1
|
Li Z, Liu Z, Yang Y, Zhang Z, Meng L, Miao J. In vivo kinematic study of lumbar center of rotation under different loads. BMC Musculoskelet Disord 2025; 26:155. [PMID: 39953502 PMCID: PMC11827185 DOI: 10.1186/s12891-025-08410-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Dual fluoroscopic imaging system (DFIS) was employed to identify the Center of Rotation(COR) in the lower lumbar spine and determine its relationship with weight bearing. METHODS In this study, twenty participants were recruited. A 3D model of each participant's lumbar spine was created using CT images, and their relative positions were determined through DFIS. By integrating CT imaging with DFIS, the kinematic data of the participants' spines during movement were captured. The lower lumbar spine's COR was calculated using the method of perpendicular bisectors. RESULTS While flexing and extending, the Center of Rotation (COR) initially moved downward with increasing load, followed by upward movement as the load further increased. During flexion and extension, the COR coordinates of L3-4 at 0 kg, 5 kg and 10 kg are(0.3549 ± 0.2176,0.0177 ± 0.1317),(0.0598 ± 0.2095,-0.1806 ± 0.1719),(0.1427 ± 0.1440,-0.0911 ± 0.2722); The center of rotation coordinates of L4-5 at 0 kg, 5 kg and 10 kg are(0.0566 ± 0.2693,-0.0727 ± 0.2132),(0.0964 ± 0.2671,-0.2037 ± 0.2299),(0.1648 ± 0.1520,-0.0049 ± 0.1641). The anterior-posterior position of the COR shifted posteriorly with increasing weight-bearing. During lateral bending, the center of rotation coordinates of L3-4 at 0 kg, 5 kg and 10 kg are(0.0745 ± 0.1229,0.0966 ± 0.3403) (-0.0438 ± 0.1281,0.1161 ± 0.1584), (-0.0464 ± 0.1517,0.1320 ± 0.2730); The center of rotation coordinates of L4-5 at 0 kg, 5 kg and 10 kg are(-0.0314 ± 0.1411,-0.0355 ± 0.2088), (-0.0764 ± 0.3135,0.0105 ± 0.3230),(-0.0376 ± 0.1701,0.0285 ± 0.2395). Throughout the lateral bending exercises, the upper and lower COR positions increased as the load increased, while the left and right COR positions remained unaffected by the load increment. The COR height differed between flexion and lateral bending. We observed variations in the COR position of the lumbar spine during lateral bending and flexion-extension movements. This enhanced our comprehension of coupled motion patterns within the lumbar spine. CONCLUSIONS Position of the lumbar spine COR changes with variations in the load. During different movements, the COR location of the lower lumbar spine varied. This finding suggests the presence of distinct motion patterns in the lower lumbar spine. As the load increases, the lumbar COR position changes significantly. Abnormal movement patterns of the lower lumbar spine under different loads may be one of the factors that accelerate lumbar disc degeneration.
Collapse
Affiliation(s)
- Zhenyu Li
- Graduate School, Tianjin Medical University, Tianjin, China
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Jiefangnanlu, No. 406 Jiefang South Rd, Hexi District, Tianjin, 300211, China
| | - Ziwen Liu
- Graduate School, Tianjin Medical University, Tianjin, China
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Jiefangnanlu, No. 406 Jiefang South Rd, Hexi District, Tianjin, 300211, China
| | - Yuming Yang
- Graduate School, Tianjin Medical University, Tianjin, China
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Jiefangnanlu, No. 406 Jiefang South Rd, Hexi District, Tianjin, 300211, China
| | - Zepei Zhang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Jiefangnanlu, No. 406 Jiefang South Rd, Hexi District, Tianjin, 300211, China
| | - Lin Meng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Weijin Road, Nankai District, Tianjin, China.
| | - Jun Miao
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Jiefangnanlu, No. 406 Jiefang South Rd, Hexi District, Tianjin, 300211, China.
| |
Collapse
|
2
|
Cuellar JM, Lanman T, Mottole N, Wernke M, Carruthers E, Valdevit A. Facet joint loading after 1-, 2- and 3-level cervical disc arthroplasty: a comparison of spiked versus keeled baseplates. NORTH AMERICAN SPINE SOCIETY JOURNAL 2024; 19:100512. [PMID: 40093716 PMCID: PMC11907212 DOI: 10.1016/j.xnsj.2024.100512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 03/19/2025]
Abstract
Background The purpose of this study was to examine facet contact forces above, below, and at surgical index levels induced by artificial disc implantation and compare the results from spiked versus keeled baseplates comprising the arthroplasty device. Methods Human specimens from C2 to C7 were subjected to flexion, extension, and lateral bending prior to, and following random allocation to spiked or keeled cervical arthroplasty at the index (C5-C6), inferior (C6-C7), and superior (C4-C5) levels. Thin film force sensors were inserted unilaterally into the corresponding facets prior to intact testing. Force data was normalized to the minimum forces recorded during each loading mode under each condition, reported as (Max/Min) force ratio and subjected to a 1-way ANOVA with Dunnett's post-hoc tests for comparison to intact specimens. Results Under flexion, compared to intact, all levels displayed a significant reduction in force ratio following a 1- and 3-level implantation for the spiked baseplate device. An increase in force ratio was observed at the index level for a 2-level implantation but was mitigated with the completion of a superior device insertion. No statistical differences were noted for keeled devices. In extension, the spiked baseplate device reduced the force ratio for 1- and 2-level implantations. A 3-level insertion did not alter facet force ratios. For the keeled device, no statistical changes were noted. Lateral bending associated with spiked devices resulted in statistically reduced or nonsignificant changes in facet loading ratios. The keeled devices did not display significant changes to facet force ratios. Conclusions Implantation of multilevel disc devices can reduce or sustain unaltered facet loading conditions. In general, 3-level arthroplasty statistically reduced or does not increase facet force ratios compared to intact values. The use of spiked versus keel device baseplates is a clinical selection involving anterior/posterior placement and endplate degeneration conditions.
Collapse
Affiliation(s)
| | - Todd Lanman
- Cedars-Sinai Spine Center, Los Angeles, CA, United States
| | | | | | | | | |
Collapse
|
3
|
Hou X, Tian Y, Xu N, Li H, Yan M, Wang S, Li W. Overstrain on the longitudinal band of the cruciform ligament during flexion in the setting of sandwich deformity at the craniovertebral junction: a finite element analysis. Spine J 2023; 23:1721-1729. [PMID: 37385409 DOI: 10.1016/j.spinee.2023.06.387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/31/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND CONTEXT In the setting of "sandwich deformity" (concomitant C1 occipitalization and C2-3 nonsegmentation), the C1-2 joint becomes the only mobile joint in the craniovertebral junction. Atlantoaxial dislocation develops earlier with severer symptoms in sandwich deformity, which has been hypothesized to be due to the repetitive excessive tension in the ligaments between C1 and C2. PURPOSE To elucidate whether and how the major ligaments of the C1-2 joint are affected in sandwich deformity, and to find out the ligament most responsible for the earlier development and severer symptoms of atlantoaxial dislocation in sandwich deformity. STUDY DESIGN A finite element (FE) analysis study. METHODS A three-dimensional FE model from occiput to C5 was established using anatomical data from a thin-slice CT scan of a healthy volunteer. Sandwich deformity was simulated by eliminating any C0-1 and C2-3 segmental motion respectively. Flexion torque was applied, and the range of motion of each segment and the tension sustained by the major ligaments of C1-2 (including the transverse and longitudinal bands of the cruciform ligament, the alar ligaments, and the apical ligament) were analyzed. RESULTS Tension sustained by the longitudinal band of the cruciform ligament and the apical ligament during flexion is significantly larger in the FE model of sandwich deformity. In contrast, tension in the other ligaments is not significantly changed in the sandwich deformity model compared with the normal model. CONCLUSIONS Considering the importance of the longitudinal band of the cruciform ligament to the stability of the C1-2 joint, our findings implicate that the early onset, severe dislocation, and unique clinical manifestations of atlantoaxial dislocation in patients with sandwich deformity are mainly due to the enlarged force loaded on the longitudinal band of the cruciform ligament. CLINICAL SIGNIFICANCE The enlarged force loaded on the longitudinal band of the cruciform ligament can add to its laxity and thus reducing its ability to restrict the cranial migration of the odontoid process. This is in accordance with our clinical experience that dislocation of the atlantoaxial joint in patients with sandwich deformity is mainly craniocaudal, which means severer cranial neuropathy, Chiari deformity, and syringomyelia, and more difficult surgical treatment.
Collapse
Affiliation(s)
- Xiangyu Hou
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, 49 North Garden Rd, Haidian District, Beijing, China; Beijing Key Laboratory of Spinal Disease Research, 49 North Garden Rd, Haidian District, Beijing, China
| | - Yinglun Tian
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, 49 North Garden Rd, Haidian District, Beijing, China; Beijing Key Laboratory of Spinal Disease Research, 49 North Garden Rd, Haidian District, Beijing, China
| | - Nanfang Xu
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, 49 North Garden Rd, Haidian District, Beijing, China; Beijing Key Laboratory of Spinal Disease Research, 49 North Garden Rd, Haidian District, Beijing, China
| | - Hui Li
- Beijing Engineering and Technology Research Center for Medical Endoplants, Building 1, Yard 9, Chengwan Street, Haidian District, Beijing, China
| | - Ming Yan
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, 49 North Garden Rd, Haidian District, Beijing, China; Beijing Key Laboratory of Spinal Disease Research, 49 North Garden Rd, Haidian District, Beijing, China
| | - Shenglin Wang
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, 49 North Garden Rd, Haidian District, Beijing, China; Beijing Key Laboratory of Spinal Disease Research, 49 North Garden Rd, Haidian District, Beijing, China.
| | - Weishi Li
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Rd, Haidian District, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, 49 North Garden Rd, Haidian District, Beijing, China; Beijing Key Laboratory of Spinal Disease Research, 49 North Garden Rd, Haidian District, Beijing, China
| |
Collapse
|
4
|
Abudouaini H, Wu T, Meng Y, Ding C, Liu H, Beiyu W. Biomechanical properties of a novel cervical spine implant with elastic deformation: a cadaveric study. Front Bioeng Biotechnol 2023; 11:1214877. [PMID: 37711451 PMCID: PMC10497878 DOI: 10.3389/fbioe.2023.1214877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction: Anterior cervical discectomy and fusion (ACDF) is a most frequently used surgical procedure for treating cervical radiculopathy and myelopathy. However, there is concern about the high adjacent segment degeneration (ASD) rate after ACDF surgery. We creatively designed an elastically deformable cervical implant to reduce the postoperative stress concentration. In this study, we aimed to investigate the biomechanical performance of this novel cervical implant and compare it with the commonly used cervical devices. Methods: Biomechanical test was conducted on twelve fresh-frozen human cadaveric cervical spines (C2-C7) and randomly divided into four groups according to implant types: intact group, Zero-P VA fusion (ACDF) group, the novel cervical implant group and Pretic-I artificial cervical disc (ACDR) group. An optical tracking system was used to evaluate the segmental range of motion (ROM) of the C4/C5, C5/C6, and C6/C7 segments and micro pressure sensor was used to record the maximum facet joint pressure (FJP), maximum intradiscal pressure (IDP) at the C4-5 and C6-7 segments. Results: There were no significant differences in the ROM of adjacent segments between the groups. Compared with the intact group, the ACDR group essentially retained the ROM of the operated segment. The novel cervical implant decrease some ROM of the operated segment, but it was still significantly higher than in the fusion group; The maximum FJP and IDP at the adjacent segments in the ACDF group were significantly higher than those values in the other groups, and there were no differences in the other groups. Conclusion: While the newly developed elastically deformable cervical implant does not completely maintain ROM like the artificial cervical disc, it surpasses the fusion device with regards to biomechanical attributes. After further refinement, this novel implant may be suitable for patients who are prone to severe adjacent segment degeneration after fusion surgery but no indication for artificial cervical disc surgery.
Collapse
Affiliation(s)
- Haimiti Abudouaini
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Tingkui Wu
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Meng
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Ding
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Liu
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Wang Beiyu
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Abudouaini H, Wu T, Meng Y, Wang B, Liu H. Mechanical properties of an elastically deformable cervical spine implant. J Orthop Surg Res 2023; 18:605. [PMID: 37587540 PMCID: PMC10428533 DOI: 10.1186/s13018-023-04042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/24/2023] [Indexed: 08/18/2023] Open
Abstract
Anterior cervical surgery is widely accepted and time-tested surgical procedure for treating cervical radiculopathy and myelopathy. However, there is concern about the high adjacent segment degeneration rate and implant subsidence after the surgery using the traditional polyetheretherketone cage. Thus, we creatively designed a polyurethane cervical implant that can continuous load-sharing through elastic deformation and decrease postoperative stress concentration at adjacent segments. In this study, the design rationality and safety of this novel implant was evaluated based on several mechanical parameters including compression test, creeping test, push-out test and subsidence test. The results showed that the novel cervical implant remained intact under the compressive axial load of 8000 N and continues to maintained the elastic deformation phase. The minimum push-out load of the implant was 181.17 N, which was significantly higher than the maximum compressive shear load of 20 N experienced by a normal human cervical intervertebral disc. Besides, the creep recovery behaviour of the implant closely resembled what has been reported for natural intervertebral discs and clinically applied cervical devices in literature. Under the load of simulating daily activities of the cervical spine, the implant longitudinal displacement was only 0.54 mm. In conclusion, this study showed that the current design of the elastically deformable implant was reasonable and stable to fulfil the mechanical requirements of a cervical prosthesis under physiological loads. After a more comprehensive understanding of bone formation and stress distribution after implantation, this cervical implant is promising to be applied to certain patients in clinical practice.
