current literature regarding the history, management, and outcomes of ankle-fracture dislocations and highlight the need for future study.
Collapse
Affiliation(s)
- Kevin A. Lawson
- Department of Orthopaedic Surgery, The University of Arizona College of Medicine, Tucson, AZ, USA
| | | | - Matthew L. Morin
- Department of Orthopaedic Surgery, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - L. Daniel Latt
- Department of Orthopaedic Surgery, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Jason R. Wild
- Department of Orthopaedic Surgery, The University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
36
|
Seol D, Tochigi Y, Bogner AM, Song I, Fredericks DC, Kurriger GL, Smith SM, Goetz JE, Buckwalter JA, Martin JA. Effects of knockout of the receptor for advanced glycation end-products on bone mineral density and synovitis in mice with intra-articular fractures. J Orthop Res 2018; 36:2439-2449. [PMID: 29667227 PMCID: PMC6128287 DOI: 10.1002/jor.24021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/12/2018] [Indexed: 02/04/2023]
Abstract
Our group employed the mouse closed intra-articular fracture (IAF) model to test the hypothesis that the innate immune system plays a role in initiating synovitis and post-traumatic osteoarthritis (PTOA) in fractured joints. A transgenic strategy featuring knockout of the receptor for advanced glycation end-products (RAGE -/- ) was pursued. The 42 and 84 mJ impacts used to create fractures were in the range previously reported to cause PTOA at 60 days post-fracture. MicroCT (μCT) was used to assess fracture patterns and epiphyseal and metaphyseal bone loss at 30 and 60 days post-fracture. Cartilage degeneration, synovitis, and matrix metalloproteinase (MMP-3, -13) expression were evaluated by histologic analyses. In wild-type mice, μCT imaging showed that 84 mJ impacts led to significant bone loss at 30 days (p < 0.05), but recovered to normal at 60 days. Bone losses did not occur in RAGE-/- mice. Synovitis was significantly elevated in 84 mJ impact wild-type mice at both endpoints (30 day, p = 0.001; 60 day, p = 0.05), whereas in RAGE-/- mice synovitis was elevated only at 30 days (p = 0.02). Mankin scores were slightly elevated in both mouse strains at 30 days, but not at 60 days. Immunohistochemistry revealed significant fracture-related increases in MMP-3 and -13 expression at 30 days (p < 0.05), with no significant difference between genotypes. These findings indicated that while RAGE -/- accelerated recovery from fracture and diminished synovitis, arthritic changes were temporary and too modest to detect an effect on the pathogenesis of PTOA. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2439-2449, 2018.
Collapse
Affiliation(s)
- Dongrim Seol
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA 52242, USA
| | - Yuki Tochigi
- Department of Orthopaedic Surgery, Dokkyo Medical University Koshigaya Hospital, Saitama, Japan
| | - Ashley M. Bogner
- Bone Healing Research Laboratory and Iowa Spine Research Laboratory, University of Iowa, Coralville, IA 52241, USA
| | - Ino Song
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA 52242, USA,Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Douglas C. Fredericks
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA 52242, USA,Bone Healing Research Laboratory and Iowa Spine Research Laboratory, University of Iowa, Coralville, IA 52241, USA
| | - Gail L. Kurriger
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA 52242, USA
| | - Sonja M. Smith
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA 52242, USA
| | - Jessica E. Goetz
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA 52242, USA
| | - Joseph A. Buckwalter
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA 52242, USA,Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| | - James A. Martin
- Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA 52242, USA,Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA,Correspondence to James A. Martin (Address: 1182 ML, University of Iowa, Iowa City, IA 52242; T: +1-319-335-5810; F: +1-319-335-5631; )
| |
Collapse
|
37
|
Zahoor T, Mitchell R, Bhasin P, Guo Y, Paudel S, Schon L, Zhang Z. Effect of Low-Intensity Pulsed Ultrasound on Joint Injury and Post-Traumatic Osteoarthritis: an Animal Study. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:234-242. [PMID: 29111161 DOI: 10.1016/j.ultrasmedbio.2017.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/18/2017] [Accepted: 09/15/2017] [Indexed: 06/07/2023]
Abstract
This study investigated the therapeutic potential of low-intensity pulsed ultrasound (LIPUS) in post-traumatic osteoarthritis (PTOA). Intra-articular fracture of the medial tibial plateau was surgically created in 30 rats. LIPUS was applied to the operated joints either for the first 2 wk (LIPUS1-2 group) or in weeks 4 and 5 after intra-articular fracture (LIPUS4-5 group). In controls, the operated knees were not treated with LIPUS (LIPUS0 group). The rats were monitored with weekly gait analysis and euthanized at week 8. Among the altered gait parameters, the maximal and average paw print areas in the LIPUS1-2 and LIPUS4-5 groups, but not the LIPUS0 group, had either reached baseline or significantly recovered (70%, p <0.05) by week 8. PTOA pathology in both the LIPUS1-2 and LIPUS4-5 groups was less severe than that in the LIPUS0 group (Mankin score: 5.4 and 4.5 vs. 8.8, p <0.05). In conclusion, LIPUS treatment partially improved the gait of the affected limbs and reduced cartilage degeneration in PTOA.