Collapse
Affiliation(s)
- Haimiti Abudouaini
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang Rd., Chengdu, China
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Tingkui Wu
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang Rd., Chengdu, China
| | - Yang Meng
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang Rd., Chengdu, China
| | - Beiyu Wang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang Rd., Chengdu, China
| | - Hao Liu
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang Rd., Chengdu, China
| |
Collapse
|
6
|
Jacobs CAM, Doodkorte RJP, Kamali SA, Abdelgawad AM, Ghazanfari S, Jockenhoevel S, Arts JJC, Tryfonidou MA, Meij BP, Ito K. Biomechanical evaluation of a novel biomimetic artificial intervertebral disc in canine cervical cadaveric spines. JOR Spine 2023; 6:e1251. [PMID: 37361332 PMCID: PMC10285750 DOI: 10.1002/jsp2.1251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/16/2023] [Accepted: 01/29/2023] [Indexed: 06/28/2023] Open
Abstract
Background Context Cervical disc replacement (CDR) aims to restore motion of the treated level to reduce the risk of adjacent segment disease (ASD) compared with spinal fusion. However, first-generation articulating devices are unable to mimic the complex deformation kinematics of a natural disc. Thus, a biomimetic artificial intervertebral CDR (bioAID), containing a hydroxyethylmethacrylate (HEMA)-sodium methacrylate (NaMA) hydrogel core representing the nucleus pulposus, an ultra-high-molecular-weight-polyethylene fiber jacket as annulus fibrosus, and titanium endplates with pins for primary mechanical fixation, was developed. Purpose To assess the initial biomechanical effect of the bioAID on the kinematic behavior of the canine spine, an ex vivo biomechanical study in 6-degrees-of-freedom was performed. Study Design A canine cadaveric biomechanical study. Methods Six cadaveric canine specimens (C3-C6) were tested in flexion-extension (FE), lateral bending (LB) axial rotation (AR) using a spine tester in three conditions: intact, after C4-C5 disc replacement with bioAID, and after C4-C5 interbody fusion. A hybrid protocol was used where first the intact spines were subjected to a pure moment of ±1 Nm, whereafter the treated spines were subjected to the full range of motion (ROM) of the intact condition. 3D segmental motions at all levels were measured while recording the reaction torsion. Biomechanical parameters studied included ROM, neutral zone (NZ), and intradiscal pressure (IDP) at the adjacent cranial level (C3-C4). Results The bioAID retained the sigmoid shape of the moment-rotation curves with a NZ similar to the intact condition in LB and FE. Additionally, the normalized ROMs at the bioAID-treated level were statistically equivalent to intact during FE and AR while slightly decreased in LB. At the two adjacent levels, ROMs showed similar values for the intact compared to the bioAID for FE and AR and an increase in LB. In contrast, levels adjacent to the fused segment showed an increased motion in FE and LB as compensation for the loss of motion at the treated level. The IDP at the adjacent C3-C4 level after implantation of bioAID was close to intact values. After fusion, increased IDP was found compared with intact but did not reach statistical significance. Conclusion This study indicates that the bioAID can mimic the kinematic behavior of the replaced intervertebral disc and preserves that for the adjacent levels better than fusion. As a result, CDR using the novel bioAID is a promising alternative treatment for replacing severely degenerated intervertebral discs.
Collapse
Affiliation(s)
- Celien A. M. Jacobs
- Orthopedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenNoord‐BrabantThe Netherlands
| | - Remco J. P. Doodkorte
- Department of Orthopedic Surgery, Research School CAPHRIMaastricht University Medical CenterMaastrichtLimburgThe Netherlands
| | - S. Amir Kamali
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtUtrechtThe Netherlands
| | - Abdelrahman M. Abdelgawad
- Aachen‐Maastricht Institute for Biobased Materials, Faculty of Science and EngineeringMaastricht UniversityGeleenLimburgThe Netherlands
| | - Samaneh Ghazanfari
- Aachen‐Maastricht Institute for Biobased Materials, Faculty of Science and EngineeringMaastricht UniversityGeleenLimburgThe Netherlands
| | - Stefan Jockenhoevel
- Aachen‐Maastricht Institute for Biobased Materials, Faculty of Science and EngineeringMaastricht UniversityGeleenLimburgThe Netherlands
- Department of Biohybrid and Medical Textiles (BioTex), AME – Institute of Applied Medical EngineeringHelmholtz Institute, RWTH Aachen UniversityAachenNordrhein‐WestfalenGermany
| | - J. J. Chris Arts
- Orthopedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenNoord‐BrabantThe Netherlands
- Department of Orthopedic Surgery, Research School CAPHRIMaastricht University Medical CenterMaastrichtLimburgThe Netherlands
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtUtrechtThe Netherlands
| | - Björn P. Meij
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtUtrechtThe Netherlands
| | - Keita Ito
- Orthopedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenNoord‐BrabantThe Netherlands
| |
Collapse
|
7
|
Xue F, Deng H, Chen Z, Yang H, Li Y, Yuan S, Zheng N, Chen M. Effects of cervical rotatory manipulation on the cervical spinal cord complex with ossification of the posterior longitudinal ligament in the vertebral canal: A finite element study. Front Bioeng Biotechnol 2023; 11:1095587. [PMID: 36714008 PMCID: PMC9880201 DOI: 10.3389/fbioe.2023.1095587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Background: There are few studies focusing on biomechanism of spinal cord injury according to the ossification of the posterior longitudinal ligament (OPLL) during cervical rotatory manipulation (CRM). This study aimed to explore the biomechanical effects of CRM on the spinal cord, dura matter and nerve roots with OPLL in the cervical vertebral canal. Methods: Three validated FE models of the craniocervical spine and spinal cord complex were constructed by adding mild, moderate, and severe OPLL to the healthy FE model, respectively. We simulated the static compression of the spinal cord by OPLL and the dynamic compression during CRM in the flexion position. The stress distribution of the spinal cord complex was investigated. Results: The cervical spinal cord experienced higher von Mises stress under static compression by the severe OPLL. A higher von Mises stress was observed on the spinal cord in the moderate and severe OPLL models during CRM. The dura matter and nerve roots had a higher von Mises stress in all three models during CRM. Conclusion: The results show a high risk in performing CRM in the flexion position on patients with OPLL, in that different occupying ratios in the vertebral canal due to OPLL could significantly increase the stress on the spinal cord complex.
Collapse
Affiliation(s)
- Fan Xue
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Hao Deng
- Department of Orthopaedics, Jiashan Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, China
| | - Zujiang Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Han Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yikai Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China,*Correspondence: Yikai Li, ; Shiguo Yuan,
| | - Shiguo Yuan
- Department of Orthopaedics, Hainan Traditional Chinese Medicine Hospital, Haikou, Hainan, China,*Correspondence: Yikai Li, ; Shiguo Yuan,
| | - Nansheng Zheng
- Department of Orthopaedics, Hainan Traditional Chinese Medicine Hospital, Haikou, Hainan, China
| | - Meixiong Chen
- Department of Orthopaedics, Hainan Traditional Chinese Medicine Hospital, Haikou, Hainan, China
| |
Collapse
|
8
|
Rahman WU, Jiang W, Zhao F, Li Z, Wang G, Yang G. Biomechanical analysis of single- and double-level cervical disc arthroplasty using finite element modeling. Proc Inst Mech Eng H 2023; 237:91-103. [PMID: 36394294 DOI: 10.1177/09544119221135627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recently, many different types of artificial discs have been introduced to persevere the biomechanical behavior of the cervical spine. This study compares the biomechanical behavior of single- and double-level cervical disc arthroplasty, that is "Prestige LP and Mobi-C" on the index and adjacent segment. A three-dimension finite element model of C2-C7 was developed and validated. In single-level prostheses, the Prestige LP or Mobi-C was implanted in the segment C5-C6, while the double-level arthroplasty was integrated at both segments C4-C5 and C5-C6 in the FE model. The intact FE and prosthesis-modified models were constrained from the inferior endplate of the vertebra C7 and applied a compressive load of 73.6 N with a moment load of 1 Nm on the odontoid process of the vertebra C2 to produce flexion/extension, lateral bending, and axial rotation. The prosthesis-modified model's range of motion and intradiscal pressure were determined and compared to the intact model. Also examined the impact of the prostheses on the stress at the bone-implant interface. The range of motion of the implanted segments in both single- and double-levels arthroplasty was increased while that of the adjacent segment of implanted segments decreased. The intradiscal pressure in both levels of arthroplasty was greater than in the intact model. In conclusion, Mobi-C's cervical prostheses could better preserve the normal range of motion and maintain intradiscal pressure than the Prestige LP.
Collapse
Affiliation(s)
- Waseemur Ur Rahman
- School of Mechanical Engineering, Dalian University of Technology, Dalian, China
| | - Wei Jiang
- School of Mechanical Engineering, Dalian University of Technology, Dalian, China
| | - Fulin Zhao
- School of Mechanical Engineering, Dalian University of Technology, Dalian, China
| | - Zhijun Li
- Department of Orthopedics, Dalian No. 2 People's Hospital, Dalian, China
| | - Guohua Wang
- Department of Orthopedics, Dalian No. 2 People's Hospital, Dalian, China
| | - Guanghui Yang
- School of Mechanical Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
9
|
Guyer RD, Coric D, Nunley PD, Ohnmeiss DD. Cervical Total Disk Replacement: Available Implant Size Matters. Clin Spine Surg 2022; 35:166-169. [PMID: 35344516 DOI: 10.1097/bsd.0000000000001314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/01/2022] [Indexed: 11/25/2022]
Abstract
STUDY DESIGN This study was a post hoc analysis of data collected from 2 Food and Drug Administration (FDA) Investigational Device Exemption (IDE) trials. OBJECTIVE The purposes of this study were to: (1) measure disk space heights adjacent to the level to be treated with a total disk replacement (TDR); (2) analyze cervical disk space heights to be replaced with TDR; and (3) investigate the frequency of use of a smaller height TDR when available. SUMMARY OF BACKGROUND DATA Cervical TDR produces outcomes noninferior or superior to anterior cervical discectomy and fusion. While the restoration of the height of a collapsed, degenerated disk is a surgical goal, there are potential problems with overdistracting the segment with an implant. METHODS Disk heights were measured using radiographs from the 1-level Simplify Cervical Artificial Disk IDE trial, producing values for 259 levels adjacent to the treated level and 162 treated levels. The device is available in 4, 5, and 6 mm heights. The 4 mm height became available only after treatment was 13% complete in the single-level trial and was available for all of the 2-level trial. RESULTS Measurements of 259 adjacent levels found that 55.2% of disk spaces had a height of <4 mm. Among operated levels, 82.7% were <4 mm. When a 4 mm TDR was available, it was used in 38.4% of operated levels in the 1-level trial and 54.3% of levels in the 2-level trial. CONCLUSIONS Among nonoperated levels, 55.2% were of height <4 mm, suggesting that TDRs of greater heights may potentially overdistract the disk space. The 4 mm TDR was selected by surgeons in 49.4% of all implanted levels, suggesting a preference for smaller TDR height. Further investigation is warranted to determine if the lower height implants are related to clinical and/or radiographic outcomes. LEVEL OF EVIDENCE Level III.
Collapse
Affiliation(s)
- Richard D Guyer
- Center for Disk Replacement at Texas Back Institute, Plano, TX
| | - Domagoj Coric
- Carolina Neurosurgery and Spine Associates, Charlotte, NC
| | | | - Donna D Ohnmeiss
- Center for Disk Replacement at Texas Back Institute, Plano, TX
- Texas Back Institute Research Foundation, Plano, TX
| |
Collapse
|
10
|
Estimating Facet Joint Apposition with Specimen-Specific Computer Models of Subaxial Cervical Spine Kinematics. Ann Biomed Eng 2021; 49:3200-3210. [PMID: 34791608 DOI: 10.1007/s10439-021-02888-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
Computational models of experimental data can provide a noninvasive method to estimate spinal facet joint biomechanics. Existing models typically consider each vertebra as one rigid-body and assume uniform facet cartilage thickness. However, facet deflection occurs during motion, and cervical facet cartilage is nonuniform. Multi rigid-body computational models were used to investigate the effect of specimen-specific cartilage profiles on facet contact area estimates. Twelve C6/C7 segments underwent non-destructive intervertebral motions. Kinematics and facet deflections were measured. Three-dimensional models of the vertebra and cartilage thickness estimates were obtained from pre-test CT data. Motion-capture data was applied to two model types (2RB: C6, C7 vertebrae each one rigid body; 3RB: left and right C6 posterior elements, and C7 vertebrae, each one rigid body) and maximum facet mesh penetration was compared. Constant thickness cartilage (CTC) and spatially-varying thickness cartilage (SVTC) profiles were applied to the facet surfaces of the 3RB model. Cartilage apposition area (CAA) was compared. Linear mixed-effects models were used for all quantitative comparisons. The 3RB model significantly reduced penetrating mesh elements by accounting for facet deflections (p = 0.001). The CTC profile resulted in incongruent facet articulation, whereas realistic congruence was observed for the SVTC profile. The SVTC profile demonstrated significantly larger CAA than the CTC model (p < 0.001).
Collapse
|
11
|
Guyer RD, Coric D, Nunley PD, Sasso RC, Musacchio M, Bae HW, Peloza JH, Ohnmeiss DD. Single-Level Cervical Disc Replacement Using a PEEK-on-Ceramic Implant: Results of a Multicenter FDA IDE Trial With 24-Month Follow-up. Int J Spine Surg 2021; 15:633-644. [PMID: 34281951 DOI: 10.14444/8084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Many early cervical total disc replacements (TDRs) produced motion through a ball-and-socket action, with metal endplates articulating with a plastic core. Polyetheretherketone (PEEK) is used increasingly for spinal implants due to its mechanical properties and lack of artifacts on imaging. A TDR was designed with titanium-coated PEEK endplates and a ceramic core. The purpose of this study was to compare this TDR with anterior cervical discectomy and fusion (ACDF) to treat single-level cervical disc degeneration. METHODS This was a prospective, nonrandomized, historically controlled, multicenter US Food and Drug Administration (FDA) Investigational Device Exemption (IDE) trial. Patients received the PEEK-on-ceramic Simplify® Cervical Artificial Disc (n = 150). The historic control group included 117 propensity-matched ACDF patients from an earlier IDE trial. The primary outcome was a composite success classification at the 24-month follow-up. Outcome measures included the Neck Disability Index (NDI), neurological status, adverse events, subsequent surgery, a visual analog scale assessing neck and arm pain, and the Dysphagia Handicap Index. Radiographic assessment included flexion/extension range of motion and heterotopic ossification. Facet joints were assessed at 24 months using MRI. RESULTS The success rate was significantly greater in the TDR group vs the ACDF group (93.0% vs 73.6%; P < .001). Mean NDI, neck pain, and arm pain scores improved significantly in both groups at all follow-up points. Mean NDI scores in the TDR group were significantly lower than ACDF scores at all follow-up points. There were no significant differences in the rates of serious adverse events. The range of motion of the TDR level had increased significantly by 3 months and remained so throughout follow-up. Facet joint assessment by MRI in the TDR group showed little change from preoperation. CONCLUSIONS The TDR had an acceptable safety profile and a significantly greater composite success rate than ACDF. These results support that the PEEK-on-ceramic TDR is a viable alternative to ACDF for single-level symptomatic disc degeneration. CLINICAL RELEVANCE This study found that the PEEK-on-ceramic TDR is a viable treatment for symptoms related to cervical disc degeneration and offers similar or superior outcomes compared with fusion. LEVEL OF EVIDENCE 2.
Collapse
Affiliation(s)
- Richard D Guyer
- Center for Disc Replacement at Texas Back Institute, Plano, Texas
| | - Domagoj Coric
- Carolina Neurosurgery and Spine Associates, Charlotte, North Carolina
| | | | | | | | - Hyun W Bae
- The Spine Institute, Los Angeles, California
| | | | - Donna D Ohnmeiss
- Center for Disc Replacement at Texas Back Institute, Plano, Texas.,Texas Back Institute Research Foundation, Plano, Texas
| |
Collapse
|
12
|
Yoganandan N, Purushothaman Y, Choi H, Baisden J, Rajasekaran D, Banerjee A, Jebaseelan D, Kurpad S. Biomechanical Study of Cervical Disc Arthroplasty Devices Using Finite Element Modeling. JOURNAL OF ENGINEERING AND SCIENCE IN MEDICAL DIAGNOSTICS AND THERAPY 2021; 4:021004. [PMID: 35832636 PMCID: PMC8597568 DOI: 10.1115/1.4049907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/11/2021] [Indexed: 06/15/2023]
Abstract
Many artificial discs for have been introduced to overcome the disadvantages of conventional anterior discectomy and fusion. The purpose of this study was to evaluate the performance of different U.S. Food and Drug Administration (FDA)-approved cervical disc arthroplasty (CDA) on the range of motion (ROM), intradiscal pressure, and facet force variables under physiological loading. A validated three-dimensional finite element model of the human intact cervical spine (C2-T1) was used. The intact spine was modified to simulate CDAs at C5-C6. Hybrid loading with a follower load of 75 N and moments under flexion, extension, and lateral bending of 2 N·m each were applied to intact and CDA spines. From this work, it was found that at the index level, all CDAs except the Bryan disc increased ROM, and at the adjacent levels, motion decreased in all modes. The largest increase occurred under the lateral bending mode. The Bryan disc had compensatory motion increases at the adjacent levels. Intradiscal pressure reduced at the adjacent levels with Mobi-C and Secure-C. Facet force increased at the index level in all CDAs, with the highest force with the Mobi-C. The force generally decreased at the adjacent levels, except for the Bryan disc and Prestige LP in lateral bending. This study demonstrates the influence of different CDA designs on the anterior and posterior loading patterns at the index and adjacent levels with head supported mass type loadings. The study validates key clinical observations: CDA procedure is contraindicated in cases of facet arthroplasty and may be protective against adjacent segment degeneration.
Collapse
Affiliation(s)
- Narayan Yoganandan
- Center for NeuroTrauma Research, Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226; VA Medical Center, Medical College of Wisconsin, Milwaukee, WI 53226; Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Yuvaraj Purushothaman
- Center for NeuroTrauma Research, Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Hoon Choi
- Center for NeuroTrauma Research, Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Jamie Baisden
- Center for NeuroTrauma Research, Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Deepak Rajasekaran
- Center for NeuroTrauma Research, Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Anjishnu Banerjee
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Davidson Jebaseelan
- School of Mechanical Engineering, Vellore Institute of Technology, Chennai Campus, Chennai 600036, India
| | - Shekar Kurpad
- Center for NeuroTrauma Research, Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226; VA Medical Center, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
13
|
Astin JH, Wilkerson CG, Dailey AT, Ellis BJ, Brockmeyer DL. Finite element modeling to compare craniocervical motion in two age-matched pediatric patients without or with Down syndrome: implications for the role of bony geometry in craniocervical junction instability. J Neurosurg Pediatr 2021; 27:218-224. [PMID: 33186914 DOI: 10.3171/2020.6.peds20453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/30/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Instability of the craniocervical junction (CCJ) is a well-known finding in patients with Down syndrome (DS); however, the relative contributions of bony morphology versus ligamentous laxity responsible for abnormal CCJ motion are unknown. Using finite element modeling, the authors of this study attempted to quantify those relative differences. METHODS Two CCJ finite element models were created for age-matched pediatric patients, a patient with DS and a control without DS. Soft tissues and ligamentous structures were added based on bony landmarks from the CT scans. Ligament stiffness values were assigned using published adult ligament stiffness properties. Range of motion (ROM) testing determined that model behavior most closely matched pediatric cadaveric data when ligament stiffness values were scaled down to 25% of those found in adults. These values, along with those assigned to the other soft-tissue materials, were identical for each model to ensure that the only variable between the two was the bone morphology. The finite element models were then subjected to three types of simulations to assess ROM, anterior-posterior (AP) translation displacement, and axial tension. RESULTS The DS model exhibited more laxity than the normal model at all levels for all of the cardinal ROMs and AP translation. For the CCJ, the flexion-extension, lateral bending, axial rotation, and AP translation values predicted by the DS model were 40.7%, 52.1%, 26.1%, and 39.8% higher, respectively, than those for the normal model. When simulating axial tension, the soft-tissue structural stiffness values predicted by the DS and normal models were nearly identical. CONCLUSIONS The increased laxity exhibited by the DS model in the cardinal ROMs and AP translation, along with the nearly identical soft-tissue structural stiffness values exhibited in axial tension, calls into question the previously held notion that ligamentous laxity is the sole explanation for craniocervical instability in DS.
Collapse
Affiliation(s)
- J Harley Astin
- Departments of1Bioengineering, Scientific Computing and Imaging Institute, and
| | | | - Andrew T Dailey
- 2Neurosurgery, Division of Pediatric Neurosurgery, University of Utah, Salt Lake City, Utah
| | - Benjamin J Ellis
- Departments of1Bioengineering, Scientific Computing and Imaging Institute, and
| | - Douglas L Brockmeyer
- 2Neurosurgery, Division of Pediatric Neurosurgery, University of Utah, Salt Lake City, Utah
| |
Collapse
|
14
|
Wang XF, Meng Y, Liu H, Wang BY, Hong Y. The impact of different artificial disc heights during total cervical disc replacement: an in vitro biomechanical study. J Orthop Surg Res 2021; 16:12. [PMID: 33407705 PMCID: PMC7789724 DOI: 10.1186/s13018-020-02157-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The principles of choosing an appropriate implant height remain controversial in total cervical disc replacement (TDR). By performing an in vitro biomechanical study and exploring the biomechanical impact of implant height on facet joint and motion function, the study aimed to offer valid proposals regarding implant height selection during TDR. METHODS A total of 6 fresh-frozen male cadaveric cervical spines (C2-C7) with 5 mm intervertebral disc height at C5/6 level were enrolled in the study. Specimens with the intact condition and with different height artificial discs were tested. Facet joint pressures and range of motion under each condition were recorded using a specialized machine. RESULTS The artificial disc heights that were involved in this study were 5 mm, 6 mm, and 7 mm. The range of motion decreased along with the increment of implant height, while facet joint pressure showed an opposite trend. Specimens with a 5 mm implant height could provide a similar range of motion (11.8° vs. 12.2° in flexion-extension, 8.7° vs. 9.0° in rotation, 7.9° vs. 8.2° in lateral bending) and facet joint pressure (27.8 psi vs. 25.2 psi in flexion, 59.7 psi vs. 58.9 psi in extension, 24.0 psi vs. 22.7 psi in rotation, 32.0 psi vs. 28.8 psi in lateral bending) compared with intact specimens. Facet joint pressure of specimens with 6 mm implant height (≥ 1 mm in height) increased during flexion at the C5-6 segment (30.4 psi vs. 25.2 psi, P = 0.076). However, specimens with 7 mm implant height (≥ 2 mm in height) showed a significant reduction in motion (9.5° vs. 12.2° in flexion-extension, P < 0.001) and increment of facet joint pressure at C5-6 segment (44.6 psi vs. 25.2 psi in flexion, 90.3 psi vs. 58.9 psi in extension, P < 0.0001) and adjacent segments. CONCLUSIONS This study suggested that an appropriate artificial disc height can achieve near-normal biomechanical properties and is recommended. We should be very cautious when using artificial discs ≥ 1 mm in height compared to normal. However, implants ≥ 2 mm in height compared to normal significantly increased the facet joint pressure and decreased the range of motion; therefore, it should not be used in clinical practice.
Collapse
Affiliation(s)
- Xiao-Fei Wang
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Yang Meng
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Hao Liu
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| | - Bei-Yu Wang
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Ying Hong
- Department of Anesthesia and Operation Room/West China School of Nursing, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
15
|
Herron MR, Park J, Dailey AT, Brockmeyer DL, Ellis BJ. Febio finite element models of the human cervical spine. J Biomech 2020; 113:110077. [PMID: 33142209 DOI: 10.1016/j.jbiomech.2020.110077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 10/05/2020] [Accepted: 10/16/2020] [Indexed: 11/29/2022]
Abstract
Finite element (FE) analysis has proven to be useful when studying the biomechanics of the cervical spine. Although many FE studies of the cervical spine have been published, they typically develop their models using commercial software, making the sharing of models between researchers difficult. They also often model only one part of the cervical spine. The goal of this study was to develop and evaluate three FE models of the adult cervical spine using open-source software and to freely provide these models to the scientific community. The models were created from computed tomography scans of 26-, 59-, and 64-year old female subjects. These models were evaluated against previously published experimental and FE data. Despite the fact that all three models were assigned identical material properties and boundary conditions, there was notable variation in their biomechanical behavior. It was therefore apparent that these differences were the result of morphological differences between the models.
Collapse
Affiliation(s)
- Michael R Herron
- Department of Biomedical Engineering, and Scientific Computing and Imaging Institute, University of Utah, 72 S. Central Campus Drive, Salt Lake City, UT 84112, United States
| | - Jeeone Park
- Department of Biomedical Engineering, and Scientific Computing and Imaging Institute, University of Utah, 72 S. Central Campus Drive, Salt Lake City, UT 84112, United States
| | - Andrew T Dailey
- Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Utah, Primary Children's Hospital, 100 N. Mario Capecchi Drive #5, Salt Lake City, UT 84132, United States
| | - Douglas L Brockmeyer
- Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Utah, Primary Children's Hospital, 100 N. Mario Capecchi Drive #5, Salt Lake City, UT 84132, United States
| | - Benjamin J Ellis
- Department of Biomedical Engineering, and Scientific Computing and Imaging Institute, University of Utah, 72 S. Central Campus Drive, Salt Lake City, UT 84112, United States.
| |
Collapse
|
16
|
Jacobs CAM, Siepe CJ, Ito K. Viscoelastic cervical total disc replacement devices: Design concepts. Spine J 2020; 20:1911-1924. [PMID: 32810609 DOI: 10.1016/j.spinee.2020.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 02/03/2023]
Abstract
Cervical disc replacement (CDR) is a motion-preserving surgical procedure for treating patients with degenerative disorders. Numerous reports of first generation CDR "ball-and-socket" articulating devices have shown satisfactory clinical results. As a result, CDR devices have been safely implemented in the surgeon's armamentarium on a global scale. However, only minor design improvements have been made over the last few years, as first generation CDRs devices were based on traditional synovial joint arthroplasty designs. As a consequence, these articulating designs have limited resemblance to the complex kinematic behavior of a natural disc. This has driven the development of deformable viscoelastic CDR devices to better mimic the biomechanical behavior of a natural disc. As a result, several viscoelastic CDR devices have been developed in recent years that vary in terms of materials, design and clinical outcomes. Since these viscoelastic CDR devices are fairly new, their weaknesses and strengths, which are related to their design characteristics, have not been well described. Therefore, this literature review discusses design related advantages and disadvantages of deformable viscoelastic CDR devices. As such, this paper can provide insight for surgeons and engineers on specific design characteristics of several viscoelastic devices and could potentially help to develop and design future implants. Eleven viscoelastic CDR devices were identified. An extensive database search on the devices' tradenames in Medline and PubMed was performed next. The devices were categorized based on common design characteristics to give an overview of both category and device specific complications and advantages. Overall, literature shows that most of these viscoelastic CDR devices can provide motion in all six degrees-of-freedom and have a variable center of rotation. Nevertheless, the viscoelastic materials used do not have an extensive history in orthopedics, so the long-term material behavior in vivo is still unknown. Although the viscoelastic devices have common benefits and risks, each specific design and category also has its own design related advantages and drawbacks that are described in this review. Altogether, viscoelastic total disc replacements seem to be a promising option for the future of cervical arthroplasty, but long-term clinical outcome is needed to confirm the advantages of mimicking the viscoelasticity of a natural disc.