Collapse
Affiliation(s)
- Talal Zahoor
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA
| | - Reed Mitchell
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA
| | - Priya Bhasin
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA
| | - Yi Guo
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA
| | - Sharada Paudel
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA
| | - Lew Schon
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA
| | - Zijun Zhang
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA.
| |
Collapse
|
38
|
Coleman MC, Brouillette MJ, Andresen NS, Oberley-Deegan RE, Martin JM. Differential Effects of Superoxide Dismutase Mimetics after Mechanical Overload of Articular Cartilage. Antioxidants (Basel) 2017; 6:E98. [PMID: 29189731 PMCID: PMC5745508 DOI: 10.3390/antiox6040098] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/20/2017] [Accepted: 11/28/2017] [Indexed: 01/17/2023] Open
Abstract
Post-traumatic osteoarthritis can develop as a result of the initial mechanical impact causing the injury and also as a result of chronic changes in mechanical loading of the joint. Aberrant mechanical loading initiates excessive production of reactive oxygen species, oxidative damage, and stress that appears to damage mitochondria in the surviving chondrocytes. To probe the benefits of increasing superoxide removal with small molecular weight superoxide dismutase mimetics under severe loads, we applied both impact and overload injury scenarios to bovine osteochondral explants using characterized mechanical platforms with and without GC4403, MnTE-2-PyP, and MnTnBuOE-2-PyP. In impact scenarios, each of these mimetics provides some dose-dependent protection from cell death and loss of mitochondrial content while in repeated overloading scenarios only MnTnBuOE-2-PyP provided a clear benefit to chondrocytes. These results support the hypothesis that superoxide is generated in excess after impact injuries and suggest that superoxide production within the lipid compartment may be a critical mediator of responses to chronic overload. This is an important nuance distinguishing roles of superoxide, and thus superoxide dismutases, in mediating damage to cellular machinery in hyper-acute impact scenarios compared to chronic scenarios.
Collapse
Affiliation(s)
- Mitchell C Coleman
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA 52242, USA.
| | - Marc J Brouillette
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA 52242, USA.
| | - Nicholas S Andresen
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA 52242, USA.
| | - Rebecca E Oberley-Deegan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - James M Martin
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
39
|
Trevino RL, Pacione CA, Malfait AM, Chubinskaya S, Wimmer MA. Development of a Cartilage Shear-Damage Model to Investigate the Impact of Surface Injury on Chondrocytes and Extracellular Matrix Wear. Cartilage 2017; 8:444-455. [PMID: 28934882 PMCID: PMC5613899 DOI: 10.1177/1947603516681133] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background Many i n vitro damage models investigate progression of cartilage degradation after a supraphysiologic, compressive impact at the surface and do not model shear-induced damage processes. Models also neglect the response to uninterrupted tribological stress after damage. It was hypothesized that shear-induced removal of the superficial zone would accelerate matrix degradation when damage was followed by continued load and articulation. Methods Bovine cartilage underwent a 5-day test. Shear-damaged samples experienced 2 days of damage induction with articulation against polyethylene and then continued articulation against cartilage (CoC), articulation against metal (MoC), or rest as free-swelling control (FSC). Surface-intact samples were randomized to CoC, MoC, or FSC for the entire 5-day test. Samples were evaluated for chondrocyte viability, GAG (glycosaminoglycan) release (matrix wear surrogate), and histological integrity. Results Shear induction wore away the superficial zone. Damaged samples began continued articulation with collagen matrix disruption and increased cell death compared to intact samples. In spite of the damaged surface, these samples did not exhibit higher GAG release than intact samples articulating against the same counterface ( P = 0.782), contrary to our hypothesis. Differences in GAG release were found to be due to tribological testing against metal ( P = 0.003). Conclusion Shear-induced damage lowers chondrocyte viability and affects extracellular matrix integrity. Continued motion of either cartilage or metal against damaged surfaces did not increase wear compared with intact samples. We conjecture that favorable reorganization of the surface collagen fibers during articulation protected the underlying matrix. This finding suggests a potential window for clinical interventions to slow matrix degradation after traumatic incidents.