Collapse
Affiliation(s)
- Celien A M Jacobs
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, De Rondom 70, 5612 AP Eindhoven, the Netherlands.
| | - Christoph J Siepe
- Schoen Clinic Munich Harlaching, Spine Center, Harlachinger Str. 51, D-81547 Munich, Germany; Spine Research Institute and Academic Teaching Hospital of the Paracelsus University Salzburg (PMU), Strubergasse 21, A-5020 Salzburg, Austria
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, De Rondom 70, 5612 AP Eindhoven, the Netherlands
| |
Collapse
|
17
|
Wang X, Liu H, Meng Y, Hong Y, Wang B, Ding C, Yang Y. Effect of Disc Height and Degree of Distraction on Heterotopic Ossification After Cervical Disc Replacement. World Neurosurg 2020; 145:e100-e107. [PMID: 33010509 DOI: 10.1016/j.wneu.2020.09.134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Heterotopic ossification (HO) is a potential and severe complication of cervical disc replacement (CDR). However, the underlying mechanism of CDR and its association with preoperative disc height loss (DHL) and postoperative degree of distraction remain unclear. We hypothesized that DHL and postoperative degree of distraction could predict HO after CDR. METHODS Data were obtained from 127 patients who underwent single-level CDR with a minimum follow-up of 2 years. DHL and adjusted degree of distraction (ADD) were obtained from lateral radiographs, and HO was evaluated at the last follow-up appointment. Receiver operating characteristic curves were calculated to verify the diagnostic value of DHL and ADD in predicting HO. RESULTS Both DHL and ADD were significantly larger in the HO group than in the non-HO group (P < 0.05). DHL ≥24.97% increased the risk of HO by 5 times (P = 0.003, 95% confidence interval 1.62-15.49), and ADD ≥36.67% increased the risk of HO by 3.87 times (P < 0.001, 95% confidence interval 1.81-8.27). A combined DHL and ADD (combined parameter) cutoff of 60.36 had a sensitivity of 87.18%, specificity of 67.35%, and area under the curve of 0.77 for predicting HO. CONCLUSIONS DHL and ADD are associated with the development of HO after CDR. The cutoff value of DHL may narrow the criteria for CDR with the aim of reducing HO formation. The combined parameter may help surgeons to select the most suitable implant height to reduce the prevalence of HO.
Collapse
Affiliation(s)
- Xiaofei Wang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Liu
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China.
| | - Yang Meng
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Hong
- Department of Anesthesia and Operation Center, West China Hospital, Sichuan University, Chengdu, China; West China School of Nursing, Sichuan University, Chengdu, China
| | - Beiyu Wang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Ding
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Yang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Gandhi AA, Grosland NM, Kallemeyn NA, Kode S, Fredericks DC, Smucker JD. Biomechanical Analysis of the Cervical Spine Following Disc Degeneration, Disc Fusion, and Disc Replacement: A Finite Element Study. Int J Spine Surg 2019; 13:491-500. [PMID: 31970043 DOI: 10.14444/6066] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background Discectomy and fusion is considered the "gold standard" treatment for clinical manifestations of degenerative disc disease in the cervical spine. However, clinical and biomechanical studies suggest that fusion may lead to adjacent-segment disease. Cervical disc arthroplasty preserves the motion at the operated level and may potentially decrease the occurrence of adjacent segment degeneration. The purpose of this study was to investigate the effect of disc generation, fusion, and disc replacement on the motion, disc stresses, and facet forces on the cervical spine by using the finite element method. Methods A validated, intact, 3-dimensional finite element model of the cervical spine (C2-T1) was modified to simulate single-level (C5-C6) and 2-level (C5-C7) degeneration. The single-level degenerative model was modified to simulate both single-level fusion and arthroplasty (total disc replacement [TDR]) using the Bryan and Prestige LP discs. The 2-level degenerative model was modified to simulate a 2-level fusion, 2-level arthroplasty, and single-level disc replacement adjacent to single-level fusion (hybrid). The intact models were loaded by applying a moment of ±2 Nm in flexion-extension, lateral bending, and axial rotation. The motion in each direction was noted and the other modified models were loaded by increasing the moment until the primary C2-T1 motion matched that of the intact (healthy) C2-T1 motion. Results Both Bryan and Prestige discs preserved motion at the implanted level and maintained normal motions at the adjacent nonoperative levels. A fusion resulted in a decrease in motion at the fused level and an increase in motion at the unfused levels. In the hybrid construct, the TDR (both) preserved motion adjacent to the fusion, thus reducing the demand on the other levels. The disc stresses followed the same trends as motion. Facet forces increased considerably at the index level following a TDR. Conclusion The Bryan and Prestige LP TDRs both preserved motion at the implanted level and maintained normal motion and disc stresses at the adjacent levels. The motion patterns of the spine with a TDR more closely resembled that of the intact spine than those of the degenerative or fused models.
Collapse
Affiliation(s)
- Anup A Gandhi
- Department of Biomedical Engineering, University of Iowa Hospitals and Clinics, The University of Iowa, Iowa City, Iowa.,Center for Computer Aided Design, University of Iowa Hospitals and Clinics, The University of Iowa, Iowa City, Iowa
| | - Nicole M Grosland
- Department of Biomedical Engineering, University of Iowa Hospitals and Clinics, The University of Iowa, Iowa City, Iowa.,Department of Orthopaedics and Rehabilitation, University of Iowa Hospitals and Clinics, The University of Iowa, Iowa City, Iowa
| | - Nicole A Kallemeyn
- Department of Biomedical Engineering, University of Iowa Hospitals and Clinics, The University of Iowa, Iowa City, Iowa.,Center for Computer Aided Design, University of Iowa Hospitals and Clinics, The University of Iowa, Iowa City, Iowa
| | - Swathi Kode
- Department of Biomedical Engineering, University of Iowa Hospitals and Clinics, The University of Iowa, Iowa City, Iowa.,Center for Computer Aided Design, University of Iowa Hospitals and Clinics, The University of Iowa, Iowa City, Iowa
| | - Douglas C Fredericks
- Department of Orthopaedics and Rehabilitation, University of Iowa Hospitals and Clinics, The University of Iowa, Iowa City, Iowa
| | - Joseph D Smucker
- Department of Orthopaedics and Rehabilitation, University of Iowa Hospitals and Clinics, The University of Iowa, Iowa City, Iowa
| |
Collapse
|
19
|
Sperry MM, Phillips ATM, McGregor AH. Lower back pain and healthy subjects exhibit distinct lower limb perturbation response strategies: A preliminary study. J Back Musculoskelet Rehabil 2019; 32:27-35. [PMID: 30056411 DOI: 10.3233/bmr-170808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND It is hypothesized that inherent differences in movement strategies exist between control subjects and those with a history of lower back pain (LBP). Previous motion analysis studies focus primarily on tracking spinal movements, neglecting the connection between the lower limbs and spinal function. Lack of knowledge surrounding the functional implications of LBP may explain the diversity in success from general treatments currently offered to LBP patients. OBJECTIVE This pilot study evaluated the response of healthy controls and individuals with a history of LBP (hLBP) to a postural disturbance. METHODS Volunteers (n= 26) were asked to maintain standing balance in response to repeated balance disturbances delivered via a perturbation platform while both kinematic and electromyographic data were recorded from the trunk, pelvis, and lower limb. RESULTS The healthy cohort utilized an upper body-focused strategy for balance control, with substantial activation of the external oblique muscles. The hLBP cohort implemented a lower limb-focused strategy, relying on activation of the semitendinosus and soleus muscles. No significant differences in joint range of motion were identified. CONCLUSIONS These findings suggest that particular reactive movement patterns may indicate muscular deficits in subjects with hLBP. Identification of these deficits may aid in developing specific rehabilitation programs to prevent future LBP recurrence.
Collapse
Affiliation(s)
- Megan M Sperry
- Department of Civil and Environmental Engineering, Structural Biomechanics, Imperial College London, Charing Cross Hospital, London, UK
| | - Andrew T M Phillips
- Department of Civil and Environmental Engineering, Structural Biomechanics, Imperial College London, Charing Cross Hospital, London, UK
| | - Alison H McGregor
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Charing Cross Hospital, London, UK
| |
Collapse
|
20
|
Yuan W, Zhang H, Zhou X, Wu W, Zhu Y. The Influence of Artificial Cervical Disc Prosthesis Height on the Cervical Biomechanics: A Finite Element Study. World Neurosurg 2018; 113:e490-e498. [DOI: 10.1016/j.wneu.2018.02.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/11/2018] [Indexed: 10/18/2022]
|
21
|
Yu Y, Mao H, Li JS, Tsai TY, Cheng L, Wood KB, Li G, Cha TD. Ranges of Cervical Intervertebral Disc Deformation During an In Vivo Dynamic Flexion-Extension of the Neck. J Biomech Eng 2017; 139:2613837. [PMID: 28334358 DOI: 10.1115/1.4036311] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Indexed: 12/26/2022]
Abstract
While abnormal loading is widely believed to cause cervical spine disc diseases, in vivo cervical disc deformation during dynamic neck motion has not been well delineated. This study investigated the range of cervical disc deformation during an in vivo functional flexion-extension of the neck. Ten asymptomatic human subjects were tested using a combined dual fluoroscopic imaging system (DFIS) and magnetic resonance imaging (MRI)-based three-dimensional (3D) modeling technique. Overall disc deformation was determined using the changes of the space geometry between upper and lower endplates of each intervertebral segment (C3/4, C4/5, C5/6, and C6/7). Five points (anterior, center, posterior, left, and right) of each disc were analyzed to examine the disc deformation distributions. The data indicated that between the functional maximum flexion and extension of the neck, the anterior points of the discs experienced large changes of distraction/compression deformation and shear deformation. The higher level discs experienced higher ranges of disc deformation. No significant difference was found in deformation ranges at posterior points of all the discs. The data indicated that the range of disc deformation is disc level dependent and the anterior region experienced larger changes of deformation than the center and posterior regions, except for the C6/7 disc. The data obtained from this study could serve as baseline knowledge for the understanding of the cervical spine disc biomechanics and for investigation of the biomechanical etiology of disc diseases. These data could also provide insights for development of motion preservation surgeries for cervical spine.
Collapse
Affiliation(s)
- Yan Yu
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 2000065, China;Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Haiqing Mao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Jing-Sheng Li
- College of Health and Rehabilitation Sciences, Sargent College, Boston University, Boston, MA 02215
| | - Tsung-Yuan Tsai
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Liming Cheng
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Kirkham B Wood
- Department of Orthopaedic Surgery, Stanford University Medical Center, Redwood City, CA 94063
| | - Guoan Li
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, GRJ 1215, Boston, MA 02114 e-mail:
| | - Thomas D Cha
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| |
Collapse
|
22
|
Finite element model predicts the biomechanical performance of cervical disc replacement and fusion hybrid surgery with various geometry of ball-and-socket artificial disc. Int J Comput Assist Radiol Surg 2017; 12:1399-1409. [DOI: 10.1007/s11548-017-1616-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/17/2017] [Indexed: 11/27/2022]
|
23
|
Functional analyses of the primate upper cervical vertebral column. J Hum Evol 2017; 107:19-35. [DOI: 10.1016/j.jhevol.2017.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 11/20/2022]
|
24
|
Cervical facet force analysis after disc replacement versus fusion. Clin Biomech (Bristol, Avon) 2017; 44:52-58. [PMID: 28340364 DOI: 10.1016/j.clinbiomech.2017.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 01/31/2017] [Accepted: 03/16/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cervical total disc replacement was developed to preserve motion and reduce adjacent-level degeneration relative to fusion, yet concerns remain that total disc replacement will lead to altered facet joint loading and long-term facet joint arthrosis. This study is intended to evaluate changes in facet contact force, pressure and surface area at the treated and superior adjacent levels before and after discectomy, disc replacement, and fusion. METHODS Ten fresh-frozen human cadaveric cervical spines were potted from C2 to C7 with pressure sensors placed into the facet joints of C3-C4 and C4-C5 via slits in the facet capsules. Moments were applied to the specimens to produce axial rotation, lateral bending and extension. Facet contact force and pressure were measured at both levels for intact, discectomy at C4-C5, disc replacement with ProDisc-C (Synthes Spine, West Chester, Pennsylvania, USA) at C4-C5, and anterior discectomy and fusion with Cervical Spine Locking Plate (Synthes Spine, West Chester, Pennsylvania, USA) at C4-C5. Facet contact area was calculated from the force and pressure measurements. An analysis of variance was used to determine significant differences with P-values <0.05 indicating significance. FINDINGS Facet contact force was elevated at the treated level under extension following both discectomy and disc replacement, while facet contact pressure and area were relatively unchanged. Facet contact force and area were decreased at the treated level following fusion for all three loading conditions. INTERPRETATION Total disc replacement preserved facet contact force for all scenarios except extension at the treated level, highlighting the importance of the anterior disco-ligamentous complex. This could promote treated-level facet joint disease.
Collapse
|
25
|
Mo Z, Li Q, Jia Z, Yang J, Wong DWC, Fan Y. Biomechanical consideration of prosthesis selection in hybrid surgery for bi-level cervical disc degenerative diseases. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2016; 26:1181-1190. [PMID: 27652678 DOI: 10.1007/s00586-016-4777-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 09/01/2016] [Accepted: 09/09/2016] [Indexed: 01/24/2023]
Abstract
PURPOSE Hybrid surgery (HS) coupling total disc replacement and fusion has been increasingly applied for multilevel cervical disc diseases (CDD). However, selection of the optimal disc prosthesis for HS in an individual patient has not been investigated. This study aimed to distinguish the biomechanical performances of five widely used prostheses (Bryan, ProDisc-C, PCM, Mobi-C, and Discover) in HS for the treatment of bi-level CDD. METHODS A finite element model of healthy cervical spine (C3-C7) was developed, and five HS models using different disc prostheses were constructed by arthrodesis at C4-C5 and by arthroplasty at C5-C6. First, the rotational displacements in flexion (Fl), extension, axial rotation, and lateral bending in the healthy model under 1.0 Nm moments combined with 73.6 N follower load were achieved, and then the maximum rotations in each direction combined with the same follower load were applied in the surgical models following displacement control testing protocols. RESULTS The range of motion (ROM) of the entire operative and adjacent levels was close to that of the healthy spine for ball-in-socket prostheses, that is, ProDisc-C, Mobi-C, and Discover, in Fl. For Bryan and PCM, the ROM of the operative levels was less than that of the healthy spine in Fl and resulted in the increase in ROMs at the adjacent levels. Ball-in-socket prostheses produced similar reaction moments (92-99 %) in Fl, which were close to that of the healthy spine. Meanwhile, Bryan and PCM required greater moments (>130 %). The adjacent intradiscal pressures (IDPs) in the models of ball-in-socket prostheses were close to that of the healthy spine. Meanwhile, in the models of Bryan and PCM, the adjacent IDPs were 25 % higher than that of the ball-in-socket models. The maximum facet stress in the model of Mobi-C was the greatest among all prostheses, which was approximately two times that of the healthy spine. Moreover, Bryan produced the largest stress on the bone-implant interface, followed by PCM, Mobi-C, ProDisc-C, and Discover. CONCLUSION Each disc prosthesis has its biomechanical advantages and disadvantages in HS and should be selected on an individual patient basis. In general, ProDisc-C, Mobi-C, and Discover produced similar performances in terms of spinal motions, adjacent IDPs, and driving moments, whereas Bryan and PCM produced similar biomechanical performances. Therefore, HS with Discover, Bryan, and PCM may be suitable for patients with potential risk of facet joint degeneration, whereas HS with ProDisc-C, Mobi-C, and Discover may be suitable for patients with potential risk of vertebral osteoporosis.
Collapse
Affiliation(s)
- Zhongjun Mo
- National Research Center for Rehabilitation Technical Aids, Beijing, People's Republic of China.,Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, International Joint Research Center of Aerospace Biotechnology and Medical Engineering of Ministry of Science and Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, People's Republic of China
| | - Qi Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, International Joint Research Center of Aerospace Biotechnology and Medical Engineering of Ministry of Science and Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, People's Republic of China
| | - Zhiwei Jia
- Department of Orthopaedics, The 306th Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Jiemeng Yang
- National Research Center for Rehabilitation Technical Aids, Beijing, People's Republic of China
| | - Duo Wai-Chi Wong
- Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, SAR, People's Republic of China
| | - Yubo Fan
- National Research Center for Rehabilitation Technical Aids, Beijing, People's Republic of China. .,Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, International Joint Research Center of Aerospace Biotechnology and Medical Engineering of Ministry of Science and Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, People's Republic of China.
| |
Collapse
|
26
|
Abstract
STUDY DESIGN Retrospective study. OBJECTIVE To determine the short-term clinical succesrate of the M6-C cervical disk prosthesis in primary and secondary surgery. SUMMARY OF BACKGROUND DATA Cervical disk arthroplasty (CDA) provides an alternative to anterior cervical decompression and fusion for the treatment of spondylotic radiculopathy or myelopathy. The prevention of adjacent segment disease (ASD), a possible complication of anterior cervical decompression and fusion, is its most cited--although unproven--benefit. Unlike older arthroplasty devices that rely on a ball-and-socket-type design, the M6-C cervical disk prosthesis represents a new generation of unconstrained implants, developed to achieve better restoration of natural segmental biomechanics. This device should therefore optimize clinical performance of CDA and reduce ASD. MATERIALS AND METHODS All patients had preoperative computed tomography or magnetic resonance imaging and postoperative x-rays. Clinical outcome was assessed using the Neck Disability Index, a Visual Analog Scale, and the SF-36 questionnaire. Patients were asked about overall satisfaction and whether they would have the surgery again. RESULTS Thirty-three patients were evaluated 17.1 months after surgery, on average. Nine patients had a history of cervical interventions. Results for Neck Disability Index, Visual Analog Scale, and SF-36 were significantly better among patients who had undergone primary surgery. In this group, 87.5% of patients reported a good or excellent result and 91.7% would have the procedure again. In contrast, all 4 device-related complications occurred in the small group of patients who had secondary surgery. CONCLUSIONS The M6-C prosthesis appears to be a valuable addition to the CDA armatorium. It generates very good results in patients undergoing primary surgery, although its use in secondary surgery should be avoided. Longer follow-up is needed to determine to what measure this device can prevent ASD.
Collapse
|
27
|
Phuntsok R, Mazur MD, Ellis BJ, Ravindra VM, Brockmeyer DL. Development and initial evaluation of a finite element model of the pediatric craniocervical junction. J Neurosurg Pediatr 2016; 17:497-503. [PMID: 26684768 DOI: 10.3171/2015.8.peds15334] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT There is a significant deficiency in understanding the biomechanics of the pediatric craniocervical junction (CCJ) (occiput-C2), primarily because of a lack of human pediatric cadaveric tissue and the relatively small number of treated patients. To overcome this deficiency, a finite element model (FEM) of the pediatric CCJ was created using pediatric geometry and parameterized adult material properties. The model was evaluated under the physiological range of motion (ROM) for flexion-extension, axial rotation, and lateral bending and under tensile loading. METHODS This research utilizes the FEM method, which is a numerical solution technique for discretizing and analyzing systems. The FEM method has been widely used in the field of biomechanics. A CT scan of a 13-month-old female patient was used to create the 3D geometry and surfaces of the FEM model, and an open-source FEM software suite was used to apply the material properties and boundary and loading conditions and analyze the model. The published adult ligament properties were reduced to 50%, 25%, and 10% of the original stiffness in various iterations of the model, and the resulting ROMs for flexion-extension, axial rotation, and lateral bending were compared. The flexion-extension ROMs and tensile stiffness that were predicted by the model were evaluated using previously published experimental measurements from pediatric cadaveric tissues. RESULTS The model predicted a ROM within 1 standard deviation of the published pediatric ROM data for flexion-extension at 10% of adult ligament stiffness. The model's response in terms of axial tension also coincided well with published experimental tension characterization data. The model behaved relatively stiffer in extension than in flexion. The axial rotation and lateral bending results showed symmetric ROM, but there are currently no published pediatric experimental data available for comparison. The model predicts a relatively stiffer ROM in both axial rotation and lateral bending in comparison with flexion-extension. As expected, the flexion-extension, axial rotation, and lateral bending ROMs increased with the decrease in ligament stiffness. CONCLUSIONS An FEM of the pediatric CCJ was created that accurately predicts flexion-extension ROM and axial force displacement of occiput-C2 when the ligament material properties are reduced to 10% of the published adult ligament properties. This model gives a reasonable prediction of pediatric cervical spine ligament stiffness, the relationship between flexion-extension ROM, and ligament stiffness at the CCJ. The creation of this model using open-source software means that other researchers will be able to use the model as a starting point for research.
Collapse
Affiliation(s)
- Rinchen Phuntsok
- Department of Bioengineering and Scientific Computing and Imaging Institute, University of Utah; and
| | - Marcus D Mazur
- Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Utah, Primary Children's Hospital, Salt Lake City, Utah
| | - Benjamin J Ellis
- Department of Bioengineering and Scientific Computing and Imaging Institute, University of Utah; and
| | - Vijay M Ravindra
- Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Utah, Primary Children's Hospital, Salt Lake City, Utah
| | - Douglas L Brockmeyer
- Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Utah, Primary Children's Hospital, Salt Lake City, Utah
| |
Collapse
|
28
|
Li J, Shang J, Zhou Y, Li C, Liu H. Finite Element Analysis of a New Pedicle Screw-Plate System for Minimally Invasive Transforaminal Lumbar Interbody Fusion. PLoS One 2015; 10:e0144637. [PMID: 26649749 PMCID: PMC4674154 DOI: 10.1371/journal.pone.0144637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 11/20/2015] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Minimally invasive transforaminal lumbar interbody fusion (MI-TLIF) is increasingly popular for the surgical treatment of degenerative lumbar disc diseases. The constructs intended for segmental stability are varied in MI-TLIF. We adopted finite element (FE) analysis to compare the stability after different construct fixations using interbody cage with posterior pedicle screw-rod or pedicle screw-plate instrumentation system. METHODS A L3-S1 FE model was modified to simulate decompression and fusion at L4-L5 segment. Fixation modes included unilateral plate (UP), unilateral rod (UR), bilateral plate (BP), bilateral rod (BR) and UP+UR fixation. The inferior surface of the S1 vertebra remained immobilized throughout the load simulation, and a bending moment of 7.5 Nm with 400N pre-load was applied on the L3 vertebra to recreate flexion, extension, lateral bending, and axial rotation. Range of motion (ROM) and Von Mises stress were evaluated for intact and instrumentation models in all loading planes. RESULTS All reconstructive conditions displayed decreased motion at L4-L5. The pedicle screw-plate system offered equal ROM to pedicle screw-rod system in unilateral or bilateral fixation modes respectively. Pedicle screw stresses for plate system were 2.2 times greater than those for rod system in left lateral bending under unilateral fixation. Stresses for plate were 3.1 times greater than those for rod in right axial rotation under bilateral fixation. Stresses on intervertebral graft for plate system were similar to rod system in unilateral and bilateral fixation modes respectively. Increased ROM and posterior instrumentation stresses were observed in all loading modes with unilateral fixation compared with bilateral fixation in both systems. CONCLUSIONS Transforaminal lumbar interbody fusion augmentation with pedicle screw-plate system fixation increases fusion construct stability equally to the pedicle screw-rod system. Increased posterior instrumentation stresses are observed in all loading modes with plate fixation, and bilateral fixation could reduce stress concentration.
Collapse
Affiliation(s)
- Jie Li
- Department of Orthopedics, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Jin Shang
- Department of Orthopedics, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Changqing Li
- Department of Orthopedics, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Huan Liu
- Department of Orthopedics, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| |
Collapse
|
29
|
König SA, Ranguis S, Spetzger U. Hybrid Solutions for the Surgical Treatment of Multilevel Degenerative Cervical Disk Disease. Surg J (N Y) 2015; 1:e16-e22. [PMID: 28824965 DOI: 10.1055/s-0035-1567876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/24/2015] [Indexed: 10/22/2022] Open
Abstract
Background In different stages of cervical degenerative disk disease, the combination of dynamic and nondynamic implants may be considered. The aim of this study was to investigate the applicability of criteria to assist decision making in these cases. Methods Thirty patients with spondylotic cervical radiculopathy and a coincidence of soft disk and hard disk herniation were surgically treated with a hybrid solution (combination of total disk replacement and cage fusion). The control group included 32 patients who underwent two-level cage fusion. Pre- and postoperative Japanese Orthopaedic Association (JOA) scores and range of motion (ROM) were compared. Results Twenty-three patients underwent two-level hybrid solution and 7 underwent three-level treatment. The most frequent solution (n = 13) was a combination of a dynamic implant at C5-C6 and a nondynamic implant at C6-C7. The mean JOA score improved from 13.9 to 15.6 points after surgery (mean deviation [MD] 1.6, 95% confidence interval [CI] 2.1 to 1.2, p < 0.001). ROM showed a slight trend to increase (MD 0.8, 95% CI -0.9 to 2.6, p = 0.193). In the control group, the mean JOA score improved from 13.3 to 15.1 points after surgery (MD 1.4, 95% CI 2.1 to 1.2, p < 0.001). The comparison of the postoperative JOA scores and recovery rates between the hybrid treatment group and the control group did not show significant differences. Conclusions In cases of coincident soft and hard degenerative cervical disk disease at adjacent levels, the combination of a disk prosthesis and a nondynamic implant is a safe and effective treatment option and an alternative to multilevel fusion.