Collapse
Affiliation(s)
- Robert L. Trevino
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - Carol A. Pacione
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Anne-Marie Malfait
- Department of Internal Medicine (Rheumatology), Rush University Medical Center, Chicago, IL, USA
| | - Susan Chubinskaya
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA
| | - Markus A. Wimmer
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
- Markus A. Wimmer, Department of Orthopedic Surgery, Rush University Medical Center, 1611 West Harrison Street, Chicago, IL 60612, USA.
| |
Collapse
|
40
|
Sale JEM, Frankel L, Thielke S, Funnell L. Pain and fracture-related limitations persist 6 months after a fragility fracture. Rheumatol Int 2017. [DOI: 10.1007/s00296-017-3761-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Delco ML, Kennedy JG, Bonassar LJ, Fortier LA. Post-traumatic osteoarthritis of the ankle: A distinct clinical entity requiring new research approaches. J Orthop Res 2017; 35:440-453. [PMID: 27764893 PMCID: PMC5467729 DOI: 10.1002/jor.23462] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/07/2016] [Indexed: 02/04/2023]
Abstract
The diagnosis of ankle osteoarthritis (OA) is increasing as a result of advancements in non-invasive imaging modalities such as magnetic resonance imaging, improved arthroscopic surgical technology and heightened awareness among clinicians. Unlike OA of the knee, primary or age-related ankle OA is rare, with the majority of ankle OA classified as post-traumatic (PTOA). Ankle trauma, more specifically ankle sprain, is the single most common athletic injury, and no effective therapies are available to prevent or slow progression of PTOA. Despite the high incidence of ankle trauma and OA, ankle-related OA research is sparse, with the majority of clinical and basic studies pertaining to the knee joint. Fundamental differences exist between joints including their structure and molecular composition, response to trauma, susceptibility to OA, clinical manifestations of disease, and response to treatment. Considerable evidence suggests that research findings from knee should not be extrapolated to the ankle, however few ankle-specific preclinical models of PTOA are currently available. The objective of this article is to review the current state of ankle OA investigation, highlighting important differences between the ankle and knee that may limit the extent to which research findings from knee models are applicable to the ankle joint. Considerations for the development of new ankle-specific, clinically relevant animal models are discussed. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:440-453, 2017.
Collapse
Affiliation(s)
- Michelle L. Delco
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 930 Campus Road, Ithaca, New York
| | - John G. Kennedy
- Department of Foot and Ankle Surgery, Hospital for Special Surgery, New York, New York
| | - Lawrence J. Bonassar
- Nancy E. and Peter C. Meining School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Lisa A. Fortier
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 930 Campus Road, Ithaca, New York
| |
Collapse
|
42
|
Abstract
Ankle distraction is an alternative to ankle arthrodesis or total ankle arthroplasty in younger patients with arthritis. Ankle distraction involves the use of external fixation to mechanically unload the ankle joint, which allows for stable, congruent range of motion in the setting of decreased mechanical loading, potentially promoting cartilage repair. Adjunct surgical procedures are frequently done to address lower-extremity malalignment, ankle equinus contractures, and impinging tibiotalar osteophytes. Patients can bear full weight during the treatment course. The distraction frame frequently uses a hinge, and patients are encouraged to do daily range-of-motion exercises. Although the initial goal of the procedure is to delay arthrodesis, many patients achieve lasting clinical benefits, obviating the need for total ankle arthroplasty or fusion. Complications associated with external fixation are common, and patients should be counseled that clinical improvements occur slowly and often are not achieved until at least 1 year after frame removal.
Collapse
|
43
|
Nosewicz TL, Beerekamp MSH, De Muinck Keizer RJO, Schepers T, Maas M, Niek van Dijk C, Goslings JC. Prospective Computed Tomographic Analysis of Osteochondral Lesions of the Ankle Joint Associated With Ankle Fractures. Foot Ankle Int 2016; 37:829-34. [PMID: 27113606 DOI: 10.1177/1071100716644470] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Osteochondral lesions (OCLs) associated with ankle fracture correlate with unfavorable outcome. The goals of this study were to detect OCLs following ankle fracture, to associate fracture type to OCLs and to investigate whether OCLs affect clinical outcome. METHODS 100 ankle fractures requiring operative treatment were prospectively included (46 men, 54 women; mean age 44 ± 14 years, range 20-77). All ankle fractures (conventional radiography; 71 Weber B, 22 Weber C, 1 Weber A, 4 isolated medial malleolus and 2 isolated posterior malleolus fractures) were treated by open reduction and internal fixation. Multidetector computed tomography (CT) was performed postoperatively. For each OCL, the location, size, and Loomer OCL classification (CT modified Berndt and Harty classification) were determined. The subjective Foot and Ankle Outcome Scoring (FAOS) was used for clinical outcome at 1 year. RESULTS OCLs were found in 10/100 ankle fractures (10.0%). All OCLs were solitary talar lesions. Four OCLs were located posteromedial, 4 posterolateral, 1 anterolateral, and 1 anteromedial. There were 2 type I OCLs (subchondral compression), 6 type II OCLs (partial, nondisplaced fracture) and 2 type IV OCLs (displaced fracture). Mean OCL size (largest diameter) was 4.4 ± 1.7 mm (range, 1.7 mm to 6.2 mm). Chi-square analysis showed no significant association between ankle fracture type and occurrence of OCLs. OCLs did occur only in Lauge-Hansen stage III/IV ankle fractures. There were no significant differences in FAOS outcome between patients with or without OCLs. CONCLUSIONS Ten percent of investigated ankle fractures had associated OCLs on CT. Although no significant association between fracture type and OCL was found, OCLs only occurred in Lauge-Hansen stage III/IV ankle fractures. With the numbers available, OCLs did not significantly affect clinical outcome at 1 year according to FAOS. LEVEL OF EVIDENCE Level IV, observational study.
Collapse
Affiliation(s)
- Tomasz L Nosewicz
- Trauma Unit, Department of Surgery, Academic Medical Center, Amsterdam, the Netherlands
| | - M Suzan H Beerekamp
- Trauma Unit, Department of Surgery, Academic Medical Center, Amsterdam, the Netherlands
| | | | - Tim Schepers
- Trauma Unit, Department of Surgery, Academic Medical Center, Amsterdam, the Netherlands
| | - Mario Maas
- Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands
| | - C Niek van Dijk
- Department of Orthopaedic Surgery, Academic Medical Center, Amsterdam, the Netherlands
| | - J Carel Goslings
- Trauma Unit, Department of Surgery, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
44
|
Zahoor T, Mitchell R, Bhasin P, Schon L, Zhang Z. A Surgical Model of Posttraumatic Osteoarthritis With Histological and Gait Validation. Orthop J Sports Med 2016; 4:2325967116658874. [PMID: 27517056 PMCID: PMC4968051 DOI: 10.1177/2325967116658874] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Background: Posttraumatic osteoarthritis (PTOA) is secondary to an array of joint injuries. Animal models are useful tools for addressing the uniqueness of PTOA progression in each type of joint injury and developing strategies for PTOA prevention and treatment. Hypothesis: Intra-articular fracture induces PTOA pathology. Study Design: Descriptive laboratory study. Methods: Through a parapatellar incision, the medial tibial plateau was exposed in the left knees of 8 Sprague-Dawley rats. Osteotomy at the midpoint between the tibial crest and the outermost portion of the medial tibial plateau, including the covering articular cartilage, was performed using a surgical blade. The fractured medial tibial plateau was fixed with 2 needles transversely. The fractured knees were not immobilized. Before and after surgery, rat gait was recorded. Rats were sacrificed at week 8, and their knees were harvested for histology. Results: After intra-articular fracture, the affected limbs altered gait from baseline (week 0). In the first 2 weeks, the gait of the operated limbs featured a reduced paw print intensity and stride length but increased maximal contact and stance time. Reduction of maximal and mean print area and duty cycle (the percentage of stance phase in a step) was present from week 1 to week 5. Only print length was reduced in weeks 7 and 8. At week 8, histology of the operated knees demonstrated osteoarthritic pathology. The severity of the PTOA pathology did not correlate with the changes of print length at week 8. Conclusion: Intra-articular fracture of the medial tibial plateau effectively induced PTOA in rat knees. During PTOA development, the injured limbs demonstrated characteristic gait. Clinical Relevance: Intra-articular fracture represents severe joint injury and associates with a high rate of PTOA. This animal model, with histologic and gait validations, can be useful for future studies of PTOA prevention and early diagnosis.