Collapse
Affiliation(s)
| | - Sebastian Ranguis
- Department of Neurosurgery, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Uwe Spetzger
- Neurochirurgische Klinik, Klinikum Karlsruhe, Karlsruhe, Germany
| |
Collapse
|
30
|
Anderst W, Donaldson W, Lee J, Kang J. Cervical Spine Disc Deformation During In Vivo Three-Dimensional Head Movements. Ann Biomed Eng 2015; 44:1598-612. [PMID: 26271522 DOI: 10.1007/s10439-015-1424-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/07/2015] [Indexed: 12/19/2022]
Abstract
Although substantial research demonstrates that intervertebral disc cells respond to mechanical signals, little research has been done to characterize the in vivo mechanical environment in the disc tissue. The objective of this study was to estimate cervical disc strain during three-dimensional head movements. Twenty-nine young healthy adults performed full range of motion flexion/extension, lateral bending, and axial rotation of the head within a biplane radiography system. Three-dimensional vertebral kinematics were determined using a validated model-based tracking technique. A computational model used these kinematics to estimate subject-specific intervertebral disc deformation (C3-4 to C6-7). Peak compression, distraction and shear strains were calculated for each movement, disc level, and disc region. Peak compression strain and peak shear strain were highest during flexion/extension (mean ± 95% confidence interval) (32 ± 3 and 86 ± 8%, respectively), while peak distraction strain was highest during lateral bending (57 ± 5%). Peak compression strain occurred at C4-5 (33 ± 4%), while peak distraction and shear strain occurred at C3-4 (54 ± 8 and 83 ± 11%, respectively). Peak compression, distraction, and shear strains all occurred in the posterior-lateral annulus (48 ± 4, 80 ± 8, and 109 ± 12%, respectively). These peak strain values may serve as boundary conditions for in vitro loading paradigms that aim to assess the biologic response to physiologic disc deformations.
Collapse
Affiliation(s)
- William Anderst
- Department of Orthopaedic Surgery, Biodynamics Lab, University of Pittsburgh, 3820 South Water Street, Pittsburgh, PA, 15203, USA.
| | - William Donaldson
- Department of Orthopaedic Surgery, Biodynamics Lab, University of Pittsburgh, 3820 South Water Street, Pittsburgh, PA, 15203, USA
| | - Joon Lee
- Department of Orthopaedic Surgery, Biodynamics Lab, University of Pittsburgh, 3820 South Water Street, Pittsburgh, PA, 15203, USA
| | - James Kang
- Department of Orthopaedic Surgery, Biodynamics Lab, University of Pittsburgh, 3820 South Water Street, Pittsburgh, PA, 15203, USA
| |
Collapse
|
31
|
AKBARIAN D, ROUHI G, MASHHADI MMOSAVI, HERZOG W. BIOMECHANICS OF CERVICAL SPINE FOLLOWING IMPLANTATION OF A SEMI-CONSTRAINED ARTIFICIAL DISC WITH UPWARD CENTER OF ROTATION: A FINITE ELEMENT INVESTIGATION. J MECH MED BIOL 2015. [DOI: 10.1142/s0219519415500633] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The objective of this study was to evaluate the effects of a semi-constrained artificial disc with upward instantaneous center of rotation (ICR) on the biomechanics of the cervical spine. A three-dimensional nonlinear finite element model of the lower cervical spine (C4–C7) was developed using computed tomography (CT) data. The FE model was validated by comparing it to previously published experimental results for flexion-extension, lateral bending and axial rotation movements. The validated model was then altered to include prosthesis at the C5–C6 level. A hybrid test protocol was used to investigate the effects of total disc replacement. The results of this study showed that this artificial disc can help maintain the same range of motion (ROM) and intradiscal pressure as the intact model for most loading conditions. We also found that loads on the facet joints increased dramatically at index level. The capsular ligaments were also found to transmit more tension during flexion at implanted level. Although the artificial disc with upward ICR was found to restore normal kinematics, and prevented increases in intradiscal pressure, it was also associated with an overloading of the facet joints and capsular ligaments leading to potentially undesirable outcomes in the long term.
Collapse
Affiliation(s)
- D. AKBARIAN
- Department of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - G. ROUHI
- Faculty of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran
- School of Human Kinetics, University of Ottawa, Canada
| | - M. MOSAVI MASHHADI
- Department of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - W. HERZOG
- Human Performance Laboratory, Faculty of Kinesiology, The University of Calgary, Canada
| |
Collapse
|
32
|
Leahy PD, Puttlitz CM. Addition of lateral bending range of motion measurement to standard sagittal measurement to improve diagnosis sensitivity of ligamentous injury in the human lower cervical spine. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2015; 25:122-126. [PMID: 26162921 DOI: 10.1007/s00586-015-4110-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 07/02/2015] [Accepted: 07/03/2015] [Indexed: 11/26/2022]
Abstract
PURPOSE This study examined the cervical spine range of motion (ROM) resulting from whiplash-type hyperextension and hyperflexion type ligamentous injuries, and sought to improve the accuracy of specific diagnosis of these injuries. METHODS The study was accomplished by measurement of ROM throughout axial rotation, lateral bending, and flexion and extension, using a validated finite element model of the cervical spine that was modified to simulate hyperextension and/or hyperflexion injuries. RESULTS It was found that the kinematic difference between hyperextension and hyperflexion injuries was minimal throughout the combined flexion and extension ROM measurement that is commonly used for clinical diagnosis of cervical ligamentous injury. However, the two injuries demonstrated substantially different ROM under axial rotation and lateral bending. CONCLUSIONS It is recommended that other bending axes beyond flexion and extension are incorporated into clinical diagnosis of cervical ligamentous injury.
Collapse
Affiliation(s)
- P Devin Leahy
- Department of Physics and Engineering, Fort Lewis College, 1000 Rim Drive, Durango, CO, 81301, USA.
| | - Christian M Puttlitz
- Orthopaedic Bioengineering Research Laboratory, Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
33
|
Abstract
Cervical disc replacement (CDR) has emerged as an alternative surgical option to cervical arthrodesis. With increasing numbers of patients and longer follow-ups, complications related to the device and/or aging spine are growing, leaving us with a new challenge in the management and surgical revision of CDR. The purpose of this study is to review the current literature regarding reoperations following CDR and to discuss about the approaches and solutions for the current and future potential complications associated with CDR. The published rates of reoperation (mean, 1.0%; range, 0%-3.1%), revision (mean, 0.2%; range, 0%-0.5%), and removal (mean, 1.2%; range, 0%-1.9%) following CDR are low and comparable to the published rates of reoperation (mean, 1.7%; range; 0%-3.4%), revision (mean, 1.5%; range, 0%-4.7%), and removal (mean, 2.0%; range, 0%-3.4%) following cervical arthrodesis. The surgical interventions following CDR range from the repositioning to explantation followed by fusion or the reimplantation to posterior foraminotomy or fusion. Strict patient selection, careful preoperative radiographic review and surgical planning, as well as surgical technique may reduce adverse events and the need for future intervention. Minimal literature and no guidelines exist for the approaches and techniques in revision and for the removal of implants following CDR. Adherence to strict indications and precise surgical technique may reduce the number of reoperations, revisions, and removals following CDR. Long-term follow-up studies are needed, assessing the implant survivorship and its effect on the revision and removal rates.
Collapse
|
34
|
TANG QIAOHONG, WANG LIZHEN, MO ZHONGJUN, LI QI, YAO JIE, DU CHENGFEI, FAN YUBO. BIOMECHANICAL ANALYSIS OF DIFFERENT PRODISC-C ARTHROPLASTY DESIGNS AFTER IMPLANTATION: A NUMERICAL SENSITIVITY STUDY. J MECH MED BIOL 2015. [DOI: 10.1142/s0219519415500074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ball-and-socket disc prostheses are the leading type of artificial disc replacement (ADR) and are typically used to treat degenerative cervical spine instability. Previous publications focused on the influence of different ProDisc-C design parameters in view of biomechanics. However, more beneficial data could be gathered if the implant was implanted prior to testing. Therefore, this study aimed to estimate the effect of different ProDisc-C arthroplasty designs and alignments when implanted at the C5-6 segment. This research can provide advice on the design of artificial discs as well as optimal placement. The geometry of the vertebrae was developed based on computed tomography (CT) images of a 32-year-old healthy male (170 cm height and 68 kg weight) with a slice thickness of 0.625 mm. A finite element (FE) model of intact C5–C6 segments including vertebrae and disc was developed and validated. A ball-and-socket artificial disc prosthesis model (ProDisc-C, Synthes) was implanted into the validated FE model. The curvature of the ProDisc-C prosthesis as well as the implanted position was varied. All models were loaded with a 74 N compressive force and pure moments of 1.8 Nm in flexion-extension, bilateral bending and axial torsion. The radius of the artificial disc influenced the ROM, facet joint force and capsule ligament tension only in flexion, while the position influenced these aspects in all loading conditions. The disc with a 6 mm radius had a greater ROM in flexion, and lower stress on the polyethylene (PE) insert without apparent stress concentrations, but it had a greater facet joint force and ligament tension compared to other radii. For all the designs, the implant position in the anterior–posterior direction had a significant influence on the disc biomechanics. Disc design and surgical procedure, such as implantation position, are important factors in postoperative rehabilitation, especially regarding the ROM in flexion/extension and implant stress. Thus, a suitable disc design should consider preserving an adequate range of motion (ROM) as well as a moderate facet joint force or stress, and proper implant positioning along the anterior–posterior direction should be monitored.
Collapse
Affiliation(s)
- QIAOHONG TANG
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100191 Beijing, P. R. China
- International Joint Research Center of Aerospace, Biotechnology and Medical Engineering, Ministry of Science and Technology of China, 100191 Beijing, P. R. China
| | - LIZHEN WANG
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100191 Beijing, P. R. China
- International Joint Research Center of Aerospace, Biotechnology and Medical Engineering, Ministry of Science and Technology of China, 100191 Beijing, P. R. China
| | - ZHONGJUN MO
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100191 Beijing, P. R. China
- International Joint Research Center of Aerospace, Biotechnology and Medical Engineering, Ministry of Science and Technology of China, 100191 Beijing, P. R. China
| | - QI LI
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100191 Beijing, P. R. China
- International Joint Research Center of Aerospace, Biotechnology and Medical Engineering, Ministry of Science and Technology of China, 100191 Beijing, P. R. China
| | - JIE YAO
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100191 Beijing, P. R. China
- International Joint Research Center of Aerospace, Biotechnology and Medical Engineering, Ministry of Science and Technology of China, 100191 Beijing, P. R. China
| | - CHENGFEI DU
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100191 Beijing, P. R. China
- International Joint Research Center of Aerospace, Biotechnology and Medical Engineering, Ministry of Science and Technology of China, 100191 Beijing, P. R. China
| | - YUBO FAN
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100191 Beijing, P. R. China
- International Joint Research Center of Aerospace, Biotechnology and Medical Engineering, Ministry of Science and Technology of China, 100191 Beijing, P. R. China
| |
Collapse
|
35
|
Esmende SM, Daniels AH, Paller DJ, Koruprolu S, Palumbo MA, Crisco JJ. Cervical total disc replacement exhibits similar stiffness to intact cervical functional spinal units tested on a dynamic pendulum testing system. Spine J 2015; 15:162-7. [PMID: 25194516 DOI: 10.1016/j.spinee.2014.08.442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 07/17/2014] [Accepted: 08/15/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT The pendulum testing system is capable of applying physiologic compressive loads without constraining the motion of functional spinal units (FSUs). The number of cycles to equilibrium observed under pendulum testing is a measure of the energy absorbed by the FSU. OBJECTIVE To examine the dynamic bending stiffness and energy absorption of the cervical spine, with and without implanted cervical total disc replacement (TDR) under simulated physiologic motion. STUDY DESIGN A biomechanical cadaver investigation. METHODS Nine unembalmed, frozen human cervical FSUs from levels C3-C4 and C5-C6 were tested on the pendulum system with axial compressive loads of 25, 50, and 100 N before and after TDR implantation. Testing in flexion, extension, and lateral bending began by rotating the pendulum to 5°, resulting in unconstrained oscillatory motion. The number of rotations to equilibrium was recorded and the bending stiffness (Newton-meter/°) was calculated and compared for each testing mode. RESULTS In flexion/extension, with increasing compressive loading from 25 to 100 N, the average number of cycles to equilibrium for the intact FSUs increased from 6.6 to 19.1, compared with 4.1 to 12.7 after TDR implantation (p<.05 for loads of 50 and 100 N). In flexion, with increasing compressive loading from 25 to 100 N, the bending stiffness of the intact FSUs increased from 0.27 to 0.59 Nm/°, compared with 0.21 to 0.57 Nm/° after TDR implantation. No significant differences were found in stiffness between the intact FSU and the TDR in flexion/extension and lateral bending at any load (p<.05). CONCLUSIONS Cervical FSUs with implanted TDR were found to have similar stiffness, but had greater energy absorption than intact FSUs during cyclic loading with an unconstrained pendulum system. These results provide further insight into the biomechanical behavior of cervical TDR under approximated physiologic loading conditions.
Collapse
Affiliation(s)
- Sean M Esmende
- Department of Orthopaedic Surgery, Warren Alpert Medical School of Brown University, 593 Eddy St, Providence, RI 02906, USA.
| | - Alan H Daniels
- Department of Orthopaedic Surgery, Warren Alpert Medical School of Brown University, 593 Eddy St, Providence, RI 02906, USA
| | - David J Paller
- Department of Orthopaedic Surgery, Warren Alpert Medical School of Brown University, 593 Eddy St, Providence, RI 02906, USA
| | - Sarath Koruprolu
- Department of Orthopaedic Surgery, Warren Alpert Medical School of Brown University, 593 Eddy St, Providence, RI 02906, USA
| | - Mark A Palumbo
- Department of Orthopaedic Surgery, Warren Alpert Medical School of Brown University, 593 Eddy St, Providence, RI 02906, USA
| | - Joseph J Crisco
- Department of Orthopaedic Surgery, Warren Alpert Medical School of Brown University, 593 Eddy St, Providence, RI 02906, USA
| |
Collapse
|
36
|
Rodgers GW, Van Houten EEW, Bianco RJ, Besset R, Woodfield TBF. Optimizing porous lattice structures for orthopaedic implants. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2015:2450-2453. [PMID: 26736789 DOI: 10.1109/embc.2015.7318889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Porous lattice structures are increasingly used for tissue and implant device design, and require precise structural characteristics such as stiffness, porosity, volume fraction and surface area. A non-uniform distribution of these properties may be required to suit design requirements or to match in-vivo conditions. Thus, porous lattice design is complex due to competing objectives from the distributed structural properties. A lattice structural design and optimization methods is presented using global objective functions for effective stiffness, porosity, volume fraction and surface area.