Collapse
Affiliation(s)
- Talal Zahoor
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA
| | - Reed Mitchell
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA
| | - Priya Bhasin
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA
| | - Lew Schon
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA
| | - Zijun Zhang
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland, USA
| |
Collapse
|
45
|
Thomas AC, Hubbard-Turner T, Wikstrom EA, Palmieri-Smith RM. Epidemiology of Posttraumatic Osteoarthritis. J Athl Train 2016; 52:491-496. [PMID: 27145096 DOI: 10.4085/1062-6050-51.5.08] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Osteoarthritis is a leading cause of disability whose prevalence and incidence continue to increase. History of joint injury represents an important risk factor for posttraumatic osteoarthritis and is a significant contributor to the rapidly growing percentage of the population with osteoarthritis. This review will present the epidemiology associated with posttraumatic osteoarthritis, with particular emphasis on the knee and ankle joints. It is important to understand the effect of posttraumatic osteoarthritis on the population so that sufficient resources can be devoted to countering the disease and promoting optimal long-term health for patients after joint injury.
Collapse
Affiliation(s)
- Abbey C Thomas
- Biodynamics Research Laboratory, University of North Carolina at Charlotte
| | | | - Erik A Wikstrom
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill
| | | |
Collapse
|
46
|
Kwok J, Onuma H, Olmer M, Lotz MK, Grogan SP, D’Lima DD. Histopathological analyses of murine menisci: implications for joint aging and osteoarthritis. Osteoarthritis Cartilage 2016; 24:709-18. [PMID: 26585241 PMCID: PMC4799761 DOI: 10.1016/j.joca.2015.11.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/14/2015] [Accepted: 11/06/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To establish a standardized protocol for histopathological assessment of murine menisci that can be applied to evaluate transgenic, knock-out/in, and surgically induced OA models. METHODS Knee joints from C57BL/6J mice (6-36 months) as well as from mice with surgically-induced OA were processed and cut into sagittal sections. All sections included the anterior and posterior horns of the menisci and were graded for (1) surface integrity, (2) cellularity, (3) Safranin-O staining distribution and intensity. Articular cartilage in the knee joints was also scored. RESULTS The new histopathological grading system showed good inter- and intra-class correlation coefficients. The major age-related changes in murine menisci in the absence of OA included decreased Safranin O staining intensity, abnormal cell distribution and the appearance of acellular areas. Menisci from mice with surgically-induced OA showed severe fibrillations, partial/total loss of tissue, and calcifications. Abnormal cell arrangements included both regional hypercellularity and hypocellularity along with hypertrophy and cell clusters. In general, the posterior horns were less affected by age and OA. CONCLUSION A new standardized protocol and histopathological grading system has been developed and validated to allow for a comprehensive, systematic evaluation of changes in aging and OA-affected murine menisci. This system was developed to serve as a standardized technique and tool for further studies in murine meniscal pathophysiology models.