Collapse
|
37
|
White NA, Moreno DP, Brown PJ, Gayzik FS, Hsu W, Powers AK, Stitzel JD. Effects of cervical arthrodesis and arthroplasty on neck response during a simulated frontal automobile collision. Spine J 2014; 14:2195-207. [PMID: 24614252 DOI: 10.1016/j.spinee.2014.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 02/05/2014] [Accepted: 03/01/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Whereas arthrodesis is the most common surgical intervention for the treatment of symptomatic cervical degenerative disc disease, arthroplasty has become increasingly more popular over the past decade. Although literature exists comparing the effects of anterior cervical discectomy and fusion and cervical total disc replacement (CTDR) on neck kinematics and loading, the vast majority of these studies apply only quasi-static, noninjurious loading conditions to a segment of the cervical spine. PURPOSE The objective of this study was to investigate the effects of arthrodesis and arthroplasty on biomechanical neck response during a simulated frontal automobile collision with air bag deployment. STUDY DESIGN This study used a full-body, 50th percentile seated male finite element (FE) model to evaluate neck response during a dynamic impact event. The cervical spine was modified to simulate either an arthrodesis or arthroplasty procedure at C5-C6. METHODS Five simulations of a belted driver, subjected to a 13.3 m/s ΔV frontal impact with air bag deployment, were run in LS-DYNA with the Global Human Body Models Consortium full-body FE model. The first simulation used the original model, with no modifications to the neck, whereas the remaining four were modified to represent either interbody arthrodesis or arthroplasty of C5-C6. Cross-sectional forces and moments at the C5 and C6 cervical levels of the neck, along with interbody and facet forces between C5 and C6, were reported. RESULTS Adjacent-level, cross-sectional neck loading was maintained in all simulations without exceeding any established injury thresholds. Interbody compression was greatest for the CTDRs, and interbody tension occurred only in the fused and nonmodified spines. Some interbody separation occurred between the superior and inferior components of the CTDRs during flexion-induced tension of the cervical spine, increasing the facet loads. CONCLUSIONS This study evaluated the effects of C5-C6 cervical arthrodesis and arthroplasty on neck response during a simulated frontal automobile impact. Although cervical arthrodesis and arthroplasty at C5-C6 did not appear to significantly alter the adjacent-level, cross-sectional neck responses during a simulated frontal automobile impact, key differences were noted in the interbody and facet loading.
Collapse
Affiliation(s)
- Nicholas A White
- Center for Injury Biomechanics, Virginia Tech-Wake Forest University, 575 N. Patterson Ave., Suite 120, Winston-Salem, NC 27157, USA
| | - Daniel P Moreno
- Center for Injury Biomechanics, Virginia Tech-Wake Forest University, 575 N. Patterson Ave., Suite 120, Winston-Salem, NC 27157, USA
| | - Philip J Brown
- Center for Injury Biomechanics, Virginia Tech-Wake Forest University, 575 N. Patterson Ave., Suite 120, Winston-Salem, NC 27157, USA
| | - F Scott Gayzik
- Center for Injury Biomechanics, Virginia Tech-Wake Forest University, 575 N. Patterson Ave., Suite 120, Winston-Salem, NC 27157, USA
| | - Wesley Hsu
- Department of Neurosurgery, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Alexander K Powers
- Department of Neurosurgery, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Joel D Stitzel
- Center for Injury Biomechanics, Virginia Tech-Wake Forest University, 575 N. Patterson Ave., Suite 120, Winston-Salem, NC 27157, USA.
| |
Collapse
|
38
|
Anderst WJ, Donaldson WF, Lee JY, Kang JD. Continuous cervical spine kinematics during in vivo dynamic flexion-extension. Spine J 2014; 14:1221-7. [PMID: 24210579 PMCID: PMC4013269 DOI: 10.1016/j.spinee.2013.08.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 07/16/2013] [Accepted: 08/20/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT A precise and comprehensive definition of "normal" in vivo cervical kinematics does not exist due to high intersubject variability and the absence of midrange kinematic data. In vitro test protocols and finite element models that are validated using only end range of motion data may not accurately reproduce continuous in vivo motion. PURPOSE The primary objective of this study was to precisely quantify cervical spine intervertebral kinematics during continuous, functional flexion-extension in asymptomatic subjects. The advantages of assessing continuous intervertebral kinematics were demonstrated by comparing asymptomatic controls with patients with single-level anterior arthrodesis. STUDY DESIGN Cervical spine kinematics were determined during continuous in vivo flexion-extension in a clinically relevant age group of asymptomatic controls and a group of patients with C5-C6 arthrodesis. PATIENT SAMPLE The patient sample consisted of 6 patients with single-level (C5-C6) anterior arthrodesis (average age: 48.8±6.9 years; 1 male, 5 female; 7.6±1.2 months postsurgery) and 18 asymptomatic control subjects of similar age (average age: 45.6±5.8 years; 5 male, 13 female). OUTCOME MEASURES Outcome measures included the physiologic measure of continuous kinematic motion paths at each cervical motion segment (C2-C7) during flexion-extension. METHODS Participants performed flexion-extension while biplane radiographs were collected at 30 images per second. A previously validated tracking process determined three-dimensional vertebral positions with submillimeter accuracy. Continuous flexion-extension rotation and anterior-posterior translation motion paths were adjusted for disc height and static orientation of each corresponding motion segment. RESULTS Intersubject variability in flexion-extension angle was decreased 15% to 46% and intersubject variability in anterior-posterior translation was reduced 14% to 33% after adjusting for disc height and static orientation angle. Average intersubject variability in continuous motion paths was 1.9° in flexion-extension and 0.6 mm in translation. Third-order polynomial equations were determined to precisely describe the continuous flexion-extension and anterior-posterior translation motion path at each motion segment (all R2>0.99). CONCLUSIONS A significant portion of the intersubject variability in cervical kinematics can be explained by the disc height and the static orientation of each motion segment. Clinically relevant information may be gained by assessing intervertebral kinematics during continuous functional movement rather than at static, end range of motion positions. The fidelity of in vitro cervical spine mechanical testing protocols may be evaluated by comparing in vitro kinematics to the continuous motion paths presented.
Collapse
Affiliation(s)
- William J Anderst
- Department of Orthopaedic Surgery, University of Pittsburgh, 3820 South Water St, Pittsburgh, PA 15203, USA.
| | | | - Joon Y Lee
- University of Pittsburgh, Department of Orthopaedic Surgery
| | - James D Kang
- University of Pittsburgh, Department of Orthopaedic Surgery
| |
Collapse
|
39
|
Tarsuslugil SM, O'Hara RM, Dunne NJ, Buchanan FJ, Orr JF, Barton DC, Wilcox RK. Experimental and computational approach investigating burst fracture augmentation using PMMA and calcium phosphate cements. Ann Biomed Eng 2014; 42:751-62. [PMID: 24395013 PMCID: PMC3949010 DOI: 10.1007/s10439-013-0959-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 12/06/2013] [Indexed: 11/28/2022]
Abstract
The aim of the study was to use a computational and experimental approach to evaluate, compare and predict the ability of calcium phosphate (CaP) and poly (methyl methacrylate) (PMMA) augmentation cements to restore mechanical stability to traumatically fractured vertebrae, following a vertebroplasty procedure. Traumatic fractures (n = 17) were generated in a series of porcine vertebrae using a drop-weight method. The fractured vertebrae were imaged using μCT and tested under axial compression. Twelve of the fractured vertebrae were randomly selected to undergo a vertebroplasty procedure using either a PMMA (n = 6) or a CaP cement variation (n = 6). The specimens were imaged using μCT and re-tested. Finite element models of the fractured and augmented vertebrae were generated from the μCT data and used to compare the effect of fracture void fill with augmented specimen stiffness. Significant increases (p < 0.05) in failure load were found for both of the augmented specimen groups compared to the fractured group. The experimental and computational results indicated that neither the CaP cement nor PMMA cement could completely restore the vertebral mechanical behavior to the intact level. The effectiveness of the procedure appeared to be more influenced by the volume of fracture filled rather than by the mechanical properties of the cement itself.
Collapse
Affiliation(s)
- Sami M Tarsuslugil
- School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, UK,
| | | | | | | | | | | | | |
Collapse
|
40
|
Spetzger U, Von Schilling A, Winkler G, Wahrburg J, König A. The past, present and future of minimally invasive spine surgery: a review and speculative outlook. MINIM INVASIV THER 2014; 22:227-41. [PMID: 23964794 DOI: 10.3109/13645706.2013.821414] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the last 25 years of spinal surgery, tremendous improvements have been made. The development of smart technologies with the overall aim of reducing surgical trauma has resulted in the concept of minimally invasive surgical techniques. Enhancements in microsurgery, endoscopy and various percutaneous techniques, as well as improvement of implant materials, have proven to be milestones. The advancement of training of spine surgeons and the integration of image guidance with precise intraoperative imaging, computer- and robot-assisted treatment modalities constitute the era of reducing treatment morbidity in spinal surgery. This progress has led to the present era of preserving spinal function. The promise of the continuing evolution of spinal surgery, the era of restoring spinal function, already appears on the horizon. The current state of minimally invasive spine surgery is the result of a long-lasting and consecutive development of smart technologies, along with stringent surgical training practices and the improvement of instruments and techniques. However, much effort in research and development is still mandatory to establish, maintain and evolve minimally invasive spine surgery. The education and training of the next generation of highly specialized spine surgeons is another key point. This paper will give an overview of surgical techniques and methods of the past 25 years, examine what is in place today, and suggest a projection for spine surgery in the coming 25 years by drawing a connection from the past to the future.
Collapse
Affiliation(s)
- Uwe Spetzger
- Department of Neurosurgery, Klinikum Karlsruhe, Karlsruhe, Germany.
| | | | | | | | | |
Collapse
|
41
|
Traynelis VC, Sherman J, Nottmeier E, Singh V, McGilvray K, Puttlitz CM, Leahy PD. Kinetic analysis of anterior cervical discectomy and fusion supplemented with transarticular facet screws. J Neurosurg Spine 2014; 20:485-91. [PMID: 24559463 DOI: 10.3171/2014.1.spine13837] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The clinical success rates of anterior cervical discectomy and fusion (ACDF) procedures are substantially reduced as more cervical levels are included in the fusion procedure. One method that has been proposed as an adjunctive technique for multilevel ACDF is the placement of screws across the facet joints ("transfacet screws"). However, the biomechanical stability imparted by transfacet screw placement (either unilaterally or bilaterally) has not been reported. Therefore, the purpose of this study was to determine the acute stability conferred by implementation of unilateral and bilateral transfacet screws to an ACDF construct. METHODS Eight C2-T1 fresh-frozen human cadaveric spines (3 female and 5 male; mean age 50 years) were tested. Three different instrumentation variants were performed on cadaveric cervical spines across C4-7: 1) ACDF with an intervertebral spacer and standard plate/screw instrumentation; 2) ACDF with an intervertebral spacer and standard plate/screw instrumentation with unilateral facet screw placement; and 3) ACDF with an intervertebral spacer and standard plate/screw instrumentation with bilateral facet screw placement. Kinetic ranges of motion in flexion-extension, lateral bending, and axial rotation at 1.5 Nm were captured after each of these procedures and were statistically analyzed for significance. RESULTS All 3 fixation scenarios produced statistically significant reductions (p < 0.05) in all 3 bending planes compared with the intact condition. The addition of a unilateral facet screw to the ACDF construct produced significant reductions at the C4-5 and C6-7 levels in lateral bending and axial rotation but not in flexion-extension motion. Bilateral facet screw fixation did not produce any statistically significant decreases in flexion-extension motion compared with unilateral facet screw fixation. However, in lateral bending, significant reductions at the C4-5 and C5-6 levels were observed with the addition of a second facet screw. The untreated, adjacent levels (C2-3, C3-4, and C7-1) did not demonstrate significant differences in range of motion. CONCLUSIONS The data demonstrated that adjunctive unilateral facet screw fixation to an ACDF construct provides significant gains in stability and should be considered a potential option for increasing the likelihood for obtaining a successful arthrodesis for multilevel ACDF procedures.