Collapse
Affiliation(s)
- Jeanie Kwok
- Materials Science and Engineering Program, Department of Mechanical and Aerospace Engineering, University of California, San Diego
| | - Hiroyuki Onuma
- St. Marianna University School of Medicine, Miyamae-ku, Kawasaki, Kanagawa, Japan
| | - Merissa Olmer
- Department of Molecular and Experimental Medicine, The Scripps Research Institute
| | - Martin K. Lotz
- Department of Molecular and Experimental Medicine, The Scripps Research Institute
| | - Shawn P. Grogan
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic
| | - Darryl D. D’Lima
- Shiley Center for Orthopaedic Research and Education at Scripps Clinic 11025 North Torrey Pines Road, Suite 200, La Jolla, CA 92037
| |
Collapse
|
47
|
Goetz JE, Fredericks D, Petersen E, Rudert MJ, Baer T, Swanson E, Roberts N, Martin J, Tochigi Y. A clinically realistic large animal model of intra-articular fracture that progresses to post-traumatic osteoarthritis. Osteoarthritis Cartilage 2015; 23:1797-805. [PMID: 26033166 DOI: 10.1016/j.joca.2015.05.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 04/28/2015] [Accepted: 05/21/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Translation of promising treatments for post-traumatic osteoarthritis (PTOA) to patients with intra-articular fracture (IAF) has been limited by the lack of a realistic large animal model. To address this issue we developed a large animal model of IAF in the distal tibia of Yucatan minipigs and documented the natural progression of this injury. DESIGN Twenty-two fractures were treated using open reduction and internal fixation with either an anatomic reduction or an intentional 2-mm step-off. Pre-operatively, and 3 days, 1, 2, 4, 8, and 12 weeks post-operatively, animals were sedated for synovial fluid draws and radiographs. Limb loading was monitored at the same time points using a Tekscan Walkway. Animals were sacrificed at 12 weeks and the limbs were harvested for histological evaluation. RESULTS All animals achieved bony union by 12 weeks, facilitating nearly complete recovery of the initial 60% decrease in limb loading. TNFα, IL1β, IL6, and IL8 concentrations in the fractured limbs were elevated (P < 0.05) at specific times during the 2 weeks after fracture. Histological cartilage degeneration was more severe in the step-off group (0.0001 < P < 0.27 compared to normal) than in the anatomic reconstruction group (0.27 < P < 0.99 compared to normal). CONCLUSIONS This model replicated key features of a human IAF, including surgical stabilization, inflammatory responses, and progression to osteoarthritic cartilage degeneration, thereby providing a potentially useful model for translating promising treatment options to clinical practice.
Collapse
Affiliation(s)
- J E Goetz
- Department of Orthopaedics & Rehabilitation, University of Iowa, Iowa City, IA, USA; Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA.
| | - D Fredericks
- Department of Orthopaedics & Rehabilitation, University of Iowa, Iowa City, IA, USA
| | - E Petersen
- Department of Orthopaedics & Rehabilitation, University of Iowa, Iowa City, IA, USA
| | - M J Rudert
- Department of Orthopaedics & Rehabilitation, University of Iowa, Iowa City, IA, USA
| | - T Baer
- Department of Orthopaedics & Rehabilitation, University of Iowa, Iowa City, IA, USA
| | - E Swanson
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - N Roberts
- Department of Orthopaedics & Rehabilitation, University of Iowa, Iowa City, IA, USA
| | - J Martin
- Department of Orthopaedics & Rehabilitation, University of Iowa, Iowa City, IA, USA; Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Y Tochigi
- Department of Orthopaedics, Dokkyo Medical University Koshigaya Hospital, Saitama, Japan
| |
Collapse
|
48
|
Olson SA, Furman BD, Kraus VB, Huebner JL, Guilak F. Therapeutic opportunities to prevent post-traumatic arthritis: Lessons from the natural history of arthritis after articular fracture. J Orthop Res 2015; 33:1266-77. [PMID: 25939531 PMCID: PMC4529755 DOI: 10.1002/jor.22940] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/20/2015] [Indexed: 02/04/2023]
Abstract
An estimated 12% of patients seeking surgical intervention for symptomatic arthritis have an etiology of post-traumatic arthritis (PTA). The onset of PTA is rapid in the setting of articular fracture (AF). The investigation began with development of a murine model of a closed AF that develops PTA. In the process of characterizing this model a technique was developed for assessing quantitative synovial fluid biomarker concentrations. The work began with observations of the natural history of PTA development in the C57BL/6 strain of mice. A species of mice (MRL/MpJ) was found that is protected from PTA after AF. Further work identified key differences between mouse strains that did and did not develop PTA. This knowledge led to an intervention based on anti-cytokine (interleukin 1 receptor antagonist, (IL-1Ra) delivery in the C57BL/6 strain of mice that successfully prevented PTA following AF. This success in preventing PTA in the murine model has elucidated several important clinical implications: 1) Pro-inflammatory cytokines play an important role in the development of PTA after joint injury, 2) Pharmacologic intervention can lessen the severity of PTA after an AF, and 3) The murine AF model of joint injury provides a novel means of studying mechanisms of PTA development.
Collapse
Affiliation(s)
- Steven A. Olson
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710
| | - Bridgette D. Furman
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710
| | - Virginia B. Kraus
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710,Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Janet L. Huebner
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710,Department of Biomedical Engineering, Duke University, Durham, NC 27710
| |
Collapse
|
49
|
Kern AM, Anderson DD. Expedited patient-specific assessment of contact stress exposure in the ankle joint following definitive articular fracture reduction. J Biomech 2015; 48:3427-32. [PMID: 26105660 DOI: 10.1016/j.jbiomech.2015.05.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 05/27/2015] [Accepted: 05/30/2015] [Indexed: 01/06/2023]
Abstract
Acute injury severity, altered joint kinematics, and joint incongruity are three important mechanical factors linked to post-traumatic osteoarthritis (PTOA). Finite element analysis (FEA) was previously used to assess the influence of increased contact stress due to joint incongruity on PTOA development. While promising agreement with PTOA development was seen, the inherent complexities of contact FEA limited the numbers of subjects that could be analyzed. Discrete element analysis (DEA) is a simplified methodology for contact stress computation, which idealizes contact surfaces as a bed of independent linear springs. In this study, DEA was explored as an expedited alternative to FEA contact stress exposure computation. DEA was compared to FEA using results from a previously completed validation study of two cadaveric human ankles, as well as a previous study of post-operative contact stress exposure in 11 patients with tibial plafond fracture. DEA-computed maximum contact stresses were within 19% of those experimentally measured, with 90% of the contact area having computed contact stress values within 1MPa of those measured. In the 11 fractured ankles, maximum contact stress and contact area differences between DEA and FEA were 0.85 ± 0.64 MPa and 22.5 ± 11.5mm(2). As a predictive measure for PTOA development, both DEA and FEA had 100% concordance with presence of OA (KL grade ≥ 2) and >95% concordance with KL grade at 2 years. These results support DEA as a reasonable alternative to FEA for computing contact stress exposures following surgical reduction of a tibial plafond fracture.
Collapse
Affiliation(s)
- Andrew M Kern
- Departments of Orthopaedics and Rehabilitation and Biomedical Engineering, The University of Iowa, Orthopaedic Biomechanics Laboratory, 2181 Westlawn, Iowa City, IA 52242, United States.
| | - Donald D Anderson
- Departments of Orthopaedics and Rehabilitation and Biomedical Engineering, The University of Iowa, Orthopaedic Biomechanics Laboratory, 2181 Westlawn, Iowa City, IA 52242, United States
| |
Collapse
|
50
|
Schultz M, Molligan J, Schon L, Zhang Z. Pathology of the calcified zone of articular cartilage in post-traumatic osteoarthritis in rat knees. PLoS One 2015; 10:e0120949. [PMID: 25807537 PMCID: PMC4373850 DOI: 10.1371/journal.pone.0120949] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/27/2015] [Indexed: 11/29/2022] Open
Abstract
Objectives This study aimed to investigate the pathology occurring at the calcified zone of articular cartilage (CZC) in the joints afflicted with post-traumatic osteoarthritis (PTOA). Methods Rats underwent bilateral anterior cruciate ligament (ACL) transection and medial meniscectomy to induce PTOA. Sham surgery was performed on another five rats to serve as controls. The rats were euthanized after four weeks of surgery and tibial plateaus were dissected for histology. The pathology of PTOA, CZC area and the tidemark roughness at six pre-defined locations on the tibial plateaus were quantified by histomorphometry. Results PTOA developed in the knees, generally more severe at the medial plateau than the lateral plateau, of rats in the experimental group. The CZC area was unchanged in the PTOA joints, but the topographic variations of CZC areas that presented in the control knees were reduced in the PTOA joints. The tidemark roughness decreased in areas of the medial plateau of PTOA joints and that was inversely correlated with the Mankin’s score of PTOA pathology. Conclusion Reduced tidemark roughness and unchanged CZC area differentiate PTOA from primary osteoarthritis, which is generally believed to have the opposite pathology at CZC, and may contribute to the distinct disease progression of the two entities of arthropathy.
Collapse
Affiliation(s)
- Melissa Schultz
- Center of Anatomical Science, Saint Louis University, St. Louis, Missouri, United States of America
| | - Jeremy Molligan
- Orthobiologic Laboratory, Medstar Union Memorial Hospital, Baltimore, Maryland, United States of America
| | - Lew Schon
- Orthobiologic Laboratory, Medstar Union Memorial Hospital, Baltimore, Maryland, United States of America
| | - Zijun Zhang
- Orthobiologic Laboratory, Medstar Union Memorial Hospital, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|