Collapse
Affiliation(s)
- Vincent C Traynelis
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
| | | | | | | | | | | | | |
Collapse
|
42
|
Rodgers GW, Van Houten EE, Bianco RJ, Besset R, Woodfield TB. Topology Optimization of Porous Lattice Structures for Orthopaedic Implants. ACTA ACUST UNITED AC 2014. [DOI: 10.3182/20140824-6-za-1003.00924] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Mo ZJ, Zhao YB, Wang LZ, Sun Y, Zhang M, Fan YB. Biomechanical effects of cervical arthroplasty with U-shaped disc implant on segmental range of motion and loading of surrounding soft tissue. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2013; 23:613-21. [PMID: 24154828 DOI: 10.1007/s00586-013-3070-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 09/09/2013] [Accepted: 10/09/2013] [Indexed: 12/12/2022]
Abstract
PURPOSE Various design concepts have been adopted in cervical disc prostheses, including sliding articulation and standalone configuration. This study aimed to evaluate the biomechanical effects of the standalone U-shaped configuration on the cervical spine. METHODS Based on an intact finite element model of C3-C7, a standalone U-shaped implant (DCI) was installed at C5-C6 and compared with a sliding articulation design (Prodisc-C) and an anterior fusion system. The range of motion (ROM), adjacent intradiscal pressure (IDP) and capsular ligament strain were calculated under different spinal motions. RESULTS Compared to the intact configuration, the ROM at C5-C6 was reduced by 90% after fusion, but increased by 70% in the Prodisc-C model, while the maximum percentage change in the DCI model was 30% decrease. At the adjacent segments, up to 32% increase in ROM happened after fusion, while up to 34% decrease occurred in Prodisc-C model and 17% decrease in DCI model. The IDP increased by 11.6% after fusion, but decreased by 5.6 and 6.3% in the DCI and Prodisc-C model, respectively. The capsular ligament strain increased by 147% in Prodisc-C and by 13% in the DCI model. The DCI implant exhibited a high stress distribution. CONCLUSIONS Spinal fusion resulted in compensatory increase of ROM at the adjacent sites, thereby elevating the IDP. Prodisc-C resulted in hyper-mobility at the operative site that led to an increase of ligament force and strain. The U-shaped implant could maintain the spinal kinematics and impose minimum influence on the adjacent soft tissues, despite the standalone configuration encountering the disadvantages of high stress distribution.
Collapse
Affiliation(s)
- Zhong Jun Mo
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Key Laboratory for Optimal Design and Evaluation Technology of Implantable & Interventional Medical Devices, International Joint Research Center of Aerospace Biotechnology and Medical Engineering of Ministry of Science and Technology, School of Biological Science and Medical Engineering, Beihang University, XueYuan Road No.37, HaiDian District, Beijing, 100191, People's Republic of China
| | | | | | | | | | | |
Collapse
|
44
|
Anderst WJ, Donaldson WF, Lee JY, Kang JD. Subject-specific inverse dynamics of the head and cervical spine during in vivo dynamic flexion-extension. J Biomech Eng 2013; 135:61007-8. [PMID: 23699719 DOI: 10.1115/1.4023524] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 01/29/2013] [Indexed: 11/08/2022]
Abstract
The effects of degeneration and surgery on cervical spine mechanics are commonly evaluated through in vitro testing and finite element models derived from these tests. The objectives of the current study were to estimate the load applied to the C2 vertebra during in vivo functional flexion-extension and to evaluate the effects of anterior cervical arthrodesis on spine kinetics. Spine and head kinematics from 16 subjects (six arthrodesis patients and ten asymptomatic controls) were determined during functional flexion-extension using dynamic stereo X-ray and conventional reflective markers. Subject-specific inverse dynamics models, including three flexor muscles and four extensor muscles attached to the skull, estimated the force applied to C2. Total force applied to C2 was not significantly different between arthrodesis and control groups at any 10 deg increment of head flexion-extension (all p values ≥ 0.937). Forces applied to C2 were smallest in the neutral position, increased slowly with flexion, and increased rapidly with extension. Muscle moment arms changed significantly during flexion-extension, and were dependent upon the direction of head motion. The results suggest that in vitro protocols and finite element models that apply constant loads to C2 do not accurately represent in vivo cervical spine kinetics.
Collapse
Affiliation(s)
- William J Anderst
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15203, USA.
| | | | | | | |
Collapse
|
45
|
Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. J Biomech 2013; 46:1477-88. [DOI: 10.1016/j.jbiomech.2013.03.022] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 03/06/2013] [Accepted: 03/16/2013] [Indexed: 11/23/2022]
|
46
|
Koller H, Meier O, Zenner J, Mayer M, Hitzl W. In vivo analysis of cervical kinematics after implantation of a minimally constrained cervical artificial disc replacement. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2013; 22:747-58. [PMID: 23179982 PMCID: PMC3631039 DOI: 10.1007/s00586-012-2583-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 09/15/2012] [Accepted: 11/07/2012] [Indexed: 12/12/2022]
Abstract
INTRODUCTION To better understand cervical kinematics following cervical disc replacement (CDR), the in vivo behavior of a minimally constrained CDR was assessed. METHODS Radiographic analysis of 19 patients undergoing a 1-level CDR from C4-5 to C6-7 (DISCOVER, Depuy-Spine, USA) was performed. Neutral-lateral and flexion-extension radiographs obtained at preop, postop and late follow-up were analyzed for segmental angle and global angle (GA C2-7). Flexion-extension range of motion was analyzed using validated quantitative motion analysis software (QMA®, Medical Metrics, USA). The FSU motion parameters measured at the index and adjacent levels were angular range of motion (ROM), translation and center of rotation (COR). Translation and COR were normalized to the AP dimension of the inferior endplate of the caudal vertebra. All motion parameters, including COR, were compared with normative reference data. RESULTS The average patient age was 43.5 ± 7.3 years. The mean follow-up was 15.3 ± 7.2 months. C2-7 ROM was 35.9° ± 15.7° at preop and 45.4° ± 13.6° at follow-up (∆p < .01). Based on the QMA at follow-up, angular ROM at the CDR level measured 9.8° ± 5.9° and translation was 10.1 ± 7.8 %. Individuals with higher ROM at the CDR level had increased translation at that level (p < .001, r = 0.97), increased translation and ROM at the supra-adjacent level (p < .001, r = .8; p = .005, r = .6). There was a strong interrelation between angular ROM and translation at the supra-adjacent level (p < .001, r = .9) and caudal-adjacent level (p < .001, r = .9). The location of the COR at the CDR- and supra-adjacent levels was significantly different for the COR-X (p < .001). Notably, the COR-Y at the CDR level was significantly correlated with the extent of CDR-level translation (p = .02, r = .6). Shell angle, which may be influenced by implant size and positioning had no impact on angular ROM but was correlated with COR-X (p = .05, r = -.6) and COR-Y (p = .04, r = -.5). CONCLUSION The COR is an important parameter for assessing the ability of non-constrained CDRs to replicate the normal kinematics of a FSU. CDR size and location, both of which can impact shell angle, may influence the amount of translation by affecting the location of the COR. Future research is needed to show how much translation is beneficial concerning clinical outcomes and facet loading.
Collapse
Affiliation(s)
- Heiko Koller
- Werner Wicker Clinic, German Scoliosis Center Bad Wildungen, Im Kreuzfeld 4, 34537 Bad Wildungen, Germany.
| | | | | | | | | |
Collapse
|
47
|
ProDisc cervical arthroplasty does not alter facet joint contact pressure during lateral bending or axial torsion. Spine (Phila Pa 1976) 2013; 38:E84-93. [PMID: 23132537 DOI: 10.1097/brs.0b013e31827b8a2d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A biomechanical study of facet joint pressure after total disc replacement using cadaveric human cervical spines during lateral bending and axial torsion. OBJECTIVE The goal was to measure the contact pressure in the facet joint in cadaveric human cervical spines subjected to physiologic lateral bending and axial torsion before and after implantation of a ProDisc-C implant. SUMMARY OF BACKGROUND DATA Changes in facet biomechanics can damage the articular cartilage in the joint, potentially leading to degeneration and painful arthritis. Few cadaveric and computational studies have evaluated the changes in facet joint loading during spinal loading with an artificial disc implanted. Computational models have predicted that the design and placement of the implant influence facet joint loading, but limited cadaveric studies document changes in facet forces and pressures during nonsagittal bending after implantation of a ProDisc. As such, little is known about the local facet joint mechanics for these complicated loading scenarios in the cervical spine. METHODS Seven osteoligamentous C2-T1 cadaveric cervical spines were instrumented with a transducer to measure the C5-C6 facet pressure profiles during physiological lateral bending and axial torsion, before and after implantation of a ProDisc-C at that level. Rotations at that level and global cervical spine motions and loads were also quantified. RESULT.: Global and segmental rotations were not altered by the disc implantation. Facet contact pressure increased after implantation during ipsilateral lateral bending and contralateral torsion, but that increase was not significant compared with the intact condition. CONCLUSION Implantation of a ProDisc-C does not significantly modify the kinematics and facet pressure at the index level in cadaveric specimens during lateral bending and axial torsion. However, changes in facet contact pressures after disc arthroplasty may have long-term effects on spinal loading and cartilage degeneration and should be monitored in vivo.
Collapse
|
48
|
Troyer KL, Shetye SS, Puttlitz CM. Experimental Characterization and Finite Element Implementation of Soft Tissue Nonlinear Viscoelasticity. J Biomech Eng 2012; 134:114501. [DOI: 10.1115/1.4007630] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Finite element (FE) models of articular joint structures do not typically implement the fully nonlinear viscoelastic behavior of the soft connective tissue components. Instead, contemporary whole joint FE models usually represent the transient soft tissue behavior with significantly simplified formulations that are computationally tractable. The resultant fidelity of these models is greatly compromised with respect to predictions under temporally varying static and dynamic loading regimes. In addition, models based upon experimentally derived nonlinear viscoelastic coefficients that do not account for the transient behavior during the loading event(s) may further reduce the model’s predictive accuracy. The current study provides the derivation and validation of a novel, phenomenological nonlinear viscoelastic formulation (based on the single integral nonlinear superposition formulation) that can be directly inputted into FE algorithms. This formulation and an accompanying experimental characterization technique, which incorporates relaxation manifested during the loading period of stress relaxation experiments, is compared to a previously published characterization method and validated against an independent analytical model. The results demonstrated that the static and dynamic FE approximations are in good agreement with the analytical solution. Additionally, the predictive accuracy of these approximations was observed to be highly dependent upon the experimental characterization technique. It is expected that implementation of the novel, computationally tractable nonlinear viscoelastic formulation and associated experimental characterization technique presented in the current study will greatly improve the predictive accuracy of the individual connective tissue components for whole joint FE simulations subjected to static and dynamic loading regimes.
Collapse
Affiliation(s)
- Kevin L. Troyer
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523-1374
| | - Snehal S. Shetye
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523-1374
| | - Christian M. Puttlitz
- Department of Mechanical Engineering, School of Biomedical Engineering, Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523-1374
| |
Collapse
|
49
|
Bauman JA, Jaumard NV, Guarino BB, Weisshaar CL, Lipschutz DE, Welch WC, Winkelstein BA. Facet joint contact pressure is not significantly affected by ProDisc cervical disc arthroplasty in sagittal bending: a single-level cadaveric study. Spine J 2012; 12:949-59. [PMID: 22975463 DOI: 10.1016/j.spinee.2012.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 06/07/2012] [Accepted: 08/07/2012] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Total disc arthroplasty is a motion-preserving spinal procedure that has been investigated for its impact on spinal motions and adjacent-level degeneration. However, the effects of disc arthroplasty on facet joint biomechanics remain undefined despite the critical role of these posterior elements on guiding and limiting spinal motion. PURPOSE The goal was to measure the pressure in the facet joint in cadaveric human cervical spines subjected to sagittal bending before and after implantation of the ProDisc-C (Synthes Spine Company, L.P, West Chester, PA, USA). STUDY DESIGN A biomechanical study was performed using cadaveric human cervical spines during sagittal bending in the intact and implanted conditions. METHODS Seven C2-T1 osteoligamentous cadaveric cervical spines were instrumented with a transducer to measure the C5-C6 facet pressure profiles during physiological sagittal bending, before and after implantation of a ProDisc-C at that level. Rotations of the index segment and global cervical spine were also quantified. RESULTS The mean C5-C6 range of motion significantly increased (p=.009) from 9.6°±5.1° in the intact condition to 16.2°±3.6° after implantation. However, despite such changes in rotation, there was no significant difference in the facet contact pressure during extension between the intact (64±30 kPa) and implanted (44±55 kPa) conditions. Similarly, there was no difference in facet pressure developed during flexion. CONCLUSIONS Although implantation of a ProDisc-C arthroplasty device at the C5-C6 level increases angular rotations, it does not significantly alter the local facet pressure at the index level in flexion or extension. Using a technique that preserves the capsular ligament, this study provides the first direct measurement of cervical facet pressure in a disc arthroplasty condition.
Collapse
Affiliation(s)
- Joel A Bauman
- Department of Neurosurgery, 3 Silverstein Hospital of the University of Pennsylvania, 3400 Spruce St., Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
The effects of ligamentous injury in the human lower cervical spine. J Biomech 2012; 45:2668-72. [PMID: 22939289 DOI: 10.1016/j.jbiomech.2012.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 08/02/2012] [Accepted: 08/10/2012] [Indexed: 11/20/2022]
Abstract
Damage is often sustained by the anterior longitudinal ligament (ALL) and ligamentum flavum (LF) in the cervical spine subsequent to whiplash or other cervical trauma. These ligaments afford substantial cervical stability when healthy, but the ability of the ALL and LF to stabilize the spine when injured is not as conclusively studied. In order to address this issue, the current study excised ALL and LF tissues from cadaveric spines and experimentally simulated whiplash-type damage to the isolated ligaments. Stiffnesses and toe region lengths were measured for both the uninjured and damaged states. These ligamentous mechanical properties were then inputted into a previously-validated finite element (FE) model of the cervical spine and the kinematic effects of various clinically relevant combinations of ligamentous injury were predicted. The data indicated three and five-fold increases in toe region length for the LF and ALL injury variants, respectively. These toe length distensions resulted in FE predictions of supra-physiologic ranges of motion, and these motions were comparable to spines with no ligamentous support. Finally, a set of cadaveric cervical spine ligament-sectioning experiments confirmed the FE predictions and supported the finding that partial injury to the relevant ligaments produces equivalent cervical kinematic signatures to spines that have completely compromised ALL and LF tissues.
Collapse
|